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ABSTRACT 

A systematic study of the Bethe-Salpeter relativistic two-body equation 

is continued. The equation is treated in Wick-rotated coordinate space. 

A bilinear combination of functions, called a bracket ii defined. Its relation 

to scattering amplitudes and their residues at poles, and to questions of 

structure of the equation and numerical accuracy of solutions is developed. 

N and D matrices similar to the Jost functions of potential theory are 

defined in terms of complete sets of solutions to the equation characterized 

by appropriate boundary conditions. Scattering and bound state properties 

are defined in terms of them, by formulae analogous to the N/D methods 

of S-matrix theory, and properties of symmetry, unitarity and behavior 

at poles are derived. Various methods for computing wave functions and 

bound state and scattering data are presented. A generalization of the 

variable phase method of potential theory, which substitutes for the Bethe- 

Salpeter equation a coupled set of ordinary linear first order differential 

equations, is given. The formalism will be used in numerical calculations 

to be presented elsewhere. 
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I. INTRODUCTION 

This paper is the second in a series entitled “Methods for the Bcthc-Salpeter 

Equation. ‘1 We shall assume familiarity with the principal parts of the first paper, 
1 

hereafter referred to as MBS I, and use its notation without redefinition. 

The general objective is to “make friends with the Bethe-Salpeter equation, If 

ultimately to exploit it as a familiar and benign tool in a meaningful study of strong 

interactions, In MBS I, the special functions relevant to a scalar BSE were as- 

sembled and the truncation of spherical harmonic expansions was analyzed in terms 

\ of various representations of Green’s functions. Here, we build a structure for 

the BSE which. parallels both formal and physical aspects of the nonrelativistic 

problem. Because of the presence of the relative time variable, which is an es- 

sential feature of a relativistic theory with retarded interactions, and which signals 

the coupling of two-body systems to systems of many particles, the parallel is 

to a multichannel system even though the BSE, outwardly at least, refers only 

to a one channel two-body problem. 

We treat sets of solutions at a given energy and angular momentum, characterized 

by regular and singular boundary conditions. In terms of them, N and D matrices, 

similar to the Jost functions of potential theory 
2 are defined and dynamical problems 

are posed in a manner amenable to calculation. The basic properties of symmetry, 

unitarity, and separability of residues at poles are derived. Several calculational 

procedures fir the wave functions and physical parameters of interacting systems 

are given. Another paper will present model bound state, scattering and bootstrap 

calculations. 

Our version of the N/D method has a reduction to’ potential theory, where it 

is equivalent to the Jost function formalism when the latter is well-defined. But 

the present method is more general. It applies to a +idcr class of potentials, 
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including singular ones. This broader applicability is ncccssary for the relativistic 

case whcrc, even for the one-vnr.iablc BSE at E=O and the scalar-cschangc potential, 

the usual Jost approach breaks down. 
3 

In Section II, an analytic tool is developed which WC call the bracket [$, $1 of two 

functions (p and $J. It is a generalization of the bilinear form that appears in the 

Lagrange identity4 in the theory of ordinary differential equations. The BSE, after 

reduction to partial waves is still a partial differential equation in two variables; 

the applicability of this tool depends on the fact that boundary conditions can be ex- 

pressed in terms of only one variable. A preliminary discussion is given in (II. 1) 

on brackets for the Schriiedinger equation, as an orientation, and here the bracket 

appears as a matrix element of the flux operator, integrated over the surface of a 

sphere centered at the origin. 

In Section III, the structure of complete sets of functions, and their boundary 

conditions, brackets, and connecting relations are developed, 

Section IV contains the development of the N and D matrices, their connection 

to bound state and scattering problems, and a comparison to the formalism of Jost 

functions. 

In Section V, certain complete families of functions which solve the free BSE, 

called channel functions, are defined and their numerical computation through 

summation of power series is outlined. The channel functions are analogs for the 

BSE of the spherical Bessel and HKnkel functions of potential theory, and for com- 

putation purposes, more useful than the vector Bessel functions constructed in 

NIBS I. They enter into the construction of Green’s functions, and the N and D 

matrices, and into the explicit formulation of dynamical problems. 

The next three sections prcscnt n~~tl~~ls lor doing dynamics, i.e., for obtain- 

ing bound slates and scattering once the inter:lction is specified. Section VI details 
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the N/D method and includes a discussion of bound state normalizations. Because 

of the correspondence to the N/D method of S-matrix theory, comparisons between 

BSE and S-matrix calculations based on the same physical hypotheses are possible 

not only for output quantities, but also for more basic ingredients such as the D 

function itself. 

Section VII describes the use of truncated spherical harmonic expansions. 

Section VIII shows how to obtain the N and D matrices and the wave function for 

the dynamical system from a set of coupled first order differential equations, 

This procedure can be regarded both as generalization of the variable phase method 

of potential theory, as developed by Calogero and others, and also as an adaptation 

of the method of variation of constants of ordinary differential equation theory. 

We are not ready to treat all sources of complexity at once; as in MBS I, 

the particles are scalar and the energy is either in the bound state region 

I 
2 2 112 

“1- “2 I 5 ELml+m 2, or the scattering region below inelastic threshold. 

Then the condition of elastic unitarity applies and the Wick rotation is valid for 

both the differential and integral BSE. We use the BSE in coordinate space in 

the Wick-rotated form. 

The discussion frequently draws the distinction between regular and singular 

boundary conditions. This follows the extraction of total momentum and angular 
iP X 

momentum; i.e., zl/(x,, x2) =O lJ p y,m(S,, $+w, fa and $(x,0) is the subject of 
*- 

study. 

The regular conditions arise from the causality requirement which is in- 

corporated into the Green’s functions through the m -m - ie rule, and then 
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into the wave functions via the integral version of the BSE 

9 = GV’!’ (bound state) 

11, = je(kr) + GV$ {scattering) 

One might avoid Green’s functions altogether, and connect up the properties of the 

differential equation with the notion of particle flux, but the above approach is 

standard and perhaps for this reason, easier. The bounding behavior of I/J can be 

read off from one of the representations of the Green’s function listed in MBS I. 

To obtain a precise statement of regularity in a form which will prove useful, 

let I./J be expanded in spherical harmonics: 

$,(x1 = CY&W R&e) (I.21 

At the origin of x, (I. 1) implies the finiteness of each I/J,(X) and perhaps more; 

but this is sufficient. Referring to the harmonic expansion of the Green’s function, 

(MBS I, 5,23) and (I: 1) we find each 9,(x) represented as a superposition of terms 

indexed by an angular parameter CY, 0 i CY 5 ?T. As x - 00 , the term in (Y requires 

asymptotic behavior of type 

x-3/2 -‘cY, lx e , 
or x-3/2 ,+I, 2x (1.3) 

where 

; h ~*ticosa! + (ufcos 2 o! 
a,1 

- k2)li2, i=l,2 (1.4) 

The spectrum of the ha i is limited to a finite range of-values, including some in 
, 

the scattering case with negative imaginary part, as is discussed fully in MBS I. 

Singular behavior at infinity, acceptable to the differential equation, but not to 

causality, would encompass terms like 

x-3/2 zha, lx 
-i-h 

.-3/2 e 4,2’ 
, (1.5) 
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Modifications of this framework may be required by ill-behaved interactions, 

but can be treated as they come up. 

It. BRACKETS 

A, Nonrelativistic Brackets 

In a nonrelativistic context described by 

(E + V2/2m) ~/l(r) = V(r) q(r) 

the “bracket” [$, $1 between $(rJ, $0, 

w 1) 

tn.21 

is a convenient tool for the analysis of scattering and other properties, particularly 

if one does not choose to invoke the integral formulation of the Schroedinger equa- 

tion. For $ = $*, it measures the flux of particles out of a sphere of radius r and 

so has an immediate physical interpretation. It is a function of r only, linear in 

both $ and $, and vanishes at r = 0 if $ and $ are regular at the origin. 

Suppose that 

(E + V2/2m) $(r) = 0. (II. 3) 

Multiply (II. 1) by @cr); multiply (II. 3) by J/(r), subtract and integrate over dy, 

applying Green’s theorem, Then 

and in particular, if both +, $ are regular at the origin, 

This argument also shows that if $, $ satisfy the same equation, i.e., either (II. 1) 

or (II. 3), then [$, J] . I is a constant independent of r. 

We note briefly some uses of this concept in potential theory which will have 

their generalizations for the BSE* 
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Firstly, let J,,(r) be the outgoing solution of (II. 1) for momentum &, i.e., 

regular at the ‘origin and 

$Jr) = eike 2Z + X&(r) 

where, as r-o0 , 
ei kr 

X&(r) = r f f O(ra2) 

tn. 6) 

@* 7) 

Equation (II, 7) implies, as r - m, that 

& Xk(r) = ikXk(r) -t O(rW2) (II. 8) 
- - 

Then Eq. (II. 5) provides a formula for the scattering amplitude in terms of a 

bracket: 

f(lf’---Is) = -g 
f d; eWik’ l r V(r) $L(r) . 

-1 -iF*r 
=F E 7 Q 

3 - r-00 

or equivalently, 

f@‘-kJ = -(4r)-l[e-‘k’ o .Z, XJ 
rem 

(II, 9) 

(II. 10) 

Secondly, consider the equalities 

(II. 11) 

[$I’+&] = O ’ (II. 12) 

The brackets of (II. ll), (II. 12) are constant because Gk, I/I all satisfy 
.- -&’ ’ $51 

(II. 1). The lqualities are evidently valid at r= 0, and hence at all r. Now substitute 

(II. G) and the analogous form for e-k’ into (II. 11) and apply formula (II. 10). One 

of the terms that appears is [x&,(r), Xi&r)1 but this vanishes as r-co in virtue of 

(11.8). The result is the time reversal property 

f(&‘+-- kJ = f(-k- -k’) (II. 13) 
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In the same way, (II. 12) delivers the unitarity statement 

f(l<-M - f*(&-&‘) 
2i 

B. Brackets for the BSE 

Given a family of functions $ upon which a partial differential operator acts 

and a family of functions @ upon which the transposed operator acts, one may 

attempt to construct a bilinear function of c$, IJJ similar to the form that enters into 

the “identity of Lagrange,’ in the theory of ordinary differential equations and which 

may serve similar purposes. 

For the Schriiedinger equation, the appropriate definition was given in the 

previous section; the bilinear function is essentially a matrix element of the flux 

operator. 

For the Wick-rotated BSE, it is natural to regard x as the interesting variable 

in such a construction and to integrate over the angular variables. Thus, we shall 

define the bracket [p, $1 of f unctions $(x,), $(xP) as a function of x only, in a way 

which parallels the treatment of the nonrelativistic case above. We shall also 

write [$, I/,], when the point x at which the bracket is evaluated deserves emphasis. 

As a preliminary, we define “second order,, brackets ($I,$),(~)($, $f2)associated, 

respectively, with the second-order operators ?Z1, g2, 

gl= q 2+ k2 - 2wl 6’/(ar) , (II. 15a) 

i 
!a2 = c12+ k2 + 2U2 a/(37) , (II. 15b) 

that enter into the scalar Bethe-Salpeter equation,. The transposed operators G,, 

g2 in rectangular coordinates are obtained from g.I, g2 simply by reversing the 

sign of (a/87). More generally, if the gi are expressed in coordinates I I 
IQ 

whit h 
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I 

are not rectangular, the Jacobian J(S), where 

d4x = J(t) d44 (II. 16) 

enters into the definition of transpose. One writes down J+(giy), integrates by 

parts and carries the differentiations through J to get 

J(ai$)+ = J+(gi$) + derivative terms. (II. 17) 

It follows that 

s 
4i- Jd I = 5 $+W - W1+) j surface terms, 

closed 
volume 

(II. 18) 

This is the essential property to be exploited. We begin by characterizing 

(wJP as follows : 

(11.19) 

but immediately introduce a notational simplification. We shall suppose, as in 

MBSI, that all functions carry the same angular momentum quantum numbers 1, m. 

Specifically the symbols 9, $ stand for $(x,0) YF(e,, $) and $(x,e)YF(e,, $)* 

(note the complex conjugate of YF in the @ function). The Y’s are normalized in 

the usual way: 

J 
m 

ye to,, +I* yFte3, a do = 1 (II. 20) 

Then the dependence of CZ1 on e3, C#J can be replaced by dependence on 1, and (II. 19) 

can be rewritten 

with $I 3 WY Q, qJ 3 WY e)* 

The operator a1 can be separated into parts: 

C2J1 = D - ++ a/(&‘~) (II. 22) 
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where 
d2 +3d 

2 
D=D”=--- -z+k2 

&2 x dx x2 (II. 23) 

and LZ2, the square of the operator for four-dimensional angular momentum is 

written out in (MBS I, II 0 2). 

Observe the identities 

x3(c$D$ - +D$) = $ 

= -$ 
( 
x3 sin20 cos 8 c$+ 

) 
- -$ (x2 sin30 $$) (II.25) 

The ZZ2 terms of (II. 24) and the (d/de) term of (II. 25) vanish when the inte- 

gration over angle is carried out. 

Thus we infer from (II.21) the explicit definition 

(4’ dl) = s 
x3 sin28 d0 $ $$ - Jig - (2~~ cos e)++/ 

1 

Similarly, 

and 

(@’ d2) = s 
x3 sin20 de 

Finally, put 
. . 

(II. 26) 
\ 

(II. 28) 

(II* 29) 

It is easy to see that the left side of (11.29) equals 

(II.30) 

- lo- 



so we may define the BSE bracket by 

An equivalent definition is 

p,$J = (#Y qd2) + (G2 4, q+) 

Let the spherical harmonic expansions of $, @ be given by 

II, =~nfntwqe,y @ = En q.p, R,(B) (II. 32) 

(II. 3 la) 

(II, 3 lb) 

I 

For practical work, we require the explicit expressions for the brackets in terms 

of the coefficients f,(x), g,(x). Diligent application of the rules for differentiation 

leads to 

wd!J> (‘-) = x3x .I gnf~-ghf,-2wlAntgnfll-l + gn&+ 

(+‘+I t2) = x3x g&- g;fn + 2~2Antgnfn-1 -t gnBlfn) , I 1 
[c/l, t/J] = x3c]gnf;’ -g;f; + giffh - gC’f, 

+ 3tq; - #&)/x 

- 2k2 -t (2n2 + 4n + 3)/x2 1 (gnf’n - is; fn) 

(II. 33a) 

(II, 33b) 

where * 

+ 2tw,-wl)An[XtgYf)+X(f,g)]j Y (II. 34) 

Wg, f) = f$.&- 1 + g;- lfn - g;f;- 1 -t k2gnfn- 1 

+ 
I 
(1 - n)g~el fn f (n+Z) g; fnml 

I 
/X 

- (n2 +n+l) gnfnB1/x2 (II. 35) 

and where A 11' oll, pl, are gi.vcn in (nilUS 1,II. 1G). * 
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The general property underlying the use of the bracket is the following. Let 

~l~2J/(x, 6) = A(x,8) , (II, 36a) 

GlG2+tx,e) = B(x, 6) ’ (II, 36b) 

Multiply (II.36a) by $, (II.3Gb) by 9, subtract and integrate over x,8. Then, we 

have 

x2 

bwlx, - p, q,gxl =J 

x1 
x3dx~sin28d+#+, @AN, e) - B(x, Wx, 0)) 

In particular, if 

then 

[W/J],- [$&lo = SOW x3sin2edd . 

c. Some Properties of the Brackets 

1. Brackets of Solutions 

If 9, $ both satisfy the free BSE, 

9p2q = 0, Gp2$ = 0 

or both satisfy the BSE with interactions, 5 

. . !2p,JI = VqJ, 3$z2Q = qv 

(II, 37) 

(II. 38a) 

(II. 38b) 

(II. 39) 

I 
\ 

. (II.40) 

(IL 41) 

then by (1I.W [h $1, is a constant, characteristic of the solutions Cp,$ , but 

independent of the coordinate variable x. 

In numerical work, one calculates families of solutions defined, perhaps, by 

boundary conditions at x= 0 or x -00 , and evaluated for various x. The number of 

decimals to which the computed brackets are constant as x varies is a measure of 
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I 

the accuracy of the calculation. In our experience, it has proved to be a sufficient 

measure of accuracy. 

2. Complete Sets of Solutions 

Suppose we have complete sets I $“I , r’ $n 1 of solutions to a BSE and its 

transpose. Then arbitrary solution, c P and @ can be expressed as linear combinations 

(repeated indices are summed): 

Ip = pc n’ @ = dnqn. (II. 42) 

If we work with one of the truncated approximations to the BSE, a complete set of 

solutions will have finitely many memberso But in general, there will be infinitely 

many terms in (11.42), In MBS I, we have even considered a class of solutions 

Itay i) for the exact, free-particle BSE where the index Q! was a continuous variable, 

All the brackets 

1 1 cQ,C,~ = BF u& 43) 
will be constant. If arbitrary linear combinations are taken 

then in terms of the transformed functions, we have, dropping the primes, 

= Ap BqC” npq 

(II.44) 

(rl.45) 

If the transformations are managed so that 

; c 1 en? em = 82/p,, (no sum on n) (II.46) 

we may say that the solutions to the equation and its tr%nspose have been arranged 

in conjugate pairs and that I$“;, /$ml are bi-orthogonal sets. This was done 

explicitly in MBS I for the I (01, i), Ktcfy il of the truncated problem. 

Assuming now that the $J’S and 4’s satisfy (11.4G), we can solve for the coef- 

ficients Cn of (II. 42) by computing [9,, f//3* Thus, we have 

a = PPm[$,,Lp] - 
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and also 

e =‘ @,P P,@, l [ 1 (II. 47b) 

Furthermore, 

[@,@I = [@,P]PJfp] 9 (II. 48) 

which resembles the procedure for insertion of intermediate states into a quantum 

mechanical scalar product. 

3. Scattering Amplitude 

The formula for the scattering amplitude f(tr’-kJ is’ 

1 S .-ik’= r f&C--&)= x - - wjp(xJ d4x 

where $(x~) satisfies 

(II. 49) 

(lI.50) 

(LL51f) 

1,5(g) = eik* L +SG(xp, x;) V(X;J.,!J(X;) d”s 

The partial waves reductions for these functions are 

,-ik’ . r - - = C(-i)“(U+l) Pp(Lf e 1) j&kr) 

+(x,) = C (i)“(21+1) PI (1? l 12) $&x, 6) (II. 51b) 

G(xp, XL) = c (4+(2Q+l) P&i 0 :‘) G@)(x, 8; x’, 0’) (II. 51c) 

(II. 51d) 

where the reIation of partial wave amplitude to phase shift (below inelastic thresh- 

old) is 

fa = 
1 i$ 
k Q sin fYl (II.521 
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h reducing (II. 49) and (II. 50), the projection property of the Legendre polynomials 

is best expressed by, 

s 
(2&l) P&f l ;) dllP@ . k) = 4n P@ 0 k) (II. 53) 

Then we have 

f1 = & J jg(kr) V(X) +1(x, 6) x3 sin20 dxde 

with $&x, 0) obeying 

$Q@, 0) = S&W + S GtQ)(x,8 ; x’, ~‘)V(X~)$(X’, 0l) xt3 sin2& dx’d& 

An explicit form for G(g(x,O ;x’, 0’) is given in (MBS I, (V. 12)). 

(II. 54) 

(II. 55) 

Since $1, j, satisfy (II. 38a),(II. 38b) respectively, Eq. (II. 39) may be applied. 

Because $!J~, j, are regular at the origin, and the definition of bracket carries a 

factor of x3 , [j,, GIJo = 0. Therefore, the partial wave scattering amplitude is 

given by 
‘I 

(II. 56) 

In practice, the bracket of (II. 56) can be evaluated at any x outside the range of 

the potential. 

Of course, f1 and e&x, 0) are complex. But the above material can be rear- 

ranged to give tan s1 in terms of a real wave function. Let G(a) be divided into 

real and imaginary parts: 

; G (Q) w (4 (x, 8; XV’) = GR (x,6; x’, 0’) + iGI (x, 8; x’, 8’) (II. 57) 

By (MBS I, (5.56~) we have 

,Im G(x~, “;1) = Cw-+l) Pp( Q. Ff) jQ(kr) jQ(kr’) (II. 58) 
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and hence, comparing with (II. 51c), 

G(‘)(x 6 - x’, 0’) = 
I " 

& jQ(kr) jQ(krl) 

Substituting this i.nto (II. 54), we have7 

(II. 59) 

$Q = jQ(kr) (1 + ikfQ) + 
s 

G$ V$Q 

Hence, #Qas defined by 

$Qtx,e) = $Qtx, eb?i +il’fQ) 

(II. 60) 

(II. 61) 

satisfies 

and is clearly real. It satisfies the same differential RSE as $Q, from which it 

differs by a constant factor. A specification of its asymptotic boundary conditions 

will be given later. 

Replacing I/J~ in (II. 56) in terms of +Q and recalling that (Q”sin 6) 
-1 = cot6 -i, 

we obtain 

(II. 63) 

In practice, we calculate 4, and tan aQ rather than +Q and fQ. 

4. Output Coupling Constant 

Consider :i reaction at energy E through the annihilation process 

1+2-3-l-t2 (II. 64) 

Let particle 3 have mass Eo, E. : mI + m2. The coupling strength at each 

vertex is g. Particles 1 and 2 continue to have zero spin. The normalization of 

g may be standardized by citing the interaction Lagrangian for the three-particle 

vertex. If the particles belong to different fields $I(“), q2(x), q3(x) and partic.le 

3 also has spin 0, we put 

.qx, = s O,(x) $2(x) O,(x) (IL65a) ” 
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But if two or three of the particles arc identical, then 

q(x) = (g/2! 1 @l(X) $2(x) cp,@) 

or 

.qx) = tgm $,(x) 95 ,@I 4$x) 

(II. 651)) 

(II. 65~) 

respectively. 

Any one of these leads, by Feynman’s rules, to a vertex factor of simply g 

and a scattering amplitude for the annihilation process which is 

fann(kT-&)=$E A2 . - 
Eo- E 

(IL 66) 

If particle 3 has spin Q, we suppose, without supplying details, that (II. 65) is 

adjusted so that the result is 

fann(k,-- k) = 8& A (2Q+l) PQ& .b . 
EO-E 

The partial wave amplitude is 

(IJ. 67) 

(II. 68) 

Now suppose a certain interaction between 1 and 2 defines amplitudes which 

are computed by (11.56) and further, that a bound state at E. is produced in the 

Qth wave - 0 For E below threshold, fQ is real (even though the argument of j, is i h’r) 

and has a pole at E =E. 

According to the bootstrap philosophy, the interaction has simulated the an- 

nihilation process (It. 64) and the residue of fQ at E = E. is related to the output 

coupling constant g, i. e., the coupling to the particle of mass E. which emergt+s 

as part of the out@ of the calculation with this interaction. Comparing the form 
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(II. 68) valid at the pole with the general formula (II. 56), we have 

= lim (I$- E2)[jy(iKr), VJ~ 
out E-E0 1 co (II. 69) 

as the prescription for the output coupling constant in rationalized form. An 

alternative formulation is given in (V. 6). 

Consider now that the mass of the intermediate particle is above threshold, 

Then, we have a resonance rather than a bound state and replace E. by E. - i/2 r . 

Assuming r << E. we can approximate 

lEO - i/2f)2 - E2 z Ei- E2 - iEOr . (II. 70) 

Then, in the neighborhood of E = E. 

i Q 
i6 2 

‘sin 6Q = g 1 
8TE E”o- E2 - iEOf 

which implies the connection between width and coupling constant: 

r=-lfn_ 2 
2E2 41T 0 

and the rule for obtaining g2/47r : 

(II* 71) 

(II. 72) 

? (Ei- E2)tan 6Q = ,“-“,, (Ei- E2)[jQ, ep], (II.73) 

where $Q is the function of (II. 62). 

. . 

III, COMPLETE SETS OF SOLUTIONS 

A. Boundarv Conditions for the Free BSE 

The Bethc-Salpeter equation, with or without interaction, has infinitely many 

solutions regular for 0 < x < 00. Because the equation is linear, one may construct 

a complete set or basis of solutions, an arbitrary linear combin&ion of which 
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represents the general solution. 8 The basis members may be conveniently delineated 

in terms of boundary conditions at x= 0 or x= 00. In either case, there will be a 

natural division between singular and regular conditions at the boundary points. 

Let there be given a set of functions r @‘I (x,0) regular at the origin indexed by 

(v) and a second set s (‘)(x, e) singular at the origin which solve the free BSE at a 

definite energy and angular momentum, such that the combined set is a basis. An 

enumerable family of functions of this type will be constructed explicitly in MBS III 

by means of expansions in spherical harmonics and powers of x. They, and certain 

derived functions, will be called channel functions because the lead term in the 

power series occurs in a distinct spherical harmonic channel. 

If $(x, 0) satisfie‘s the BSE, the transposed function F(x, 6) satisfies the trans- 

posed &E. The transposition is obtained by 7 - - 7 , or equivalently, 8 - r - 8: 

This means that if 

&x, 6) = +(x, T- e) . (III. 1) 

i 
(III. 2a) 

then 

qY= Cf,(x, R,(“- e) =~(-$-l!f,(X) Rn(N 
l (III. 2b) 

Hence we may define a transposed basis for the transposed free BSE; namely 

r(v)(x> 6) = 3?)(x, 0) = r(‘)(x, 7T - 0) , (III. 3a) 

stvj(x, e) = +)(x, e) = s(')(x, n-e) , (III. 3b) 

with the regularity or singularity of the function again identified by its name. 

The input wave jQ(kr) satisfies both equations of (11.36). Thus, there must 

exist expansions (summation convention again) 

jQ(kr) = rCV) (x, 6q,/(k) = C’(k) l&(X, e) (III.4) 

0 
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W e 1 mm used two notations for one cluantity to keep 

the summation indices fluent. In gcncral, the r (‘)(x, 8) alone are a complete basis 

for solutions regular for all finite x including x = 0. 

Now consider a complete set of functions h (VI (x,0) regular at x = o. These may 

be defined by 

h@)(x, 6) = s(‘) + I-@),’ 
12 

(III. 5a) 

The matrix Xv, 

much of the r’) 

to be obtained when r(V) and s(~) are known explicitly, tells how 

must be added to each s(~) to cancel off the part of s(~) which is 

singular at infinity. Taking transposes, we have 

(x 6) = ‘i;(V)(x 0) = s h 
04 ’ , (v) 

+ ? r 
lJ o-1) 

where, for the sake of fluent indices, we put 

(III. 5b) 

q=xv . 
CL 

(III. 6) 

TheBSE under consideration is real. We can, and shall, suppose that the boundary 

conditions at the origin are real, Hence the s(‘), r(‘) are real. But above threshold 

the regular boundary condition at x = UY is not real as it involves outgoing waves. We 

separate X and % into real and imaginary parts: 

T = ,Z$ I- iq (III. 7) 

where 

The last in our list of functions are z (‘)(x, 0) and z(v)(x, 0) = $(‘)(x, 8); they are 

the real parts of the h’s ; 

z qx, 0) = ,@) -f- .@) x; 
(IK 9a) 

zV(X,e) = s 
(v) 

+ FPr 
v 01) 

and arc cyual to the h’s below threshold where 5 V 

I-1 
vamshes. 

@I. 9b) 
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B. Bracket Relations 

For arbitrary functions cj, +f~, we find, by putting 6-r- 8 in (II. 29) that 

i [h $I= -[G Tl (IL 10) 
This tells us, for example, that s , s 

b&), #-j =-[r(v), &g. ’ @) 

is antisymmetric in v,~ and that 

We shall, in fact, add to our specifications of the function basis the requirement 

(III. 11) 

The channel functions, whose construction has been promised, will satisfy this 

condition. It is generally true that 

[rtpj, r@)] = 0 (III. 12) 

because the bracket may be evaluated at x = 0 where the functions and their derivatives 

are finite and the extra factor of x3 secures the vanishing. We shall not suppose 

that kol,, ~(‘1 vanishes, because our channel functions will not have this property. 
/ 

If, however, the property were thought especially desirable, one could define new I\ 

singular functions by 

&) = $4 _ ip, (III. 13a) 

(me 13b) 

which by (III. 10) are transposes of one another. Then 

and moreover, . 

(III. 15) 

Thus, the families r(“), c(“) and o&), r&) would be biorthogonal sets Ivith the 

simplest bracket relations. 
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It is also true that 

[htP), h’vil = 0 (III. 16) 

in virtue of the property of regularity at cb which the h’s share. This is less easy 

to establish from the bracket definition, The family of K (a, 9 
’ K(ck!,i) which satisfied 

a truncated BSE had the vanishing bracket property, as shown in MBS I. These 

functions behaved like x -3/2 ;‘a, ix as x----00, and since there was no possibility 

of cancelling when 
[ 
K 

(a, i)’ 
,(k i, 1 was formed, the constancy of the bracket for 

all x implied its vanishing. Now the h’s that we shall construct as channel functions 

will have truncated versions which will be explicit combinations of the K’s. Hence 

the brackets among truncated h’s will vanish. As the truncation parameter goes 

to infinity, the truncated h’s will converge to the true h’s, even though the K’s 

themselves do not converge to anything. Thus (HI. 16) is established for these h’s. 

It is then established generally, for any function regular at infinity is a linear 

combination of these h’s. / 

By (III. 5), (III.9), we have the decomposition of h into real and imaginary parts: 

,(‘d = ,b) + ir(cl)cv 
P’ 

This resembles the Bessel relation 

i h:‘) (kr) = -n&kr) + ijp(kr) . 

Next, substitute (III.5) into (HI. 16) to get 

(III. 17a) 

(ILL 17b) 

(III. 18) 

(III. 19) 
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The real and imaginary parts of (III. 19) read 

[ls@), sy = x; - 2; = XL - x; 

and 

0 = I; 

(III. 20) 

(III. 21) 

i.e., 5 
Y 

CL 
is symmetric inp, u. 

Hence, using (III. 20) we have, from (III. 9) 

[Z&)’ zq = o 
. 

Also, it is clear from (III. 9), (III. 5), and (III. 11) that 

(III. 22) 

(III. 23) 

(IIL 24) 

Finally, observing that taking complex conjugates, 

hi) = zG) - it; r(V) = hN) - 2i ‘L r(v) (DI.25) 

and noting the symmetry of 5, (lII.21), we have the last bracket relations of this 

series, 

[h$), h(“)l = -b(u), h”)J = 2i<i (III. 26) 

We have then three different bases of functions to work with, the (r, s) basis, the 

(r, z) basis, and the (r, h) basis, of which the first two are real and the last two 
;, 

satisfy the simplest bracket relations for biorthogonal sets. The ingredients of 

the theory so far are the functions themselves, the coefficients CP of (III.4) and 

the matrix X. The imaginary part of X, namely 5, is simply expressible in terms 

of the Cc1 as will be seen below. 
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C. The Free Green’s Functions 

The partial wave Green’ function9 obeys 

!S1CB2 G(x,t? ; x10’) = 6(x-x’)f;(6-0’) 

x3 sin2 8 
(III. 27) 

It has already been exhibited in several representations, namely (MBS I, 5.12) 

and (MBS I, 5.23), 

Its expansion in terms of basis functions is done as follows: Because of the 

boundary conditions, we have 

G(x, 0 ; x18’) = r(l’)(x, 8) aV(xl ,0) , x< x’ 

= h@)(x, 13) b (x’, 6’) , x >x’ v (III. 28) 

where aV(xl, e’), bV(xf, ‘3’) are coefficients to be determined. We see that 

ktv,; G] o = 0; ptvj, Gla = 0 (III. 29) 

Here, and in the brackets to follow, G always means G(x,f?; x10’) and the primed 

variables are merely parameters. There are two ways to calculate 

and htv,, G o. [I 1 Firstly, from (III,28), we get 

[ 1 rtvJ, G m = - $,(x',t% (I 1 hw’ G = aV(x’,O) . (III. 30) 

Or multiply (III. 27) by rlL,)(x); multiply Q1$X2 rlV)(x) = 0 by G and apply (II. 37)) 

(III. 29) to get 

and, similarly, 

[ I h(v)’ G 0 = h(‘p’) * 
Hence, 

G(x,9; x’,O’) = - r(‘)(s, fQh(Jx’, 0’) , X<X’ 

(III, 31a) 

(III. 32a) 

= - h(“)(S,Q) 1’( v )(x*,0’) 9 X>X’ (Ill. 33) 
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We dcfinc 11~ transpose Green’s function G” following (III. I}; 

~(x,O;x’,O’) L- G(x, r-0; x’, T-O’) (III. 34) 

that is, withoiL transposing the order of the arguments. Then G” satisfies the same 

boundary conditions as G and 

--- 
Slti2G = (yx- x’) 6(0 - 0’) 

x3 sin20 

We have the explicit form 

i2(x,d;x*,f3*) = - r~l’~(x,O)l~y)(x’,O’) 

*(VI = - h(Jx, 0) 1 (x’, 0’) 

and note the relevant bmclict relations 

[E, r(“)Io = 0; [C, h(“)l, = 0 (III. 37) 

x < x’ 

x > x’ 

(III. 35) 

(III. 3G) 

and 

c 1 E p = I co - r(“)(x’,O*); [??, h(“)l o = hY(x’,d’) 

The symmetry of Ihe Green’s function 

(III. 38) 

@x1, 0’; x, 8) = G(x, 8, ~‘0’) (III. 39) 

can be obtnincd 1~~7 bracketing the differential 

(III. 3G). In physical terms, this symmetry 

The imaginary part of G is seen to be 

GI(s,B;s~O’) = - 

equations or by insl~cction of (III. 33), 

reflects time reversal invariance. 

A”)(>;, @) <i roL)(s’, 0’) (EL 40) 

But GI is already given in terms of j,(k), ji(l;r’) in (II5S). Comparing \vith (El. A), 

we get, for E abo\-c tllresllolcl 

5 
I-1 -. 
1’ -- -& C’,(li) d’(k) (III. 41) 



The calculation of XL depends more directly upon knolwdge of the basis functions 

and will be done for the channel functions in subsection V. E and the Appendix. 

Let Gv(x, 8;x’O’) be the (real) interaction dependent Green’s function generated 

by the real free Green’s function GR, that is, 

Gv=GR+ 
s GRV Gv 

For reference purposes, we list some further properties: 

Gv=GR+ 
s GvV% 

&Blg2 -v) Gv= 1 

(it@f2)’ Gv - GvV = 1. 

The primed operator (qz2)’ differentiates the second pair of coordinates of 

Gv in (III. 43)~). 

(ILL 42a) 

(III. 42b) 

(III. 43a) 

(III. 43b) 

The proofs of these relations are routine, as the ingredients for them have 

already been laid out. 

IV. THE N AND D MATRICES 

A. Definitions 

(VI Let rv (x,0) be solutions of the RSE with interaction 
* 

(941c32 - V)rt) = 0 w* 1) 

indexed by v, which comprise a basis for the solutions of (TV. 1) regular for all 

finite x including x = 0. If V is sufficiently well behaved at the origin, one may 

also require that each r (v) . . 
V satisfy the same condition at x = 0 as the corresponding 
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free solution r”‘), but this is not csscntial for the present argument, Let us assume 

that the m:Ltriccs 

(71) d;(x) = bon), rv [ 1 x, n;(x) = r’“‘l v (I-v.3 
Jx 

converge to finite limits as X-M D Then we define 

D; = liln “‘1. (x) = [ 1 h $4 
X--CO t/J)’ v 00 (IV. 3a) 

NV = P lim n; (x) = x-m a (IV. 3b) 

(1)) The existence of a basis of rv functions with these properties is a limitation on 

the pathology of V at the origin and at infinity. An infinite range (e.g. , Coulomb 

t.ype) interaction is excluded, but interactions which are both repulsive and singular 

at the or.ig.in need not be. As a practical matter, one may evaluate the brackets 

of (IV.3) tit a point x, “outside” the range of V. That is, the part of V beyond 

xm is supposed to be too small to affect the system to the desired order of accuracy . 

Sometimes, one replaces V with hV where h is a varying parameter. The 

matrices may be designated as D(E), D(E ,h), etc., according to which parameters 

need to be emphasized. 

(7)) The regularity of $ at the origin implies 

Invoking (11.39) and (IV04), WC ha~:c :unother espression for N: 

N” = 
I-1 

One may atlcmpt to \\‘ritC, in similnr fashion 
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but the terms on the right side of (IV. 6) may be separately itiinitc, at least for 

some values of I-1, v . Thus, the most regular interaction a one particle exchange 

model can deliver is that defined by scalar exchange, This interaction becomes 

the Yukawa potential in the nonrelativistic limit, But in the BSE, the resulting 

interaction goes like x 
-2 at x- 0. (v) There will also be functions rv that go Like 

1 and functions h 
o-1) 

that go like x-’ in this limit, in a typical case. Then the 

integral in (IV. 6), which is over x3dx will diverge logarithmically at the origin, 

althougn Dl , of course, is well defined. This point underlies a subtle distinction 

between our approach to these matrices and that which is conventional in potential 

theory. See discussion below in subsection C under item (4). 

The transposed function r v(v)(x, 0) = i(“(x, 8) obeys 

The transpose ? - 

or (III. 34); i. e., ti 

coordinates. 

ZL 
(991972 - Q rV(V)(x,e) = 0 W. 7) 

where V may be a nonlocal operator - is defined as in (I’LL 1) 

-x - 8 for all angles, but no transposition of the order of 

We define V as symmetric if 

i$J = $v 

and self-adjoint if under complex conjugation 

(iq/)* = ‘pv . 

Symmetry and self-adjointness correspond to the physical conditions of time- 

reversal invariance and unitarity, as they do for the Schrijcdinger equation. Now 

both kvg), rtjx and kvb,*, e’l, vanish at x = 0, because they are regular 

there. If V ib symmctr.ic, we have 

(Iv. 10) 
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Then by Ihe argument following Eq. (II. 41) 

[rvb), rri] - 0 

for all x, Likewise, if V is self-adjoint, 

hZ 

%~xrv&)* = I;(p) *V 

(Iv, 11) 

(Iv. 12) 

and then 

c rv(p)*’ 
(rve 13) 

for all x. 

The N matrix is real if, as is convenient, we take the boundary conditiork 

for r(‘), r (‘), and hence the functions themselves to be real. Let D be separated 
V 

into real and imaginary parts: 

DL = (DR); + i(DI)L . (Iv. 14) 

Then 

(lY.15) 

Below threshold, h 
OJL) = % 

so D = DR and DI = 0. But above threshold, the 

imaginary part of h 
(I-L) 

iscur 
I-1 (v) so 

(DI); = [h,Nt) (IV. 16) 

B. Some Iniegral Equations 

What integral equation does r satisfy? Notice, from (111.36),(IV.4) 

and the definition of D that 

[C, rt)], = 0; [E, rrqm = - r@)(xf) D; 
. (IV. 17) 
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Thcn,multiply (IV. 1) by g(x, O;x’, 0’); multiply (III.35) by 1; (%) 9 subtract and 

apply (II, 37), (IV. 7) to get 

$)(x1, (I’) = r”(xt, 0’) D; + s 
E(x , 0’ x’ 6’)V(x) r(V)(~) x3 sin% dxde . , V (Iv* 18) 

After interchange of x, 0 and x’, 6’, the result reads 

#J) = $4 D” -I- 
s 

GVr(V) . 
V Ir V 

If the matrix “II is not singular, we can introduce 

$J(‘)(x, $) = r(‘)(x, 0) (D-l)’ v I-1’ 

This function satisfies a more familiar type of integral equation 

$tv) = .(‘I + S GV $,(‘) . 

(Iv* 19) 

(IV. 20) 

(rv. 21) 

c. Elementary Properties of the N and D Matrices 

1. Dynamics 

First suppose that the determinant 

A(E) = det D;(E) (Iv. 22) 

vanishes at E = EoO Then there exists a right eigenvector av of DL (Eo) with zero 

eigenvalue, i. e,, 

DL(Eo)av = 0 (IV, 23) 

(v) Then by (IV. IS), the wave function $J~ = cr, av satisfies the homogeneous 
, 

equation 

GB = sGV@ (IV. 24) 

and is regular at Q. as well as at the origin. Thus eB is a bound state for energy Eoe 

Second, it is clear from\the representation of j&lrr) and the integral equation 

for $(‘) that + (0 = (#$v)cv(l ) c solves the scattering equation (II. 55). Hence the 
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th 
scattering amplitude for the 8- wave is 

fQ = (2&E,, $jrn = &[C(hb) rthl, r~‘]w(D-‘)~ Cv (10 

= (ZE)-1 C?(k) (ND-I); Cv (k) (IV, 25) 

Thus, the questions of dynamic interest are phrased in terms of the functions r 
(v) , 

,b’), ,b) and the N and D matrices derived from them, We shall consider these 
V 

questions more fully in Section VI. 

2. Symmetry and Unitarity. The B Matrix. 

In the asymptotic region, we have 

rv)(x, 0) = - h(l) 

= _ h@) Nl + r(‘) Dr’, x -00 

and also 

Now set 

B; = (ND-l); 

(IV. 26a) 

(IV, 26b) 

(IV, 27) 

Remembering (IV.20), we have 

$(‘)(x, 0) = - h@)13f: + r(‘), (x---a,) I (IV. 28a) 

(IV. 28b) 
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Let us follow the route that in the nonrelativistic case led to (II. 13) and (II. 14). 

Equations (IV. 11) and (IV. 13) can bc converted into 

(IV. 29a) 

(IV. 29b) 

in view of (IV.20). If V is symmetric, we substitute (IV.28) into (IV.29a) to get 

the symmetry of B: 

B;=““v . 

If V is self-adjoint, substitute into (IV. 29b), use (III. 26) to get 

(20 =-BT[h,B;: . 

(rv. 30) 

(N.31) 

Or, is we combine (IV.30), (IV.31) and express 5 in terms of the C’s, Eq. (111.41) 

we get 

Im(BL) = & (BLCp(k))*Ch(k)< o (IV. 32) 

As we see from (IV.28a) with the significance of $ (VI supplied by (IV,Zl), BL is 

a kind of T-matrix for scattering from channel JI to channel pa Even though there 

is only one physical process permitted under the condition that E be below inelastic 

threshold, namely two particles in and two particles out, our N/D formalism is 

that of a multi-channel problem. But, according to (IV. 32) only one channel is 

“open, ” nam$ely the free two particle state with wave function jl(kr) in the coordinate 

representation and wave function C?(k) in the representation by basis functions. 

If we set t1 = kfl, we have, from (lSJ.25) 

tQ = & C?(k) B; C&k) (Iv. 33) 

- 32 - 



then, multiplying (IV.32) by C?(k) Cl,(k), we obtain 

Im ta = 1 $I2 (Iv.34) 

i6 
Thus the usual elastic unitarity statement for ta = 1 

Q sin 6e is recovered. 

3. Separability of B = ND-’ at a singularity. 

As we shall argue later, if the basis functions are set up wisely, only 

a finite number of them actually will be affected by the potential, and so, dynamical 

calculations can be made using not the infinite matrices N and D, but only certain 

finite dimensional submatrices. Thus, it is meaningful, even in a general discussion, 

to manipulate N and D as if they were finite dimensional. 

Let us write the inverse of D(E) as 

{ > 
D-l(E) ; 

where A(E) is the determinant of D;(E), 

the co-factor matrix. Then 

B’(E) 

=$- 

as already defined in (IV. 22) and E(E) is 

Let us pass to the limit E --EO where 

A(Eo) = 0 

then 

D;(Eo)~;(EO) = B;(E,) D;(Eo) = 0 

(IV. 36) 

(l-v. 37) 

(IV. 38) 

That is, for each p, the EL(Eo) are the components of a right eigenvector of D(EO) 

and for each V, the GF(Eo) are the components of a left eigenvector of D(EO), always 

with eigenvalue zero. Let (fy) and {g(L,>, n = 1,2, *. 0, be complete sets of such 
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eigenvec tors. The Er(EO) is a superposition in two ways: 

f$ftEo) = &, a@, n) f(s) = En gt$ b(% 4 (N. 39) 

Taking the 
1 > 

,w as orthonormal, we may project out to find that a(p, n) is also a 

left eigenvector, so it can also be designated g p 
(4 

and y (Eo) is represented as 

En f) gtkjo Hence (ND);, which is symmetric in the Limit E -+Eo, as it is sym- 

metric for E f Eo, also has a separable form of this kind. We expect, in general, 

that A(E) has a simple zero for a single partial wave without any special symmetry, 

and then DL (Eo) has only one eigenvector of each kind with eigenvalue zero. Thus, 

the form of B = 
-1 

ND near E = E. would be 

(rv. 40) 

where E is a positive or negative constant. 

‘4. Comparison with the Jost Functions of Potential Theory 

We consider the matrix Q given by 

QL = kbJ, $i], (IV. 41) 

We have already remarked that the integral in (IV. 6) is expected to diverge, at 

least for some @), (v); hence some components of Q will be infinite since the left 

side of (IV. 6) is finite. But suppose this were not true. Then we could define a 

new function. $ w = $4(&-y and new matrices fi = NQ -1, fi = o&-l. Equation 

(IV. 6) converts to 

rjp = gp + 
V V s ht 

V 
) W” (IV. 42) 

and the important quantity ND 
-1 is identical to fifi -1 

o Also, the bound state 

condition det D = 0 is equivalent to dct l!I = 0, assuming no pathology in Q. 

. 
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We are now ready to compare our structure with that of the Jost functions in 

potential theory. WC refer to the excellent review article by Newton, 
10 in particular 

to Newton’s sections 3 and 4 and expecially his equations (3.6), (3.7), (4.2), (4.3), 

and (4.4). In the reduction of our formalism to a single nonrelativistic partial wave, 

there is only one function each of type h(x), r(x), $(x), These correspond to Newton’s 

wgtW*, v&kr), and $&kr), respectively. His Eq, (4.3) defines the numerator 

Jost function f&k) as k’ W k&kr), Q,(kr)l w ic 1 is termed a Wronskian, perhaps h 1 

unwisely. 11 By taking r -00 in this “Wronskian” and also the complex conjugate, 

one gets the denominator Jost function f&-k) = f&k)* as, essentially, 

f&-k) = [h,+l (Iv. 43) 

This identifies it with our I!) , which is no longer a matrix. Then the complex 

conjugate of his (4.4) is the same as our (IL’042)0 Newton’s normalization for the 

Jost functions, or, equivalently, the D and N, was set by the definition of $&kr) 

(= our $(x)) from an integral equation whose Green’s function was not -r(x<) h(x>), 

but rather 

g(x, x’) = 0 x <x’ 

= r(x) h(x’) - h(x) r(x’), x >x’ (Iv* 44) 

Then the existence of G&kr) was proved by the Born series for this integral equation 

which converges, for regular potentials, regardless of the potential strength. Our 

approach, on the other hand, relies on the theory of differential equations to prove 

the existent: of the r(‘) V , once the boundary condition at x = 0 is made clear, 

Q+l In potential theory rv and + go like x -Q at the origin and h goes like x , and 

one may easily verify that the “Wronskian” (IV, 41) depends only on these leading 

terms, If the potential is no more singular than x -I, then one may also show that 

the d term of the wave function is unaffected by the potential. Thus, with care 

for norm:LliztLtion, Q defined by (IV, 41) is unity and the two theories are identical, ’ 
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The differcncc appears when one goes to more singular potentials, but where the 

quantum mechanical structure is still valid, as it often is if the potential is repulsive. 

Then our version of Jost theory seems to remain valid - admittedly, we are not 

presenting a full discussion here - while the conventional theory breaks down 

because the integral equation with g(x, x1) contains divergent integrals, When one 

passes to the BSE, the conventional theory breaks down even for nonsingular 

potentials as observed by Haymaker and Blankenbecler. 3 

V. CHANNEL FUNCTIONS 

A. Introduction 

We shall now map out a classification of solutions to the free BSE in terms of 

power series expansions about x = 0. The solutions will be called channel functions 

because the leading power of x in the expansion multiplies a single spherical harmonic; 

that is, the power series is initiated in a specific channel. 

Because of the variety of functions and boundary conditions encountered, it pays 

to organize notation carefully and to indicate in advance the principle features of the 

channel functions to be defined. 

First, we shall have “regular*’ functions r (% l)(x, 0) and “very regular” functions 

r(ny2)(x, 0) for n=ll, l+l, Q+2,. . . Their leading power series terms will be pro- 
n-t2 portional to xnRn(6) and x R,(0), respectively. Then there are “singularl’ functions 

and “very singular” functions S 0-b 11, ,h 2) with leading terms -n-2 x -“Rnw. x RnW. 

In the special case n= 0, which occurs only for ,Q= 0, S (O’ ‘) will begin with log x R,(e). 

The functions so defined will not contain, among their higher terms, any term which 

initiates one of the other functions. 

Thus, the channel functions are labeled by index pairs, of which the first index 

labels the channel and second takes on the values 1-, 2 only. For compactness, we 
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also use the single index notation, (v) for (n, i) @) for (m, j), etc., interchangeably 

with the double index notation. Moreover, when (v) stands for (n, i) [v] will stand 

for the following: 

[VI = nifi=l, 

=n+2ifi=2 (V- 1) 

For example, one may say that the leading powers of r (‘1, s(‘) are xkl and x-f-‘] 

respectively. 

Transpose solutions r 
(VI’ 7v) 

are obtained from r”), S(‘) as described in III. 

The brackets [s&), r@)] etc., will be easy to compute because in the limit x-0, 

only the leading power series terms contribute. 

Then, a new set of singular solutions, s (v) 
and %4 = 

$4 will be formed from 

linear combinations of the S (VI and the S 
04’ 

respectively. The object will be to 

have singular functions which form the simplest possible bracket relations with 

the regular functions, namely those of (III. 11) 

We remark in passing that since !Zljp(kr) = 0, B2 jp(kr) = 0, it follows that 

$ = (8/ak) j&kr) solves the free BSE. This example shows that a complete set 

of solutions to CZ,CZ,$= 0 cannot be obtained solely from linear combinations of 

solutions to g1 $J = 0 and CZ2 $!I = 0. 

As a preliminary example, consider 

to2 - m2,) (02 -m$$= 0 (V. 2) 

obtained from the BSE by setting w1 = w2 = 0. Then the -channels are uncoupled, 

and in the nth channel, there are four independent solutions, e.g. 

(V.3) 
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as indicated in Section II of MBS I. In the equal mass case, these functions are 

equal in pairs, and the additional solutions may be taken as 

I;+ltmlx) RnW, (-l?K;+l(ml”) R&e). 
These are found by considering the limit 

1 tm x) - In+l(m2x) 
lim $ n+1 1 ZZ 

m-m 
1;+ppG 

2 1 ml - m2 

(V.4) 

tv. 5) 

and the similar limit for the K functions. 

For the special case (V. 2), the regular channel functions are given explicitly by 

.tn, ‘1 = L j m-” 21 1 f&ryx, t9) + sn R$n2x, 0) 1 (V. 6a) 

p, 2) = (rn: - m~)-1[m~nC~n(mlx,8) - min$n(m2x,8)[ (V.6b) 

Their power series begin 

r (n, 1) = 2 n+4 
2”+l(n+l)! 

ye) + 06 1 , 

pl2) = xn+2 

2n+3(n+ 2)! 
Rn(0) -I- O(xn4) . 

Similar combinations of the Xfunctions yield explicit formulas for the S (v): 

,0-b 1) = t-)n-Q+l 2n-2(n-l)! 
n 

R ce, + o(x-n+2 
n ) , n>O 

X 

iit’, ‘) = ; log x R0(8) + 0(x2), 

,h2) = j&?& R&e) + O(X-“+~) 
X 

(V. 7a) 

(V. 7b) 

(V. 7c) 

(V. 7d) 

(V. 7e) 

Equations (V. 7) specify these solutions completely and may be taking as their 

defining boundary conditions , in preference to the definitions like (V. Ga, b). No 

special consideration for the equal mass case is required. 
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The conditions for rtvj, Stvj are the same as (V. 7) except that Rn(0) becomes 

R,(T - 0) = (-l)“-‘Rn(0). The S(‘) contain, in addition to powers of x, terms pro- 

portional to log x r (VI because of the logs in the K functions. 

B. Recursion Relations 

Suppose a solution to 

q25,q = 0 Iv. 8) 

has the expansion 

JI = cvp, R,(e) tv* 9) 

Substitute (V. 9) into (V. 8) and apply the recursion relations for the spherical 

harmonics enumerated in MBS I. Then (V. 8) reduces to the following matrix 

equation for the $n: 

(V. 10) 

where g n’ 
Fi are derivative operators and the sum goes over i=O, & 1, rt 2. We have 

d2 s2Jn= - +3 d-no 
dx2 x dx x2 ’ 

sn o= 
, ( 4UlW2Pn - 2k2) gn - k4 , 

(V. lla) 

(V. llb) 

(V. llc) 6F n, +l = 2(wl - a2)An+l(gn+k2) 

9 
n,-1 =2(6J1- w 2)An(L%n+k2)(&+F), (V. lld) 

; 
(V. lle) 

(V. llf) c 
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For each n, write 

q,(x) = aga 1 C(n, a)x” + CL (n, a) xa log x) 
0 

(V. 12) 

and substitute this into (III. 10) to obtain recursion relations for the coefficients 

C(n, a), CL@, a). The procedure is straightforward and clearly explained in 

Ref. 3, Chapter 4. There will be a family of solutions regular at the origin. 

These will not have any terms in log x. Then there will be a family of singular 

solutions, each having first powers in log x. 

The indicial equation comes from the fourth order terms (e.g. d4/dx4, xa1d3/dx3) 

in (V. 10) as applied to the lead term of the series (V. 10); it is 

(a 0 - n)(a, + n)(a, - n - 2)(a, + n -t 2) = 0. (V. 13) 

This fixes the possible powers x “0 which may initiate a series solution in the nth 

channel. It matches the prescriptions of (V. 7) exactly because the indicial equation 

is independent of wl, w2’ 

Hence, the defining conditions for the channel functions r ('), St') as x-0 

are given correctly - and with factorical coefficients which will prove to be reasonable 

by Eq. (V. 7). 

Substituting 
a-4 

X log x yields 

(V. 12) into (V. 10) and equating coefficients of powers of xam4 and 

the recursion relations 

foe C(n, a) = -ho0 CL@, a) + i=. ~2 c If C(n+i, a-2) + hi CL(n+i, a-2)/ t i 
, V 

-k4 C(n,a-4) + c Ifi C(n+i, a- 1).+ hi CL(n+i, a- 1) 
i=* 1 

+ fi C(n+i, a-3) + hi CL(n+i, a-3)/ (V. 14a) 
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and 

foO CL(n, a) = c 
i=O,&2 

fi CL(n+i, a-2) + c fi CL(n+i, a-l) - k4 CL(n, a-4). 
i=&l 

(V. 14b) 

The f and h coefficients, dependent on n and a, are 

foO = (a 
2 

- n2) [a2 - (n+ 2)2] 

h00 = 4a(a2 - n2 - 2n - 2) 

(v. 15a) 

(V. 15b) 

f2 = 4w1u2 an+2 (a -I- n + 2)(a + n) (V’15C) 

fl = 2(~~-~~)A~+~(a+n)(a- n-2)(a+n-+2) (V. 15d) 

f. = (4wlu2Pn-2k2)(cu-n-2)(a+n) (V. 15e) 

f-l = 2(w1 - ti2)An (a - n)(a + n)(a - n - 2) (V. 15f) 

f2 = 4olti2 crn(a- n - 2)(a + n) 

f; = 2(wl - 02) k2Anil(a + n + 2) 

tv .15g) 

(V. 16a) 

Cl = 2(Wl - w2) k2An(a - n) 

%= ~u~C~~CI!~+~ (2a + 2n + 2) 

hl = 2( (til - w~)A~+~ @a2 - n2 + 2an - 4n - 4) 

(V. 16~) 

(V. 16d) 

ho = ( 4W1W2Pn- 2k2) (2a - 2) (V. 16e) 

Q= 2(wl - w2) An(3a2 - n2 - 2an - 4a) (V. 16f) 

hW2== 4Llu2 (rn(2a - 2n - 2) tv. 1%) 

h; = 2(wl - w2) k2 An+l (V. 16h) 

hll= 2(wl - m2)k2 A. n (V. 16i) 

To compute the series for r 0-b 1) , assign the lead coefficient C(n, ao) with 

a0 = n equal to [$+l(n + 1) j -1 in accordance with (V. 7s). The coefficient C(n, a0 + 2) 
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as well as all other coefficients which can initiate other solutions, e.g., C(n+ l,ao-t l), 

are zero for r(“s ‘I. A.11 the CL are zero for the regular solutions. Then (V. 15a) 

prescribes the values of all C(n’, a) for a > a0 and all n’. The procedure for r(ny 2, 

begins with C(n, ao) where a0 = n + 2 and is similar. 

The calculation of the singular functions follows the same lines. The lead coef- 

ficients for S(ny ‘), S(n’ 2, are C(n, ao) with a0 = -n, a0 = -(n + 2) respectively, and 

they are defined by (V. 7a). In the exceptional case n = 0, the lead coefficient is 

CL(0, 0) as indicated in (V. 7d). The recursion process (V. 16a) for the singular 

functions eventually brings us to index values n’, a1 where a1 = n’ or a’ = n’ + 2, 

These are the lead positions for the regular functions and foO = 0. Then C(n’, a?) 

is taken as zero and (V. 16a) defines instead the earliest log coefficient CL(n’, at) 

for channel nl. There is such an earliest log coefficient for each n’. All further 

CL’s are determined recursively from (V. 16b). After they are known, the 

remaining C’s are determined from (V. 16a). 

The r(‘) and S(‘) have now been defined by recursion relations for their series 

coefficients. Computing time for numerical calculations in typical cases is of the 

order of seconds or less. Details of convergence and illustrative functional values 

will be presented elsewhere. 

C. Brackets for the Channel Functions 

The transposed channel functions r 
(v) %’ 

defined as in (III. 3a) and satisfying 
r 

the transposed free BSE satisfy the same boundary conditions (V. 7), except that 

each entry has an extra factor of (-l)“-‘. The recursion relations above may be 

taken over directly for the transposed functions provided that the factors (wl - w2) 

that appear in (V. ll), (V. 15), (V. 16) are reversed in sign, 
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Now, we compute brackets via (11.34). The brackets among regular solutions 

vanish, of course. 

The evaluation of S [ (v)Y ?I 
is simplified by the observation that in the limit 

x - 0, only the initial terms of the power series, as given in (V. 7), can contribute 

to a nonzero result. Direct calculation shows that 

[stvl, r(“] = 1. (no sum on v) 

The only other nonvanishing brackets are 

(n-232) = 1 [ ‘(n, 1)’ 
&n-2,1) 1 = -4w1w2 cm 

w- 17) 

(V. 18a) 

t ‘tn, 1)’ p-1,1) = 1 [ ‘(n-1,2)’ 
,@9 1) 1 [ = 

7n, 2)’ 
&n-l, 2) 1 

WV r (n-L 1) 1 = 2(w2 -l)An 

[ ‘(n,2)’ ’ 
tny ‘) 1 = -4w 1w2 p, + 2k2, 

Now, we define 

s(v) = 74 - p,pfv c [ s(v)’ r@) 1 %)’ 

(V. 18b) 

(V. 18~) 

(V. 19a) 

(v. 19b) 

The sum over p is, of course, limited to terms where S [ W’ is nonvanishing, 

as indicated in (V. 18). Equation (V. 19a) is to be used recursively. One begins 
< 

by evaluating s 
0-b 1) 

in terms of s(nl, 1) for m-values less then n; then goes on to 

‘0-b 21 
in terms of already known functions s 

tm, 1) 
and s(~,~) for p < n. Then one 

can verify, by mathematical induction, that 

(V. 20) 
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In the equal mass case, w1 - w2 = 0 and 

rtv, = (-)H r(“‘); s(V) = (-jEvI s(v). (V. 21) 

D. Completeness 

Suppose that $= cfn(x) Rn(0) solves the free BSE. Then the coefficients fn(x) 

are subject to the indicial conditions and recursion relations treated above. Hence 

we may put 
n+2 

f,(x) = dn 1 xn 
’ 2n+1(n+l)! 

+ dn 2 x n-M 
’ 2n+3(n+2) ! 

+0x . ( 1 (V. 22) 

. It follows then 9 has an expansion in the channel functions: 

t,b(x, e) = rtv)(x, 0) dv . (V. 23) 

In other words, the family r (v) is a complete basis for the regular solutions of 

the BSE. A general formula for the coefficients in (III. 28) is 

dv = yvy e * [ 1 
As an example, consider the spherical Bessel function j&kr): 

j&W = r c (0 
n-1 Jn+l (kx) 

n_>1 la R,,Jr /2 1 Rn( 6) 

(V. 24) 

tv.251 

which, because of X,(7/2), contains only terms with n-Q even. Therefore, the 

expansion of j 
I! (kr) in channel functions is 

j&k’) = 7~ i-‘C, Rn(7i/2) (il~)n rtn, “(x,0) f (.ik)n+2r(n, 2, (V. 26) 
I 

In terms of the compressed notation with (v) = (n, i), we have formula (III. 4) with 

the coefficients evaluated as 

Cv (k) = C” (k) = 7r i-l R1Jr/2) (ik) PI . (V. 27) 

- 44 - 



A more general relation is (compare with MBS I, Eq. (II.19)) 

A . coso! 7 
jpt-iAcu i sina! r) e Q!‘1 = “Rn(~) (‘a! i) [Wv)(x, 0) . 

, > 
(V. 28) 

We remark that the truncated equation < L;Lil> N < g2 > N$= 0 to which we 

found explicit solutions I (a, ‘), &-% 9 in MBS I, can also be solve’d by truncated 

channel functions. There are only 2N of each type, as there are only’N channels, 

and the recursion relations must be adjusted so as not to couple to the higher 

channels. Then there is an expansion of the type 

K@yi) = s(v),a~i + r(V)dcr,i 
V V 

(V. 29) 

where all the functions solve the truncated BSE. 

Inverting the c-matrix, we have 

fp, i)(c-l);, i = ,w + $4 d,“‘i @-l); i . (V. 30) 
> 

Equation (V. 3 0) expresses a truncated h (v) in terms of a linear combination of 

K@J)m It is the expression referred to in section III. B and used to argue the 

vanishing of the bracket h(v)l between the exact h functions. 

E. The Matrix Xv 

The channel f ilctions r(‘), s(“) and their transposes have been given explicit 

definitions and their brackets follow the scheme of section III. The other functions 

h(‘), z(‘) and h 
(v)’ “w 

can then be calculated if Xi = Xb + i 51: is determined. 

In fact, 5; i’s already known in terms of the coefficients Cv (k) by formula (III. 41) 

- and these coefficients have been evaluated in (V. 23). 

To obtain X” 
P’ 

we return to the Green’s function G’(x, O;x’, 0’) and its real part, 

G@)(x 8.x’ 0’). R ” ’ Take the case x > x1. From (III. 33), we have 

Gk(x. 6; x’, t9’) = - s(“)(x,f?)r(i,)(x’, 8’) - r(‘)(x, 0) XF ro*)(xf, 8’) . (V. 31 
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Suppose, also, that the Green’s function is known in the form 

GQ(x,0;x’,6’) = c n n’ 6,,(X, x’) Rnt8pn’tf3’) (V. 32) 
, 

Then, with (v) = (n,i), &) = ( n’, i’) as before, we have - XL = real part of the 

coefficient of 

(V. 33) 

in the power series expansion of gnn,(x, xl). For example, Eqs. (V.23) and (11.11) 

of MBS I give US 

i&.pM) = - ?I- 

Kn+l(hQ jx) In+lt’a jx’) 
o- (V. 34) 

j=l, 2 
sin2a da! Rn(a) R,‘(cY) h .i h 

a,1 
.x’ a, j 

a21 

Let y = .577.. . denote the Euler constant and set 

n+l 
r](v) = C L if i = 1, 

q=l q 

n+2 
=1+x L if i=2. 

i 

q=l q 
(V.35) 

Then, invoking the known power series expansions of In+l(z), Kn+l(~), we get 

XP = real part of 
V 

n’-Q 
cs 

T 

(-1) 
w=1,2 0 

sin2 CY dor Rn(o) Rm(a) oo j (Aa 
> , 

j) Lil’kl 

7 

X 1 ‘Og(hcr j/2) f- Y - rl(J’)” (V. 36) 
f f 

This formula is quite usable for the bound state case. The integral is replaced 

by a gaussian quadrature, 

J- 
7T 

0 
sin2 a da! Rn(~) Rm(or)-~C”,(~) g,(o) 

a! 
(V. 37) 
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as described in MBS I. The sum converges to the correct XL quite rapidly as the 

number of intervals is increased, provided that the energy is not extremely close 

to threshold. Equation (V. 36) exhibits the same phenomenon seen for the Green’s 

function in the previous paper. That is, gaussian quadrature is not applicable for 

scattering because of singularities in the integrand, i. e. in CT 
a,j’ 

A more general method for calculating Xv 
P 

begins with the representation of 

G (4 (x, 8; x1 ,B ‘) derived in MBS I and given in Eq. (A. 1) of the appendix of this paper. 

This is converted into the form (V. 34) and then the prescription (V. 35) is applied. 

This technique is more general than the preceding one, and still practicable. 

Some calculational details are given in the appendix. We have not been able to 

find a form for XL which is both compact and explicit. 

VI. THE N/D METHOD IN coommAm SPACE 

A. Scattering Wave Functions and Amplitudes 

A natural approach to the calculation of wave functions, with or without the 

help of N and D matrices, is to match up a general solution of the BSE having the 

proper boundary conditions at the origin with a general solution satisfying boundary 

conditions at infinity. It is convenient to take the matching point x = X~ outside 

the range of potential so that the “outside” solution obeys the free BSE. This is 

tantamount to using a “cut-off” interaction which vanishes for x > x,. The cal- 

culation may be done for a series of increasing values of x, until the results have 

converged to the order of accuracy desired. 12 

This approach to the Wick-rotated BSE cannot be applied routinely to scattering 

above inelastic threshold as evidenced by the unitarity relation (IV. 32) which 

accounts only for elastic scattering in intermediate states. We hope to generalize 

the present approach later on, 
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Suppose then that we seek the real scatterin, fl wave function $(x,0) which satisfies 

(Qp2 - V)$ = 0. s(vI. 1) 

Then $I also satisfies the real integral equation 

Q(x, 6) = j(x, 0) + $ GE’ V$ (VI. 2) 

where the input wave j(x,O) is any solution of the free BSE which is regular in the 

finite plane. In terms of solutions regular at the origin, we have the expansion 

$(x, 6) = rr)(x,O) au (VI. 3) 

with coefficients au to be determined. The asymptotic form is 

@(x$) = -2 (“h 0) bv + j@, 01, 6 2 XJ (VI. 4) 

with coefficients bv to be determined. In a practical computation, we approximate 

(VI. 3) and (VI. 4) as finite series, retaining the channel functions with the lower 

channel indices, then increase the number of functions until the results converge 

to the accuracy desired. Expressions for bv in terms of $ can be obtained from 

(VI. 2) 

(0 Alternatively, in terms of the real interacting Green’s function Gv defined by 

(IIL42a) we have 

bP = JrPVj +s ros)V Gy)Vj . (VI. 6) 

(VI. 5) 

The coefficients a , bv are calculated by matching (VI. 3), (VI. 4) at x = xm. That 
V 

is, we have continuity of the wave function, 

rr)(x, 0) au = -z(‘)(x,e) bv + j(x, 0) .(VI. 7) 
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at x = xW plus continuity of all its derivatives as well. Thus, bracketing (VI. 7) 

successively with zcI(x, e), r,(x, 0) at the matching point, we get 

(DR)V, au = Z@), J , [ ‘I (VI. 8a) 

NVa =b 
Pv P’ 

(VI. 8b) 

Then the coefficients and hence Cp(x, 0) for all x is determined from 

ap = (D$ btv,, j] , (VI. 9a) 

bp = )D:) L btvj, j] . (VI. 9 b) 

For the physical scattering process, we take j(x, 0) = j&kr) = 1: (‘)Cv (k) and 

obtain the phase shift via (II. 63): 

y tan ae = zvbv + j, 1 = C+(k) bti = C?(k) (VI. 10) 
03 

B. Bound States 

Calculation of the wave function $(x, 0) for a bound state at E = E. can be 

approached in two ways. Firstly, we can set up the representations 

and 

q(x,e) = rt)(x,O) au 

\cl(x, e) = -+P)(x, e) B, 

(VI. 11) 

(VI. 12) 

and match at x = x,. Proceeding as above, we get, with D = DR below threshold, 

i 
D;czv = 0, (VI. 13a) 

N;ay =P . 
CL 

Equation (VI. 13a) supplies the eigenvaluc condition 

A(Eo) =I det DL (Eo) = 0 

(VI. 131s) 

(VI. 14) 
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to determine E6. When EO is found, the solution of the homogeneous equation 

(VI. 13s) for the czy is obtained by standard algebraic methods. One may also 

replace V by AV where h is a variable, keep E constant and use 

A(E,A) = 0 (VI. 15) 

to determine A = h(E). There is a slight calculational advantage to obtaining A as 

a function of E rather than the other way around as the functions z (‘)(x, 0) are 

independent of A. 

A second approach to the bound state problem is via the solutions $(x,8) to 

the inhomogeneous problem (VI. 2) for energies E in the neighborhood of Eo. This 

method also yields the normalization of the bound state and the residues of the 

scattering amplitudes at their pole at E = Eo, including, for example, the output 

coupling constant. 

Let us suppose the bound state at E. is nondegenerate. The interacting Green’s 

function G($ will have a pole at E = E. with residue proportional to $(x, 0) $(x’,el) 

where 
! 

$25,9,9 = v$!J, LqZ2$ = $v, (VI. 16) 

or, equivalently, 

$=GV’+, $= $VG. (VI. 17) 

This can be seen by multiplying (III.42), (IlI.43) by (E. - E) and taking the limit 

E-E o. Let us also assume $V = v$ (time reversal invariance) so that $ is 

proportional’to the transpose 5 of $. Then we can write, for the region of the pole, #)(x,&x’,(~~) = E +(x;)T(;‘ye’J , 
V 

E. = E, (VI. 18) 
Eo- E 

where e= & 1. This fixes the normalization of the bound state wave function. Let 

$(x,0) still be represented by (VI. ll), (VI. 12). 
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Consider the function $(x,0) defined in the subsection above for an arbitrary 

energy E and suppose E is near EO. Consider the two formulas for bv given in 

(VI. 6) and (VI. 9b). These also have a pole at E = EO. 

Noting that 

we have for the pole part of b,,, by (VI. 61, 
” 

b I-- E; - E2 

And, by (VI. 9b) and (IV. 35), the pole part is also 

.b = 
(ND)’ [zv> jj 

P dA 

-7-L 
(E - EO) do 

0 

Hence 

P&, = - E (2EO) (Niti)' 
P 

(VI. 19) 

(VI. 2 0) 

(VI. 21) 

(VI. 22) 

(VI. 23) 

which establishes the normalization of the p coefficients and hence of I,!/. In order 

that (VI. 19) be meaningful, it is necessary that the right side be symmetric in 

v, v, and have the product form. This was already established in section IV; 

see, especially (IV. 40). 

The derivative of A is found conveniently enough by calculating A for values 

of E near EO and taking differences. As a practical matter, A is a smoother 

function of the imaginary momentum K than of E, particularly near threshold. 

It is better to compute (dA)/(dK) by differences and use 

(VI. 24) 
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where 

dE &l dwg EK 
dK= -g+dK=-- . 

Y02 
(VI. 25) 

To obtain the output coupling constant, put j(x,6) = j&i.kr) in (VI. 4) and (VI. 18) 

and apply (II. 69) : 

= 2E0 $(iK) (NEfi CV(iK) . 

An alternative is, from (VI. 6), 

(VI. 26) 

(VI. 27) 

The form factor F(k), 

F(k) = j?p(W v(x) $(x, 0) (VI. 28) 

depending on the variable k and the bound state wave function 9(x, 0) for on energy 

E. can be obtained by integration once $(x, 0) is known. 

Many papers on the structure of Bethe-Salpeter equations, including the 

earliest ones13 contained bound state normalization condictions, different in form 

from one another and from the above, but equivalent in content. 

We can make contact with some of these forms beginning with the identity 

(for E below .threshold) 

This can be verified by differenti:\ting 

(4 Gv (Qlg2 - V) G;’ = Gy’ 

(VI. 29) 

(VI. 3 0) 
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with respect to E and pursuing the consequences. The key point in the verification 

is to note that 
dGtQ) 8GtQ) 

(al572 - V) v CYE a; (VI. 31) 

which, by (III..43b), reduces to aGv (‘)/DE. Equation (VI. 24) depends, in turn, on 

the integration-by-parts formula 

J 
G(‘) 98 

13GfQ) 

V 12%?= 527 
/ 

t3 Gtrn) NC (Q) v 
(953) GV OE - (VI. 32) 

This holds because the difference between the two sides of (VI. 32) is expressible 

in terms of brackets at x = 0 and x = m , each of which vanishes on account of the 

behavior of the Green’s functions at these limits. 

Substituting (VI. 18) into (VI. 29) and equating the double pole term, we get one 

of the canonical normalization expressions 

(VI. 33) 

Another form is produced by introducing a variable coupling strength h = h(E) 

so that 

(gy32 - h(E) V)$ = 0 (VI. 34) 

is an identity for the bound state wave function 9 = $, for a range of E values 

including Eo. 

Taking the E derivative of 

i s mp2 - hV)$ = 0 (VI. 35) 

and integrating by parts where necessary, we get 

Therefore the normalization (VI. 33) at E = E. is equivalent to 

dh 
(1s BE q+!J =-E . 

EO 

(VI.36) . 
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Equation (VI. 3G) is easier to apply numerically than (VI. 33) because the integral 

is cut off by V, but (VI. 23), which has no integration, is easier still. 

For an attractive interaction, V > 0 and A > 0, and a.lso (dh/dE) < 0. In 

the equal mass case, mI = m2, the bound state has a definite parity under t - -t 

(time-parity). Thus (VI.36) tells us that E = +l if $= +$ and E= -1 if q= -$. A 

bound state in the case ml # m2 can be imagined as continuously evolved from an 

m1 = m2 problem with A and for E also evolving continuously. In this evolution E 

cannot flip sign. Thus the notion of time-parity can be assigned to states when 

ml f m2, not as a symmetry quantum number, but either by this evolution process 

or by the sign of E. Another method, relating to the nodal lines of the wave function, 

will be discussed elsewhere. 

WI. THE TRUNCATION METHOD 

There is another way to handle the matching problem which, at first sight, 

appears more direct and simple than the N/D way, and deserves to be noted on 

that account. 

(VI (VI Suppose that rv , z and j are approximated by spherical harmonic expansions 

which contain only N terms: 

rt)(x,‘e) =Q’$il f:)(x) R,(0) , 

Z(“)(X,~) = ‘+E-l g;‘(x) R,(O) 
Il=Q 

Q-I-N- 1 
j(x,O) - C j,(x) RntW + 

n=Q 

(VII. la) 

(VII. lb) 

(VII. lc) 
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(v) It is appropriate to consider only the 2N functions rv and the 2N functions z w 

whose power series are initiated in the first N channels. The matching condition 

atx=x, applies to the continuity of the coefficient functions and their first three 

derivatives in the relevant N channels. That is, 

di f(‘)(x) + b dxi n d g(‘)(x) vdxi n 
= -6 j,(x), (x = xob) 

dxl 
(~11.2) 

fori= 0,1,2,3 andQLn<_Q+N+l. 

Thus there are 4N linear equations to determine 4N unknowns, the coefficients 

a,,, b v, The calculation is done for a series of increasing values of N, until the 

results have converged to the desired order of accuracy. 

One may formulate this program in such a way that the approximations (VII. 1) 

are exact solutions to the truncated equations <alg2>” 9 = V& and <9,g2>N$= 0. 

Thus , r(“), r(‘) and s(‘) V can be taken from the beginning as solutions to the 

truncated equations. If the power series method is used to calculate them, the 

recursion relations themselves can be truncated. Then z(‘) ’ IS computed from I 

the s(‘) and the r(” 
\ 

with the aid of the matrix Xv . To find the approximation to 
P 

j(x,e) which solves the truncated free BSE, expand it in a series of r (v) , then 

replace the r (VI by their truncated versions. 

In this way, one arrives at an approximation to a BSE result as an exact 

result of the truncated BSE. We found it perfectly feasible for calculation. The 

essential point, which is not obvious in a naive approach to the truncation approxi- 

mation, is that the asymptotic boundary conditions which determine z (v) cannot 

be developed within the truncation approximation itself; rather the properties of 

the exact BSE, as contained in its Green’s function and the matrix X; must be 

exploited. Otherwise, one lands in the difficulties for the scattering problems 

which were exhibited in MBS I. 
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To treat the bound state problem via (VIE. 2), one puts the jn equal to zero. 

Then the eigenvalue condition is 

W(E) = 0 (VII. 3) 

where W(E) is the Wronskian of the set of solutions. That is, W(E) is the determinant 

(v) of the 4Nx 4N matrix formed from the array of function coefficients fn (x,), 

(VI gn (x,) , and their first three derivatives. 

The method outlined here combines two approximations in one. The single 

parameter N determines how many basis functions are used to approximate the 

wave function and how many channels are employed in the calculation of each basis 

function. The N/D method separates these two problems, and if used efficiently, 

requires substantially less computer time. For a given level of accuracy, the 

number of basis functions required in the N/D method can be much less than the 

number required in solving the truncated BSE. 

VIII. THE PHASE METHOD 

The N and D matrices have been defined in (IV. 3) in terms of basis functions 

for both the free and the interacting BSE. We now outLine a method for computing 

N and D which does not require prior solution ‘of the interacting BSE, but replaces 

it with a system of first order ordinary differential equations. We call it the 

phase method because it generalizes the method of variable phase which Calogero 

has developed as a powerful tool in the analysis of nonrelativistic potential theory. 14 

It also may be regarded as an adaptation of the method of variation of constants 

in ordinary differential equations. 4 The assertion is sometimes made that there 

is no method of variation of constants in partial differential equations. But this 

does not hold in our case, where the boundary conditions are expressed in terms 

of one variable. 
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Let the interaction V(x) be replaced by a cut-off interaction Vy(x) which 

vanishes for x 2 y. Let the associated functions of the basis regular at the origin 

be r(v ) I’ (x, O ; y). We are discussing here only local interactions. Then for x < y, 

we have 

rt)(x, 8, y) = rt)(x, 0) (VIII. 1) 

and for x 2 y, 

rr)(x, 8 ; y) = -h’(x, 6) n:(y) + r’(x, 6) 3 (y). (VIII. 2) 

(VI The rv (x, O ; y) have jumps at x = y in their fourth order derivatives in x, but will 

be continuous in their third and lower order derivatives. The coefficients < , 

d\ can be evaluated by bracketing the rv (‘)(x, 0; y) with h@), r(‘) for any x in the 

cut-off region, in particular for x = y, where rv @)tx, 8 ; Y) coincides with r(v)(x,O). V 

Thus, we can drop the notion of cut-off and have, for all x 

rr)(x, 0) = - hA(x, 0) n;(x) + rtx, 6) d\(x) (VIIL3) 

where n;(x), d:(x) have the definitions already given in (IV. 2). We also see that 

(compare with (II. 37)) 

n;(x) - nL(x,) = sx x2dxssin2 OdO rN) Vrt) 

xO 

whence 

L!- nv (x) = x2 S (VI 
&CL 

sin2 OdO rNJ Vrv . 

The corresponding equation for d” is 
P 

2 d;(x) = x2 S (VI sin2 OdO h@) V rv . 

(VIII.4) 

(VIII. 5a) 

(VIII. 5b) 

The equations (VIII. 3), (VIII. 5), (VIII. 6) are a complete system. Let us 

define certain matrix functions of x, depending only on the basis of free solutions 
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as follows : 

E;(x) = x2 
s 

sin2 OdO rol) r (v) , 

F;(x) = x2 
s 

sin2 OdO rti) h (VI , 

sin2 OdO h&) r (‘) = F;(x) , 

H;(x) = x2 
1 

(v) sin2 6dO hOL) h . 

Then, combining the above equations, we get 

$ n;(x) = V(x) - F$x) n:(x) + E,htxl d\(x) 
1 

, 

$ d;(x) = V(x) - I2 ,@I n:(x) + $(x1 d\(x) D 
I 

(VlII. 6a) 

(VIII. 6b) 

(VIII. 6c) 

(VIII. 6d) 

(VlII. 7a) 

(VIII. 7b) 

The integration of this coupled, linear, first order system is an interesting 

alternative to the solution of the fourth order BSE. The functions n;(x), d;(x) * 

are defined from boundary conditions at x = 0. These can be inferred from the 

early terms of the power series for the functions r $4 &), htij, v once the 

behavior of V(x) at the origin is specified. Above threshold, the equations can 

be made real, of course, by replacing h 
(CL) with ztP) 

and d; by its real part, The 

values of N, D, and DR are obtained as indicated in (IV. 3). The integration of 

(VIII. 7) does not have to be carried beyond the range of the potential. We have 

not explored,,this system numerically except in the trivial case m1 = m2, E = 0, 

where it worked well. 

To see the parallel to Calogero’s method in potential theory, let us start from 

the integral equation for the Schroedinger wave function in partial wave Q: 

$(r) = jQ(kr) + 2m.k s om jQ(kr<) nQ(kr,) V(r’) II rr2 dr’. (VIII. 8) 
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Then in terms of u(r) = kr J!(r) and the capped Bessel functions, j ,(z) = z j,(z), 

n Q (z) = z nQ(z), we have 

u(r) = A(r) jQ(kr) - B(r) kQ(kr) 

where 

A(r) = 1 + p S 
a, 

_ $(rr) V(rl) u(P) dr’ , 
L 

B(r) = F S 
r 

0 
iQ(rl) V(9) u(r)) dr’ . 

Thus, 

dA - = -(Zm/k) V iQ(A iQ - B 4) dr 

dB - = -(2m/k) V t&A if - B iQ) , dr 

which are the analogs of (VIII. 7). Finally, put 

A(r) = R(r) cos 6(r), 

B(r) = R(r) sin 6(r) , 

so that 

s= dr -sin6 dA +cos6 757 
g R-l 

1 

= -(2m/k) V(cos 6 tQ - sin 6 $)2 

which is Calogero’s equation for the variable phase shift. 

M. SUMMARY 

(VIII. 9) 

(VIII. 10a) 

, (VIII. lob) 

(VIII. lla) 

(VIII. lib) 

(VIII. 12a) 

(VIII. 12b) 

(VIII. 13) 

The structure of the Bethe-Salpeter equation in the bound state region and the 

scattering region below inelastic threshold has been analyzed in terms of brackets, 

N and D matrices, and complete bases of functions characterized by boundary 
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conditions at the origin and at infinity. The calculation of bound state and scattering 

data and wave functions has been outlined by several methods. The work provides 

the ingredients for the elementary kind of bootstrap where the forces are produced 

by one-particle exchange and self-consistency is required between input and output 

values of masses and couplings. More sophisitcated bootstraps must await develop- 

ment of more sophisticated calculational techniques. The angular momentum 

quantum number Q, which enters as a parameter in the definition of the coefficients 

An, ati, P,, and delimits the range of the channel index n (n = Q + integer), can 

be adjusted in value to define outgoing wave states for complex Q, Regge trajectories, 

etc., by the methods described. Model calculations using these methods and 

further properties of Bethe-Salpeter systems will be described in a paper to follow. 

We are indebted to H. Snodgrass and R. Blankenbecler for helpful discussions 

during the course of this work. We also are indebted to the hospitability of the 

Lawrence Radiation Laboratory, where a part of this work was done. 
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APPENDIX 

From (V. 12) of MBS I we have: 

GQ(x,O;x’,O’) = 
s 

-9 d@ P(7-7’) 
4E e 

-O2 

X 2 (n-tl) -’ Rn(eJ Rn(e’) pn(QX<)Kn(QX>) - In+2(Qxc) K,+2(Q~,)] (A. 1) 
n=Q 

where Q = (p2 - k2j1/2* 

Also, 

“B’=~hy!f, 
r-0 l 

cos% Rn(6) = 
(n+r) 

Eirn Rrn(N 

The quantities [irn are defined recursively by: 

[Zrn = *nm 

and from MBS I 

Substituting these into (A. 1) and using the relation: 

t n+r 1 
2 c 
n=O m=max{P, (n-r)! 

= 2’ 5 
m=l! r-In-ml 

if follows, ti gmm, (x, x’) is defined as in (V. 31), that: 

(A. 2) 
(A* 3) 

(A. 4a) 

(A.4b) ’ 

(A* 5) 

r 
x x - x’ tr 5 

(PI (P 1 r1 
” r! rr ! nm nm 
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Consider the case x > x’ . We have 

K&Q@ I,(sx’) - Kn+2 (Qx) In+2(Qx’) = 2 2 q=o q&O (x(~+~~) log x) ( x,(“+~~‘))~~,(Q) 

.+ (x(-n-2+2q’)( x’(“i2q’))$q,(Q)) . (A. 7) ‘” 

The relation defines p and crin terms of the coefficients in the power series expansion 

of the Bessel functions. Substituting this in (A.. 2) and using the relation: 

2 gc= 2 2 ““c” “c” “c”’ (A. 8) 
n=Q -In-ml r’=In-m’l q=O q’=O i=(-m-2) il=ml n=MIN q=O q’=O 

i=-n-2+r+2q, 

i1 = n + r1 + 2q’ , 

max= 1/2(i + n -t 2 - in - ml) + S , 

mm’ = 1/2jil - n - n - rn’ ) + 6 P 

MAX = 1/2(i’ + ml) + 6 , 

MIN = the greater of Q, 1/2(m - 2 - i) - 6 , (A. 9) 

where 6 is either zero or l/2, depending on which choice makes the above limits 

integral. We find that 

g mm,(~, x1) = terms in (x1 log x) (xti’) 

+ 2 2 (xi)(x'i') y “c” “c”’ 
i=-m-2 i’=Inf n=MIN q=O q’=O 

*2 d/j pfrtr’) n 
4~ r! rt ! uqqt (Q) - (A. 10) 

Now -X;g”..” , is the real part of the coefficient of 
, 

f-1) 
m’-Q 

2(m + j)! 2(m’ + j’)! 
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in the above expansion, so (Re means real part) 

-xtm’p j’) = Re N;;j’ 
MAX max max’ 

(m, j9 ccc 
n=MIN q=O q’-0 

where 

and 

or 

’ Cm CL1 (n+l) 
(-l)r’ 

3w1 
4% g c$,,tQ9 

--O2 

N m’j’ = (- lf+Q 2tm+W19 (m+j)I 2tml+W-19(,? + jI)I . . 
mj 

i= m+2(j - 19, i’ = rn’ + 2(j - 1) , 

r = m + 2(j - 1) -I- n -t 2 - 2g, 

r’ = ml -I- 2(j1 - 1) - n - 2q, 

MIN=Q, MAX=m’+j’-1, 

max’ = 1/2(m’ - n - In - m’l, 2j - 29, 

max = 1/2(m -k n + 2 - In - ml + 2j - 2). 

(A. 11) 

(A. 12) 

(A. 13) 

One further point is to be noted. All the integrals in (A. 11) are of the form: 

-1 dp pi(p2 - k2)j, (A. 14) 

-cd 2 

Re 
s 

-9 
W Pi@’ - k2)j log (p2 - k29, (A. 15) 

-O2 

where r, j 1 0. 

These integrals, after integration by parts and algebraic manipulation, can 

be reduced to three elementary integrals: 

s 
*l i p dp = wy1 - (-u~)~+‘, 

-w2 
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and +W 
l 

Re 
(Wl-k)(w2-k) dp llog 

I mlm2 ’ 
-w (P2 - k2) 

2 

+Y 
Re 

s 
--J!%L = log 

-w (P2- k29 
2 

Below threshold, k = iK and the left side of (A.. 17) can be expressed as 

-1 w1 + tan 
( 1 

-1 w2 
y-- ++tan 7. 

( 1 

(A. 17) 

(A.18) 

(A. 19) 
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