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ABSTRACT

A systematic study of the Bethe~Salpeter relativistic two-body equation
is continued. The equation is treated in Wick-rotated coordinate space.
A bilinear combination of functions, called a bracket ié defined. Its relation
to scattering amplitudeé and their residues at poles, and to questions of
structure of the equation and numerical accuracy of solutions is developed.t
N and D matrices similaf to the Jost functions of potential theory are
defined in terms of complete sets of solutions to the equation characterized
by appropriate boundary conditions. Scattering and bound state properties
are defined in terms of them, by formulae analogous to the N/ D methods
of S-matrix theory, and properties of symmetry, unitarity and behavior
at poles are derived. Various methods for computing wave funétions and
bound state and scattering data are presented. A generalization of the
variable phase method of potential theory, which substitutes for the Bethe-
Salpeter equation a coupled set of ordinary linear first order differential
equations, is given. The formalism will be used in numerical calculations

to be presented elsewhere.
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I. INTRODUCTION

This paper is the second in a series entitled ""Methods for the Bethe-Salpeter
Equation." We shall assume familiarity with the principal parts of the first paper, 1
hereafter referred to as MBS I, and use its notation without redefinition,

The general objective is to '"'make friends with the Bethe-Salpeter equation, "
ultimately to exploit it as a familiar and benign tool in 2 meaningful study of strong
interactions. In MBS I, the special functions relevant to a scalar BSE were as-
sembled and the truncation of spherical harmonic expansions was analyzed in terms
* of various representations of Green's functions. Here, we build a structure for
the BSE which parallels both formal and physical aspects of the nonrelativistic
problem. Because of the presence of the relative time variable, which is an es-
sential feature of a relativistic theory with retarded interactions, and which signals
the coupling of two-body systems to systems of métny particles, the parallel is
to a multichannel system even though the BSE, outwardly at least, refers only
to a one channel two-body problem.

We treat sets of solutions at a given energy and angular momentum, characterized
by regular and singular boundary conditions. In terms of them, N and D matrices,
similar to the Jost functions of potential theory2 are defined and dynamfcal problems
are posed in a manner amenable to calculation. The basic properties of symmetry,
unitarity, and separability of residues at poles are derived. - Several calculational
procedures f;r the wave functions and physical parameters of interacting systems
are given. Another paper will present model bound -state.‘.,, scattering and bootstrap
calculaltions.

Our version of the N/D method has a reduction to poﬁential theory, where it
is equivalent to the Jost function formalism when the latter is_ well_—déﬁneld. But

the present method is more gencral. It applies to a wider class of pofen’tials,
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including singular ones, This broader applicability is nceessary for the relativistic
case where, even for the one-variable BSE at E=0 and the scalar-exchange potential,
the usual Jost approach breaks down. 3

In Section I, an analytic tool is developed which we call the bracket [¢, yr] of two
functions ¢ and Y. It is a gencralization of the bilinear form th:
Lagrange identity4 in the theory of ordinary differential equations. The BSE, after
reduction to partial waves is still a partial differential equation in two variables;
the applicability of this tool depends on the fact that boundary conditions can be ex~

pressed in terms of only one variable. A preliminary discussion is given in (I. 1)

on brackets for the Schrdedinger equation, as an orientation, and here the bracket

appears as a matrix element of the flux operator, integrated over the surface of a
sphere centered at the origin.

In Section III, the structure of complete sets of functions, and their boundary
conditions, brackets, and connecting relations are developed.

Section IV contains the development of the N and D matrices, their connection
to bound state and scattering problems, and a comparison to the formalism of Jost
funcﬁons.

In Section V, certain complete families of functions which solve the free BSE,
called channel functions, are defined and their numerical computation through
summation of power series is outlined. The channel functions are analogs for the
BSE of the sp'ﬁerical Bessel and Hénkel functions of potential theory, and for com-
putation purposes, more useful than the vector Bessel fu‘nctions constructed in
MBS I. They enter into the construction of Green's functions, and the N and D
matrices, and into the explicit formulation of dynamical problems.

The next three sections present methods for doing dynamics, i.e., for obtain-

ing bound states and scattering once the interaction is specified. Section VI details



the N/D method and includes a discussion of bound state normalizations. Because
of the correspondence to the N/D method of S-matrix theory, comparisons between
BSE and S-matrix calculations based on the same physical hypotheses are possible
not only for output quantities, but also for more basic ingredients such as the D
function itself,

Section VII describes the use of truncated spherical harmonic expansions.
Section VIII shows how to obtain the N and D matrices and the wave function for
the dynamical system from a set of coupled first order differential equations.
This procedure can be regarded both as generalization of the variable phase method
of potential theory, as developed by Calogero and others, and also as an adaptation
of the method of variation of constants of ordinary differential equation theory.

We are not ready to treat all sources of complexity at once; as in MBS I,

the particles are scalar and the energy is either in the bound state region

2 _ 2172
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Then the condition of elastic unitarity applies and the Wick rotation is valid for

SELm,+m or the scattering region below inelastic threshold.
both the differential and integral BSE. We use the BSE in coordinate space in
the Wick-~rotated form. |

The discussion frequently draws the distinction between regular and singular
boundary conditions. This fol.lows the extraction of total momentum and angular
momentum; i.e., tIl(Xl, xz) =,Q1P“X“ Y;n(e?’, P)Y(x, 6) and Y(x,0) is the subject of

study.

The regular conditions arise from the causality requirement which is in-

corporated into the Green's functions through the m —m - i€ rule, and then



into the wave functions via the integral version of the BSE

Y= GVY (bound state) (1. 1a)

§ = g (k) + GV (scattering) (1. 1b)

One might avoid Green's functions altogether, and connect up the properties of the
differential equation with the notion of particle flux, but the above approach is
standard and perhaps for this reason, easier. The bounding behavior of s can be
read off from one of the representations of the Green's function listed in MBS L.
To obtain a precise statement of regularity in a form which will prove useful,

let ¢ be expanded in spherical harmonics:
Y(x) = 2y ()R (6) (1.2)

At the origin of x, (I.1) implies the finiteness of each \pn(x) and perhaps more,

but this is sufficient. Referring to the harmonic expansion of the Green's function,
(MBS I, 5.23) and (I: 1) we find each lpn(x) represented as a superposition of terms
indexed by an angular parameter ¢, 0 < @< 7, As X-—-w, the term in a requires

asymptotic behavior of type

X

= A
X—3/2e a,l or

A oX
x_3/2e @,2 (1. 3)

where

v A Fxp.cosa -+ (w".zcos2 a - k2)1/2’ i=1,2 (L. 4)
a,i i i

The spectrum of the 7&& ; is limited to a finite range of values, including some in

?

the scattering case with negative imaginary part, as is discussed fully in MBS I.
Singular behavior at infinity, acceptable to the differential equation, but not to
causality, would encompass terms like

+A X +A X
-3/2 -
32 17 32 @2 (L 5)



Modifications of this framework may be required by ill-behaved interactions,

but can be treated as they come up.

. BRACKETS

A. Nonrelativistic Brackets

In a nonrelativistic context described by

(E + Vz/zm) Yi(x) = V() Y(x) (0. 1)
the "bracket' [¢, ¢] between ¢(x), ¥(z),
[¢.0] = fr dﬂ{ o1 wgﬁ?} (1L 2)

is a convenient tool for the analysis of scattering and other proi)erties, particularly
if one does not choose to invoke the integral formulation of the Schroedinger equa-
tion, For ¢ = d;_*, it measures the flux of particles out of a sphere of radius r and
so has an immediate physical interpretation, It is a function of r only, linear in
both ¢ and ¢, and vanishes at r = 0 if ¢ and ¥ are regular at the origin.
Suppose that

(E + V2/2m) é(x) = 0. (1L 3)

Multiply (IL. 1) by ¢(r); multiply (IL. 3) by ys(r), subtract and integrate over dr,

applying Green's theorem. Then
b
2
me dr f¢@)vq)¢(3)r dQ = [¢,¢],p - (009, (1. 4)
a
and in particular, if both ¢,y are regular at the origin,

2m [ @ V@U@ = [¢.v],_, (I.5)
This argument also shows that if ¢, satisfy the same equation, i.e., either (iI. 1)
r (II. 3), then [¢, ([1:] is a constant independent of r.
We note briefly some uses of this concept in potential theory which will have

their generalizations for the BSE.



Firstly, let t//k@) be the outgoing solution of (IL. 1) for momentum k, i.e.,

regular at the origin and

;,’G r
Y (x) = e == + Xi(r) (1. 6)
where, as r—w,
eikr -2
Xpn) = = £+0(™) (IL.7)

Equation (II, 7) implies, as r— o, that

Z Xyr) = ik (x) + o(r™?) (IL. 8)

Then Eq. (II. 5) provides a formula for the scattéring amplitude in terms of a

bracket:

fk—k) = 2 [ e E Iy )

f

~1 1 -ik's r
= 4—77E == tlfk] (IL.9)
=Ir—ew
or equivalently,

_ -1 ~ik'e r

f(k'—Kk) = -(4m) [e =5 XQ (11 10)
I'—co
Secondly, consider the equalities

[l;,_k,,lpk]= o, | (IL 11)
fen] 0

The brackets‘ of (IL. 11), (H.12) are constant because s, , t,(f_k, , 1/11’2, all satisfy
(IL. 1), The équalities are evidently valid at r=0, and ;ence—;lt alIr, Now substitute
(IL. 6) and the analogous form for qlf_k, into (II, 11) and apply formula (I[.10). One
of the terms that appears is [)g k,(r),:(k(r)] but this vanishes as r—o in virtue of

(IL. 8). The result is the time reversal property

fk'-—k) = f(-k-— -k") (IL 13)



In the samc way, (II.12) delivers the unitarity statement

fk'=—k) - I*(k—K' k
(I .ﬁ)zi (KKl _ Z:i-rfdﬂ]_{” (K" KN (K" LK), (IL 14)

B. Brackets for the BSE

Given a family of functions Y upon which a partial differential operator acts
and a family of functions ¢ upon which the transposed operator acts, one may
attempt to construct a bih‘néar function of ¢, ¢ similar to the form that enters into
the "identity of Lagrange' in the theory of ordinary differential equations and which
may serve similar purposes.

For the Schrioedinger equation, the appropriate definition was given in the
previous section; the bilinear function is essentially a matrix element of the flux
operator. -

For the Wick-rotated BSE, it is natural to regard x as the interesting variable
in such a construction and to integrate over the angular variables, Thus, we shall
define the bracket [qﬁ, ] of functions ¢(xu), lp(x“) as a function of x only, in a way
which parallels the treatment of the nonrelativistic case above, We shall also
write [¢, up]x when the point x at which the bracket is evaluated deserves emphasis,

As a preliminary, we define ""'second order" brackets (qb,lp),(l)(cp,w)(z)associated,

respectively, with the second-order operators @1, @2,

_@1 = Dz + k2 - zwl /87y , . (II. 15a)
v 2 2
@2 =0 +k + 2w2 8/(8t) , (IL. 15b)

that enter into the scalar Bethe-Salpeter equation,- The transposed operators @1,

@2 in rectangular coordinates are obtained from @1, @2 simply by reversing the

sign of (8/87). More generally, if the @i are expressed in coordinates {5 | which

i



are not rectangular, the Jacobian J(¢), where

d*x = 3¢ d*¢ (IL. 16)

enters into the definition of transpose. One writes down J ¢(@iw)’ integrates by

parts and carries the differentiations through J to get

J(@'i¢)¢ = J$(@,) + derivative terms, (I, 17)
It follows that
f yate g(élqs)lp - $(@¥)] = surface terms, (1. 18)
closed
volume

This is the essential property to be exploited. We begin by characterizing
(¢,¢)mas follows:
fx3 sin”6d6d0 ¢ @, ¥ - (T, O] = -&%{- (@, y iV (I 19)
but immediately introduce a notational simplification. We shall suppose, as in
MBS1, that all functions carry the same angular momentum quantum numbers £, m.
Specifically the symbols ¥, ¢ stand for lp(x,e)Yf‘(efs, ¢) and ¢(x,0)an(63, P)*
(note the complex conjugate of Y™ in the ¢ function). The Y's are normalized in

4

the usual way:
m m
S50, 000 v6,, 6100 =1 (1. 20

Then the dependence of @l on 03, ¢ can be replaced by dependence on ¢, and (II.19)

can be rewritten
3 . 2 o~ -
[ sin*0do o2, - (@000 = 2 0" (IL.21)

with ¢ = ¢(x,60), ¢ = Y(x,0).
The operator @1 can be separated into parts:

@, = D - 2w, 8/(3T) (0.22)



where
2 .
d d Y4
—_—s + =5 - === +k (1II.23)
dx2 dx x2

D=D=

Mo

and & 2, the square of the operator for four-dimensional angular momentum is

written out in (MBS I, 1I.2).

ot ™ . A Al A
Ul Ve LiIC 1UCHLLILICD

(opy- D9y = (0 - Gy)| - x[er M -vete] @y
st (p Loy - ugh o) =3 sin”0 B (o)

d (3 .2 d 2 .3 .
e <x sin"6 cos 6 qbz[;) - 36 (X" sin”0 ¢y) (IL. 25)
The 5{’2 terms of (II.24) and the (d/df) term of (I.25) vanish when the inte-
gration over angle is carried out.

Thus we infer from (II.21) the explicit definition

(@, = fo sin20 a8 {Qb %Xté - ¢%X? - (2w, cos B) (II.ZG)\
Similarly, |
[+’ sin0a0 {6 apu - @pom] = & 00)@ (@ 27)
and
(¢, )2 = fx sin do {qs g% - w28+ (2w, co80) oy | (1. 28)
Finally, put
| f % sin” 06 {qb 2Dy - (@1@2@% & (o] (L. 29)

It is easy to see that the left side of (I1. 29) equals

Lo, 2,0 + L0, )® (IL.30)

- 10 -



so we may define the BSE bracket by

[6.4] = (6:2,0"D + (@G 0,0)P) (11 31a)

An equivalent definition is

[¢.y] = (¢,@1¢f)(2) + (D, dm/f)(l) (I1. 31b)

Let the spherical harmonic expansions of {s, ¢ be given by

Y=3 £ R (0), ¢=3 g ()R (6) (IL, 32)
For practical work, we require the explicit expressions for the brackets in terms

of the coefficients fn(x), gy (x). Diligent application of the rules for differentiation

leads to

1 3
((P’lll)( )= Z}gnf;f gy fp 2w An(e g F gn—lfn)}’ (1L 33a)

(¢, 4/)(2) = X3Z{gnf;1 - g;xfn + szAn(gnfn_1+ gn—lfn)}’ (I1. 33b)

3
[0:0] =X Tlenfy et + ety - &',

+ 3(gnf3 - gﬁfn)/x
4 2 2 2 , ,

- [ wlwzﬁn - 2k” + (20" + 4n + 3)/x ](gnfn - gnfn)

- ' 1 ot — ot -
4<“)1(").2Oln[gnfn-2 +gn—2 fn gnfn—.‘Z gn—.?‘fn.‘_zn(gn—zfn gnfn—z)/x]

+ 2((.02 - wl)An[X(g, H+X({, g)]} s (L. 34)

where

— ' 2 )
X(g,0) = g 18 i -8y 1K gnfn_

Tt
n nn-1 1

+ [(1 —n)g}l_1 fn + (n+2) gl fn—l] /X

2

- (n2+n+1)g f 1/X (11. 35)

n n-

and where A, o, B oare given in (MBS 1,I1. 16) .
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The general property underlying the use of the bracket is the following. Let

@, T (x,0) = Alx,0)

&, By $(x,0) = B(x, )

(IL 36a)

(IL, 36b)

Multiply (II.36a) by ¢, (II.36b) by ¢, subtract and integrate over x,68. Then, we

have
X

2
[dJ,l,l']Xz - [¢»¢]X1 =f X3deSin29d9{¢(X,6)A(x,0) - B(x,0)¥(x,0)}.  (IL.37)
X .

1
In particular, if
@1@241 = V¢ ,
then

[6.6],- [p:4]y = [ 9V¥ x sin6axas

C. Some Properties of the Brackets

1. Brackets of Solutions

If s, ¢ both satisfy the free BSE,
D, DY = 0, B, Do = 0

or both satisfy the BSE with interactions, S

D, DY = Vi, §1§2¢ = ¢V

(I1. 38a)

(1L 38b)

(IL. 39)

. (IL.40)

(I.41)

then by (IL.37), [q;,q;]x is a constant, characteristic of the solutions ¢,¢, but

independent of the coordinate variable x,

In numerical work, one calculates families of solutions defined, perhaps, by

boundary conditions at x=0 or x —w, and evaluated for various x. The number of

decimals to which the computed brackets are constant as x varies is a measure of
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the accuracy of the calculation. In our experience, it has proved to be a sufficient
measure of accuracy.
2, Complete Sets of Solutions

Suppose we have complete sets }zpn} , ;qbn} of solutions to a BSE and its
transpose. Then arbitrary solutions ¥ and ¢ can be expressed as linear combinations
(repeated indices are summed):

_,n _n
w=yC, o=do¢ - (1L 42)

If we work with one of the truncated approximations to the BSE, a complete set of
solutions will have finitely many members. But in general, there will be infinitely
many terms in (II.42). In MBS I, we have even considered a class of solutions

I(a’ ) for the exact, free~particle BSE where the index o was a continuous variable,

All the brackets

m m
will be constant., If arbitrary linear combinations are taken
my, . d.m _ AP
W =yicl, (o' =ATe (1. 44)
then in terms of the transformed functions, we have, dropping the primes,
m] _ ,P pdm
[¢>n,l,l1 } = An Bp Cq (IL. 45)
If the transformations are managed so that
m m
. [¢n, ¥ } =8 /pn, (no sum on n) (1. 46)

we may say that the solutions to the equation and its transpose have been arranged
in conjugate pairs and that {wni , :(Pm; are bi-orthogonal sets. This was done
explicitly in MBS I for the %Y, &{% ) of the truncated problem.

Assuming now that the Y's and ¢'s satisfy (I1I.46), we can solve for the coef-

ficients C, of (I1. 42) by computing [(,bn, ]« Thus, we have

w=9" [ 0] (IL. 47)

- 13 ~



and also
o n
¢ = [¢,4, ]pn¢n : (IL 47h)
Furthermore,

[6,¥] - [d’,wn] o [0, w] (IL 48)

which resembles the procedure for insertion of intermediate states into a quantum
mechanical scalar product.
3. Scattering Amplitude

The formula for the scattering amplitude f(k'-—Kk) s

1 -ik'. 4

fk'—k) = o5 f e 12 -I'-V(xﬂ)zl/(xu)d x (I1. 49)

where lp(x“) satisfies
ik 4
bix,) = et -I—‘+fG(x“,X;L)V(XIL)¢(X;L)d X! (IL. 50)

The partial waves reductions for these functions are

emik' I _ Z(-i)ﬂ(212+1) P ﬂ(ﬁ' . 7) jykr) (11.51%)

W(x,) = 3 ke B, (F+ £y x,0) (L. 51b)
G,y %) =5 @) L2 By (Ee ) aOx, 0; x, 6 (IL, 51c)
A A
f(l'~—k)= 3 (20+1) P (k' k)f, (11. 51d)

where the relation of partial wave amplitude to phase shift (below inelastic thresh-
old) is

sin g ; (IL. 52)

- 14 ~



In reducing (I1.49) and (IL.50), the projcction property of the Legendre polynomials

is best expressed by,

A A A A A
f ey Pkt Hanpt. k) = 4r k. k) | (IL 53)
Then we have
£ = 2 5. (k) V(x) (%, 0) < sin26 dxdd 1L, 54
1= 5 [ 300 Ve s, 0)x” si (IL 54)

with Lpﬂ(x,f)) obeying
Y, 0) = § kr) + f aWix, 0", 0" V) (x', 1) x™ sinZ6" dx'de" (IL. 55)

An explicit form for Gw(x,e ;x',0') is given in (MBS I, (V.12)).

Since xpﬂ, j!l satisfy (H.38a),(ﬂ.38b) respectively, Eq. (II.39) may be applied.
Because %’ j g are regular at the origin, and the definition of bracket carries a
factor of x3, [j It ‘!’QJO = 0. Therefore, the partial wave scattering amplitude is
given by

f, = -z—lf[jﬁ, %]w (I1. 56)
In practice, the bracket of (II. 56) can be evaluated at any x outéide the range of
the potential.

Of course, f!l and Ll/ﬁ(x, #) are complex. But the above material can be rear-

ranged to give tan 5£ in terms of a real wave function. Let G(ﬂ) be divided into

real and imaginary parts:
o a¥x, 0: 0 = Q0 x1,0m + 160, 6; x, 67) (IL.57)

" By (MBS I, (5.56¢) we have

1 sinlklr-r k . .
JAm G, ¥1) = g ml(r-_z'lli): S (2041 Pﬁ(f}- f")]ﬂ(kr)]ﬂ(kr’) (IL. 58)

- 15 -



and hence, comparing with (II.51c¢),
Gg)(x,(?; x'0') = %%J'ﬁ(kr) jykrt) (II. 59)
Substituting this into (IL. 54), we have7
gy = J k) (eike) + [P vy, (IL 60)
Hence, ¢ 9 as defined by

¢(%,0) = Yx,0)/(1+1kf) (1. 61)

satisfies
¢y = J',ﬁfG(é)VdJ!2 (10, 62)
and is clearly real. It satisfies the same differential BSE as l,llﬂ, from which it
differs by a constant factor. A specification of its asymptotic boundary conditions
will be given later.
Replacing 412 in (I1.56) in terms of ‘PQ and recalling that (ﬂiss.in 6)_1 = cot & -1,

we obtain

tan 82 = -Z%[jjz’ ¢£]°o (11, 63)

In practice, we calculate ¢ 2 and tan §, rather than l,[/ﬂ and f .

[ [

4, Output Coupling Constant

Consider 1 reaction at energy E through the annihilation process

1+2—3—1+2 (I1. 64)
Let particle 3 have mass Ep Ej < my +mg, The coupling strength at each
vertex is g. Particles 1 and 2 continue to have zero spin. The normalization of
g may be standardized by citing the interaction Lagrangian for the three-particle
vertex. If the particles belong to different fields gbl(x), ¢2(x), ¢3(x) and particle

3 also has spin 0, we put

L) =8 9100 500 $500) (IL. 652)

- 16 -



But if two or three of the particles arc identical, then

L) = (2/21) 91(x) 9500 $5(x) (I1. 65)
or

L) = (8/39) ¢ 1(x) $1(x) $,(x) (IL. 65¢)
respectively.

Any one of these leads, by Feynman's rules, to a vertex factor of simply g

and a scattering amplitude for the annihilation process which is
2
nn 15 .
fa (_15.7"'—}_{)"87,—}3 P P (I1. 66)

EO—E

If particle 3 has spin £, we suppose, without supplying details, that (II. 63) is
adjusted so that the result is

2

nn ' 1 A A
K~ k) = g R @) Pk k) (1. 67)
ES-E
0
The partial wave amplitude is

iann 1 gz
¢ “%E 2 -2 (IL. 68)

E,-E

Now suppose a certain interaction between 1 and 2 defines amplitudes which

are computed by (II. 56) and further, that a bound state at E, is produced in the

0

R-tﬁ wave., Tor E below threshold, fﬂ is real (even though the argument of j 0 is ikr)

and has a pole at E=E.
According to the bootstrap philosophy, the interaction has simulated the an-~

nihilation process (Il. 64) and the residue of f, at E=E | is related to the output

4 0

coupling constant g, i.e., the coupling to the particle of mass E, which emerges

0

as part of the output of the calculation with this interaction. Comparing the form

- 17 -



(I1. 68) valid at the pole with the gencral formula (I1. 56), we have

2

. 2 AN

(%) = lim (EO—E )[Jg(ll{r), \/;ﬁ] (11, 69)
out E—~E0 00

as the prescription for the output coupling constant in rationalized form. An
alternative formulation is given in (V. 6).

Consider now that the mass df the intermediate particle is above threshold.

Then, we have a resonance rather than a bound state and replace E 0 by E 0” i/2r.
Assuming I’ << E o We can approximate
(E -1/21")2 -E® ~ E°-E°-iE I . (I1. 70)
0 0 0
Then, in the neighborhood of E = EO
i6 2
e g 1
— £ “sin § = (O.71)
k . £ 87TE E2—E2—iE r
0 0
which implies the connection between width and coupling constant:
kg
r = 5 AT (Hn 72)
2E0

and the rule for obtaining gz /am:

2 2E
£) - 1im —2 (E2-E%tans,= lim (E2-E2)j, ¢ (1. 73)
47 k 0 £ 0 ANl
out E—E E—E o0
0 0
where is function o o .
£

III. COMPLETE SETS OF SOLUTIONS

A. Boundary Conditions for the Free DSE

The Bethe-Salpeter equation, with or without interactioﬁ, has infinitely many
solutions regular for 0 < x < «. Because the equation is lincar, one may construct

a complete set or basis of solutions, an arbitrary linear combination of which

- 18 -



represents the general solution. 8 The basis members may be conveniently delineated
in terms of boundary conditions at x=0 or x= «. In either case, there will be a
natural division between singular and regular conditions at the boundary points.

Let there be given a set of functionsr @) (x,0) regular at the origin indexed hy
- (v) and a second set s(v)(x,()) singular at the origin which solve the free BSE at a
definite energy and angular momentum, such that the combined set is a basis, An
enumerable family of functions of this type will be constructed explicitly in MBS III
by means of expansions in spherical harmonics and powers of x. They, and certain
derived functions, will be called channel functions because the lead term in the
power series occurs in a distinct spherical harmonic channel.

If Y(x,0) satisfies the BSE, the transposed function J(x, #) satisfies the trans-

posed BSE. The transposition is obtained by r— -7, or equivalently, § — 7~ §:

P(x,0) = Y(x, 7= 0) . (I 1)
This means that if
Y=3 L (DR (6) (mezén
then '
F=1 @R (m-0) =S @R (0) - (I 2b)

Hence we may define a transposed basis for the transposed free BSE; namely

r(v)(x, 6) = 'f(l')(X, 6) = r(”)(x, -0y (1L 3a)

5,05 6) = iz, 0) = sWhx, 7-6) -, (IIL 3b)

with the regularity or singularity of the function again identified by its name,
The input wave j Q(kr) satisfies both equations of (II.36). . Thus, there must

exist expansions (summation convention again)

i) = 2 000,09 = MR n, ,6) (ITL. 4)
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Since j 0= '3}, Cu(k) = Cv(k)o We have used two notations for onc quantity to kecp
the summation indices fluent. In gencral, the 1'(V)(x, @) alone are a complete basis
for solutions regular for all finite x including x = 0.

Now consider a complete set of functions h(u)(x,()) regular at x = o, These may

be defined by
h(v)(x,()) = S(V) + r(‘u)XZ (O1. 5a)

The matrix XZ, to be obtained when r(V) and s(V) are known explicitly, tells how
much of the r(“) must be added to each s(v) to cancel off the part of s(v) which is

singular at infinity. Taking transposes, we have

o ) PR % '
by 0) = B 0) = s +x‘: o) (1L 5b)

where, for the sake of fluent indices, we put

(ILL 6)

The BSE under consideration is real. We can, and shall, suppose that the boundary
conditions at the origin are real. Hence the s(v), r(V) are real. But above threshold
the regular boundary condition at x=e is not real as it involves outgoing waves. We

geparate X and X into real and imaginary parts:

v R ¥ o SU o, Sl
=X +il; = + .
X, = X0 il x”; X, - i (L. 7)
where
SHo_ V. FH _ Y
X=X L=, (1. 8)

-~
The last in our list of functions are Z(V)(X, 6) and z )% ) = Z(V)(x, 6); they are

(

the real parts of the h's;

2 Wik, 0) = s) 4 p ™) XIZ (L 93)

- oM
ZV(X,H) = S('u) + XVI'(#) (IIL. 9b)

and arc cqual to the h's below threshold where g: vanishes.
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B. Bracket Relations

For arbitrary functions ¢, y, we find, by putting ¢ — 7~ 8 in (II.29) that

( [¢, ¥]= -[¥, ?] | (1L, 10)
This tells us, for example, that [s @)’ S(v):‘ is antisymmetric in v,p and that

[S(u)’ r(vq - ’[ro»)’ Soﬂ'

We shall, in fact, add to our specifications of the function basis the requirement

[s(“), r(V)] = —[r(u), S(V)] = 8; (II. 11)

The channel functions, whose construction has been promised, will satisfy this

condition. It is generally true that

(V)] -

r r =0 L. 12

[ 1y ( )
because the bracket may be evaluated at x = 0 where the functions and their derivatives
are finite and the extra factor of x3 secures the vanishing. We shall not suppose

that {s s(V):‘ vanishes, because our channel functions will not have this property.

¢y t

If, however, the property were thought especially desirable, one could define new i

singular functions by

1
) _ ) §r(p){s(p), S(V)] (IIL 132)

- 1 ) '
O-(IJ) S(H) + Z[S(Ii)’ s ]r(k) | (1. 13b)

which by (III. 10) are transposes of one another. Then

[O-(N)’(r(;)] - [S(N)’ S(V)] B 85 [S(p)’S(V)] - % [S(N)fs(l)] 5;1 =0 (111, 14)

and moreover,

DI bt

M]_ _1, ()] _ qv
[:O'w),r ]_ [1(#),0 ] 5, (I1. 15)

Thus, the families r(v), O'(V) and 0'(“), rw) would be biorthogonal sets with the

simplest bracket relations.
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It is also true that

[h(u), h(”)] =0 (ILL. 16)

in virtue of the property of regularity at « which the h's share. This is less ecasy

to establish from the bracket definition. The family of K(a’ i), K which satisfied

(@, 1)
a truncated BSE had the vanishing bracket property, as shown in MBS I. These

3/2 _la,ix

functions behaved like x ] as x —ow, and since there was no possibility

of cancelling when [K(oz, iy’

K(ﬁ ’ i)] was formed, the constancy of the bracket for

all x implied its vanishing. Now the h's that we shall construct as channel functions
will have truncated versions which will be explicit combinations of the K's. Hence
the brackets among truncated h's will vanish. As the truncation parameter goes

to infinity, the truncated h's will converge to the true h's, even though the K's
themselves do not converge to anything. Thus (IIL 16) is established for these h's.

It is then established generally, for any function regular at infinity is a linear

combination of these h's.

|

By (HIL.5), (III.9), we have the decomposition of h into real and imaginary parts:

n?) - ) 4 ) & (IIL 172)
- St
h(v) = Z(v) + 1§V r(#) . . (II. 17b)
This resembles the Bessel relation
. .. (1) _ s
1h!2 (kr) = —nﬂ(kr) + 132(15:1") . v (111, 18)
Next, substitute (II.5) into (II.16) to get
(V)]:XV_’}‘(’V:XV__X# . X
[s(u), s ” " " b (1. 19)



The real and imaginary parts of (III. 19) read

|- v oV = Y - H Vzo
oy ] =0 - %= - (II. 20)
and
_ gV _FV - gV _ gH 21
0 ‘:u Ly C“ & , (II.21)

i.e., {;: is symmetric in g, v.

Hence, usihg (II1.20) we have, from (IIL.9)

W] -
[z(ﬂ), z ] =0 . ' (TH. 22)
Also, it is clear from (IIL.9), (L. 5), and (IIL. 11) that
0] Wl - v
[hw), r ] = [r(v), h ] 5, (I11. 23)
| - _ Wy _sv
OO R I

Finally, observing that taking complex conjugates,

¥ .V B .
@ = 2w Ty T By T B

and noting the symmetry of {, (II.21), we have the last bracket relations of this

h (1. 25)

12
p )

series,

[h’(;), h(”):‘ - —[h(v), h(“)*] - 21y (IIL. 26)
We have then three different bases of functions to work with, the (r,s) basis, the
(r,z) basis, and the (r,h) basis, of which the first two are real and the last two
satisfy the s{mplest bracket relations for biorthogonal sets. The ingredients of
the theory so far are the functions themselves, the coefﬁcients C“ of (L. 4) and
the matrix X. The imaginary part of X, namely £, is simply expressible in terms

of the C“ as will be seen below.
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C. The Free Green's Functions

The partial wave Green' function9 obeys

ot _a
@, D, G(x,0:x'0") = AEXHO-0) (IIL. 27)
X sin” @

It has already been exhibited in several representations, namely (MBS 1, 5.12)
and (MBS I, 5.23).
Its expansion in terms of basis functions is done as follows: Because of the

boundary conditions, we have

G(x,0;x'0")

r(v)(x,())av(x',ﬁ) , X<x'

i

n")x, 6) b (x,6), x>x' (I 28)
where av(x',e'), bv(x’, #') are coefficients to be determined. We see that

[r(v); G] =0 [h(v), G]w =0 (II'I.29)

Here, and in the brackets to follow, G always means G(x,80; x'0') and the primed
variables are merely parameters, There are two ways to calculate [r(v), G]
o0

and [h(v)’ G] 0° Firstly, from (IIl.28), we get

[r(y),(}]m = ~b (x',6"), [h(v), G] = a (x1,0) . (I 30)

Or multiply (I.27) by r(v)(x); multiply @1@2 r(v)(x) = 0 by G and apply (1. 37),

(1. 29) to get

[r(v), G_w = r(v)(x') (I1. 31a)

and, similarly,

|

[h(v), Glg = b)) (TIL. 322)

Hence,

G(X:Q; X':BY) - r(V)(X> 9) h(v)(X', 8‘) » X< x'

i

-0, 0) 6,00y xs (1. 32)

)

- 924 -



Wwe define the transposce Green's fTunction G following (III.1);
G(x, 0;x',0') = G(x, T7-0; x', 7-0") (ITL. 34)
that is, without transposing the order of the arguments. Then G satisfies the same

boundary conditions as G and

—~ o~~~ -t - At
3,7,G = W x)o0-6) (IIL. 35)
X sin 0
We have the explicit form
a(x,d;x',(?') = - r(v)(x,é))h(v)(x‘,e') X < X'
- V)t g 1
h(v)(X,B)l (x', 6% X > X | (1L, 306)
and note the relevant bracket rclations
~ (v) ~ (v
[, 7], = o [a, n )]w = 0 (L. 37)
and
[G r(’)] e, 0) [G h’)]o = h'(x', 0" (ITL. 38)
The symmetry of the Green's function .
G(x', 6";x,60) = G(x,6,x'8") (I11. 39)

can beobtained by bracketing the differential equations or by inspection of (I, 33),
(II1. 36). In physical terms, this symmetry reflects time reversal invariance.

The imaginary part of G is scen to be

Gy, 05161 = - 1), 00 (<1, 6) (ITL. 40)

Y
But GI is alrcady given in terms of jL(kr), jk(l{r') in (II.58). Comparing with (1. 4),

we get, for E above threshold

A R *“(1\) (I 41)



The calculation of X Z depends more directly upon knolwdge of the basis functions
and will be done for the channel functions in subsection V. E and the Appendix.
Let G (x, 0;x'0') be the (real) interaction dependent Green's function generated

For reference purposes, we list some further properties:

G, = Gy +fG VG, (IIL. 42b)
(@@, - V) G, =1 | (IIL. 43a)
@Dy G, -G, V=1 . (IIIL. 43b)

The primed operator (g'flg’ilz)' differentiates the second pair of coordinates of
G, in (III.43b).
The proofs of these relations are routine, as the ingredients for them have

already been laid out.

IV. THE N AND D MATRICES
A. Definitions
Let rg)(x,e) be solutions of the BSE with interaction
(@,25 - ) = 0 (IV. 1)

indexed by v, which comprise a basis for the solutions of (IV.1) regular for all
finite x including x = 0, If V is sufficiently well behaved at the origin, one may

also require that each rév) satisfy the same condition at x = 0 as the corresponding
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) . . .
free solution Y ), but this is not essential for the present argument. Let us assume

that the matrices

Vigy = (V) Vi = )
d“ (x) = [h(”), r, ]X, nu (x) [r(“), r, ]x (IV.2)

converge to finite limits as x—e. Then we define

Voo Voo ()
DH = }3—111; d“(x) = E](“)’ r, :Lo (IV.3a)
NZ = lemw nZ (x) = [r(#), rf,”)]w (IV. 3b)

The existence of a basis of rg}) functions with these propertie.s is a limitation on
the pathology of V at the origin and at infinity. An infinite range (e.g., Coulomb
type) interaction is excluded, but interactions which are both repulsive and singular
at the origin nced not be. As a practical matter, one may evaluate the brackets

of (IV.3) at a point x "outside' the range of V. That is, the part of V beyond -

X4 is supposcd to be too small to affect the system to the desired order of accuracy

Sometimes, one replaces V with AV where A is a varying parameter, The
matrices may be designated as D(E), D(E , 1), ete., according to which parameters
need to be emphasized.

The regularity of r(l ) at the origin implies
(V)] 0
= I\r.4
[ W v 1o (V-4)
Invoking (IL.39) and (IV.4), we have another expression for N:

=[x, r{” ' (IV.5)

Onc may attempt to write, in similar fashion

o

D - [(u)’ ] fh vl (IV. 6)
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but the terms on the right side of (IV.6) may be separately infinite, at least for
some values of u,v. Thus, the most regular interaction a one particle exchange
model can deliver is that defined by scalar exchange. This interaction becomes
the Yukawa potential in the nonrelativistic limit. But in the BSE, the resulting
interaction goes like x_z at x—0, There will also be functions rg)) that go like
1 and functions h(“) that go like <2 in this limit, in a typical case. Then the
integral in (IV.6), which is over x3dx will diverge logarithmically at the origin,
although DZ , of course, is well defined. This point underlies a subtle distinction
between our approach to these matrices and that which is conventional in potential
theory. See discussion below in subsection C under item (4).

The transposed function rv(v)(x, 0) = ?{Iv)(x, #) obeys

(2,9

‘1 Z—V)r

IR (IV.7)

The transpose V — where V may be a nonlocal operator — is defined as in (IIL. 1)
or (I1l. 34); i.e,, 8 —m ~ 0 for all angles, but no transposition of the order of

coordinates.

We define V as symmetric if

Vi = YV (IV. 8)
and self-adjoint if under complex conjugation
(Vy)* = y*v . (IV.9)
Symmetry and self-adjointness correspond to the physical conditions of time-
reversal invariance and unitarity, as they do for the Schroedinger equation. Now

both |r , r(vn and |r *, r(v)] vanish at x = 0, because they are regular
[v(u) v ]x viu) vk y g

there. If V is symmetric, we have

D2 o = vV (IV.10)



Then by the argument following kd. (11.41)

[rv(m, rf;’)] =0 (IV.11)

for all x. Likewise, if V is self-adjoint,

G- * = *
2Py 00" = Ty \Y (IV. 12)
and then
* =
EVW) , r\gv)] 0 (IV. 13)
for all x.
The N matrix is real if, as is convenient, we take the boundary conditions

for r(v), r\(fv), and hence the functions themselves to be real. Let D be separated

into real and imaginary parts:

Vo 14 s 14
D’ = (g + D, (IV. 14)
Then
(Dg), = [Z(u)’ r‘(,”)]w : (V. 15)

Below threshold, h ) = z(“) soD= DR and DI = 0. But above threshold, the

. . -
imaginary part of h(“) is C“ r(v) S0

A
(Dp), = ) (IV. 16)

B. Some In’Eegral Equations

What integral equation does rﬁ;})(x, g) satisfy ? Notice, from (IIL. 36),(IV.4)

and the definition of D that

[’G’, rg))]o = 0; [E;’ rg;))]w = - Mgy DZ . (IV.17)
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Then, multiply (IV. 1) by G(x, 6;x', 6"); multiply (IIL 35) by r'*)(x), subtract and

apply (IL.37), (IV.7) to get

_~ 2
rsj)(xl’ ') = r(fl)(xv, 6") DZ + fG(X’ 6'x',01V(x) I‘S))(X) X3 sin‘d dxdé . (IV. 18)
After interchange of x,6 and x', #', the result reads
r(V) = r(“)DV +fGVr(V) . (IV.19)
v 7 \4

If the matrix DZ is not singular, we can introduce
-1y
ox,0) =z, 007 (IV.20)
This function satisfies a more familiar type of integral equation

o) = ) +va e (IV.21)

C. Elementary Properties of the N and D Matrices

1. Dynamics

First suppose that the determinant

A(E) = det DZ(E) (Iv.22)

vanishes at E = E 0° Then there exists a right eigenvector a,, of DZ (E 0) with zero

eigenvalue, i.e.,
V —
D” (Egla, = 0 (IV. 23)

Then by (IV.16), the wave function dlB = ng))av satisfies the homogeneous
equation
P = fGVlIfB (IV.24)

and is regular at o. as well as at the origin. Thus wB is a bound state for energy E 0°
Second, it is clear from the representation of j ﬁ(kr) and the integral equation

for gb(v) that w(ﬁ) = qb(V)CV (k) solves the scattering equation (II.55). Hence the
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scattering amplitude for the Et—h wave is

f, = (2E) [ﬂ,q] - [0(7‘ SER rff‘)]w(n'l): c, ()

i

il

e o™y ¢, 09 - (IV. 25)
)

Thus, the questions of dynamic interest are phrased in terms of the functions r*" 7,

h(V), rf/v) and the N and D matrices derived from them. We shall consider these

questions more fully in Section VI.
2. Symmetry and Unitarity, The B Madtrix.

In the asymptotic region, we have

() - _ @) V) () (v)
ry (x,6) = -h [0\), ] o +r [h(}\),rvv]x_.w

S M o), X (IV. 262)

and also
L0 = = )N" + r(p)D“ X — (IV. 26b)

Now set
BZ = (ND_l): (IV.27)

Remembering (IV.20), we have

¢(V)(x, g) = - n™) (x—e) , (IV.28a)

S
+
&A

=

by 7 = - b B+ (X —w) - (IV. 28b)
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Let us follow the route that in the nonrelativistic case led to (II. 13) and (II. 14),

Equations (IV.11) and (IV.13) can be converted into
™ -
’ - y N. 29
Ei’(p) ¢ ( a)

()] -
[dJ(;j), ¢ ]- 0 (IV. 29D)

in view of (IV.20), If V is symmetric, we substitute (IV.28) into (IV.29a) to get

the symmetry of B:
B =8 . (IV. 30)

If V is self-adjoint, substitute into (IV.29b), use (IIL.26) to get

1y pr\ *u Ay
(21) <B“ - BV > = - Bp EPBA . (Iv.31)
Or, is we combine (IV,30), (IV.31) and express [ in terms of the C's, Eq. (I.41)
we get
vy - K fpp * Mo BY
Im(B“> = ox (Bu Cp(k)> @B . (IV. 32)

As we see from (IV.28a) with the significance of ¢(V) supplied by (IV.21), BZ is

a kind of T-matrix for scattering from channel » to channel u. Even though there

is only one physical process permitted under the condition that E be below inelastic
threshold, namely two particles in and two particles out, our N/D formalism is

that of a multi-channel problem. But, according to (IV.32) only one channel is
"open, "' namely the free two particle state with wave function j 2(kr) in the coordinate
representation and wave function oA (k) in the representation by basis functions.

If we set t, = kfﬁ, we have, from (IV.25)

t, = = ) B C,(K) (IV. 33)
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then, multiplying (IV.32) by s (k) CV(k), we obtain

2
Imt, = |t (Iv. 34)
i8£
Thus the usual elastic unitarity statement for t!Z = 4§ " sin 62 is recovered.
3. Separability of B = ND lata singularity.
As we shall argue later, if the basis functions are set up wisely, only
a finite number of them actually will be affected by the potential, and so, dynamical
calculations can be made using not the infinite matrices N and D, but only certain
finite dimensional submatrices. Thus, it is meaningful, even ina general discussion,

to manipulate N and D as if they were finite dimensional.

Let us write the inverse of D(E) as

D/(E)

{D—l(E)}Z: = —%(—ET (IV. 35)

where A(E) is the determinant of D:(E), as already defined in (IV.22) and ﬁ(E) is

the co-factor matrix. Then

D25;= 1“)213;’\ =57 (IV. 36)
Let us pass to the limit E ——»E0 where
A(Eg) = 0 (IV.37)
then
D;(EO)ES(EO) = ES(EO) D(E,) = 0 (IV. 38)

¥

That is, for each p, the I—)-S (E 0) are the components of a right eigenvector of D(E 0)

and for each v, the 55 (E 0) are thc components of a left eigenvector of D(E always

0)’

\
with eigenvalue zero. Let {fl()n’} and { }, n=1,2,..., be complete sets of such

o P
°(n)
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eigenvectors. The ﬁS(EO) is a superposition in two ways:
5Py = n) _ P
D (E) =20, ap,n) f,(, 2 gy ) (IV. 39)

Taking the {f(n)} as orthonormal, we may project out to find that a(p, n) is also a
left eigenvector, so it can also be designated g(%) and ﬁf:(E 0) is represented as
n) =V C s ‘s o -

P C — -
anfj g(n) Hence (ND)M , which is symmetric in the imit E EO, as it is sym
metric for E # LOpY also has a separable form of this kind, We expect, in general,
that A(E) has a simple zero for a single partial wave without any special symmetry,

and then DZ(E 0) has only one eigenvector of each kind with eigenvalue zero. Thus,

the form of B = ND_1 near E = E_ would be

0
€YY
(E) ~ —F—- (IV. 40)
0

where € is a positive or negative constant.

4, Comparison with the Jost Functions of Potential Theory

We consider the matrix Q given by

vo_ (v)
Q” = [hw), r ]0 (IV.41)V

We have already remarked that the integral in (IV. 6) is expected to diverge, at
least for some (u), (v); hence some components of @ will be infinite since the left
side of (IV.6) is finite. But suppose this were not true. Then we could define a

1

new function. ¢,(N) = rg’)(Q—l)z’j and new matrices N = NQ_l, D = DQ ., Equation

(IV. 6) converts to
Dk = ¥ + fh(v) yy) (IV. 42)

and the important quantity ND~ ! is identical to ND T, Also, the bound state

condition det D= 0 is equivalent to det D = 0, assuming no pathology in Q.
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We are now ready to compare our structure with that of the Jost functions in
potential theory. We refer to the excellent review article by Newton,loin particular
to Newton's sections 3 and 4 and cxpecially his equations (3.6), (3.7), (4.2), (4.3),
and (4.4). In the reduction of our formalism to a single nonrelativistic partial wave,
there is only one function each of type h(x), r(x), ¥(x). These correspond to Newton's
wﬂ(kr)*, vﬂ(kr), and (pﬂ(kr), respectively. His Eq. (4.3) defines the numerator
Jost function fﬁ(k) as kgw[fﬁ(kr), ) Q(kr)] wﬁich is termed a Wronskian, perhaps
unwisely. 11 By taking r —~eo in this "Wronskian' and also the complex conjugate,

one gets the denominator Jost function fﬂ(-—k) = fﬂ(k)* as, essentially,
£,-k) = [h,y] (IV.43)

This identifies it with our D, which is no longer a matrix. Then the complex
conjugate of his (4.4) is the same as our (IV.42). Newton's normalization for the
Jost functions, or, equivalently, the D and N, was set by the definition of ¢ ﬂ(kr)
(= our Y(x)) from an integral equation whose Green's function was not -r(x<) h(x>),
but rather |

0 X ¢ X!

g(x,x')

i

r(x) h(x') - h(x) r(x'), X >x' (IV.44)
Then the existence of ¢ 2(kr) was proved by the Born series for this integral equation
which converges, for regular potentials, regardless of the potential strength. Our

approach, on the other hand, relies on the theory of differential equations to prove

(v)

v

the existence of the r. /, once the boundary condition at x = 0 is made clear.

In potential theory r, and Y go like xﬂ+1 at the origin and h goes like X_Q, and
one may easily verify that the "Wronskian'" (IV.41) depends only on these leading
terms. If the potential is no more singular than x—l, then one may also show that

the xﬁ term of the wave function is unaffected by the potential. Thus, with care

for normalization, Q defined by (IV.41) is unity and the two theories are identical.
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The differcnce appears when one goes to more singular potentials, but where the
quantum mechanical structure is still valid, as it often is if the potential is repulsive.
Then our version of Jost theory seems to remain valid — admittedly, we are not
presenting a full discussion here — while the conventional theory breaks down
because the integral equation with g(x;x') contains divergent integrals, When one
passes to the BSE, the conventional theory breaks down even for nonsingular

potentials as observed by Haymaker and Blankenbecler. 3
V. CHANNEL FUNCTIONS

A. Introduction

We shall now map out a classification of solutions to the free BSE in terms of
power series expansions about x = 0. The solutions will be called channel functions
because the leading power of x in the expansion multiplies a single spherical harmonic;
that is, the power series is initiated in a specific channel.

Because of the variety of functions and boundary conditions encountered, it pays
to organize notation carefully and to indicate in advance the principle features of the
channel functions to be defined.

(

First, we shall have "regular’ functions r I 1)(x, 0) and 'very regular' functions
r(n’ 2)(x, ) for n=4, £+1, £+2,... Their leading power series terms will be pro-
portional to ann(O) and xn+2Rn(0), respectively. Then there are "singular' functions
and "very singular' functions 5™ 1), st 2) yith leading terms x—an(O), x_n_an(()).
In the special case n=0, which occurs only for £=0, S(O’ 1) will begin with log x RO(B).
The functions so defined will not contain, among their higher terms, any term which
initiates one of the other functions.

Thus, the channel functions are labeled by index pairs, of which the first index

labels the channel and second takes on the values 1, 2 only. For compactness, we
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also use the single index notation, (v) for (n,i) () for (m,j), ete., interchangeably
with the double index notation. Moreover, when (v) stands for (n, i) [v] will stand

for the following:

]

nifi=1,

il

n+2ifi=2 (V.1)

For example, one may say that the leading powers of r(V), S(V) are x[vJ and x—[v]

fespectively.

®) o)

Transpose solutions r(v), S(V) are obtained from r as described in II.

The brackets [S r(V)] etc., will be easy to compute because in the limit x—0,

(1)

only the leading power series terms contribute.

al

Then, a new set of singular solutions, S(V) and s v) will be formed from

w)

linear combinations of the S(V) and the S )’ respectively. The object will be to
have singular functions which form the simplest possible bracket relations with
the regular functions, namely those of (III. 11)

We remark in passing that since @lj Q(kr) = 0, @2 j ﬁ(kr) = 0, it follows that
¥ = (8/8Kk) j ﬂ(kr) solves the free BSE. This example shows that a complete set
of solutions to @1 @zlll = 0 cannot be obtained solely from linear combinations of

solutions to @1¢l = 0 and @zt,b = 0.

As a preliminary example, consider
2 2 2 2
(o - ml) (O -my)= 0 (V.2)
obtained from the BSE by setting W= Wy = 0. Then the channels are uncoupled,

and in the nth channel, there are four independent solutions, e.g.

I %,0), I (myx,8), K (M xX,0), A (myX,6) (vV.3)
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as indicated in Section II of MBS I. In the equal mass case, these functions are

equal in pairs, and the additional solutions may be taken as
n
Ty R(6), DKL (m;x) R () (v.4)

These are found by considering the limit

I (m.x)~-1  .(m,x)
1 nt1'1 ntl 27 g (m. %) (V.5)
X m; - m, n+l1'1

lim
my,—-m,

and the similar limit for the K functions.
For the special case (V.2), the regular channel functions are given explicitly by
(n,1) 1 -n -n
T =3 (ml Jn(mlx,e) +m, Jn(mzx, 6) (V.6a)
S om2)y_ (2 _2\-1(_-n __-n
v = {my - m, m, .¢n(m1x,0) m, yn(mzx, 6) (V.6Db)

Their power series begin

n

(n,1) _ X n+4
r = ————— R (§) +O(x ), (V.7a)
o™iy 1
n+2
YA X g e)+o"ty . (V. 7b)
n+3 n
2" +2)!
Similar combinations of the 24 functions yield explicit formulas for the S(V) :
n-0+1 ,n-2 :
st L2 (oD g gy 40 ™E), n> o0 (V.7¢)
xn n
50, 1) _ % log x R (9) + O(x"), (V.7d)
m,2) ()" by -n+2
st 2) _ 1—)—————-Xn+2 R (6) +O(x ™) (V.7e)

Equations (V.7) specify these solutions completely and may be taking as their
defining boundary conditions, in preference to the definitions like (V.6a,b). No

special consideration for the equal mass case is required.
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The conditions for r(v), S(V) are the same as (V.7) except that Rn(e) becomes
Rn(w- 0) = (—1)n_ERn(9). The S(V) contain, in addition to powers of x, terms pro-

portional to log x r(v) because of the logs in the K functions.

B. Recursion Relations

Suppose a solution to
D DyYp = 0 (V.8)
has the expansion
=229 ()R (6) | (V.9)
Substitute (V.9) into (V.8) and apply the recursion relations for the spherical
harmonics enumerated in MBS I. Then (V.8) reduces to the following matrix

equation for the \bn:
2
D ()= 2 Fy ¥+ ~ (V.10)

where @n’ ;ﬁ'i are derivative operators and the sum goes over i=0, £1, 2. We have

2
_ & .3 d_nmn+2)
@n_ dxz +X dX— 2 ’ (V.l].a,)
X
_ 2\ 4
I, 0 (4“’1“’25n' 2k )@n- k™, (V. 11b)
2 d n+3
6-7 = p— y/
Fp 1= 20 = )AL (P K ) (”a'; +L'x"l)’ (V. 1lc)
274 = - ‘/ 72 _d_... l1-n
'jn,—l 2(wl "’z) An (‘@n+k )(dx X )’ (V.11d)
v 2
- _ d” | 2n+7 d (n+2)(n+4)
'/n,+2 4wl(DZOZn-E-Z{ ot Tx T & T 2 }’ (V.1le)
. dx X
d2 3-2n d n(n-2)
T2 Th0% | T TR & T 2 [ (V. 11f)



For each n, write

U (x) = i lC(n, 2)x™ + CL (n, 2)x" log x| (V.12)

aao

and substitute this into (III. 10) to obtain recursion relations for the coefficients
C(n,a), CL(n,a). The procedure is straightforward and clearly explained in
Ref. 3, Chapter 4. There will be a family of solutions regular at the origin.
These will not have any terms in log x. Then there will be a family of singular
solutions, each having first powers in log X.

The indicial equation comes from the fourth order terms (e.g. d4/ dx4, x-1d3/ dx3)

in (V.10) as applied to the lead term of the series (V.10); it is

(a, - n)(at0 + n)(ao -n- 2)(&0 +n+2)= 0, (V.13)

0
: %0 . .
This fixes the possible powers x =~ which may initiate a series solution in the nth
channel. It matches the prescriptions of (V.7) exactly because the indicial equation
is independent of Wy, Woe

Hence, the defining conditions for the channel functions r(v), S(v) as x—0
are given correctly - and with factorical coefficients which will prove to be reasonable
by Eq. (V.7).

Substituting (V.12) into (V.10) and equating coefficients of powers of xa-4 and

xa-4log x yields the recursion relations

f,0C(m,8) = ~hy ) CL(n,a) + > {fi C(n+i, a-2) +h, CL(n+i, a-2)

00 i=0,22

-k4' C(n,a-4) + E {fi C(n+i, a~1)-+ hi Cl{n+i, a-1)
i=x1 :

+11 C(n+i, a-3)+h! CL(n+i, a-s); (V.14a)
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and

£ CL(na)= 2.
00 =62

i=+1

The f and h coefficients, dependent onn and a, are

f00

hOO

h'_1

= (az - nz) [az - (n+2)2]

4a(a2— 112 - 2n - 2)

4w1w2an+2(a+n+2)(a + n)

Z(wl - coz)An+1 (a+n)(a-n-2)(a+n+2)
2

<4wlw23n- 2k )(oz -n-2)(a +v n)

2(w, - wz)An (a - n){a+n)(a-n-2)

1
4w1w2an(a-n-—2)(a+n)

2w, - w) KA P
(wy = wp) KA, @+n+2)

2(w, - wZ) k2 An(a - n)

1
dwywg s (2a + 2n + 2)
2( 1w, = wy)A (3a2—n2+2an-4n—4)
1 27" n+l
(4w w.B_ - 2k%)(2a - 2
172%n ) )
2(0_)1 - wz) An(Sa2 - n2 - 2an - 4a)
4“’1“’2 an(Za -2n-2)
2{w, ~ )k2 A
) n+1

2
2(w1 - wz)l«. A'n

f; CL(n+, a-2) + > f, CL(n+, a~1) -

k* cL(n, a-4).

To compute the series for r(0 1), assign the lead coefficient C(n, aO) with

n+1 -1,
a,=n equal to [2 (n+ 1)'] in accordance with (V.7a). The coefficient C(n, a
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as well as all other coefficients which can initiate other solutions, e.g., C(n+ 1,a0+ 1),

(n,1)

are zero for r All the CL are zero for the regular solutions. Then (V.15a)
prescribes the values of all C(n', a) for a > ao and all n'. The procedure for r(n’ 2)
begins with C(n, aO) where a,=n+ 2 and is similar. |

The calculation of the singular functions follows the same lines. The lead coef-
=-n, a

ficients for S(n’ 1), S(n,2) are C(n,ao) with a = -(n + 2) respectively, and

0 0
they are defined by (V.7a). In the exceptional case n= 0, the lead coefficient is
CL(0, 0) as indicated in (V.7d). The recursion process (V.16a) for the singular
functions eventually brings us to index values n', a' where a'=n' or a'=n' + 2.
These are the lead positions for the regular functions and fOO = 0. Then C(n', a")
is taken as zero and (V.16a) defines instead the earliest log coefficient CL(n',a')
for channel n'. There is such an earliest log coefficient for each n'. All further
CL's are determined recursively from (V.16b). After they are known, the
remaining C's are determined from (V. 16a).

The r(v) and S(V) have now been defined by recursion relations for their series
coefficients. Computing time for numerical calculations in typical cases is of the

order of seconds or less. Details of convergence and illustrative functional values

will be presented elsewhere.

C. Brackets for the Channel Functions

The transposed channel functions r(v), S(V), defined as in (III. 3a) and satisfying
the transposed free BSE satisfy the same boundary conditions (V.7), except that
n-{ »

each entryhas anextrafactor of (-1) ~. The recursion relations above may be

taken over directly for the transposed functions provided that the factors (wl - wz)
that appear in (V.11), (V.15), (V.16) are reversed in sign.
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Now, we compute brackets via (II.34). The brackets among regular solutions
vanish, of course.

The evaluation of [S ) r(“)] is simplified by the observation that in the limit
x —= 0, only the initial terms of the power series, as given in (V.7), can contribute

to a nonzero result. Direct calculation shows that

[ R - | .
l_ )’ r J— . (no sum on v) (V.17)
The only other nonvanishing brackets are
(n-2,2)| _ (n-2,1)] _ _
R L (V.182)
(n—ls 1) — (na 1) - (n_l’ 2)
[Stn, 1y * 1= Beenr ™) =[Sz 7
= k2 [S(n,Z)’ R L (V. 18b)
[S(n,Z)’ {0 1)] = —4w1w23n+2k2. (V.18c)
[
Now, we define K
= - (1)
50 = S u,ﬁ?éu [S(V), r ]s(#), (V.192)
v _ =
s =5, - (V.19b)

The sum over u is, of course, limited to terms where {S(v)’ r(p‘)] is nonvanishing,

as indicated in (V.18). Equation (V.19a) is to be used recursively. One begins

¥

by evaluating S(n, 1) in terms of s(m, 1)for m-values less then n; then goes on to

S(n, 2) in terms of already known functions S(m, 1) and S(p,2) for p < n. Then one
can verify, by mathematical induction, that
(li):! _ [ (1) 2
S o T =-|r ., 8 =6 . V.20
[ v) ) ] v (V.20)
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In the equal mass case, Wy =Wy = 0 and

r(v) = (-—)[V} r(l’); s(v) = (—)[V] S(V)- (V.zl)

D. Completeness

Suppose that ¥ = Efn(x) Rn((9) solves the free BSE. Then the coefficients fn(x)
are subject to the indicial conditions and recursion relations treated above. Hence

we may put
n xn+2

+4
t)=d , —F—— 1+ d -2 ox") . (V.22)
n nlooptl iy 2 o0 o (
It follows then Y has an expansion in the channel functions:
wx,0) = rx,0)d (v.23)

v)

In other words, the family r*"’ is a complete basis for the regular solutions of

the BSE. A general formula for the coefficients in (OI.28) is

d = [s(v), dz] : (V.24)
As an example, consider the spherical Bessel function jﬁ(kr):
J, .1 (kx)
. _ W= Tntl
jykr) =7 n§>:£(1) —— R,("/2) R (6) (V.25)

which, because of Rn(ﬁ/2), contains only terms with n-£ even. Therefore, the

expansion of jﬂ(kr) in channel functions is
k) =7 it I, Ry (1/2) {(ﬂan(n’ Dix,0) + (ik)n+2r(n’2)(x,9)} . (V. 26)

In terms of the compressed notation with (v) = (n, i), we have formula (III. 4) with
the coefficients evaluated as

c, (k) = k) =mit R (7/2) o (V.27)

- 44 -



A more general relation is (compare with MBS I, Eq. (I.19))

)‘a jcosar [v] )
jﬁ(—ika’isina rye ’ = wZRn(oz) (Aa,i) r/(x, 6) . (V.28)

We remark that the truncated equation < @1> N < @2 > N&IJ: 0 to which we
found explicit solutions I(a’ 'i), K(a’ 1) in MBS I, can also be solved by truncated
channel functions. There are only 2N of each type, as there are only N channels,
and the recursion relations must be adjusted so as not to couple to the higher

channels. Then there is an expansion of the type
k(@ . ) 1l ! (V. 29)

where all the functions solve the truncated BSE.
Inverting the c-matrix, we have

-1lv

K(aa i)(c'_l = S(v) + I'(V) d;)é,l (C )Ol,i (V 30)

v
)a,i

v)

Equation (V. 30) expresses a truncated h*"’ in terms of a linear combination of

K(a’ l). It is the expression referred to in section III. B and used to argue the

vanishing of the bracket [h h(V)] between the exact h functions.

(m)’

E. The Matrix XZ

The channel functions r(V), s(v) and their transposes have been given explicit

definitions and their brackets follow the scheme of section III. The other functions

h(v), 2% and n can then be calculated if XZ = X: +1i §: is determined.

, 2
@y )
In fact, gZ is already known in terms of the coefficients C” (k) by formula (III.41)
and these coefficients have been evaluated in (V.23).

To obtain X:, we return to the Green's function Gﬁ(x, 0;x',0') and its real part,

Gg)(x, 0;x',0"). Take the case x > x'. From (II.33), we have

i ! AN = (v) Y W), H 1 gt
GR(X,H,X ,0Y=-s (x,&)r(v)(x 0N -1V (X, 8) er(m(x ,0') . (V.31
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Suppose, also, that the Green's function is known in the form

2 |
G(x,0;x',0" = Z g (xx)R(6) R (6 (V.32)

Then, with (v) = (n,i), (u) = (n',i') as before, we have - X’: = real part of the

coefficient of

x[V] x'[“] n'-¢

] L Ry

(V.33)
in the power series expansion of gnn,(x,x'). For example, Egs. (V.23) and (II.11)

of MBS I give us

K A x) I (A .x"
.2 n+1' o n+1' ',
g (% X") = - szsm @ da R (@)R (o) — 2 ]

— o . (V.34)
1, o, i* Yo, i
Let vy = .577... denote the Euler constant and set
n+l 1
nwy= ), < if i=1,
g=1 ¢
n+2 1
=1+ ), = ifi=2. (V.35)
¢=1 4
Then, invoking the known power series expansions of In+1(z), Kn+1(z), we get
X‘: = real part of
T
=
-n*t e f sinfade R (@) R_(a) o .0 A
w-T.27% n m a,ja,j
X {log(i\C¥ J./2) + vy -n)/2 } (V.36)

This formula is quite usable for the bound state case. The integral is replaced

by a gaussian quadrature,

T
_{ sin” @ do R () Rm(oz)——»%ﬁn(a) 'R‘m(a) (V.37)
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as described in MBS I. The sum converges to the correct XZ quite rapidly as the
number of intervals is increased, provided that the energy is not extremely close
to threshold. Equation (V.36) exhibits the same phenomenon seen for the Green's
function in the previous paper. That is, gaussian quadrature is not applicable for
scattering because of singularities in the integrand, i.e. in O-a, j°
A more general method for calculating X Z begins with the representation of

G(Q)(x,();x',ﬁ') derived in MBS I and given in Eq. (A.1) of the appendix of this paper.
This is converted into the form (V.34) and then the prescription (V.35) is applied.
This technique is more general than the preceding one, and still practicable.

Some calculational details are given in the appendix. We have not been able to

find a form for X: which is both compact and explicit.
VI. THE N/D METHOD IN COORDINATE SPACE

A. Scattering Wave Functions and Amplitudes

A natural approach to the calculation of wave functions, with or withoug the
help of N and D matrices, is to match up a general solution of the BSE having the
proper boundary conditions at the origin with a general solution satisfying boundary -
conditions at infinity. It is convenient to take the matching point x = x, outside
the range of potential so that the "outside' solution obeys the free BSE. This is.
tantamount to using a "cut-off' interaction which vanishes for x > x_, The cal-
culation may be done for a series of increasing values of x , until the results have
converged to the order of accuracy desired.l?

This approach to the Wick-rotated BSE cannot be applied routinely to scattering
above inelastic threshold as evidenced by the unitarity relation (IV.32) which
accounts only for elastic scattering in intermediate states. We hope to generalize

the present approach later on.
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Suppose then that we seek the real scattering wave function ¢(x,6) which satisfies
(DD - V)¢ =0. (VI.1)
Then ¢ also satisfies the real integral equation
85,0 = i0%,0) + [ G Vo (VL2)

where the input wave j(x,6) is any solution of the free BSE which is regular in the

finite plane. In terms of solutions regular at the origin, we have the expansion

o(x,0) = r'")(x,0)a (V1.3)
v 14
with coefficients aV to be determined. The asymptotic form is
6(x,0) = 2=, 0)b +ix,0), (x2xn) (VL.4)

with coefficients bv to be determined. In a practical computation, we approximate
(VI.3) and (VI.4) as finite series, retaining the channel functions with the lower
channel indices, then increase the number of functions until the results converge

to the accuracy desired. Expressions for bv in terms of ¢ can be obtained from

(VI.2) k

b = fr(v)mp = [r(v), ¢]X°o' (VL. 5)

Alternatively, in terms of the real interacting Green's function ng) defined by

(IIl.422) we have

. D, .
b=f Vi + vaPvy . V.6
W= S5V [y VeV (V1-9)
The coefficients av, bV are calculated by matching (VI.3), (VI.4) at x = x,,. That

is, we have continuity of the wave function,

rirv)(x, 0)a, = _Z(V)(X,()) b +i(x,6) (VL. T)
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at x = x,, plus continuity of all its derivatives as well. Thus, bracketing (VI.7)

successively with z (x 6), r (x @) at the matching point, we get

(Dp), &, = sz), J’J , ~ (VL8a)
— |
N,a, =b,. (VI.8b)

Then the coefficients and hence ¢(x,8) for all x is determined from

a, = (ngl)’; [z(v), j] , (V1.92)
b, = 0% [7 9] - (VL.9b)

For the physical scattering process, we take j(x,0) = jﬁ(kr) = r(V)CV (k) and
obtain the phase shift via (II. 63):

Zf tan 82—[3'2, 2y +j£]w= cH (Kb, = H (k) (ND ) c, (k). (VI.10)

B. Bound States

Calculation of the wave function y(x,8) for a bound state at E = E0 can be

approached in two ways. Firstly, we can set up the representations

¥(x,0) = r(”)(x,ﬂ) o (VI. 11)
v 14
and
¥(x,0) = —Z(V)(x,e)ﬁv (VI.12)
and match at x = x . Proceeding as above, we get, with D = DR below threshold,
' D’ a =0, (VL. 132)
TRV
Na =8 . VI.13b
u =Py ( )

Equation (VI.13a) supplies the eigenvalue condition

A(E ) = det D‘; (Eg) =0 (V1. 14)
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to determine E,. When E 0 is found, ;he solution of the homogeneous equation
(VI.13a) for the a, is obtained by standard algebraic methods. One may also
replace V by AV where A is a variable, keep E constant and use

A(E,A) =0 (VI. 15)
to determine A = A(E). There is a slight calculational advantage to obtaining A as
a function of E rather than the other way around as the functions z(v)(x, 0) are
independent of A.

A second approach to the bound state problem is via the solutions ¢(x,8) to

the inhomogeneous problem (VI.2) for energies E in the neighborhood of E 0 This

method also yields the normalization of the bound state and the residues of the
scattering amplitudes at their pole at E = E 0’ including, for example, the output
coupling constant.

Let us suppose the bound state at E 0 is nondegenerate. The interacting Green's
function G(g) will have a pole at E = EO with residue proportional to Yi(x, ) -l[/}(x',e')

where L

~/

A A A
D DN =V, DD =YV, (VL. 16)
or, equivalently,
=GV, ¢={¢va. (VI.17)

This can be seen by multiplying (1II.42), (III.43) by (EO - E) and taking the limit

A —~ A A
E—-’EO. Let us also assume YV = Vy (time reversal invariance) so that ¢ is

v

proportional to the transpose Y of ¥. Then we can write, for the region of the pole,
a0 (x 0.0 = ¢ YEOTELON g o g '
v YT 2 2 ’ 0 ’

E0 - E

(VI. 18)

where €= +1, This fixes the normalization of the bound state wave function. Let

Y(x,0) still be represented by (VI.11), (VI. 12).
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Consider the function ¢(x,8) defined in the subsection above for an arbitrary
energy E and suppose E is near E,. Consider the two formulas for bV given in
(VI.6) and (VI.9b). These also have a pole at E = EO‘

Noting that
fr(“)vlp - [r(“),mp:l - B, (VL. 19)
Jovs = -[51] =8, [7,0] (V1.20
we have for the pole part of b , by (VI.6),

€B B [ ,JJ
-~ M ( )

b”\ "2 d | (VI.21)
Eo -

And, by (VI.9b) and (IV.35), the pole part is also
(NDY” [z,-]]
b, = = (VI.22)
(5- 59T
0 .
Hence .
-1
dA =V
= - € (2E ND VI.23
BB, =~ €@Ey) (dE)E (ND), (V1.23)
0
which establishes the normalization of the B coefficients and hence of . In order
that (VI.19) be meaningful, it is necessary that the right side be symmetric in
¢, v, and have the product form. This was already established in section IV;
see, especially (IV.40).

The derivative of A is found conveniently enough by calculating A for values
of E near E and taking differences. As a practical matéer, A is a smoother
function of the imaginary momentum K than of E, particularly near threshold.

It is better to compute (dA)/(dk) by differences and use

da  dA (dE)'l (VL 24)

dE ~ dk  \dk



where

dw,  dwgy EX

dE _ _
EE = dr + iK - wlwz . (V125)

To obtain the output coupling constant, put j(x,8) = jﬂ(ikr) in (VI.4) and (VI. 18)

and apply (II. 69):

2
.g_) = lim (EZ - EZ) J(lkr), ¢
(4”out E~E, 0 [’Q ]
= o im (NBY C (ix (g_z_s_)‘l VI1.26
- 28, 0 (N, ¢, (i) (G). (V1.26)
. .

An alternative is, from (VI. 6),

%2; =6<ij Vl!f)(fJV jﬁ) = {C“(iK)B“}z. (VL 27)

The form factor F(k),
F(R) = [ 3,00) Vix) $ix,6) (VL.28)

depending on the variable k and the bound state wave function ys(x, 6) for on energy

E o can be obtained by integration once yi(x,6) is known.

Many papers on the structure of Bethe-Salpeter equations, including the

earliest ones13

contained bound state normalization condictions, different in form
from one another and from the above, but equivalent in content.
We can make contact with some of these forms beginning with the identity

(for E below.threshold)

() {_8 , 0. _ 98 -4
This can be verified by differentiating
€0 _ 0 _ 1)
Gv (2,25 - V) GV = GV (VI.30)
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with respect to E and pursuing the consequences. The key point in the verification

is to note that

(0 2
8G 8G
/ (2,2, - V) 55~ - f [(J 3, ol - GUZ)V:, s (V1.31)

which, by (III.43b), reduces to 8Gg)/8E. Equation (VI.24) depends, in turn, on

the integration-by-parts formula

() )
G 8G,,
09 )
/G 2,2, aE f(sz @y) Gy aE : (VI.32)

This holds because the difference between the two sides of (VI.32) is expressible
in terms of brackets at x = 0 and x = «», each of which vanishes on account of the
behavior of the Green's functions at these limits.

Substituting (VI.18) into (VI.29) and equating the double pole term, we get one

of the canonical normalization expressions

f&fﬁ (@, Dy - VI =€ (VI.33)

Another form is produced by introducing a variable coupling strength A = A(E)
so that

(2,19, - ME) VY =0 (V1. 34)
is an identity for the bound state wave function { = LL/E for a range of E values
including E o

Taking the E derivative of v
: fﬁ(@l@z = AV =0 (V1.35)
and integrating by parts where necessary, we get
f"’ [aE(@ Zy) - av] "g"% vy = o.

Therefore the normalization (VI.33) at E = EO is equivalent to

(.g%) f@v\p . (V1.36)
Eo
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Equation (VI.30) is easier to apply numerically than (VI.33) because the integral
is cut off by V, but (VI.23), which has no integration, is easier still.
For an attractive interaction, V > 0 and X > 0, and also (8A/8E) < 0. In

the equal mass case, m. = m_, the bound state has a delinite parity imder f —-t

1 2’
(time-parity). Thus (VL. 36) tells us that € = +1 if =+ and €= -1 if U= -y. A
bound state in the case m,y # m, can be imagined as continuously evolved from an
m; =m, problem wiFh A and for E also evolving continuously. In this evolution €
cannot flip sign. Thus the notion of time-paritfy can be assigned to states when
m, # m,, not as a symmetry quantum number, but either by this evolution process

or by the sign of €. Another method, relating to the nodal lines of the wave function,

will be discussed elsewhere.
VI. THE TRUNCATION METHOD

There is another way to handle the matching problem which, at first sight,
appears more direct and simple than the N/D way, and deserves to be noted on

that account.

Suppose that rgj), z(V) and j are approximated by spherical harmonic expansions

which contain only N terms:

Wy, ML
r(x,0) = 3, £V/(x) R (6), (VIIL. 1a)
n={ n n
v ( 4+N-1 )
Nx0) = S g”x) R (0) (VIL 1b)
n={ -
£+N-1
i(x,0) = Zﬁ J,(®) R (6) - (VIL Lc)
n:
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It is appropriate to consider only the 2N functions rg)) and the 2N functions z(V)

whose power series are initiated in the first N channels. The matching condition
at x = x  applies to the continuity of the coefficient functions and their first three
derivatives in the relevant N channels. That is,
i i i
) {av - )(x) + b, L gg’)(x)} =L (), (x=x,) (VIL2)
dx dx dx
fori=0,1,2,3 and <n<f+ N+ 1.
Thus there are 4N linear equations to determine 4N unknowns, the coefficients
a, bv' The calculation is done for a series of increasing values of N, until the
results have converged to the desired order of accuracy.

One may formulate this program in such a way that the approximations (VII. 1)
are exact solutions to the truncated equations (@1@2 )le/ = Vi{rand (@1@2>N¢/= 0.
Thus, rgj), r(V) and S(V) can be taken from the beginning as solutions to the
truncated equations. If the power series method is used to calculate them, the
recursion relations themselves can be truncated. Then z(V) is computed from
the s(v) and the r(v) with the aid of the matrix XZ . To find the approximation to
j(x,0) which solves the truncated free BSE, expand it in a series of r(v), then
replace the r(V) by their truncated versions.

In this way, one arrives at an approximation to a BSE result as an exaét
result of the truncated BSE. We found it perfectly feasible for calculation. The
essential point, which is not obvious in a naive approach to the truncation approxi-
mation, is that the asymptotic boundary conditions which determine z(v) cannot
be developed within the truncation approximation itself; rather the properties of
the exact BSE, as contained in its Green's function and the matrix X: must be
exploited. Otherwise, one lands in the difficulties for the scattering problems

which were exhibited in MBS 1.



To treat the bound state problem via (VI.2), one puts the jn equal to zero.

Then the eigenvalue condition is

W(E) = 0 (VIL 3)

where W(E) is the Wronskian of the set of solutions. That is, W(E) is the determinant
of the 4N X 4N matrix formed from the array of function coefficients fﬁlv)(xw),
gg))(xm) , and their first three derivatives.

The method outlined here combines two approximations in one. The single
parameter N determines how many basis functions are used to approximate the
wave function and how many channels are employed in the calculation of each basis
function. The N/D method separates thesev two problems, and bif used efficiently,
requires substantially less computer time. For a given level of accuracy, the

number of basis functions required in the N/D method can be much less than the

number required in solving the truncated BSE.
VII. THE PHASE METHOD

The N and D matrices have been defined in (IV.3) in terms of basis functions
for both the free and the interacting BSE. We now outline a method for computing
N and D which does not require prior solution of the interacting BSE, but replaces
it with a system of first order ordinary differential equations. We call it the
phase method because it generalizes the method of variable phase which Calogero
has develope"'d as a powerful tool in the analysis of nonrelativistic potential theory. 14
It also may be regarded as an adaptation of the method of variation of constants
in ordinary differential equations.4 The assertion is sometimes made that there
is no method of variation of constants in partial differential equations. But this
does not hold in our case, where the boundary conditions are expressed in terms

of one variable.
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Let the interaction V(x) be replaced by a cut-off interaction Vy(x) which
vanishes for x > y. Let the associated functions of the basis regular at the origin
be rffv) (x,0;y). We are discussing here only local interactions. Then forx <y,
we have

r)x,0,y) = t)(x,0) (VIIL 1)
v v
and for x > y,

), 05y) = 1,00 0y (1) + 17(x,0) & (1)- (VTIL 2)

The rifv)(x,é); y) have jumps at x = y in their fourth order derivatives in x, but will
be continuous in their third and lower order derivatives. The coefficients n;}\ ,
d’;\ can be evaluated by bracketing the rg))(x,(}; y) with h(x), r(l) for any x in the

cut-off region, in particular for x =y, where r,(vv)(x,ﬂ;y) coincides with rﬁlv)(x,e). .

Thus, we can drop the notion of cut-off and have, for all x
rg)(x,e) = - hl(x,B)nI;\(x) + %, ) d’i(x) (VIIL.3)

where n”, (x), a" (x) have the definitions already given in (IV.2). We also see that
A A

(compare with (II. 37))

* 2 2
w¥ (x) - 0 (xg) =f X dxfsin 0d0 7, vrl?) (VII. 4)
X0

whence

d

e nZ(X) — f sin” 6do L) Vrirv). } (VII. 5a)
The corresponding equation for d: is

4 & () = xzfsinz 2O v, (VIIL. 5b)

The equations (VOI.3), (VIOL.5), (VIII. 6) are a complete system. Let us

define certain matrix functions of x, depending only on the basis of free solutions
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as follows:

v _2r.. 2 (v) :
E“(x) =X fbm 646 rw) r’, (VII. 6a)
v 20 .2 (v)
F“(x) = xfsm 6do rw) h'"7, (VII. 6b)
N ¥) _ ok |
") = x fsm 6a6 b,y ) = Fhix), (VIIL 6¢)
v _ 2 . 2 (V)
Y (x) = xfsm 0do b, 1) (VIIL 6d)
Then, combining the above equations, we get
a% Z(x) = V(x) 1 - Fﬁ(x) n';\(x) + E;‘(x) da(x)} , (VIIL. 7a)
—d% dl;(x) = V(x) {— Hz(x) nl;\(x) + GZ(X) d';\(x)} . (VII.7h)

The integration of this éoupled, linear, first order system is an interesting
alternative to the solution of the fourth order BSE. The functions nl;(x), dZ(x) .

are defined from boundary conditions at x = 0. These can be inferred from the

)

once the
v

early terms of the power series for the functions r(‘u), h(#),
behavior of V(x) at the origin is specified. Above threshold, the equations can
be made real, of course, by replacing h . with z . and dl; by its real part. The

(1) (#)

values of N, D, and D, are obtained as indicated in (IV.3). The infegration of

R
(VIIL. 7) does not have to be carried beyond the range of the potential. We have
not explored this system numerically except in the trivial case m, =m,, E=0,
where it worked well.

To see the parallel to Calogero's method in potential theory, let us start from

the integral equation for the Schroedinger wave function in partial wave {:

Y(r) = jﬂ(kr) + 2mk£) jﬁ(kr<) ng(kr>) V(r') Y(r") r’z dr'. (VIIL. 8)
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Then in terms of u(r) = kr y(r) and the capped Bessel functions, j ﬂ(z) = Z jﬁ(z),

ng(z) =2z nﬁ(z), we have

where

Thus,

u(r) = A(x) ﬁﬁ(kr) - B(r) £ (kr)

2m

Ar)=1+ 7 f ﬁﬂ(r‘) V(r') u(r') dr',
r

-2

r
B(r) = -—%—_g ﬁﬂ(r') V(r'y uer') dr' .

dA _ A A oA
T = -2m/k) V nﬁ(A - B n,)

dB

dr [}

which are the analogs of (VII.7). Finally, put

so that

which is Calogero's equation for the variable phase shift.

A(r) = R(r) cos &(r),

B(r) = R(r) sin é(r) ,

518

dr dr

= -(2m/k) V(cos & lli\g - sind A 2

IX. SUMMARY

9B _(em/m)ViaT,-BA),

= !-sind -(i—A—‘-+cos8-c—1—Ii R—1

(VIIL. 9)

(VI 10a)

(VII. 10b)

(VIO 1la)

(VI 11b)

(VI 12a)

(VIIL 12b)

(VIIL 13)

The structure of the Bethe-Salpeter equation in the bound state region and the

scattering region below inelastic threshold has been analyzed in terms of brackets,

N and D matrices, and complete bases of functions characterized by boundary
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conditions at the origin and at infinity. The calculation of bound state and scattering
data and wave functions has been outlined by several methods. The work provides
the ingredients for the elementary kind of bootstrap where the forces are produced
by one-particle exchange and self-consistency is required between input and output
values of masses and couplings. More sophisitcated bootstraps must await develop-
ment of more sophisticated calculational techniques. The angular momentum
quantum number £, which enters as a parameter in the definition of the coefficients
An’ @, ﬁn, and delimits the range of the channel index n (n = £ + integer), can
be adjusted in value to define outgoing wave states for complex £, Regge trajectdries,
etc., by the methods described. Model calculations using these methods and
further properties of Bethe-Salpeter systerﬁs will be described in a paper to follow.
We are indebted to H. Snodgrass and R. Blankenbecler for helpful discussions
during the course of this work. We also are indebted to the hospitability of the

Lawrence Radiation Laboratory, where a part of this work was done.
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APPENDIX

From (V.12) of MBS I we have:
Ix,0; S [T1 8 BT
G(X’O’X"e')~f aE ©

x Zﬂ (n-+1)"1 R (6)R (6") [In(Qx QK (Q%,) - T (Qx ) K +2(Qx>)] (A.1)

where Q = ([32 - k2)1/2.
Also,
00 r
. Zo 15—9—‘%?.—@ , (A.2)
r=
r (n+r) r
cos 6 R.(6) = & _R_(8) (A.3)

m=maxzi 2, (n- r)} pmm

The quantities & xx;m are defined recursively by:

0
§om = Snm (A.4a)
and from MBS I
r _ ,r-1 r-1
fam ™ Enm+1) Ay dnm-1) Ame (A.4D)

Substituting these into (A.1) and using the relation:

(n+r) ©w = ®

g‘o 2 = 2 2 (A.5)

mzmax{lz, (n—r)} m={ r=|n~m]|

it follows, if gmm,(x, x') is defined as in (V.31), that:

o0 00 o0 +CO1 . -
Enm6x) =2 X 2 f XL eyt

r={ r=in-m| r'=|n-m'| ~Wwg

r

r
(Bx) (=px") T r! _
% rtr'! étnm §nm InKn In+2 Kn+2] ) (A.6)
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Consider the case x >x'. We have

K (@) [(ax') = K| ,5(Q%) I 5(Qx") = Zo > { (x(n+2q) log x) (x'(n+2q'))F;q,(Q)
q: q'::
(-n-2+2q) y(n+2q")
+ (x )(x qq,(Q)} . (A.7)

The relation defines p and o in terms of the coefficients in the power series expansion

of the Bessel functions. Substituting this in (A.2) and using the relation:
0 0 0 ® 00 0 MAX max max'
2 > OXY X=X )T DD DD DR -9 )

n=f r=|n-m| r'=jn-m'l g=0 g'=0 i=(-m-2) i'=m' r=MIN g=0 q'=0

o0

.

=-n-2+r+2q,
i'=n+r'+2q',
max= 1/2(i+n+2-n-m|) +§,
max'=1/2(i'-n- n-m')+3,
MAX =1/2(i'+m') +§ ,
MIN = the greater of £, 1/2(m-2-1i)-8, (A.9)
where & is either zero or 1/2, depending on which choice makes the above limits
integral. We find that

. .
gmm,(x,x') = terms in (xl log x) (x‘1 )
MAX max max'

Y S Ee) Y Y X

j=-m-2 i'=m' n=MIN g=0 q'=0
+w
r' 2 (r+1")
r r! -1 dg n
v *€im & nm (n+1) IE Tt Yqq' Q) . (A.10)
~wy

-' -
Now —X(m".J ) is the real part of the coefficient of

(m’J) ’ 3 1 3t
(X)m+2(3—1)<x,)m +2(j'-1) m'-0
2 z 1

2(m+j)! 2(m' +j")!
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in the above expansion, so (Re means real part)

(m', " m'j’ MAX max max'
-X; >’ =ReN_ . > X X
(m, J) ] =MIN g¢=0 q'=0
+w
r' 1 r+r
r ,r' (-1) dg g n
><gnn’l fnm' (n+1) f AE ' ‘quv(Q) (A.11)
“w,
where
; 1. - ar
Nnr;'jh:(_l)m 1 5(m+2j-1) (m+j)!2(ml+2] 1)(m, + )1 (4.12)
and

i=m+2(j-1), i'=m'+2(3-1),
r=m+2(j-1)+n+2-2g,
r'r=m'+2(j'-1) ~-n-2q,

MIN =¢, MAX=m"+j'- 1,

max' = 1/2(m' - n- In- m'l, 2j-2),

il

max = 1/2(m+n+2 - |n- m|+2j - 2). (A. 13)

One further point is to be noted. All the integrals in (A.11) are of the form:

+w . .
f Lag 6182 - &%, (A. 14)
"o,
or
et i 2 2 2 .2
Re [ 1 apBE - K log (57 - ), (A.15)
oy

where r, j 2 0.
These integrals, after integration by parts and algebraic manipulation, can
be reduced to three elementary integrals:
1 +1 +1
[ ap= ol - o™ (A 16)

J 1
Wo
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and

+
1 d (wl - k)(wz - k)
Re/ ——Z—E—-—2—=Tl{log[ ——— ], (A.17)
~w, (B - k) 12
-+
1 m
re [ 158, 1og(?nz) . (a.18
-y B -k) 1 .

Below threshold, k = ik and the left side of (A.17) can be expressed as

1, -1{% 1, -1({% ;
% tan (T) + x tan (T) | (A.19)
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