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ABSTRACT 

Elements of the structure of the Bethe-Salpeter equation are 

studied. Properties of useful special functions are obtained and 

free particle solutions to the truncated expansion of the equation 

in four-dimensional spherical harmonics are derived in terms of 

known special functions. Validity of the truncation approximation 

is examined in terms of a convenient representation of the Green’s 

function. In particular, it is shown that the method of truncating the 

differential Bethe-Salpeter equation cannot succeed for scattering. 

The development of alternative procedures is deferred to the paper 

following. As a by-product, a simply computational technique for the 

approximation of integrals by Gaussian quadrature is derived, 
r 
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I. INTRODUCTION 

The two-body relativistic equation known as the Bethe-Salpeter equation 

(BSE) received its first applications in quantum electrodynamics more than 

fifteen years ago, but a substantial period elapsed before quantative studies 

relevant to, or at least preliminary to, strong interaction calculations were 

taken up. Following the first calculations in the ladder approsimation for bound 

states1 and scattering, 2 obtained from variational principles in coordinate space, 

many results and a diversity of methods have been obtained for the two-body 

relativistic problem, both in the bound3 and scattering regions. 4 

If one takes seriously, as we certainly do, the view that these relativistic 

wave equations and their extensions offer a fruitful approach to the dynamics 

of strong interactions, one must anticipate a development of both theoretical 

structure and of calculational techniques of which the references above are only 

the beginning, a development with a larger perspective than the desire to match 

an experimental number immediately, and in fact, more extensive and varied 

than the work done on the Schrocdinger equation in proportion as the relativistic 

problem is more complex than the non-relativistic problem. 

The present work is the first in a series in which we explore the properties 

of the BSE in coordinate space, its special functions, asymptotic behavior, 

approximation schemes, some new calculational methods, shapes and nodal 

properties of wave functions, significance of the so-called “abnormal” states, 

and so on, with intent to develop an intuition about the equation as well as analytic 

behavi.or 0 

We surmise that many of these questions are more aptly understood in coor- 

dinate, rather than momentum, space because of certain intuitional advantages 

and because this is distinctly true lor non-relativistic equations, but this is only 
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a surmise. Problems arising from inelasticity may be more amenable to analysis 

in momentum space and in fact, most of the calculations of Refs. 3 and 4 follow 

momentum space formulations. 

In this paper, we treat the free-particle Bethe-Saltpeter equation in Wick- 

rotated form, 

with two principal objectives. 

First, we explore the family of free-particle solutions, their Green’s 

functions, and special functions related to them, both for a deeper understanding 

of the structure of the BSE and as a preliminary to calculations of bound state, 

scattering, and bootstrap parameters, to be described in a subsequent paper. 

Secondly, we study approximations based on expansion of the wave function 

in four-dimensional spherical harmonics (Gegenbauer polynomials) and truncation 

of the series after a finite number of terms. The truncated function satisfies 

either (a) the differential equation formed by truncation of the’BS differential 

operator or (b) the integral equation obtained upon truncation of the free-particle 

Green’s function. Either approach transforms an equation in two continuous 
2 l/2 variables r, T into a matrix equation in one continuous variable x, x = (r2+ T ) . 

One hopes to find convergence in calculated results as the matrix size, i.e., the 

number of detained terms in the spherical expansion, is increased. The first 

scheme - let’s call it the differential method - has been-applied to bound state 

calculations and the second, or integral method, to scattering as well, usually in 

momentum space o 

In this paper, we obtain a correspondence between the two: the Green’s 

function, and other functions characteristic of the differential method can be 
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cast as sums over 3 certain parameter 0, while analagous functions in the in- 

tegral method appear as integrals over Q. The relation of sum to integral is 

that of a Gaussian quadrature approximation based on the orthogonal family of 

four-dimensional spherical harmonics. The truncated integral equation is thus 

inherently more precise. 

For bound states with energies not close to threshold, the differences are 

minimal. But as the energy moves up into the scattering region, an integrable 

singularity, of the inverse square root type, moves into the interval of integration 

over o2. The inability of a Gaussian sum to approximate integrals of this type 

dooms the differential truncation method for scattering problems. Not only does 

unitarity fail at any state of truncation, but there is no convergence to unitarity. 

The same analysis which exposes the difficulty in the differential method pro- 

vides a remedy. Certain methods closely related to it can be made to work in 

the scattering case if the boundary conditions imposed on the wave function at 

infinity are inferred from the exact BSE which, in this respect, differs essentially 

from the truncated differential BSE. This will be done in the paper to follow, 

entitled “Methods for the Bethe-Salpeter Equation II, I1 to which we shall refer as 

MBS II. By a slight variation of the spherical harmonic expansion procedure, we 

achieve a unified approach to bound state and scattering problems, unitary at each 

level of approximation, and founded on the differential equation, that is, the Wick- 

rotated diffkrential BSE in coordinate space. We believe it to be a strong con- 

tender, among methods investigated t,ill now, for- strong interaction calculations 

involving derivative couplings, non-local interactions, and electromagnetic per- 

turbations 0 Of course, the advantages anticipated for the coordinate space methods 

over momentum space methods need to be tested on meaningful physical problems. 

The next section contains the relations among the spherical harmonic functions ’ 

Rn 
, 
&@), and the imaginary Bessel functions In(z), Kn(z) which are fundamental to 
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the special functions of the BSE. The asymptotic properties of solutions to the 

truncated free-particle BSE are considered in Section IQ and explicit solutions, 

in terms of what we call vector Bessel functions, are constructed. In the fourth 

section, the notion of a bracket [$J, $J] of two functions is defined, and brackets 

among the free-particle solutions are computed as a step in the derivation of the 

Green’s function for the BSE. The importance of the bracket will be explored in 

considerably more detail in MBS II. An array of Green’s functions which are 

useful in one way or another is marshalled in Section V. Finally, the results on 

the relation between the integral and differential approaches to truncation and the 

inadequacy of the differential method are given in Section VI. 

As a by-product, an elementary and, apparently, new method for deriving 

and applying the rule for Gaussian quadrature is found. When the relevant 

orthogonal polynomials are normalized, the two or three term recursion rela- 

tion obtained by multiplying one of them by the variable defines a tridiagonal j 

symmetric matrix. The data required for an Nth order Gaussian quadrature are ’ 

obtained from the eigenvalues and eigenvectors of the N x N truncation of the 

matrix which are easily calculated even for large N by current computer techniques. 

Generally speaking, our notation follows that of SZ, Ref. 2. Here is’s 

preliminary outline: the two interacting particles have masses ml, m2, and space- 

time coordinates 

The two-particle system has a definite energy-moment,um vector P and is re- 
P 

ferred to the center-of-mass frame: PcL = (g, E), The space minus time con- 

vention is used for scaler products. For energy above threshold, E = m1 + m2, 



the relative momentum k of the system is calculated from 

E = (k2 -I- rnf) 
l/2 2 l/2 

+(k2+m2) , cr. 3) 

whence the “particle energies” wl, x2 are given by 

*1 = (k2+ml) 2 l’2; w 2 l/2 
2= e2+m2) , E=wl+u2 l (I4 

2 l/2 
In the bound state region, 1 r-n:- m2 1 SE-<ml+ m 2. The momentum is positive 

imaginary, so put k = iK and 

2 2 22 22 W1 =m 1 -K;U2=m2-K . 

For the purposes of this paper, we take the center-of-mass and relative co- 

ordinates as 

Xcl= @, T) = (wlxl+ W2x2jjE; xP= (E, t) =x1 -x2, 

allowing the separation 

#(xl, x2) = exp (iPpX,J $$9 = exp WV ti (xl . 

The momentum transformation conjugate to Eq. (I. 6) is 

pp = (!L E) = p1 + p2; pP = (p_, PO) = (w2p1 - u1p2)/E e 

(I* 5) 

. cr. 6) 

67) 
I 

(I- 8) 

The Wick rotation in the complex planes of the relative time and relative energy 

variables is carried out by setting 

t= 7e -i$ +i$ 
, PO = - p4e , C$ goes from O.to 7r/2 , (I. 9) 

with the result, for I#I = n/2 , 

t=-iT;po=-ip4, xp =l**P-Q30=rsP+ 7P4 e 
PP . 
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When this rotation is introduced into the BSE for two spinless particles, 

( 2 82 2 
v1-z -m 

2 -2.L -mi @-I*=() 
1 V2 it Lt2 ) , 

1 2 

the result is 
9ya2+vljJ =o , cr. 12) 

where @ = (I, (L, T) is the (Wick-rotated) relative wave function, V is the inter- 

action, non-local in general, and 

gl = v2 + - 2 - rnf = o2 - 2~~ --& + k2 , (I. 13a) 

lJ 
2 6 

+2wz a7 - +k2 . (I. 13b) 

Note that gl ---c CZ2 when ml +m2 and w1 -minus w2 . Spherical coordinate nota- 

tion is summarized by 

r=xsin 0, T=~~~~e, 026~~ , (I. 14) 

and 
d4x = &dT = x3& sin2 eded = x3dx sin2 ede sin e,de,d$ . - (1.19 ‘ 

The relative momentum kP of two free particles of momenta kI, k2 is 

kp = b2kl - k24,/E = & 0) , (r. 16) 

with 1l~1 defined by Eq. (I. 3). The resolution into partial waves of this state is 

eiklpxlp e ik2px2p = ,-iET eikE = emiET c(ijQ (21+1) P 
Q 

60 C) j Q (kr) 

In this paper, we treat only spinless particles and shall suppose that the system 

has a definite angular momentum Q. Then the relative wave function takes the form 
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$<r,d $%34b r 4 or brevity, we drop explicit mention of the c factor. For 

example, we say that jQ(kr) is a solution of (I. 11) for V = 0 when we mean that 

j,@-) yr ( d3, @) is a solution. 

II. SPHERICAL HARMONICS IN FOUR DIMENSIONS AND BESSEL FUNCTIONS 

Let L2 and T2 be the angular parts of the three dimensional and four 

dimensional Laplacian, respectively. Thus 

L2=-1 - 8 ( sine -- 8 ) 1 a2 
sin e3 ae, 3 Be3 sin20 3 m2 

, 

gJ2= l -- 2 (sin28 &) +A L2 
sin20 de 

2 d2 02=V2+a zz - +3d 192 -- 
a2 

*2 xdx-7! l 

P-1) 

P* 2) 

cn. 3) 

The eigenvalues and eigenfunctions of L2 are, of course, Q(Q + 1) and q(e,, q3). 

For&? 2, we have 

g2 Rn ,(e) Y~(e3,$) 
, i 

=n@+2) Rn,Q(e) $?e,,9), n=Q,Q+l,Q+%Q+3, . . . , 

(II. 4) 
introducing a notation for the spherical harmonics in four dimensions, R n, Q(‘)’ 
More precisely, we define them in terms of the Gegenbauer polynomials CL(z) by 

* 

R 
2 l/2 

n,Q= ?r 0 i jQQ! 2 -$$&$-- (n+l) 
m 

. (sin8 )’ c:i (COS 8 ) . (II. 5) 

Their elementary properties can be inferred, after translation of notation, from 

standard references. They are mutually orthogonal and normalized to unity: 

S 
‘II 

R l, Q (6) En,, Q, (e> Sill2 Ode = 
0 ’ 

‘n , nf 
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At 8 = n/2, we have 

0 , n-Q odd , c l+Q 
n-Q (‘1 = 

, n-Q even. 

In the case Q=O, 

l/2 l/2 sin&l-l) 8 
sin 8 01.8) 

The addition theorem reads 

(n+i) c!i (COSY) = a T Qgo (ZQ+1) R,,e(e) Rn,Q(e’) pQ@os $3) ’ 

cam y = cos 8 cos 8’ f sin8 sin 8’ cos e, . 
3 

The equation 

( o2 - A2j@=0 , 

has particular solutions 

I 
@n (XX, e) = 

n+l (xx) 
Ax Rn, Q(O) 

(II. 10) 

, (II. lla) 

and 

agxx, e j = (-qnvQ 
K n+l (xx) hx Rn, Q(e) 

(II. llb) 

where I n+l(xx) ’ Kn+l (Xx) are the imaginary Bessel functions. The sn and ~[n 

will be useful later. 

The function xnR n, Q(O) 
is a homogeneous polynomial in r, 7 of degree n 

and contains the l’centrifugal” factor (x sin tl )’ = rQ . While Q is a good quantum 

member for the spinless BSE, different n’s are mixed by the operator +3r, 

8 d 
E = $-,T cos e - $ sin8 -@ . 

de 
(II. 12) 
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I 

A solution of the BSE possesses the expansion 

Substitution of Eq. (II. 13) into Eq. (I. 11) and application of the orthonormality 

of the R, Q 1s in the usual way yields a matrix differential equation of fourth order 

for the lYGector” { fn(x)} and this, ultimately, is the equation we wish to solve. 

Note that if T + -7, then 8 -. r- 8 and, moreover, 

Rn, Q@-6) = (-i)n-Q Rn Q(e) . (II. 14) 
, 

Functions @(xP) even under 7 --T will be composed from Rn 
, 
Qrs with n=Q, Q+2, 

Q+4, . . . , and will be said to have “even time parity. lY Functions with “odd time 

parity” change sign under T -+ -7 and are composed of harmonics with n = Q-t-1, 

Q+3, Q+5, . . . . In the equal mass case, ml = m2, the operator !J?ICZ2 is in- 

variant under T -C-T , and time-parity is a good quantum number for the BSE. 1 
\ 

Hereafter, we assume the choice of Q is fixed. The Q subscript on the R’s 

will be dropped. 

The recursion formulas are 

cos e Rn = An+lRn+l + AnRnwl , (II. 15a) 

-sin 8-@- ae Rn = -n An+1 Rn+l + (n+2Mn Rn-l 3 (II. 15b) . 

cos2e Rn = on+2Rn+2 + p,R,-+ anRnm2 7 (II. 15c) 

where 

AQ= CLQ= oQ+I = 0, and in general, 

An=; 1-w 
i i 

l/2 
, (II. 16a) 
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Qln = AnAn- ’ 

Let d/a7 act on the solutions Cgn, J$, of the wave equation (II. 10). The 

Bessel relations 

$ J-p) = In-l (4 - In++) > 2111’(4 = In-l(Z) + In+l(z) 9 

-$ K,(z) = Knel(z) - Kn++“) 9 -2K;W = Knel(z) + Kn+lW 9 

together with Eqs. (II. 15) and (II. 12) imply 

(II. 16b) 

(II. 16~) 

(II. 17a) 

(II. 17b) 

(II. 18a) 

8$ xn = h(An+lrYln+l -I- AnXn l) 0 (II. 18b) 

That is, gn and J< satisfy, with respect to 8 /@(AT), the same recursion relation 

that Rn does with respect to cos 0. This is crucial for the construction, in the 

next section, of explicit ffvector Bessel functions If which solve the truncated, free- 

particle BSE. 

Another formula uniting Bessel functions and the R functions is 

, O3 I 
jQ(-ih sin a! r) e hcos a! 7 = = 

c 
n+l(hx) 

n-Q Ax Rn@4 RnV) 

(II. 19) 

= n ce< (Ax, a) R,(e) = 7r~,$(hx,e ) R,(o) . 
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As a special case, take CL = 7r/2, h = -ik, and note that I,(iz) = inJn(z). Then 

jQ(kr) = 7~ C (-I)(“-Q)/2 Jn+l(kx) 
kx R&42) R,(e) I (II. 20) 

n-Q even 

which is the harmonic expansion of a free-particle standing wave. Equation 

(II. 19) may look imposing, but its proof lies near the surface of our consider- 

ations. Thus, since 

a2 pose! 7 = (hcos a)2 ehCOS Q! 7 

aT2 
(II. ala) 

and 

v2 j, (- ih sin o r) = (h sin a.)2 j,(- ih sin Q! r) , (II. 21b) 

the left side of Eq. (II. 19) satisfies Eq. (II. 10). Because it is regular at x = 0, 

it must be a sum over the functions $n(ti, 0). Further the nth coefficient of this 

sum is proportional to Rn(cr) because the left side of Eq. (II. 19) is symmetric with 

respect to h, Q! and x, 0. The proportionaly constant must be independent of n as 

the left and hence the right side are eigenfunctions of a/~37 with eigenvalue hcos (Y 

(see Eq. (III. 26)) below). Finally, the limit x- 0 determines the valve of the 

constant. 

Let y be the angle between x p, x; - A familiar addition theorem reads 

co In+l(Qx< 1 Kn+l(Qx>) 
= 2 c (1141) c; (cos y) 

QX< Qx> 
w. 22) 

n=O 
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More important to us is a result obtained by differentiating Eq. (II. 22): 

K. (Q I x,yx; 

= -2 go (n-+-l) &cos y) I’ Kn+I(QX>) 
n 

I 
n+ 

,(Qx < 
) 

QX> 

In+ ltQx< ) 

+ t&x<) 
(II. 23) 

or, equivalently, via Eq. (II. 17)) 

f KO(Ql yx;l) =c CA (~0s Y) IJQx<, KJQxJ - In+2 
I 

(Qx<) Kn+,(QX,) 

In Section V, the resolution of KO(QI x~-x;I ) into partial waves is required. Thus, 

we set 

K() (Q I xp-xp 1 ’ )=xQq- P Q(&r”t) K (9 (x x’ p, p'Q) * (n* 25) 

and apply Eq. (II. 9) to get 

K(9(x ,x1,&) = 27r2 z(n+l)-I 
P P n=Q i 

IJQx< ) KJQx,) - In+2 t&x<) Kn+2(Qx>) R,(e) R,W’ ‘) . 
I 

Lastly, we mention some further Bessel relations: 

K,(z) 1; P) - K:, (4 I,@, = ; , I 

Kn+# In(z) - Kn(z) In+l (4 = ; 3 

K,(z) = (-l)n+l In(z) log z + z-” x (entire function of z 2, , 

(II. 27a) 

(II. 27b) 

(II. 28) 
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The cut of Kn(z) , like the cut of log z, is taken along the negative real z axis. 

Equation (II. 28) implies that if - 7r =< argz 2 0, and -z means e”z, 

(-l)n Kn(z) - Kn(-z) = i7iIn(z) . err. 29) 

Therefore, if Im( 1) _< 0, x real and positive, 

(-i$k(-xx,e) -3igu,e) = (-qQ i 7r t9ghx,e) . (II. 30) 

III. SOLUTIONS OF THE FREE BSE: VECTOR BESSEL FUNCTIONS 

A. Truncation 

Let @(x, 0) be a solution of the BSE whose expansion in R-functions is 

and let N be a fixed positive integer. If the series (III. 1) be cut off after the N th 

term, we speak of an approximation to # by truncation with truncation parameter 

N. The truncated II, is still a function of x, 8, but may also be interpreted as a 

vector function { f,O} in an N dimensional space. The operators cos 8, d/a T, 

gl, etc., when restricted to this space, are ,,truncated,, operators. They may also 

be considered as N x N matrix operators, with matrix elements given by 

R,(B) 5$Rm(j) sin26 de, etc. 

Both (cosB>N, <c0s~0>~, are Hermitian, of course, and their only non-zero 

matrix elements are (see Eq. (II. 15)) 

<c0se>J n-l =<coso>~~l, n = An ; , 

- 14 - 



<cos 2 N e>, n 2 
, - = <c0s26)nN_s n = Q;1 ; 

, (III. 2b) ’ 

<cos 2 N I!?>~ n = pn ; n = J,J!+l, . . . , N+J-1 . (III. 2c) , 

Now <cos2 0 >N is not the square of <cos 6>N; rather, in virtue of Eq. (III. 2a), 

the correct statement relates <cos2 0 >N to the square of <cos0> N+l . 

Two approximations to the differential BSE can now be formulated, the 

truncated BSE 

/<5B192>N 1 - vp = 0 

and the doubly truncated BSE 

{<QljN<Ta2>” - v 1 l+b = 0 

(nr* 9 

(nr. w 

The interaction V is pres-,, limed to be rotation invariant here. Equation (III. 3a) 

is 6,loubtless a truer approximation to the exact equation because it is the condi- 

tion obtained from the Rayleigh-Ritz type variational principle’ when the trial i ! 

function is truncated. But Eq. (III. 3b) is the equation we shall treat analytically 

because the free solutions satisfy the second order equations 

<q>Ne = 0 ,<g2>Nfi = 0 , @4 

and these solution’s can be written down analytically. The discussion is still 

relevant to Eq. (III. 3a) because in the equal mass case, the two formulations 

are equivalent, as we now show. 

B. The Equal Mass Case (ml = m2) 

In the equal mass case, alg2 is invariant under 7 - -7. Then(glQ2>N 

contains (a”/(6’~)~>~, but not <a/?j~>~. Its matrix connects terms of like 

parity but not of unlike time-parity. Any truncated operator <O>” of this 
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I 

character can be divided into two parts, 

co>” = 1 <o>N/+ + <o>N 1 
i I- - (III* 5) 

The first part connects terms of even-time parity only; that is, it has the matrix 

elements of type <O>fn, with both n-8 and nr4 even. It is a matrix of dimension 

:N or i(N-t1) depending on whether N 1 ‘s even or odd. The second part does the 

1 same service for odd-time parity, being a matrix of dimension ZN or i(N-1) for 

N even or odd. It is easy to verify that 

j<q>N+1w2>N+1[ &t= pp2>“/+ = [<glp2>N+lj + , 
- 

with the k pertaining to N odd or even, respectively. 

C. The Asymptotic Behavior of < 21,” rc/ = 0 

We now search for solutions of<=81>N $J = 0 where 

Q+N-1 
@(X 9 6) = gQ 

f,O Rn(e) l 

(m. 6) 

The matrix equation for the f’s is 

d2 

dX 
2 

+i! d -y+k2 
x ax 

f (~-2~ c i~<cos6>N 
n 1 m[ax n, m 

Cm. 8) 
1 -- 
X< 

sin 8 
$ >n,mi fm(x) = O l 

General theory6 tells us that in the asymptotic region, x-00 , solutions exist of 

the form 
-Ax 

qlw- -!?--- 
XS 

(an+ 0(x- ) 3 P* 9) 

where the possible h’s are eigenvalues of a certain matrix, the 1 an jare the as- 

sociated eigenvectors, and the exponent s is determined from a certain con- 

sistency requirement. Because the BSE describes waves spreading out in four-space,. 
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we anticipate s = 3/2. In the asymptotic limit, (III. 8) reduces to 

(;I ) 

8$-$x) 
2 -I- k2 f,(x) - 2tiJ<cos s>N n, m ax =o 

Substitution of the lead term of (III. 9) into (III. 10) yields 

2 ( (A2 -I- k2) an 
, 
m -2U1 h<cos8>f;T m 1 am = 0 

, w* 11) 

which is the desired eigenvalue equation. 

It is easy to see that the eigenvalues of the Hermitian matrix <case>“, which 

can be represented by cos (Y, all lie in the interval 

-15 cos a< 1, O_<cr~T . (rrr. 12) 

An insight can be obtained by observing what happens in the limit as N-co. Then 

the operator <cos O>” is just multiplication by cos 8 , and the eigenvalues are 

cos CL for any o; thus the spectrum becomes continuous and occupies the whole 
i 

interval (III. 12). The eigenfunctions are 6 functions, 6(0-o), and have the ’ 

harmonic expansion 

6(8-o!) 
sin 8 sin o = 5 R,W R,(e) 

n=P 
(m. 13) 

Returning to the general case, consider an eigenvalue cos Q with eigen- 

vector 1 and let ho be determined by 

x2 cl!- 2wlho cos (Y + k2 = 0 (m* 14) 

One root of this equation is 

ha = w1 cos oi + (LJ; cos2cy - k 2, 
l/2 
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In the bound state region, k = iK , and 0 < K 2 ml . Then the ha of (III. 15) are 

all positive and lie in the interval 

“1 -cdl~hQ,~ml+~ . 1 crrr. 16) 

In the scattering region, c,.J~ cos2 cv may be less than k2, and the rule k2 - k2 - ic 

(outgoing wave boundary condition) instructs us to take the square root as follows 

in this case: 

Aa = w1 cos CP - i 1 k2 - WI 2 21 m 
cos Q! (III. 17) 

Both positive and negative values of ho also occur, but always, 

-k<Re (Aa)-<mI+ul (III* 18) 

This scheme identifies N solutions with asymptotic behaviour (III. 9); they are the 

solutions regular at co for the BSE. They are so identified from the asymptotic 

form of the BS integral equation (see SZ, Ref. 2) which in turn derives from 

the causality ic prescription in the definition of the Green’s function, 

There are also N solutions singular at cc, obtained with the opposite sign 

of the square root in (III. 15)) (III. 17). These A’s are negative in the bound state 

region. They lie in the interval 

-(ml + w’I) 5 A _< -(m 1 - WI) (nr- 19) 

and the associated wave functions diverge exponentially as x +a. The gap 

between the regular and singular A spectra vanishes as the bound state energy 

approaches threshold, and the spectra overlap in the scattering region. 

To proceed further, we must solve the eigenvalue problem for <cos O>” and, 

more generally, find eigenfunctions of a/2 T for all x. 
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ID. The Eigenvalue Problem 

Let a! be any angle between 0 and 7r. Let A be any constant, Consider the 

function Q-f-N-1 
c q.p RnW 9 (III. 20a) 
n=8 

or, equivalently, the vector 

S,(a) = R,(o), I < n 5 Q t- N - 1 . (III. 20b) 

We have, from (III. 2a) , 

N 
Cm <cos e>n m ‘mtal = An+lRn+l(a) + AnRnLl(a) 3 f 

n<l+N-1, (III. 21a) 

But from (II. 15a), 

=AnRn-I(Q) , n=1+N-1 0 

~0s a Sn@) = An+lRn+l@) + AnRnJN . (III. 21b) 

Therefore 

c,j<cos e>N - cos m Sm(o!) = 0 , P. 22) , , 
provided that 

RN+&a) = 0 l P. 23) 

Now if 1 2 1, then RN+B (o) has at least one factor of sin CY, so that o! = 0 and 

CY = T are roots of (III. 23). But these roots are uninteresting as all R,(Q) vanish 

at these values. The other roots of (III. 23) we term the non-trivial zeros of 

R N+J; they are, in fact, the roots of 

l+Q 
cN (cos cl) = 0 . (III. 24) 
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The Gegenbauer polynomial C N 1-Q (’ ) L is of degree N and even or odd according 

as N is even or odd. It has N roots, all real. They are found in the open in- 

terval -l< 2 < 1. 

We have established, then, that the eigenvalues of <cos~>~ are precisely 

the roots of (III. 24) and that the associated eigenvectors are (R (01)) 
In I’ Ortin 

function language, the eigenfunction is (III. 2Oa). In the limit N -00 this 

structure goes directly over to (III. 13)) which served to motivate the analysis. 

Thus as N-co, the roots of (III. 24)) become a continuous distribution on the in- 

terval 0 I (Y ,< r, as indicated in (III. 13). 

Consider now the functions 

Q+N-1 
‘I= c ~$%8) R,(a), 

n=Q 

Q+N-1 
SK= c x$x, 0) Rn@) . 

n=Q 

(III. 25a) 

@II. 25b) 

We have already remarked that ,gn, ,xn satisfy the same recursion relations with 

respect to d,!3r that R,(B) satisfies with respect to cos 8 . Pursuing the same 

line as in the above paragraphs, we obtain the eigenfunctions and eigenvalues 

for <a la 7) N, namely, 

<a/aT>N s* = x cos a SI 

<~/h-P SK = x cos o! SK 

(III. 26a) 

(EL 2Gb) 

with the same o’s as before, namely the roots of (III. 23). 

1-4-Q For even N, the zeros of C N (cos o) occur in pairs, one zero being the 

negntivc of another . When (Y is one angle of a pair, t.he other is T-CY. For N 

odd, N-l of the zeros occur in pairs and the remaining one is cos CY = 0, CY- in. 
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Define normalized eigenvectors by 

Then, for n, m _< Q + N-l, and the N eigenvalues (Y, 

(III. 28) 

Note for later use that 

&Angn@) ~nMl(~) = ; c, f$(@) 
C 
An+l i$+l(~) -t A E n n-l.(“)] 

= $0, ac, c 1 Tqcv) 2=;cos o!. @I- 29) 

The eigenvalue problem for <cos2 O>N can be solved in the same way. First, 

suppose N even and consider the i N-dimensional subspace of even time-parity 

spanned by 

I ye) j 9 n= Q, Q + 2, . -. Q+ N-2, (III. 30) 

The condition 

RQ+N tQ) = ’ (III. 31) 

2 supplies N non-trivial values of 01, but only 5 N values of (cos c~) . These are 

the eigenvalues. They can be associated with the $ N values of Q! in the interval 

(0, f 7r). We already know that 

; Q-I-N-~ 
c rr;l(a) E-n(o!) = 1 (III. 32) 
n=Q 

and, by (II. 14) 

Q+N-1 
c 
n=Q 

En (0-q En (a) (-l)n-Q = 6o (?T-o) = 0 
, m. 33) 
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Hence, averaging (III. 32)) (III. 33)) 

c (n-4 qp!) qp!) = + . 
even 

(rrr. 34) 

Therefore, the normalized eigenvector for QI is 

1 ,knn(a) 1 , n=Q, Q+2, . . . , Q+N-2 cm. 35) 

Similarly, the 2 IN dimensional subspace of odd time-parity, spanned by 

n=Q + 1, Q + 3, . . . , Q + N-l (rrr. 36) 

provides for <cos~~>~ the eigenvalue condition 

R Q+N+l (*) = ’ (m. 37) 

The root Q! = $7r is irrelevant as all Rn i 
c ) 

7r = 0 for n in the list of (III. 36) s 

There remain $ N non-zero values of cos2 (Y, associated with CV’S in the interval 

(0, $7r) which are the eigenvalues. The normalized eigenvectors are 

i 

En(a) 1 , n=Q-!-1, Q+3, . . . , Q+N-1 . Cnr- 33) 

E. Construction of Solutions 

Consider the functions 

I(~’ i’ (X, e) =C, ~e,(X, i x, e, ~‘,C~) 
, 

I+ i, (x, e) =C, 3qh, i x, 0) iqa) , 

(III. 39a) 

where the A ~ 
9 
i are functions of Q! and wi, i=l, 2, to be specified below. The 

summations are from n=Q to n=Q+N-1 as before. Let o be one of the non- 

trivial zeros of R Q+N(o). Then by (II. lo), (III. 26)) 

(III. 39b) 
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and 

I (0) - - Aa! i cos o! I(Q) 2 Kta& h 
9 07 

cu i~~~~K @, 0. 
, 

(ncr* 41) 

Hence, both I(o’ i, and K(o’ i, satisfy 

and 

<gl>N <g2>h’ Ic, = 0 

provided that 

@a, 1) )2-2qcosa!h Q! 1+k2=0 , 
, 

(ha! 2)2+2u2cosaAa 2+k2=0 . 
, , 

w* 42) 

(m-43) 

(III. 44a) 

(III. 44b) 

This type of equation was already obtained in Section III. C in the study of 

asymptotic behaviour 0 The definition of I(o) i), K(@’ i, is fixed by setting 

h l/2 
a,1 

= w1 cos o! + (uf cos2 o! - 6 (III. 45a) 

A 2 l/2 
092 

= -w2 cos Q! + (u; cos2 (v - k ) (III. 45b) 

As before, the square root is taken positive when real, and negative imaginary 

when not real. The N values of a! lie in the interval (0,~). For bound states, 

wi < mi and the Ao i are real, positive, with 
, 

For scattering, wi 2 mi and there are three cases: 

Case 1 k -&,J~ cos CY. Then ha! i is real and 
, 

k<Aa i , 
< mi + ui 
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I 

Case 2 -k < wi cos a! < k. Define wi cos Q! = k cos ($@, 3, 

with O,<CpQ i< T. 
, 

Then Aa! i = k e-@a, i . @cI. 43) , 

In particular, h, i = -ik if Q! = $ 7r . 
. 

In this case, I(@> ‘) is, apart from a con- , 

stant factor, a truncation of the expansion of j,(kr) in Eq. (II. 20). 

Case 3 kwi cos CY 5 -k. Again A a,i is real and 

‘fwi , -mi) 2 ho! i-< -k m. 49) 

We have found 2N solutions to <gI>N<@2>N @= 0 of type ItQ’ i), regular at 

x ‘0, and 2N solutions of type K (a, i) , regular at x boo. A fourth order equation 

for an N component vector function has precisely 4N independent solutions so we 

have a complete set. 

Let us now specialize to equal masses. The ha I and hlY 2 are related, so 
, , 

write 

ha,=hcY l=An-cf 2 3 , @I* 50) 

The solutions may be classified as even or odd under time-parity. Set 

I(% 9 (x,e) = (I’“’ 1) + p-@’ 2)),&- 

, 

Similarly, 

= Cnqhax, ehh En (Q) , (n-n) even. (III. 51a) 

= En qhcyx7 e )fi ~JOL), (n-a) odd. (III. 5lb) 
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There is a peculiarity for N odd and time-parity even. Then N+l solutions of 

type I((y, e, are required, but only N delivered by the above prescription. In 

fact (y = 7r/2 is one of the roots here. For this case, 

I(o, 1)(x,e) = C,.s(-ikx,Q) &En i 7r 
( ) 

, n-1 even 

solves both<gl>N (I,= 0 and<p>N @= 0 . 

Therefore 

(III. 52) 

& ($+9) =CnIfn+l (-ikx) R,(e) i$&~-), n-leven (III. 53) 

is the (N-+1) St.. solution. 

The definition of K(o, e, (x, 0)) K(o, ‘) (x, 6) follows the same lines. These 

even and odd 1’s and K’s were constructed to solve the double truncated BSE, but 

as indicated in III. B, the even (or odd) time-parity solutions of the singly truncated 

BSE, Eq. (III. 3a), having i N spherical harmonic components are the same as the 

I(% e) and Khe) or I@,‘) and K@,‘) i 
solutions of (III. 3b) with truncation par 

“T 
- 

eter N (or N-+1). The peculiarity mentioned in the previous paragraph does not 

arise for these solutions. 

Construction of vector Bessel functions for (III. 3a) when ml t m2 is , more 

complex. The operator to be diagonalized is a linear combination of <cos O>N 

and <cos2 0>” with coefficients depending on wl, ~2, and h . It appears un- 

necessary to go into this because the inadequacy of the truncated BSE for scatter- 

ing can be made clear enough in the equal mass case.. The promised remedy does 

not, in any case, depend on explicit knowledge of these functions. 
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IV. BRACKETS 

A. The Transposed Equations 

Let $, $2 be the transposes of sl, g2, Thus 

gjj= 
1 fJ2 -I- k2 + 2wl a/&~; 52 =a2 + k2 - 2w2 a/a7 l 

oiv. 1) 

The only change is in the sign of 7. Similarly, we define a transpose operation 

on functions of r, T by 

’ , F(r, 7) = f(x, 7) = f(r, -7) G-v. 2) 

or, equivalently, for functions of the polar coordinates, 

F(X)6 ) = f(X) 7T-0). (rv.9 

Then we have transposed vector Bessel functions I (Q , i) ) K(a, i) given bY 

I@, 4 
(x, 0) =y@, i) (Iv’ 4a) 

(X, &I) = $0 
Q+N-1 

K(a, i) (x,e) = c 
n=Q 

(-l)“+-Y$(Arr ix,d ) xn (a) o (Iv. 4b) , 

These functions satisfy &l>N<$2>N $ = 0 . 

B. Definition of the Brackets 

Given functions 4(x, 6 ) and Cp (x, 6), which may or may not be solutions of 
9 

the BSE and the adjoint BSE, there exists a bilinear function which we term a 

bracket of $, $!J . It is related to the notion of a matrix element of flux. 
. 

We shall use brackets ($,$)(I) and ($, (CI) (2) associated with the operators 

gl, g2 respectively, and a higher order bracket [+,$J] associated with glg2 . 
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I I 

The brackets are functions of x only. The discussion here is valid if Qj,B2 . 

are replaced by<gl>N, <g2>N. The definitions begin from 

& (@,tiP = J x3 sin2Bd6’ X@I~$- &!i~)~i , i= 1,2 

& [#v/J] = $ x3 sin26 d6 /$c$?$Z~ @- q2 $)q? ) . 

Then the brackets can be written explicitly as 

twdl) = s x3 sin20 df3 ‘$*-$a - (2~ ~0.~0) +@I 1 ax ax 1 I , 

(@,d2) = S 3 ’ x sin 26 de /$I~+- ‘@$x + (20~ cos.0) c#+ 1 

pfd J = w2d’) + tq whtq 
= (;q$,o + (!z2 qv@ l 

Furthermore, if I#,@ are expanded in spherical harmonics, 

+ = Cf,tx) R,(e) 3 @ = c g,(x) RnU3) , 

then 

(r$,lg) = x3x 1, f’ 1 n n - fngL - 2q A,(g,f,-l + g,&J 
I 

’ ($,Q)(2) = x3x;g n n - f,g; + 2w2 Ancgnfn-l + f’ g n-lfd 1 

w* 5) 

(N-6) 

(IV. 7a) 

(nr- 7b) 

(N* 8a) 

o;v. 89 

(Iv.9 I 

(IV. 1Oa) 

(IV. lob) 

The proofs of these relations will be given in the following paper, where 

the topic of brackets is covered more thoroughly. For our present purposes, 
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it is sufficient to note the following: I 

(a) If Di = 0 and zi @ = 0, then by (IV. 5), ($,$J)(‘) is a constant in- 

dependent of x. If glg2 $= 0, glG2 @ = 0, then [Ip, $1 is a constant, 

(b) If q$=o, G2$=0 orG72$=0, glQ,=O, thenby(IV.8)) thecon- 

stant [$, $1 is zero. 

(c) If 9I $J= 0, Gl $ = 0, then D2$ = 2E a$/aT and by (IV. 8a), the con- 

stant bracket is 

(IV1 la) 

~1~0, if a2 I,/,J = 0, Gl $ = 0, then $Sl fi = -2E ati,&- and 

ati (9 
[WFJ = -2E t+, g$ l 

(IV. llb) 

C. Brackets of the Vector Bessel Functions 

First we calculate (c#,,@)(~) for $,@ in the I(o, i), K(cr,i) family. Recall 

that as x+x), the I(o, i, and K(o) i, have asymptotic parts that go-like ex-p(&Aa i . 
, 

Therefore, only 

(I(a, i) ’ 
K@’ i)) ti) , (K 

(Q, 9’ 

are nonzero; the other combinations can succeed in being x independent for 

large x, as required by point (a) above only by vanishing. The ingredients for 

calculating the nonzero brackets are all in hand. We apply the definitions 

(III. 39) and (N.4) of the functions, the definitions (II. 11)) of 

?gh and J&, the bracket formulas (IV. lo), the Bessel identities (II. 27)) and 

the En normalizations (III. 28)) (III. 29) in that order. The result is 

@(cl., i), 
@‘i))(i) zz _ (I(, i), K(IYp i))(i) = (B i)-3 2 l/2 

, , ( wi cos2 o-k 

i=1,2 . (Iv. 12) 

- 28 - 



The complete set of formulas for the fourth-order bracket, deduced with the 

aid of (IV. 11)) (III. 41)) and (IV. 12) is 

‘(a, i), 
&bj) = k 1 [ (0’ 

KtP9 8 = o , 1 (IV. 13a) 

,tP, 3 = _ 
(w 9’ 1 [ 

I 
(a, 9’ 

Ktb j) = ((7 1 &-l*g*i; i,j= 1,2 (IV. 13b) 

where 
m* iJ2 

%,i 
= 

‘2 2E cos o! (wi cm2 21/2 . cr-k ) 
(Iv. 14) 

The plus sign in (IV. 14) is for i=l, and the minus sign for i=2. The square root 

in (IV. 14) is either positive real or negative imaginary. The BSE is symmetric 

(equal to its transpose) when ml = m2 and I((y e) = ,W), * =,Itayo), et-. 
, @>O) 

The only nonzero brackets in the equal mass case are (with col = uQ 1 = +q > - , ) 
a! 2 

,h e, = 1 [ K = _ 1 [ 1 ,@, e, = _ I [ 1 
= (u$1 

(rv. 15) 

V. FREE-PARTICLE GREEN’S FUNCTIONS 

A. Green’s Functions for the Exact Equation 

The ‘representations for which we have specific application are listed below 

in (V. 6)) already derived in SZ, and the partial wave reductions, (V. 12) and 

(V. 23). We begin by listing the more basic forms from which these derive, in 

order to fix conventions and normalizations, 

The one particle free Green’s functions G1(x-xl), G2(x-x’) satisfy 

(11; + mF)Gl = s4(x,-xi) , (p; t- m;) G2 = a4(x2-xT2) cv. 1) 
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and the outgoing wave (causal) boundary condition. The-two particle propagator 

is then G1G2, and the relative Green’s function is 

G(x~,x;) = s e ipx Gl(Xl-Xi) GZ(X2-Xi )d4X v w. 2) 

With Per = e, E) , we have 

V2-(i$+ 
ii 

v2 - (ia+ - u2) 2 - rni G = s4(x-q . (v. 3) 

Then we perform the Wick rotation, (I. 10). The property of the time 6-function 

to be maintained is s(t-t’) dt -+j(~ -7 ,)a~ so that7 

6 (t-t’) - + i 8 (7 -7 ‘) . F-4) 

We retain some of our notation, but with modified meaning: 

new G(x~, XL) = (-i) x 01-d G(x , xt ) p p t --+-i7 (v- 54 

new s4(x-x7) = (-i) x old a4(x-xf) t --i7 = 6 ipg lj (7 -7 ‘) . (v* 5b) 
\ 

The new (Wick-rotated) Green’s function has the representations2 

J 
4 eip (x-x’) 

GtxPpx2 = - 
(v* 64 

C 
i i4 [p2+(p4+itil)‘+mf] [P2+(p4-iW2)2+mi] 

*1 = s -@- 
87r2E 

eptT -’ ‘) Ko(Q/ X~-X;II ) (V. 6b) 

-02 

XX- 
87rE 

I I 
r-r’ - 

* ept7 -’ ‘) I( (Q x -xf 
8a2E 0 I P I-1 

) , 

(V. 6c) 
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where Q = (p2 - k2 l/2 - ie) . The contour C runs from p4 = -00 to p4 = +OCI 

passing above the poles in the p4 plane at 

i -0 
I: 

2 l/2 
1-@2+ml) , 1 [ i -f-w 2 l/2 

2-@2+m2) 1 (V. 7a) 

and below the p4-poles at 

i -b+p2+m ) “1 1’2] , i[+W2+(p2+mi)1’2] . (V.7b) 

In the bound state region, wi < mi and C can be taken along the real p4 axis. 

The rotated Green’s function obeys 

. 

!G?i$ g2 G = s4(x-x’) 
. (v. 83 

and the equations for the wave function, 

$I= +ofGV’,h 

(V. 8b) 

(v-8 ) 
‘i 

keep the form and signs they had before rotation. This arrangement means, 

perhaps unfortunately, that V and G have signs opposite to the nonrelativistic 

potential and propagator, as usually defined (the V in (V. 8b) is positive for an 

attractive force). 

Let G be resolved into partial waves: 

, 
G(xps XL) =CQ, m ? (O,, $I) YF* (0; , G’) Go (x,O;x’, 0’) Q 

3) &x, e;x’, et) . 

. 

tv. 9) 

- 31 - 



Then, since 

S4(x-x’) = b3j.p *!L!fF!a /j(&fi’) 
2% sin 

= 8(x--xl) c s(e -8’) 

x3 . sin20 
Q, ,ya” (03, $1 q* co$, $7 9 

(v. 10) 

the equation for G (9 is 

~ ~ G(Q) _ 6(=q ww’) , 
12 X3 sin20 

The explicit fogm is obtained via (II. 25)) (II. 26)) and (V. 6b): 

LL) 
Gf9(x,e; x’,ef) = 1 S L!@ eptTw7’) 2 @+1)-l 4E n=P 

I (Qx )K (Qx,) 
n ( n 

-w2 
p. 12) 

- *n.+2tQx<)Kn+2tQx>) R,t@) RnW . 1 
This equation will turn out to be more useful than it looks. 

We now develop an alternative to (V. 12) which begins from (V. Sa), Suppose , 

first that E is in the bound state region; then C lies along the real p4 axis, and 

we can transform the momentum variables to spherical coordinates (p, (II, flp, op): 

p4=pcos a, Jill= p sin o, 

d4p = p3dp sin2 Q dcr do 
P 

The analytic continuation to scattering energies may be done at the end 

of the calculation. 



To obtain partial waves, we make the projection 

= cm VW2 YF Ce,Q Yfem* (O,, $p’ j, ([Ii(r) j,([Pl r) (v* 14) 

= 4~ (2Q+l) jm (Iglr) ja (Ip}r). 

Then 

G(Qjx,e ;x,~,) = r-2 
s 

p3dp sin&da pip4(7-r’) vlPlr~ war’) 

=1=2 

w. 15) 
where 

Dl = p2 + 2i pwl cos Q + ~~ = (P+iha lHP-ih.lr-ry 1) , (V. 16a) 
, , 

D2=p2-2ipw2coso!+K2= @ + i+.& z, @ - l&, 21 l 
(V. 16b) 

The h’s defined in (III. 43)) (III. 44) which figure in the asymptotic behaviour of! 
\ 

the wave functions now appear as poles in the momentum propagator. We pass 

to the spherical harmonic expansion 

G’(x,B ; x’, et) = xn,n, gll n, (x,x’> R;(B) R&9’) , 

and apply (II. 19) : 

j,(jw-? e 
iP47 

= rx.$(ipx, a) R,(6) 

ii& 1~1 r) e 
-ip47- 

= 7rx.&(-ipxr, (Y) R,(O’) 

Hence, 

(V. 17) 

(V. 18a) 

(V. 18b) 

lr 
g n, n’ P, x’) = f 

sin2a, da, *3 

0 
s 

P dp 
,Tn(W, a) .Fn, t-k=‘, 4 

(V. 19) 

0 =1=2 
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First consider the case x c x’. By (II. 30)) (II. 14)) with AX +-ipxt, o-~, 

ir %,(-ipx’, a) = (-1)’ 
[ 

(-$Yxn, (ipxi a) -ai& (-ipx: 0) 1 
= J&,(ipx: WY) - (-1)“’ S,(-ipx’, r-a) 

cv. 20) 

Substitution of (V. 20) into (V. 19) leaves gn, .,(x, x’) as the sum of two terms. 

In the term containingZn,(-ipx: T--(Y) only, make the transformation Q -WY’, 

P --p. This implies 

*3 
0 

s 
P dp -- 

I 
p3dp 

0 

=1=2 -D1D2 , (v. 21) 

(-1) n’ .gn(ipx, (Y) 31n, (-ipx: r--a) --dJipx, a) JH;1,( ipx: 7~-a) , 

in view of (II. 11)) (II. 14)) and 1,(-z) = (-l)n In(z) . Therefore, still for the 

case x < x’, 
i, 

7f 
gm,(x,xl) = (--i/r) 

s 
sin2a da! S a3 

P dp 
Sn(ipx, a!)Sn,(ipx’, T-J) 

0 =1=2 -00 

The p contour of integration can now be closed in the lower half complex 

plane. The branch cut in the An; function due to the cut in Knr+I(ipx’) runs 

along the positive imaginary p axis and causes no trouble. The integral is 

evaluated in terms of the residues at the two poles at p = -ihcr, i. The case 

x’ < x is treated by resolving .%(ipx, CX) into&n’s in place of (V. 20). The 
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complete result is 

C~(X, 6 ;X’O’) =En, n, gmtfX, x’) R,(O) Rn(’ ‘) 3 

=- L! i=l, 2 
sin2adolJ$(ho 

9 
iX,@) q;,,i .*l,(ho iX’,‘lT-o), X< X’, 

, 

(V. 23) 

where o Q! i was defined in Eq. (IV. 14). The integrand in (V.23) has a singularity 
, 

ata! =+ T, but there is no singularity from the combined contribution of i=l, 2. 

One may consider (V. 22) as a principal value integral at a! = + 7r; this is harm- 

less as (V.22) has no singularity. Then the separate contributions to (V. 23) are 

also principal value integrals and each is finite by itself. 

The continuation of (V. 23) into the scattering region requires merely the 

continuation of the AQ! i, oQ i$ which has already been discussed. 
, , 

B. Green’s Function’s for the Truncated BSE 

Consider the doubly truncated equation which has 2N solutions I 
(a, 1) ’ 

11(% 2, regular at the origin and 2N solutions K (a, 1)9 Ktc,, 2j regular at 00 . 
The propagator equation is 

<q>N<g >N G(Q,Ntx e;x, er) = 
2 , I 

! 

N-!-Q-l 
= 6(x--x’) 

X3 c R,(6) RJB’) . 
n=f! 

The solution with regular boundary conditions must have the form 

Gf=C cr,i I@, 9 (x,6) co i 
, 

=C, i 9 
K@’ i, (x,0) do i 

, 

x<x’, 

(V. 25) 

x >X’ . 
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wi.th coefficients c a, i and d 
ci, i’ 

Suppose Cp (x, 0) obeys 

<q>“<q>” 

dependent on x’, @I, to be determined. 

$=O. (v. 26) 

(a) Multiply (V. 24) by 4 and (V. 26) by G i ; then take the difference and integrate 

over x3dx sin20 d0 . By (IV. 6)) we have 

(V. 27) 

But the explicit form (V. 25) and the bracket formulas (IV. 13) tell us that 

(V. 28) 

.and hence 

K(a, 9 tx’,“) =- [g(o,ij. G$Ixzo =- tB,i)-l”cr,i 9 (V. 29a) 

I@, 9 (x1,‘) =+ [Iia,i), G~],=m=- (~~,i)-ldLy,i l (V. 29b) 

Therefore, 

G$x,O ;x’, 6’) = -c a!,i I@ i)(x,(q (~,i Kta.,i)(xl’ e’), X’ X’ 

cv. 30) 

; 
= -c, i K(*$x,e) ~o,~ I(cu,i)(x’, e’), x >x’ . , 

For a comparison of this result with the N --cc limit, derived in the previous 

section, we rephrase (V. 30) using the factor h cl! of (III. 27). 

Gg (x, 8 ;x’, 0 ‘) = 
/ 

gfn, (x, xp) Rn(6j R,te’j , 

g ~~1 (X,X’) = -C,, i hN ,~(‘, ix’ cuj rrcr i’“/n(ha iX’,7T-~), x < x’ 
, t 3 



IV. COMPARISON OF THE TRUNCATED AND EXACT BSE 

A. Ga.ussian Quadrature 

We turn again to the eigenvalue problem of Section III. D, and consider the 

N roots of 
c l+.e N (cos cv) = 0 . (VI. 1) 

By (II. 6)) (III. 27)) (III. 29)) we have 

7r 

S R,(a) Rm(o) sin2 ada! = c, ha Rn(o) Rm(o!) 

0 
(VI. 2) 

where the sum is over just these roots, provided that 

. 
B,<ngN+L-1 , L_<msN+P, (vr.3) 

because both sides of (VI. 2) are then equal to 6, 
, 
m . Observe that if F(a) is any 

polynomial in cos a! of degree <2N + 1, then F(o) 
2Q sin Q! can be written as a linear 

combination of the terms R,(o) Rm(o) with n, m within the limits of (VI. 3). There- 

fore 7r s F ((Y) sin2e+2 c-rdo = c, ho sin z-t-2 
Q! F(Q) 

0 
(VI- 4) 

is an exact relation for this class of F(o). Furthermore, the sum of (VI. 4) approxi- 

mates the integral if F(cr) is approximately equal to such a polynomial. 

This is,essentially, the well-known rule for Gaussian quadrature8 adapted here 

for the orthogonal family of R,(o) ‘s. The argument, when abstracted from the con- 

text of our general discussion, is at least as simple as other derivations. It ap- 

plies to any system of orthogonal polynomials because the existence of a recursion 

relation like (II. 15a) is common to all. More precisely, let { 4,(x) 1 be any 
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complete, orthonormal family of polynomials, with qn of degree n, n=O, 1,2, . . . , 

defined on a 5 x ,< b by the weight function w(x), so that 

Then the matrix Mnm , 

b 
Mnm= 

s 
I, x @,(4 w(x) dx 9 W-6) 

a 

is tridiagonal, real, symmetric, with nonzero elements made up of the coefficients 

An, Bn that occur in 

x0,(x) ‘= An+1 en+1 (XI + Bn +n tx) + An @n-l (4 * (VI. 7) 

The N x N truncation of Mm,, with indices restricted to 0 I n, m _< N-l will 

have N eigenvalues A . 

Then the methods of Section III. D show that i 
\ 

(1) The A’s are the solutions of e,(x) = 0, 

(2) The components of the normalized eigenvectors v (8 are 

(3) The Gaussian weight factors are 

CVI. 8) 

(VI. 9) 

(4) The Gaussian quadrature rule 

4 F(x) w(x) dx z& F(A) 
a 

(VI. 10) 

is exact if F(x) is a polynomial of degree not greater than 2N+l. Thus the practical 

task of computing the zeros and the factors hh is reduced to the diagonalization 

problem for an clcmentary tyl3e of matrix. 
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For our purposes, the point of interest is the relation between (V. 23) and 

(V. 31). In particular, gz m, 
, 

is the Gaussian approximant of order N to gn 
, 
nl . 

This confirms, formally, at least, that as N-coo, 

G$ (x, 8 ;x’,6) - GQ(x, 8 ; x’,P) . (VI. 11) 

Whatever the accuracy of the integral truncation method for the BSE, this 

formulation is more accurate than the differential method insofar as an integral 

is not exactly equal to its Gaussian approximant. Calculations of bound state- 

energies with the truncated differential BSE do, in fact, give good results, i. e., 

rapid convergence (to the correct answer) for increasing N, if the binding energy is 

not small. For example, our own calculations in the ladder approximation with 

all masses equal (to be described later) yielded good convergence for (K/m) “> .1, 

i.e., (E/2m) ?.995* Calculation of the residue of the scattering amplitude at the 

bound state pole did less well, unless (K/m) 2 .4. 

The quantity uo! i which enters into the integrals and sums has a denominator 
, 

which includes 

2 cos cr(wl cos 2cr-k 1/2 
2, VI. 12) 

giving a si.mple pole at c~ = i 7~ and (integrable) square root singularities at 

u; cos2 o! = k2. The simple pole, treated as a principal value is not necessarily 

fatal to the Gaussian sum if the discrete Q’S are arranged symmetrically about 

the pole, as they are. However, the square root singularities, which appear at 

the edges of the integration interval at k=O, and move into the interior of the interval 

for k > 0, cause the convergence difficulty for bound states near threshold to 

which we have referred, and are fatal for scattering. What this means is that 

regardless of the auxiliary functions or methods used in the differential approach 

the boundary conditions at x = 00 inherent in that method do not approximate or 
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converge to the true asymptotic boundary conditions. One may expect - and 

this was the case in a test calculation we performed - that the calculated scatter- 

ing phase shift oscillates about the correct result without convergence as N - co , 

being either too large or too small depending on how the discrete (L’S for the 

relevant N (whether or not the calculation explicitly uses them) lie in the in- 

terval (0, nJ with respect to the singular points. A modification of the differential 

approach which circumvents this difficulty is given in the following paper. 
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