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ABSTRACT 

A one-variable integral equation is derived whose solution gives a 

unitary description of the physical three-particle scattering matrix once 

phenomenoIogica1 parameters desdribing the interior three-particle region are 

specified. This equation remains convergent, and the result unitary, in the 

zero-range Iimit, thus providing a unique construction of the three-particle T 

matrix from two particle phase shifts and binding energies as a first approximation. 

(To be submitted to Physical Review Letters. ) 

t Work performed under the auspices of the U. S. Atomic Energy Commission. . 
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In this letter we prove that a unitary description of the on-shell 

three-particle T-matrix, comparable to the phase shift prescription for two- 

particle amplitudes, is provided by the solution of a one-variable integral 

equation. The phenomenological parameters are coefficients of the expansion 

of the interior1 wave function in terms of any complete set which does not 

contribute in the asymptotic region and which has no discontinuities across 

the two- and three-particle cuts. The equation is convergent for all two- 

particle interactions bounded by decreasing exponentials in configuration space. 

This interaction region may be allowed to shrink to zero without destroying 

either convergence or unitarity, giving a unitary description of any three- 

particle system at a single energy in terms of two-particle phase shifts and . 

binding energies plus (if desired) three-particle parameters. 

The amplitudes M oP defined by Faddeev2 can be shown to satisfy two- 

variable equations 394 by introducing the coordinates p for the interacting pair 

and q for the free particle defined by Lovelace’ (with the on-shell restriction 

p2 + q2= z) and making the partial wave decomposition 

To obtain the analog to the interior wave function-discussed in CS, we define 

(J and M fixed) 

I1;‘@, q;z) = M1$(p, q;z) - M”y(p, (z-p2)+;z) = (p2 +q2- z) F1$(p, q;z)T1y@z) (2) 

and find that if IEP is known, the three-particle on-shell T matrices satisfy the 

one variable equations 
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M~$p,(~-p~)~;z) = Tpcc^p@;z) = t;@,p,;p2) 

9 

tl @,P;P2) 
-- dqf2 Q! 

pB,q’2 -z 

where 
F2 = pt2 + 912 -z+p2 4 

q* = p’tanp f 
aY J-- z-p2 seci.4 

QY (4) 

cos. p [ mamy/ (ma+ my)(my + my,) ’ 1 o!y = 

and KaY PM’h’ are purely geometrical recoupling coefficients which can be found, 

for example, from Ref. 3. 

This equation for T QP is precisely of the same form as the operator 

equation for M 
ck!p ” 

c y Kq (Z)Myp tz) = $pt,tZ) = 6aptp (z) = 7 Mar (z)E$(z) (5) 

with 

Kay(z) = 6 Q-Y + 0 - ~ay)ta(z)Go(z) and I? yp (‘) = 6rp’ 0 - 6rp )G,(z)tp(z) (6) 

if we add appropriate terms AK and AK 
YP 

in Eq. (6). The unitarity of 
QY 

EQ. (5) follows algebrically from the substitution of the definitions of K and K 
(I 

(Eq. (6)) to the left hand side of 



-4- 

-. 

Y2’ gp KcY’ct 1 P wag (Zl) -Maa (@5&wp, = va,tcyl(q~Lylpl (z,)Vp, 

(7) 

-V K aI ,,pl(zpplqvpl 

e 

Substituting Eq. (5) for K and E in the right hand side of Eq. (7) and making an 

obvious rearrangement, this same expression becomes 

= V&,tzlWotz2) - GoPl))tp,(zz)Vp, 

(8) 
+ 6 (pjl/ t,l(Z$ [yy- G()(z&l("&p3V,l 7 I? 1 

cy' -t~l(Z~)Go(Z2)v~l]tcr((Z2)v~, 1 

The term proportional to 6 a’/3 vanishes because of the (convergent) two- 

particle Lippmann-Schwinger equations for tCy, and we can replace tc,,(zl) 

in the first term by c 6 t (z ); this plus the corresponding replacement on 
y @‘Y Y l 

the right allow us to use Eq. (5) to re-express the result as 
e 

= -VQl .c K 
@Y 

,,,tz,)M,,(zl)~Go~zl)~ GO(z2)) c M tz 
YP yP 2 

)Kpp,(z2Wp, (9) 

Since Faddeev has shown2 that inverses to ValKola, and KPP,V’, exist, the 

equality of Eqs. (7) and (9) then established the full unitarity relation 

Map(zl) -Maptz2) = - c M~ytzl)(Gotzl) - G0(z2)) EM 
Y yP 

(3,) (10) 
Y 

This proof of unitarity would also suffice for T oP if the additional 

term V’,to, (z,) AEalpl (z9)VP, -VcrlAKalP,(z~)tP,(z2)VPl vanished. Since we are 

interested here only in a formalism applicable to the analysis of physical thee- 

particle systems, we need not require general off-shell three-particle uni- 

tarity, but only that this term vanish in the limit zl- z + i0, z2 - z- i0 with 

z =p2+ q2. This happens automatically for all terms which are independent of 

the interior function F, since these contribute to AK and AK only terms pro- 

portional to 
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Q2 + q2- z)-l 
[I 
t$, p;z-q2) - te,@, p;p2;1 01) 

and Kowalski has shown! that the difference between these full and half off- 

shell two-particle t-matrices is always proportional to (p2 + q2- z) times a 

remainder function which itself vanishes on shell. The remaining terms are 

CV’P’ proportional to the difference FIlh’ (pi, ql;zl) - FI~~~‘(pi, qi;z2), since the singu- 

larity due to Go has been removed by definition, Eq. (2). Thus the & re- 

quirement on the interior wave functions F needed for T determined from Eq. (3) 

to satisfy on-shell three-particle unitarity is that these functions have no dis- 
i 

continuity across any of the three (or two) particle branch cuts in the physical 

region. Hence, we can use any such complete set Fn to expand the interior wave 

function (provided the integrals converge), and the coefficients of these functions 

will serve as llphase shifts” at that energy of the three-particle system, as 

already discussed in CS. 

This proof of unitarity still fails if the operator for inverting Eq. (3) 

does not exist. The existence of this operator was proved in CS, but the proof 

was cumbersome and required a finite range cutoff R. By using a representation 

of the two-particle half off-shell t matrices valid 7 for any interaction bounded 

by AeWCIX * m configuration space, or equivalently whose Born approximation is 

bounded by A/g2 + Q-P~)~) in momentum space, the convergence proof can be 

made directly from Eq. (3). This representation is 

ta@,kp2, = $p) &jdCg) g2t.2 + 4k2) 
P (p2-k2)2 +2&p2-k2) +p4 
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where 
i$,(P) 

sin{@)/p and ldgc($) = 1 
cs 

03) 

This representation allows us to represent the kernel to be integrated over pi 

in the Iast term of E& (3) as 

where 

05) 

The asymptotic convergence of this kernel follows immediately from the fact that 

for z > p2 the limits have complex conjugate imaginary parts and hence that the 

result of the y integration is bounded by 7r/2; by making the change of variable 

(p2- z)$ = r sinqb, p* = r cos$ it then follows from the fact that T(P) is bounded by 

A/p2 that the integral jdp” ydpi2Q2 (p, pi) converges at least as well as 

jr3dr/r6 at the upper limit. The only singularity is therefore the three-particle 

scattering branch cut in the physical region, which occurs only in the on-shell 

term and not in the off-shell extension (cf. second form of Eq. (12)). Since the 

geometrCca1 factor K&,A, is bounded by a constant (in fact is a constant for the - 

J = I = h = 0 ampEtude), there are two logarithmic singularities at 

pr= I (z-p2)9sinp is * P ‘O’clis ’ (16) 

where the singularity from the larger value of p’ always comes from the lower 

limit of integration, while the smaller comes from L, if p2 < z sin2p and L- 

otherwise. Since these logarithmic singularities are integrable, they can be 
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removed by any convenient trick in the numerical solution of Eq. (4) (e. g. one 

can add and subtract the value of .F(pl) at the two branch points and perform the 

integral over the logarithm explicitly). It is important to realize that, in con- 

trast to other treatments of this branch cut (for example, that due to D. D. 

Brayshaw’), the only contribution from the cut comes in the physical region, 

and is explicitly known, independent of the dynamics. This is because we have 

put p on shell rather than q. The usual form of the Faddeev-Lovelace (or Amado’ 
IO, 

or Mitra’ ) equations with separable interactions takes q2 to + ~0 and hence the 

energy of the interacting pair gets so negative that “potential singularitiesi’ have 

to be taken into account. BrayshaQ8 notes that these singularities are distant 

in the non-relativistic case, but if we treat, for example, the nucleon as a bound 

state of the x N system in a nN - 2nN reaction, the iipotentialll singularities 

are just as near as the region of interest. It appears that our approach offers 

advantages for such calculations in that only the necessary physical scattering 

singularity appears whether or not we include the off-shell correction. 

Since our proof of convergence given above guarantees the existence 

of a resoIvent kernel for Eq. (3) even in the zero-range limit w2- “) for the 

two-particle interactions, in this limit Eq. (3) provides one-variable integral 

equations for the three-particle T matrix using only physical two-particle phase 

shifts and binding energies. Note that nowhere have we made any high-energy 

approximation, so this limiting equation is valid as a zero-range approximation 

at any energy. Whether it is a good physical approximation will depend on 

whether these interior effects are physically significant or not; in particular, we 

know that this limit cannot be used for three-particle bound states, since Thomas’ll 

has shown that the zero-range limit gives infinite binding to the ground states of 

such systems. 
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We also note that the unitarity proof breaks down for a subtle reason 

if the two-particle subsystems have bound states. Then the t-matrices in the 

kernel have poles, and the T-matrix is undefined at these points. This same 

difficulty exists in the ordinary Faddeev equations, but can be solved either by 

iteration or by explicitly separating out the coefficients of these singular terms 

and writing equations coupling them to the continuum terms. Explicitly, if the 

bound-state residues in the two-particle t matrices are given by 

and we make in Eq. (3) the substitution 

QP - the resulting equation can still be solved for TnA If we couple it to the system 

’ 
p’3+q’3- z 1 

c 
PcvY(z+E2) 

E 
Y 

p’2+E2 
’ + T;,y,@‘;z) 

Y 1 
0% 

for the I?$ and solve for both P and T at the same time; the P’s are, of course, 

simply the amplitudes for elastic scattering and rearrangement collusions. The 

system is still convergent, and the unitarity relation now explicitly contains the 

two-particle branch cuts due to these terms. This is still true if we make the 
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zero-range approximation for the three-particle interior region (F = 0), or the 

two-particle zero-range b2 - a) approximation, which leaves only the physical 

phase shifts and binding energies of the two-particle subsystems as input. 

This paper completes the mathematical aspects of a program, whose 
12 physical motivation has been described in more detail elsewhere ; the ob- 

jective is to give a complete description of three-particle systems in terms of 

two-particle observables (phase shifts and binding energies), the physical wave 

functions corresponding to these observables, and phenomenological para- 

meters describing the interior three-particle wave function; the latter can now 

be fitted by three-particle experiments in a unique way. As has already been 

emphasizedt2 , this demonstrates conclusively that, in principle, the wave 

function for two strongly interacting particles inside the range of forces can be 

constructed from quantum mechanical observables, given a sufficiently rich 

body of three-particle data. An unexpected bonus is that this description con- 

tinues to be both convergent and unitary in the zero-range limit, thus giving a 

unique construction of the on-shell three-particle T matrix from on-shell two- 

particle t-matrices which is valid, as a first approximation, at any energy. 

Whether this will be a good approximation requires further investigation of the 

corrections for specific physical systems, which can be obtained by model cal- 

culations of the. interior wave function and data analysis of three-particle systems. 

Finally we emphasize again that if covariant kinematics and two-particle t- 

matrices which satisfy a covariant Lippmann-Schwinger equation (e. g. the 

Blankenbecler-Sugar equatioi3) are used, this analysis is applicable at any 

energy, and is not restricted to non-relativistic problems. 
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