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1. Introduction 

In many physical applications, one must solve an N x N system of 

linear algebraic equations, 

E=;c, (1.1) 

where M arises from a finite-difference approximation to an elliptic 

partial differential equation. For this reason, the matrix M is sparse 

and the nonzero elements occur very regularly. As an example, let 

M= 

I F 

FT I 

? o-4 

and partition 2 and x to conform with M. If one can interchange both 

the rows and the columns of a matrix so that it has the form (M-I), the 

matrix is said to be two-cyclic. 2 Expanding Eq. (l.l), we have 

Multiplying the first equation by -FT and adding, we have 

(I-F~F)~ = x2 - FTxl . (1.3) 

By this simple device, we have reduced the number of equations. If 

(I-FTF) is also two-cyclic, we can again eliminate a number of the 

variables, and continue until the resulting matrix is no longer two-cyclic. 

In fact, F has block structure in many applications; and one has the 
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freedom to specify the number of blocks in it. In these cases, a proper 

choice of the number of blocks may enable the reduction process to con- 

tinue until the final (I-FTF) has block dimension one;,the reduction 

methods to be developed impose such a condition. 

Direct methods for solving (1.1) are attractive since in theory 

they yield the exact solution to the difference equation, whereas commonly 

used methods seek to approximate the solution by iterative procedures. 12 

Based on a suggestion of one of the authors, Hackney' has devised an 

efficient direct method which uses the reduction process. Also, Buneman' 

recently developed an efficient direct method for solving the reduced 

system of equations. Since these methods offer considerable economy 

over older techniques, 5 the purpose of this paper is to present a unified 

mathematical development and generalization of them. Additional general- 

izations are given by George. 6 

In Section 2 we develop the method of matrix decomposition or discrete 

separation of variables. In Section 3 we develop the block cyclic reduc- 

tion process and techniques for solving the reduced systems. In Sections 

4, 5, and 6, we apply the results of 2 and 3 to Poisson's equation on a 

rectangle with Dirichlet, Neumann, and periodic boundary conditions, 

respectively. Section 7 extends the results of 4, 5, and 6 to higher 

dimensions; Section 8 extends 2 and 3 to other applications; and Section 9 

extends 2 and 3 to "L-shaped" regions. In Section 10, we show that 

straight-forward applications of the results of 3 can result in severe 

round-off error in many applications of interest. In Section 11 we 

develop the Buneman algorithms which are mathematically equivalent to 

the reduction process of 3, but are not subject to severe round-off. 
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In Section ll we apply the Buneman algorithm to Poisson's equation with 

Dirichiet, Neumann, and periodic boundaries, Finally, in Section 12 we 

show the stability of the Buneman algorithms. 
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2" Matrix Decomposition 

Consider the system of equations 

where M is an N x N real symmetric matrix of block tridiagonal form, 

M = 

A T 

T A. 

. . . 

. . T 

T A 

. (2.2) 

The matrices A and T are p x p symmetric matrices, and we assume that 

'AT = TA . 

Such a situation arises for those problems that can be handled by the 

classical separation-of-variables technique. Indeed, the methods we 

discuss amount to an efficient computer implementation of the idea of 

separation of variables carried out on a discretized model of the elliptic 

differential equation. Since A and T commute and are symmetric, it is 

well known1 that there exists an orthogonal matrix Q such that 

QTAQ=A, QTTQ=& (2.3) 

and i1 and n are real diagonal matrices. The matrix Q is the set of 

eigenvectors of A and T, and A and R are the diagonal matrices of eigen- 

values of A and T, respectively. 

To conform with the matrix M, we write the vectors 5 and x in 

partitioned form, 

2-l 



x= N 

5 

. 

. 

. 
z= . 

. 

. 

Furthermore, it is quite natural. to write 

“U 

x23 

. 

. 

. 

“Pi I 
System (2.2) may be written 

zj = 

yU 

y23 

. 

. 

. 

yP3 

Tzcjml + lucj + TXj+l = ;tj, j = 2,3,***,q -1 9 

TX 
%I-1 

+AX 
-s=v 

Using Eq. (2.3), this becomes 

%-1 4 3 +a;; +!5i+1=z j , (j=2,3,.-b,4-1) 

6&+lii&=&. 

(2.4) 

(2.54 

@.%I 

(2.5~) 

(2.6) 
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where 

‘;; 
-3 

= QT%j , zj = QTxj , j = 1,2,. . .,q . 

The components of T. 
4 

and ij are lab.&led as in Eq. (2.4). Then Eq. (2.6) 

may be rmitten for i = 1,2,...,p 

'i'il + w.: 1 i2 = vi1 Y 

w.x 1 ij-1 + x.x 1 ij + u1.x i ij+l = Yij, (j = 2 ,..., q-1) , 

w.x 1 iq-1 + x.x 1 iq =yiq l 

Nuw let us write 

I ‘, wi 
I 

RI. 
1 

I?. = 
1 

i 

Ii l 

. . . 

c 

x il 

X i2 

Ei. = 
4. . 

. 

. 

x 
iq 

. . w. 1 

w. xi 1 
.- aqx q 

'il 

'i2 

$= . 

:1 

. 
l 

'io A 

, 

(2.7) 
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so that Eq. (2.7) is equivalent to the system of equations, 

rip&. (2.8) 

Thus, the vector $ satisfies a symmetric tridiagonal system of equations 

that has a constant diagonal element and a constant super- and sub-diagonal 

element. After Eq. (2.8).has been solved, it is possible to solve for 

% 
= Qzj . Thus the algorithm proceeds as follows. 

1. Compute or determine the eigenvectors of A and the eigenvalues 

of A and T. 

2. Compute xj = QT~j (J = 1,2,.*.,d l 

3. Solve r,& = & (i = 1,2,...,p) . 

4. Compute zj = Qxj (j = 1,2,...,q) l 

Ho&my8 has carefully analyzed this algorithm for solving Poisson's 

equation in a square. He has taken advantage of the fact that in this 

case the matrix Q is known and that one can use the fast Fourier transform 

to perform steps 2 and 4. Shintani ll has given methods for solving for 

the eigenvalues and eigenvectors in a number of special cases. 

A and T need not commute. Assume that T is positive definite and 

symmetric. It is well known' that there is a matrix P such that 

T =PPT, A 

where A is the diagonal 

=PAPT, (2.9) 

-T matrix of eigenvalues of T-lA, and P is the 

matrix of eigenvectors of T'lA. Thus, using Eq. (2.9)' we modif)r the 

algorithm as follows. 

1. Compute or determine the eigenvalues and eigenvectors of T -lA . 

2. Compute ij = P-ljxj 
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3* Solve Ti zi = $ where 

r. = 1 

L 

6 1 i 

1 % 

. 

. 

. . 

. . 1 

1 6 i 

. 

4. Compute 3cj = P-Swj . 

Of course, one should avoid computing T"A because this would destroy 

the sparseness of the matrices. Golub et al7 has proposed an algorithm 

for solving A: = 6W-when A and T are sparse. 
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3. Block Cyclic Reduction 

In Section 2, we gave a method for which one had to know the eigen- 

values and eigenvcctors of some matrix. We now give a more direct method 

for solving the system of Eq. (2.1). 

We assume again that A and T are symmetric and that A and T commute. 

Furthermore, we assume that q - m-l and 

where k is some positive integer. Let us rewrite Eq. (2.3) as follows: 

%j-2 +A”-jj-l +Tsj 

Tzj-l -j j + Ax + nl +1 

= Xj-1 3 

Tzj + A",j+l ' TZj+l = J$+l ' 

Multiplying the first and third equation by T, the second equation by -A, 

and adding, we have 

T2x -j-2 + (2T2-A2)zj + T2z +2 = q 
3 j-1 - Qj + !Qj+l l 

Thus if j is even, the new system of equations involves x 's with even -3 

indices. Similar equations hold for 2 and &-2 . The process of 

reducing the equations in this fashion is known as cyclic reduction. 

Then Eq. (2.1) may be written as the following equivalent system: 
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I- 
’ @-A*) 1 T2 

T2 2T2-A2) 

. 

0 
L 

and 

. 0 

0 A 

T2 0 
. . 

. . T2 

T2 2T2-A2) 

. 

. 

. 

5 

%3 
. 
. 
. 

L-1 

= 

52 

24 
. 
. 
. 

X 4-2 

Xl - Tz2 

3L3 
- TX+, - T% 

. 

. 
l 

&l - - T&l2 

(3.1) 

(3.2) 

Since a=2 k+l, and the new system of Eq. (3.1) involves zj*s with even 

indices, the block dimension of the new system of equations is 2k-l. 

Note that once Eq. (3.1) is solved, it is easy to solve for the zj's 

with odd indices as evidenced by Eq. (3.2). We shall refer to the 

system of Eq. (3.2) as the eliminated equations. 

Also, note that the algorithm of Section 2 may be applied to 

system (3.1). Since A and T commute, the matrix (2T2-A2) has the same 
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set of eigenvectors as A and T. Also, if 

X(A) E: Xi , X(T) = wi, for 1 = 1,2,...,m-1, 

X(2T2-A2) = 2~; - 1; . 

Hockney8 has advocated this procedure. 

Since System (3.1)-is block tridiagonal and of the form of Eq. (2.2)' 

we can apply the reduction repeatedly until we have one block. However, 

as noted above, we can stop the process after any step and use the methods 

of Section 2 to solve the resulting equations. 

To define the procedure recursively, let 

Ato) = A, T(O) = T; do) = sj, (j = 1,2,...,m-1). 

Then for r = O,l,...,k, 

Ab+l) = 2(T(r))2 - (A(r))2, 

= Tb) x(r) + 
j-ir 

_ A(r) $) . 
i 

At each 'stage, we have a new system of equations, 

(3.3) 

M(r)Zb) = fb), 
N H 

to solve where 
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&9 = 

& r ‘1 = 

.Jr) 

X mr 2 

2 r+l 2 

. 

. 
e 

J .$ 

. 

. 
l 

. 

. 

f(r) = ry 

p 

2r 

p 
2' 

z 
j*2r 

. 

The eliminated equations are the solution of the block diagonal system 

,(ri w(r) N =&( ) r , 

where 

N(I*) = 

A(r-1) 

0 

0 
0 

Abl) 0 . . . . . . 0 

0 : Ab’1) 
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,(r) = 

_ m(r-l) 
mr 2 

b-1) _ =(r-1) + x(r-lI 
X2r+l-d-1 m$+l "$ 

(j-mr 

l 

We can use the methods of Section 2 to solve the system M 
(p)&(r) 

or we can proceed to cwte M (r+l) and eliminate half of the unknowns. 

Af'ter k steps, we must solve the system of equations 

Atk) (3.6) 
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In either case, we must solve Eq. (3.5) to find the eliminated unknowns, 

just as in Eq. (3.2). This can be done by 

1. direct solution, 

2. eigenvalue-eigenvector factorization, or 

3. polynomial factorization. 

The direct solution is attractive when k is small. One can form 

the powers of A and T quite easily and solve the resulting equations by 

Gaussian elimination. Thus, if k = 1, and A and T are tridiagonal matrices, 

$1 is a five-diagonal matrix, and for such band matrices it is easy to 

solve the resulting system of equations. 

It is possible to compute the eigenvalue-eigenvector decomposition 

of Atr) and Ttr). Since A(') = Q A QT and T(O) = Q n QT, we may write 

A(T) = Q A(‘)QT and Tcr) = Q flcr)QT . 

From Eq. (3.3)’ it follows that 

Thus the eigenvalues of A b-1 and TCr) can be generated by the simple rule 

++l) r: 2(wy)2 - (xf))2 , XlO' = xi , 
i 

w(r+l) 
i 

= 2 w(r) 2 
( ) i , WiO' = WI , 

. 
1 = 1,2,...,m-1. 

Hence, the methods of Section 2 can easily be applied to solving the 

system M(r)~Cr) z fCr) and No =I E(~). Ho&my' has described this 

algorithm as the FACX(&) algorithm where ~3 refers to the number of cyclic 

reductions performed. 
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From Eq.. (3.1)' we note that A (1) is a polynomial of degree 2 in A 

and T. By induction, it is easy to show that A (r) is a polynomial of 

degree in the matrices A and T, so that 

A23 T2r-2d E P (A,T). 

We shall proceed to determine the linear factors of P 
2' 

(A,T). 

Let 

9-l 
P (a,t) = 1 c2j W a2j $4 

2" 
Y Jr) = -1 . 

j=o 2r 

For t f 0, we make the substitution 

ait = -2 CO8 6 . 

From Eq. (3.3)’ we note that 

r+l 

p2r+1 (a,t) = 2t2 - 

It is then easy to verie using Eqs. (3.3 and (3.8)’ -that 

( > 
2 

P b,t) l 

2r 

p 
2' 

(a,t) = -2t2r cos 2% , 

and, consequently, 

(3.7) 

(3.8) 

.P 
2r 

(a,t> = 0 when a/2t = -co8 $$$ 
( > 

n for j = 1,2,...,2r. 
2 
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Tixx3, we may write 

r 

P (a,t> = - 
V 

a + 2 t cos 2j-1 

2r j=l ()I r+ln ' 2 

and, hence, 

+ 2 cos &'T 
2 

where ecr) = (L?j-l)n/d+’ . 
3 

Let us write 

&d 04 
3 

=A+2cos8. T. 
J 

Then, to solve Eq. (3.6), we set 3 = -z'",' and repeatedly solve 
2 

($4 
3 Ej+l = Ej 

for j = 1,2,...,$ . (3.9) 

Thus, 

If A and T are of band structure, it is simple to solve Eq. (3.9). TO 

determine the solution to the eliminated Eq. (3.5), a similar algorithm 

may be used with 

Ab-1 = -5 &) 
j=l J 

(3.10) 

343 



The factorization for A (4 may also be used to compute b-1) in y. 
ryJ 

Eq. (3.3). It is possible, however, to take advantage of the recursive 

nature of the polynomials p (a,t). Let 
2r 

P,(a,t> = -2P cos se, 

,where, again, for t + 0,-a/t = -2 cos 8. 

Then a short manipulation shows that 

ps(a,t) = -aps_l(a,t)-t2Ps-2(a,t), s 2 2, 

POb,t) = -2, Plb,t) = a a 

Therefore, to compute A(r)x'$') as in Eq. (3.3), we compute the following 

sequence: 

JJs= -Aps,l -T2f3s-2 for s = 2,3,.*.,S e 

Thus :, 

= P 
z2r 2r 

(4 @,T);Ls f A(T)$) . 

We call this method the cyclic odd-even reduction and factorization 

(CORF) algorithm. In Section 10 we will show that the numerical calcula- 

tion of v(r) Zj in Eq. (3.3) i s subject to severe rounding errors in many 

cases of interest. Consequently, numerical application of the results 

of this section must be accompanied by close attention to the results of 

Section 10. In fact, from a computational viewpoint, the CORF algorithm 

as developed here is virtually useless; however, the theoretical results 
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of this section are necessary for the development of the stable, Buneman 

variants of am?. 
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4. Poisson% Equation with Dirichlet Boundary Conditions 

It is instructive to apply the results of Section 3 to the solution 

of the finite-difference approximation to Poisson's equation on a 

rectangle, R, with specified boundary values. Consider the equation 

U +u = 
YY 

f(x,y) for (x,y)cR , 

U(X,Y> = &,Y) for (x,y)GR . 

(4*1) 

(Here aR indicates the boundary of R.) We assume that the reader is 

familiar with the general technique of imposing a mesh of discrete points 

onto R and approximating Eq. (4.1). The equation uxx + uyy = f(x,y) is 

approximated at (x,,yj) by 

V i-1,j - &,,j + vi+l,j + 
Vi 

. 
-1 - 2vi . + vi . ,j+l 

(Ad2 t&J2 

= fi,j 
(lsirn-l,lgj smm-1), 

with 

V 
o,j = &o,j' vm,j = gm,j (1 5 3 g m-11, 

and 

v. =g i,O' Vi,m = @;i,j 
(1 g i s n-l). 

1'0 

Then vi3 is an approximation to u(xi,yj), and fi j = f(xi,yj), Y 

Q. 4 = g(xi’Yj) l 
Hereafter, we assume that 

m = zk+’ . 
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When u(x,y) is specified on the boundary, we have the Dirichlet 

boundary condition. For simplicity, we shall assume hereafter that 

Ax = Ay. This leads to the system of equations 

Where s is of the form of Eq. (2.1) with 

A= 

-4 1 

I 
1 -4 * 
0 

1 0 . . i 1 
1 -4 

I (n-l) x (n-l) 

and T = In,1 . 

The matrix InWl indicates the identity matrix of order (n-l). A and T 

are symmetric and commute, and, thus, the results of Sections 2 and 3 

are applicable. In addition, since A is tridiagonal, the use of the 

factorization (3.10) is greatly simplified. 
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5. Neumann Boundmy Conditions 

When the normal derivative, g, is specified on the boundary, we 

have the Neumann boundary condition. Assume that 

22 = g(x y) 
an 9 when (x y)ebR Y . 

We make the approximation 

& 2 u x+fb,y - u x-hx,y au l u X,X+ &) - u x,y-Ay) -= 
2&? 

. 
ax 2Ax 9 ay 

This approximation leads to the matrix equation 

where % is of the form 

Here, 

A 2T 

T A T 0 
. . l 

0 
. . . 
T . T 

2TA 

T 

-4 2 

1 -4 

. 

0 L 

1 

. . 

. . 

1 

0 . 
-4 1 

2 -4 

. 

Y T 
= I,+1 l 

(n+l) x (n+l) 

(5.1) 
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A@n A and T commute, but s no longer has the structure given by 

Eq. (2.2). Therefore it is necessary to modify the algorithm of Section 3. 

From Eq, (5.1)' we see that 

TV -j-l -j f AV + ~~j+l = Z. Y 
J 3 = 1,2,...,m-1, 

Performing the cyclic reduction as in Section 3, we have 

(2T2-A2)~ + 2Tv2 = -A& + 2Ty, , 

T2v wj-2 + (2T2-A2)~j + T2v -j+2 = T(xj-1 + x-j+l) - AXj 3 

j = 2,4,...,m-2 , 

mm 2 + (2T*-A2)& 
= ~iY& - %& l 

(5.2) 

The similarity of Eq. (5.2) to Eq. (3.1) should now be evident. Since 

Eq. (5.2) is of block dimension 2k+l, after k steps we have the system 

r 
Ack) 2dk) 0 

0 2T(k) Alk) 

and a final reduction yields 

L 

V wk 2 

x2k+l 

= 

\ 

(k) 
x2k 

(k) 
x2k+l 

[4(T(k))2 - [A(k))2]z2k = T(2) +$!lj - $) . 

I- 

Y (5.3) 

(5.4) 
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Equation (5.4) is equivalent to writing 

where P($ (A,T) is again a polynomial. of degree 2k+1 in A and T. 

Note that from Eq. 6.8),- 

p$,lb,t) = 2-t2 '+' - [p$)(a,t)]' , r = O,l,...,k-1 , 

and from Eq. (5.4)' 

k+l 
lN) (a,t) = 4t2 p2k+l 

Therefore, since p $(a,t) = -2-t 2k Co8 2k0 , 

$!J.lb,~~ = (a 
2k sin 2ke 

> 

2 
, 

and, thus, 

piil(a,t) = 0 when a/2t = -cos $ for j = 1,2,...,2k+1 . 

Consequently, we may rewrite Eq. (5.5) as 

A + 2 cos eck+')T z2k = -$"' , 
3 1 

(5.5) 

(5.6) 

where Gik") = jn/2k. Again, ~~~ is determined by solving 2k+1 tridiag- 

onal systems. The other components of v are solved in the manner indicated H 

in Section 3. 
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Xote that the application of matrix decomposition to this problem 

only requires the modification of the tridiagonal matrices ri in (2.8); 

i.e., the first super-diagonal and the last sub-diagonal elements must 

be 'Wi . 

It is well known that the solution to Poisson's equation is not 

unique in this case. Therefore, we would expect the finite-difference 

approximation to be singular. This is easy to verify by noting that 

where e T = (1,1,...,1). In addition, one of the systems of the tridiagonal 

matrices in Eq. (5.6) is also singular. On a uniform mesh, the eigen- 

values of (A + 2 cos 8 T) 
j 

satisfy the equation 

X&A + 2 cos ejT) =4-2cos(~)+2cos(~) 

(I = 0,1,2,...,n; j = 1,2,...,2k+1). 

Then X0 = 0 when j = 2k, Similarly, one can show that To of matrix 

decomposition is singular. Normally, the physics of the problem deter- 

mines the coefficient of the homogeneous solution for the singular case. 

5-4 



6. Periodic. Boundary Conditions 

In this section we shall consider the problem of solving the finite- 

difference approximation to Poisson's equation over a rectangle when 

U(Xo,Y> = U$.pY) , 

UhYo) = u(x,y,> l 

The periodic boundary conditions Eq. 

where 

A T 0 

0 . . 

T 0. 

and 

1 -4 1 0 -4 1 . 0 1 . 

A= 

1 
l 

. 

0 

1 . 

. 

. 

. 

. 

. 

. 

a 

0 

. 

. 

. 

. 

(6.1) 

(6.1.) lead to the matrix equation 

(6.2) 

. 0 T 

l . 0 

0 . . . 
. . 0 

T A T 

0 T A 

. 0 1 

. . 0 

0 . . . 
. . 0 

1 -4 1 

0 1 -4- 

= Y T In. 

6-1 



Note that MP is t'almostlt an m block tridiagonal system and, similarly, 

A is "almost" an n xn tridiagonal matrix. The cyclic reduction can again 

be performed on Eq. (6.2)’ and this leads to the reduced system 

(2T2-A2)~2 -b T2a + T2& = T& + x3) - $ , 

T2xajB2 -I- (2T2-A2)& + 2 TV "j+2 = '(y-j-1 + ;Lj+l) - Qj Y 

(6.3) 

j = 2,4,...,m-2 , 

T2x2 + T2& 2 + (2T2-A2)h = T(sl, + hml) - A$&, 4 

The similarity with the previous cases is again evident. Equation (6.3) 

has block dimension 2k. After (k-l) reductions, we have 

A(k-l) T (k-1) 

(k-1) = 
T(k-l) A (k-1) 

MP 
0 T b-1) 

T(k-l) o 
L 

and, finaLly, after k reductions, 

A(k) &) 
i =(k) A(k) 1 : 

z2k 

0 T(k-li 

Ttk-‘) 0 

,&k-l) T(k-l) 

- 

= 

qk+l 
1 

From Eq, (6.4)’ the final equation becomes 

J 

- 

! 

. 
1 

(6.4) 
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which is equivalent to 

The analysis of the factorization of 

the Neumann case, including the fact 

polynomialmustbe singular. 

Again the application of matrix 

$$A,T) is identical to that 0f 

that one of the factors of the 

decomposition to (6.2) is straight- 

forward; however, the resulting Ti matrices are no longer tridiagonal 

since wi appears in the (1,n) and (n,l) elements. Standard algorithms 

for solving tridiagonal. systems can be modified to solve these systems 

such that storage of the f'ull nxn matrix is avoided. As above, one of 

the Ti will be singular. 
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7. Higher-Dimensional Boblems 

it is not difficult to extend the applications given in Sections 4, 

5, and 6 to higher-dimensional problems. We show this by a simple example. 

Consider Poisson's equation in three dimensions over the rectangle R: 

U 9-u +u 
YY 

zz = f~X,Y,~) (x,~,z)~R . 

U(X’Y’4 = dX’Y’4 (X,Y&bR * 

Again, we assume that the mesh is uniform in each direction so that 

X i+l =xX. +Ax 
1 

0 = O,l,...,n) , 

'j+l = 'j +& (3 = O,l,...,m) , 

za+l = ZA + AZ (a = 0,1,..., P> . 

At the point (xi,yj,zQ), we approximate u(xi,yj,zQ) by vi j a. Let Y Y 

Y 
where 5,a = 

v2,j,a 

. 

. 

. 

vn-l,j,J 

. 

Assume that the usual finite-difference approximation is made to uss 

for fixed (x,y,z), namely, 

uzz(x,y,z) ; u(x,y,z-AZ) - 2up,y,z) + u(x,y,z+Azl . 

(Ad 
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It is then easy to verify that for A = 1,2,...,p-1, 

=tHw +w =f "Na-1 -a 4A-l 4 ' 

where L and w+ are prescribed by the initial conditions and zJ is a 

function of the given data. !l?hus, again, we have a block tridiagonal 

matrix, and can use the previously developed methods. Note, also, that 

H is a block tridiagonal matrix so that one can solve any of the eliminated 

systems of equations by applying the CORF algorithm repeatedly. Other 

boundary conditions can be handled in the manner prescribed in Sections 5 

and 6. 
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8. Further Applications 

Consider the elliptic equation in self-adjoint form 

a(x)ux x f fJ(y)u, y + U(X,Y) = q(xYy) ’ (X,Y)& Y 
* 

U3.1) 

UkY) = g(x,y> , (XyYbaR l 

Many equations can be transformed to this form. The usual five-point 

difference equation when hx - Oy lea,ds to the following equation: 

-&i+1/2 vi+l,j " "i-112 vi-l,j - B j+1/2 vi,j+l -P j-l/* vi,j-l 

(8.2) 

+ i 'i-!-l/2 + ai-1/2 +0 j+l/2 -+ Bj-1/2 - (b> ] *V 
i,i.i 

' "(~)2 9i,j Y 

where 

“iti/ = U(Xi Zk 1/2h) > ej+J/2 = B(yj * &) ' 

u -i,j = cl(xiYYj) ' 

If the equations are ordered with 

V= 
P.4 

21 

22 

. 

. 

. 

L-1 

8-n 



the linear system of equations Mv = $ will have the block form N 

A1 Tl 

Tl *2 T2 0 
. . . 

I- 

Here 

+ 

0 . . T m-2 

T A m-2 m-l 

v1 

v2 

V m-l 

r 
A. = 

J 1 Bj+1/2 + Bj-l/2 - b) ] 21 

al/2 + '312 -a3/2 

+ 

-‘3/ 2 a3/2 + a5/2 -a5/2 

. . 

-0 i 

Tj = 'j+1/2 I ' 

Now suppose we have the decomposition 

QT C Q = ;P , 

7 

. 

d m-l 

0 
-an-3/2 

a~-3/2 + an-1/2 
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T wcei~e Q Q = I and diag(zP) = (%,co~,...,Q~-~). Thus, 

Ii = yj + poi , (i = 1,2,...,n-1) , 

= xiJ * 

As in Section 2, we define _ 

zj = QTxj , zj = Q*~j ) 

and after a suitable permutation we are led to the equations 

l-G =a - 5-i 4 , i = 1,2,...,n-1 , 

where 

I- = i 

A zi = 

@3/2 Ii,2 

. 

0 

'512 

L 

0 
l 

a . 

. . 

R 

m-3/2 

a = 
4 

Bm-3/; 

1 i,m-I 

'i.2 

3 

-i 

1 
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Thus, the vector ti satisfies a symmetric tridiagonal system of equations. 

Again, once G Ni is computed for all i, it is possible to compute 5 

Lynch et al 10 have considered a similar methods, but their algorithm 

requires more operations. Unfortunately, it does 

use the methods of Section 3 on Eq. (8.2) in this 

Now we may write the equivalent to Poisson's 

in cylindrical coordinates as follows: 

(r ur)r + r-1 u8* = s(r,e) , 

and 

(r uJr + r uzz = t(r,z) . 

not seem possible to 

situation. 

equation in two dimensions 

The matrix A will still be tridiagonal, and T will be a diagonal matrix 

with positive diagonal elements. We may make the transformation 
N 
v. = T 112 
"J Zj' and are thus led to the equations 

N + +I2 A T-l/q + ; 
-5 -j +1 

= f1i2 

Thus, by ordering the equations correctly and by making a simple trans- 

formation, one can apply the cyclic reduction and the CORF algorithm to 

solve the finite-difference approximation to Poisson's equation in 

cylindrical coordinates. 

Another situation in which the methods of Sections 2 and 3 are 

applicable is in using the nine-point formula to solve the finite- 

difference approximation to Poisson's equation in the rectangle. In 

this case, when Ax = Ay, 
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A= 

T = 

-20 4 

4 -20 

. 

-0 

i 

4 1 

14 

. 

0 

. 0 

. . 

. . 4 

4 -2 

. 0 
” . 

. . 1 

14 

(n-l) X (n-l) 

. 

(n-l) x (n-l) 

It is easy to verif'y that AT = TA, and that the eigenvalues of A and T 

are 

. 
Xi(A) = -20 +8 COST > 0. = 1,2,...,n-1) , 

L(T) = 4 + 2 cos g ) (i = 1,2,...,n-1) . 

Because of the structure of A and T, the fast Fourier transform may be 

employed when using the methods of Section 2, 

We leave as an exercise for the reader the application of the methods 

in Sections 2 and 3 to the biharmonic equation. 
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9. Non-Rectangular Regions 

In many situations, one wishes to solve an elliptic equation over 

the region 

We shall assume that Dirichlet boundary conditions are given. When Ax 

is the same throughout the region, one has a matrix equation of the form 

where 

I- 

1 

A T 

T A. 

x(2) 
N 

0 . . T 

T A 

(9.1) 

> H= 

B S 

S B . 
0 

. 0 

. l 

. . 

S 

S 

B 

. (9.2) 

Also, we write 
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x(2) = 
N 

We assuxe again that AT = TA and BS = SB. 

From Eq. (9.1), we see that 

8.nd 

0 

x(1> = G-l x(1) _ G-l 0 H 
r! 

. 
l 

. 

xt2> = H-l x(2) _ H-l 
ly 

Now let us write 

, HZ(~) = xc2) , 

I 
0 

0 
. 
. 
. 
P 

fT&p) = 

& 2) 

(2) h 

:: 

. 

. 

. 

J43 (2) 

x$ . 

r 
PT 

0 

0 
. 
. 
. 
0 

. 

. 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

(9.7) 
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Then as we paHition the vectors z 0, p and the matrices W (1) 

and WC2) as in Eq. (g-3), Eqs. (9.4) azd (9.4) lmome 

For Eq. (9.8), we have 

I w(1) - 
r 

wi" I 

. (9.8) 
(j = 1,2,...,s) . 

I = (1) - s 

(2) % 

. 

This system of equations is two-cyclic, so we may reduce the system to 

I r 1-T S 
_ w(1) w(2) x(1) = (1) _ w(l) zi2) . 

r (9.9) 

This system of equations can most easily be solved using Gaussian elimi- 

nation. Once the two-cyclic system of Eq. (9.9) has been solved, all. 

other components may be computed using Eq. (9.8) or by solving the system 



If System (9.1) is to be solved for a number of different right-hand 

sides, it is best to save the LU decomposition of 

c _ w(1) wo 
Irl' I) 

Thus, the 6L.gorith.m proceeds as follows. 

1. (1) Solve for s and zi2) using the methods of Section 2 or 3. 

2. Solve for W (1) 
r and Wi2) using the methods of Section 2 or 3. 

3. Solve Eq. (9.9) using Gaussian elimination. Save the LU 

decomposition of Eq. (9.10). 

4. Solve for the unknown. components of 2 (1) and x(~). cy 

(9.10) 
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10. Accuracy of the CORF algorithm .-111 

As will be shown in Section 11, the COW algorithm and the Buneman 

algorithms are mathematically identical. The difference between the 

methods lies in the way the right-hand side is calculated at'each 

stage of the reduction. To the authors' knowledge, this is the only 

direct method for solving linear equations in which the right-hand side 

of the equations plays an important r^ole in the numerical solution of 

the equations. In this section, we show the difficulties encountered 

in using the COW algorithm. In Section 13, we will prove the stability 

of the Buneman algorithms. 

Recall from Section 3 that it is possible to compute A(r)y(r) 
-4 

.by the following algorithm: 

,s E 9 -AJs-l. - *2>s-2 

so that 

(10 :l> 
for s = 2,3,...,2r 

.J?,r 
= A(T)y(r) , 

-j 
. 

. Because ofround-off error, one actually computes the sequence 
. 

k = -2$) , jl = A$) + :. 
(10.2) . 

is = -Ajs-l - T2 js4 + ts-1 (s = 2,...,27 ) 

10-l 



. where 6 is the perturba't;ion induced by the roundoff error. Again ,s * 

as in Section 2, iie write 

A=QAQT j T=QnQT (10.3) 
. . 

where & is the set of orthonormalkzed eigenvectors of A and T ) 

and A and 0 are the diagonal matrices of eigenvalues of A and T , 

respectively. Thus, substituting Eq. (10.3) into Eq. (10.2), we have 

(i0.b) 

(10.4b) 

where 

Because A and G? are diagonal, we may wri.te an equation for each 

componen-1; of & ; namely, 

!t j,s+l CA.6 +u.l* 
J j,s j 'j,s-1 = 'j,s (j = 1,2,...,p) . (10.5) 

The solution of Eq. (10.5) can be given explicitly. Consider the 

characteristic equation 

which has roots @. 
J 

and yj , then 

10-2 
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'j,k 
when Bj ~ 7j (lo. 64 

s-l = sp. 
J 5 

j,l- ('-l)B5 5j,O +tl (s -k)p;-"-I -rj k when f3 
k-l > 

j - yj . (10.6b) 

Let : 

Aj/2Wj = cos 0. 
J 

when 1Xj/2~jl ,< 1 

= cash z. when 1 g J 1Xj/2tijl 2 

Then using the initial conditions of Eq. (lO.ba), we may write 

Eq. (10.6a) as 

s-l s k 1 sin (s-k)Q. 

‘j,S = -2~~ COS( S Qj)yj ’ z: u)j- - 

k=O 
sin Q --b 

3 W 

when IXj/2ujI <1 

-2~; cosh(s zj)yj + 'fl u;-~-' 
. sinh (s-k)z 

3 = 
k=O 

sinh z 
j 'W 

Note that 

(10=(b) 
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Q . 
3 

f Ps(‘j,“j) 
z 

j 

(7.0-A) 

given in SeCtio;l 3. Thus 

(10*9> 

where 

sin m 0 
2 

sin Q when IXj/2~jI < 1 and i = j 
3 

sinh m z 
j 

sinh z when ihj/2~jl >l and i= j 
j 

=o for i / j . 

Therefore, if. Ihj/2~j( > 1 , the effect of the round-off 

error can be catastrophic. However, if lhj/2Wj f ,< 1 , we see from Eq. 

(10.9) that i 
-2' 

may be a good numerical approximation to fw$) . 

We now apply the above resul.ts to Poisson's equation with 

Dirichlet boundary conditions.. For the five-point difference operator 

with mesh width Ax in the x-direc-tj.on and Ay in the y-direction, 

we have 

hj = -2[l + p2(l - cos $+,I , (oj = 1 
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and 

p = b/44 or (&/M, 

depending on how one orders the equations. By inspection 

I~,Pw; I ’ J J 

for all. j, and hence 

unstable algorithm. 

1 

as s increases, equation (10.1) leads to a numerically 

A similar result holds for the nine point difference 

approximation to Poisson's equation. 

Although the above results were obtained under the assumption of 

(lO.l), similar results will be obtained regardless of how A (4 $4 is 

computed. The problem is that A (4 3 
becomes very ill-conditioned as r 

increases. For the five point approximation, the ratio of the largest 

eigenvalue of A (4 to its smallest eigenvalues is 

r 
w; cost1 (dz,) 

- g (3.& . 

w$osh @'z,) - 

Given t-digits of arithmetic, it will generally be impossible to represent 

r! in t-digits whenever 
-r 2 

2r(zn-zl) 2 t . 

As noted in Section 3, Hackney 2,g has combined one or more steps of 

odd-even reduction with the Fast Fourier transform to produce a Poisson 

solver. The above analysis allows one to determine the number of reductions 

that can be safely performed, and careful attention must be given to it. 
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39 
&A.. The Buneman algorithm and variants 

2 
In this section, we shall describe in detail the Buneman algorithm 

and a variation of it. The difference between the Bunemsn algorithm 

and the CO?3 algorithm lies in the way the right hand-side is calculated 

at each stage of the reduction. Henceforth, we shall assume that in 

the system of Eqs. (2.5) T = IP , the identity matrix of 

order p . 

.Again consider the system of equations as given by Eqs. (2.5) with 

q zz 2k+Ll . After one stage of cyclic reduction, we have 

(j-2 +(21 - 
P 

fi2)Zj + x ,j+-2 = xj-1 +Y - Ay. -j-t1 -J (11.1) 

for j = 2,4,...,q-1 with ,x0 = xq+l = 8 , the null vector. Note that 

the right hand side of Eq. (11.1) may be written as 

(1) - 

yl. 

$ y -Ay. =A (l)A-ly + y I- y - 2iily (11.2) 
-< - Yj-1 -j+l -J -j -j-l -j-t1 -2 

. where A(') = (21 
P- 

A2) . 

Let us define 

p(Q 
4 

= & (1) 
.-ii ' _Sj = _Yj,l +Y -j-+-l 

Then ,. . 

(1) 
Yj 

= A@) p(1) + q(1) 
-4 -4 

. (11.3) 
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After r reductions, we have by Eq. (3.3) 

Ej 
b-i = (y(') + $1 ) _ &j(r) $) . 

"j-2' 2r 

Let us write in a fashion similar to Eq. (ll.:), 

b 
Yj 

r Jr) p(‘) + q(r) 
4 -2 

. 

(11.4) 

01.5) 

Substituting Eq. (11.5) into Eq. (11.4) and making use of the identity 

(A(r))2 = 21 -A(rtl) from Eq. (3.3), 
P . 

we have the following relationships: 

b-4 = p(d _ 
Pj 4 

(Ab>)-l(p(r) ,. p(r) _ q(r)) 
-j-2' 4 -4 -j+, 

(11.6a) 

(r+l> 
Sj 

r q(T) + qw ^ +(1-1-l) 
lj-2r -j+21‘ -J 

(11.6b) 

for j = i2r+1 (i = l,2,...,2k-r-l) with 

To compute (A (r))-l(~~rl + per) - q!r)) in Eq. (11.6a), we solve the 
J-2r "j+$ -3 

system of equations 

Jr) (rp(r) _ p(*l)) = ,b) + ,b9 _ qb-) 
-4 j 

Y 
'I "j-PI‘ -jt2' -J 

11-2 



I 

* where A (r) : . . is given by the factorization Eq. (3.10); namely, 

2r 
&) = . fl (A -i- 2 cos 0;') Ip) , 

j=l - 

*tr) = (2j - 1)X/2"m1 l , 

3 

After k reductions, one has the equation 

A(k) 
X2k 

= A(k) p(k) + q(k) 
w2k w2k 

and hence 

(k! 
T2k = ?,k 

+ cA(1’) j-1 q(k) 
u2k 

. 

ion if A(k) for computing (A Again one uses the factorizat 

To back-solve, we use the relationship 

A('+x - p(r)) = q(r) - (x 
-j -j 

+ x 
-4 "j-2' 

r> ) 
-j-t-2 

(11.7) 

X f ACT) c”~ + x . 
"j-2' - j+2' 

= +) 2;" + q -ir’ 

for j = i2' (i = 1,2,...,2k+1-r-l) w:th. z. = x N2k+l = ! . 

For 'j = 2r,3.2r,...,2k'1-2r , we solve the system of equations 

using the factorization of A (r) ; hence 
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= ,(I:? .I. (x _ p(r) j 
Zj +.j -j -j 

(11.8) . 

Thus the Runeman algorithm (varziant I-) proceed.s as follows: 

1. Corqmte the sequence {pw ) q!")] . 

r= 1 W)"j 

-4 
hY Eq. (l.l.6) for 

,...>k with p. - Q 
-3 - 

for j = 0,...,2 
k-l- 1 

, and 

. z;O) = y. for j = 1,2,...,2 
k+lml . 

-J 

2. Back-solve for x 
-3 

using Eqs. (11.7) and (11.8). 

It is poss-ible to eliminate the sequence ?hOm Eq. (11&b) 

we note that 

where 

Usri.ng Eq. (11.9) in Eq. (ll.6a) and modifying the subscripts and superscripts 

appropriately, we have 

) (r-1.) b-1 
^ %j+h ' ?j-t2h ' 

1 

+ p-l) 
,j+h 

(11.10) 
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. 

f:‘:;y j = (2',2'tl,.*,i2k~l-2rj wit11 

for j- 1,2, 2k+ll '..) - > 

(1) - q. -J - Tj-I- 
+ y 

-j-l-l - 2A 
-1 

Yj for j = 2,4,...,2 k-U2 
. 

-. 

To solve for x. , 
-3 

we use the relationships Eqs. (11.7) and (11.9) so that 

I (JJ’y-(x 
,j-2h 

q . ' xj+2h - ?,j (ll.11) 

Thus the Buneman algorithm (variant 2) proceeds a.s follows: 

1. Compute the sequence b-1 {_sj ] by Eq. (11.10) for r = 1,2, . . ., k . 

2. Back-solve for x ~j using Eq. (11.11). 

n'o'tie that-'i the Buneman algorithm (variant 2) requires half the storage 

-?,hnt the Buneman al.gori'ihm (variant 1) requires. However, the 

~ari.ant 2 algorithm requires approximately twice as many additions. 
: .- : 

The p. *s and q. ?s can be written in terms of the x. 's. In 
-J -J -J 

Eecti.on 1.3, we sha.11 show how this affects the stability of the methods. 

30:; e 
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and 

p(l) = A-1 

-j 
= x + A-l(x 

Zj -j ,-j-l + "j-k1 > 

(1) 
-4j = zj-1 +Y - 3);" _ j+l. * 

= ~j -2 - (A>-’ A”) (“j-1 + Xj.+.i) + z-j+2 l 

By an inductive argument, it is possible to show that 

,cr) = x $- (-1)"' SC') 
-4 -4 

1 (:j (2k 1) + Fjt(pk-1)) 
- - 

> 

(11.12) 

and 

4(r) 
i 

=x + (-1)' scr) A(Y) r J (lis13) 
-c "j-2' 

(Xj-(ek-]-) ' _Xj+(2k-l)) + x 

> 
-j+2 

where 

&) =I (A (-1) A(r-2) . , , A(oi)-1 . 



12. Auplications of the Buneman algorithm to Poisson's equation 6 .' 
As was pointed out in Section 4, matrices of the form of Eqs. (2.5) 

arj.se in solving the five-point finite difference approximation to 

Poisson's equation over a rectangular region With Dirichlet boundary 

conditions; hence, it is -possible to use the methods of Section 11. 

For the five-point approximation to Poisson's equation over a rectangular 

reg-ion with Neumann or periodic boundary conditions it is necessary to 

modify the Buneman algorithms. 

For the Neumann boundary conditions, we have the system of 

equations 

%O +2x 
-1 = ,yo 

+ Ax Zj-1 ..j + ,Xj+l = Tj (j = 1;2,...,m-1) , 

2x 
-m-l t-Ax = ,Ym 

with m = 2k'1 . 
,m 

We define 

0) 
?Ij = A(l)fi‘sl) + q(l) 

-j 
for j = 0 2 4 

J J J ’ “J 
2k-U 

where 

(1) 
20 

= A-l (1) 
,Yo J 20 

= 2(_yl - go ? J 

(1) 
Pj 

zz A-1 (1) 
Yj ' 4j = zj-1 'Y - 2-p 

-j+l -j 

p(l) = A-1 y (1) 
Jn ,m J%tl = 2(,ym-?L - Frn (1)) 1 

12-l 
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In general Mien, as in Se&Lion 11, we have for r = 1,2,...,k-1 

where 

(r-l-1) 
EO 

=p( ) 
-0 

r ^ (R(d )-y2p(d _(p) J $+l) = qqw $+l)) 
-2r -2r 

b+l) 
Pj 

=p( ) 
2 

r _ cA(r) y-l(p(r) + p(r) _ qb)) , qb+l) = qW + ,(4 _ .+Jr+l) , 
-j_2r -j+$ -J .A -* 9 J-' -j+pl’ .-,J 

for j = i2 r+l (i = 1J2J...J2k-r-l) 

P hfl> 
.- m 

=p( ) 
-rn 

r I (J’))-+2pb-) 
LIm ,/Q)) J $+I) = 2~~~pp~~l) , 

F ir&Lly,, 

(k+l) 
'k 

= B(k+l) ,(k+l) + q(k+l) , 
-2 s2k w2k 

where 

tick+‘) = 41 _ (A(“))~ 

@+l) 
??,k 

- (*k) -ypCk) (k) 
-0 

W) , 
+ -P2k+l - ?,k 

(12.1) 

(12.2) 

(k+l) 
:,k 

= q(k) (k) 
-0 

- 4p(k+l) . 
+ z2k+l w2k 
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FrofiEq. (5.&>, we see that 

B(k-KL)x 1= ,(k+l),(k-+l) + q(k-bl) 
'-I --C' d w2k ,2k 

(124s) 
,x,k = p2k 

+ (B(k-+-l))- q(k4-l) , 

w2k 

Ck+sj, - (k+s) (P \ :.I) 1 9.k in.dica.tes a solution to the singular system 
-2 

Ax, t- +- 
CL ‘2 + fm = 5 

x 
-j-3. 

t- Ax + 
3 

x 
-j-i-r 

= yj Z-OTC- j = 2,3,...,m-1 ,, -, 

X 
-1 

+ x ,.m-1 + Ax. ,.m = ,ym " 

3.2-3 



P cn
 

Ii P 
A 

. 
. 

- 
.’ 

p.
 

.’ 

!I 



w-u -- p F*k &pk 
- @) j-L;rr(“j - cl(k)) , &k+l? = ,,(k) _ i+p(k+l) 

.-2kU -2k -zk 
M2k+l w2k 

and #-i.) is de5Xned by Eq. (12.2). Then 

$pl), 
,2k 

= #+I) ph-bl)., $+:I 
-2 k 

"$ 
(k-s) 

- ',k 
t- $k’+ ,(k+l) . 

w2k 

'The back-substitution process proceeds as in Section 11.. 

It is possible to express (4 p. and a(') in, terms ol" X. as i.1; 
-2 Lj -3 

Eqs. (11.1.2) and (il.S:,). 
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13. Accuracy of the Buncman .Alg&ithms 

As was shown in Section II, the Bunemsn algoriihms c0nsis-L of 

, 

(13. la) 

-J 
(-#-+l 

(x +x 
“j-2’ “j+zr 

N 
2 

,< \p *(‘)~I 11 x 
,2 - 

(13.2) 

(1 7 7 
9 J-1 

II’ 9 ( 0.5) 

Ii ‘J Ii2 indicates the Euclidean norm of a ve~i;or v > 

IP II, ,- indic3,tes the spectral now0 of a matrix C , and 
L 

II s II’ = f ll~jll2 ” 
j=l 
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. When T.= 1. 
P' 

we may- redefine the polynomials given in Sectior; 3 

i.n -the following way. Let 

$ = -a./2 ,- 

and def-ine 

* - cos 0 for ]$I 5 1 

= cash Q for I$1 2 1 . 

Then in a similar fashion Lo Eq. (10.8), 

p 
2k 

(a) = -2 cos(ek COS-l q) for I$] 51 

= -2 cosh(2k co&?- j,) for [$I 2 1 . 

=tb y??] I[P2j(Ai) I-“] 9 
i _. 

. 
where {X5] are the eigenvalues of A . Therefore,for IA 1 i L2, 

where 

3.52 



ji,ir) A(d/j, 
2 
= 2-73-1 

r-l 
! >! max 

Iail 
-i-f- [co& 2'j ii!-') x cash 2r 4 
j=O 

when lh,l ,> 2 w 

For the five-point difference approximation to Poisson's equation 

over a rectangillar region with Dirichlet boundary conditions 

hi = -2(1 -t p2(l -.os-$y, ) 

where p = Ax/Q or (Ay/Ax) depending on the orderj.ng of the 

equ3,tions. Thus 

Qi = cash-l(l + p2(l - in cos - p IL)) + 

~kicin iq-J%es 8. > 1 for all i . Then 
1 

max [cash 2' Qi] -' = [cash 2j {cash-' 
'8 -I C_ iJ 

'(1 -t p2(1 - co:: &))I 1-l * 
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Thu$ after some simplification, 
: 

, 

-cQ 1 -cQ e < e 1 
7 

r-l 

II ( 

,$'Q 

l+e 3 
j=;o 

(1.3.6) 

where c = 2r-l, cash 8 1 = 1 -I- p'(i - cos 

A siml.1a.r calculation shows 

<2e QP . . . 
2 (13*7) 

Therefore from Eq. (13.6) we see that for large r, z\r) will be a 

good approximation to x. . And from Eqs. (13.5) and (13.7), we see that 
-J 

/I,(r) - (x + x II 5 2e Qp 
4 -j-2' "j+2' 2 

II ,” II’ ’ 

so that the 1,~~ ' (%;( rezains bounded throughout the calculation. This 

e;mlains why the"Buneman algorithms lead to numerically stable results 

for solving the finite difference approximation to I'oisson's equation. 
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14. ConcILusion 

Numerous applications require the repeated solution of a Poisson 

equation. The operation counts given by Dorr5 indicate that the methods 

we have discussed should offer significant economies over older tech- 

niques; and this has been verified in practice by many users. Computa- 

tional experiments compa.&.ng the Buneman algorithm (variant one), the 

PI? algorithm, the Peaceman-Rachford alternating direction algorithm, 

and the point successive over-relaxation algcrithm are gi.ven by Buzbee, 

et al." We conclude that the method of matrix decomposition, the Buneman 

algorithms, and Hackney's algorithm (when used with care) are valuable 

methods. 

This pa-per has benefited greatly from the corrsnents of Dr. F. Dorr, 

Mr. J. AILan George, Dr. R. Hackney, and Prof. 0. Widlund. 
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