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ABSTRACT 

Canonical field theory predicts that a zero mass scalar field theory 

with a ~~~ interaction is scale invariant. It is shown here that the re- 

normalized perturbation expansion of the A$ 
4 theory is not scale invari- 

ant in order h2Q Matrix elements of the divergence of the dilation current 

DIJ,(x) are computed in order h2 using Ward identities; it is found that 

@f(x) is proportional to h2G4(x). It is also shown that the dimension 

of the field e4 differs from the canonical value in order A and that this 

result leads one to expect a h2$4 term in V’D 
P’ 

It is also found that 

matrix elements of the composite field $4(x) in perturbation theory have 

troublesome singularities at short distances which force one to give 
I 

careful definitions for equal time commutators and Fourier transforms 

of T products in the Ward identities involving this field, 
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I. INTRODUCTION 

In a previous paper a new theory of the short distance behavior of strong 

interactions was proposed D 1 The theory involved several unfamiliar ideas, in 

particular the idea of an “operator product expansion” and the idea that the di- 

mensions of quantum fields are changed by interactions between the fields. The 

present paper is one of a series2 designed to make these ideas come alive. 

These papers concern nontrivial problems in perturbation theory or soluble 

models; they show how operator product expansions or dimensions changing with 

the coupling constant are involved in the solution of these problems. 

The purpose of this paper is to study a puzzle in renormalization theory, 

The puzzle is as follows. Normally, when the unrenormalized Lagrangian is 

invariant to a symmetry, the renormalized perturbation expansion for the 

Lagrangian is also invariant to the symmetry. This is true for internal sym- 

metries such as isotopic spin; it is also true of Lorentz invariance. However, 

there is an exception, the exception being scale invariance. 3 For example, the 

unrenormalized Lagrangian for the electrodynamics of zero mass electrons is 

scale invariant (because the only parameter in the zero mass Lagrangian is the 

bare coupling constant e0 , which is dimensionless). However the renormalized 

perturbation expansion for zero mass electrodynamics is not scale invariant. 

The renormalized zero mass perturbation expansion was defined by Gell-Mann 

and Low. 4 The photon propagator in the zero mass theory has the approximate 

form:5 

D(1) = (1~2)~1 [L - (e~,~2~2)en(s2/r2,]-1 (1.1) 

where ‘C is a relerence momentum that is introduced as part of the Gcll-Mann- 

Low renormalization procedure, and c,< is a renormalized coupling constant 
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defined relative to the reference momentum. The reference momentum is 

necessary for without it the renormalization procedure would replace ultraviolet 

divergences by infrared divergences O The form (I. 1) is a sum of leading loga- 

rithms for each order in eK O In contrast if the renormalized perturbation ex- 

pansion were scale invariant; the leading logarithms would be required to sum 

to a power of k20 

A tentative explanation will be proposed here for this puzzle. To simplify 

matters the h$4 interaction of a scalar field @ with zero mass will be discussed 

instead of zero mass electrodynamics. At the heart of the explanation is the 

result (to be derived in Section III) that when a renormalized Heisenberg composite 

field is defined starting from the product r$4(x), the resulting field changes its 

dimension in the presence of interaction. However, the dimension of the 

Lagrangian cannot change, so A must acquire compensating dimensions. Then 

A ceases to be a dimensionless constant, and there is no longer any reason to 

expect the theory to be scale invariant. This is the essence of the explanation 

given in Section III of the puzzle. It will also be explained precisely what is 

meant by a change of dimension for $40 The idea of the constant h changing di- 

mensions however will not be discussed in detail; instead it will be argued that 

the change of dimension of 44 leads to a term proportional to ?,2$4 appearing in 

the divergence of the dilation current, spoiling scale invariance. 

In this paper the scaling properties of the ~q5~ theory will be inferred from 

Ward identities involving vacuum expectation values of the fields 4(x), $4(x), 

and the divergence of the dilation current, called S(x) O These Ward identities 

will be used to calculate matrix elements of the divergence S(x), given matrix 

elements involving only $(x) and e4(x) D It is possible to calculate matrix ele- 

ments of S directly without using the Ward identities; doing so would provide a 
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check on the calculations of this paper 0 A start on such calculations has been 

made by Callan, Coleman, and Jackiw. 
6 Direct calculations of the matrix ele- 

ments of S are not made in this paper because there are many problems involved 

with such calculations which do not appear in the calculation of matrix elements 

of 43 alone., Some of these problems do appear in the calculation of matrix 

elements of G4(x) and will be discussed later. But as far as possible this paper 

relies on uncontroversial Feynman diagram formulae; this is for simplicity and 

to make clear that the breakdown of scale invariance is an inevitable consequence 

of these formulae. 

In calculating matrix elements of the operator $4(x), and in checking Ward 

identities involving these matrix elements, problems arise which can be traced 

to an age-old problem: What does a T product of operators such as T $(x) $4(y) 

mean when x=y? Axiomatic field theorists answer that it is arbitrary in the 

sense that one is free to add any term proportional to a4(x-y) or derivatives of 

S4(x-y) to the T producL7 Other field theorists take it for granted that the 

T product is uniquely defined, without making clear what that definition is. In 

order to get consistent results in this paper it will be necessary to specify a 

definition of the T product which eliminates the arbitrariness. There will be a 

corresponding, precise definition of the equal time commutators which occur 

in Ward identities. It will be shown that under normal circumstances the defi- 

nition of equal time commutators given in this paper agrees with the customary 

one, but in abnormal cases (one of which occurs later in this paper) the two 

definitions do not agree. There will also be circumstances where the definition 

of the T product given here has to be modilicd to include subtractions; an example 

of this aIso occurs later in this paper. The definition of the T product given in 

this paper may or may not be one that field theorists can agree upon; what is 
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essential is that in all future discussions of Ward identities the definition of the 

T product be stated, so that one can handle more easily the kind of problem that 

arises later in this paper. 

In Section II of this paper the problem of defining T products is analyzed, 

with examples showing the pjcoblems that can arise. In Section III, which is the 

heart of this paper, the Ward identities and explicit formulae for vacuum expec- 

tation values of $ and $4 are written down. These formulae are used to show 

that scale invariance holds in order h and breaks down in order h2, to compute 

the dimension of G4 in order A, and to infer that S(x) in order h2 is proportional 

to $4c In Section IV the operator product expansion for G(x) c#I~(Y) is discussed; 

also the dimensions of the composite field +i(x) $j(x) in an isospin one $4 theory 

are computed and shown to be different for the isospin 0 and isospin 2 components. 



II. DEFINITIONS OF T PRODUCTS 

The problem of defining T products will be discussed primarily in terms of 

an example, the example being the T product of two currents. 
8 Consider in 

particular the propagator 

D&P) = / eipex D&x) 
X 

DCLV(x) = <QlTj&x) jV(0)io> vf* 2) 

where jcl is a conserved current in an unspecified field theory and Jx means 

sd4x. The problem to be discussed here is this: How is the integral in Eq. (II. 1) 

to be calculated,assurning the function D /.J ) x is known? This is a question which 

does not arise much in practice since one is more likely to have an explicit for- 

mula for DClv (P) ( via Feynman graphs, or whatever) than for D cL v (x) o However, 

Ward identities are derived in x space and then Fourier transformed to momentum 

space; if one is deriving a Ward identity for DclV (p), then Dpv (p) is defined by 

Eq. (II. 1) and it becomes a legitimate question to ask whether ambiguities arise 

in computing the integral, and how to avoid them if they do occur. 

The reason the integral in Eq. (II. 1) can cause difficulties is that D ,p) is 

singular at x=0; the singularity at x=0 is such that the integral may be conditionally 

convergent or divergent at x=0, If the integral is conditionally convergent, it can 

be defined by specifying an order of integration for the four integrations (over 

the components of x), but the result may depend on which order is chosen. If the 

integral is divergent then it can only be defined by subtracting the divergent 

terms. 

An esnmplc of conditional convergence is provided by a free vector meson 

propagator. In this case it will be shown below that the integral in Eq. (It. 1) 
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gives different answkrs depending on whether the 5 integral or the x0 integral is 

performed first. It will also be shown that the usual noncovariant form of DPV (p) 

is obtained by doing the2 integral first. These results will be shown by using 

one of the standard derivations of the noncovariant propagator and being careful 

when the order of integration is changed. The standard derivation will first be 

stated without being careful; the careful derivation will be given afterwards. 

The non-time ordered matrix element 

(where jP is now the vector meson field) is 

Ppv 04 = 27~ ~tPo)W2-m2) (-gpv + pp p,/m”) (no 5) 

where m is the vector meson mass, $ means (2flW4sd4p, and 0 (x0) is the usual 

13 function.’ The T product D ,,(x) = p,,(x) when x0 > 0; for x0 < 0 

DPV(x) = p,,(-x). The propagator DPV(p) is 

Dpv (p) = /mdx, /d3s e+ip’x Jemiqox PPV (cl) 
0 q 

+I: 1 dxo md d3x eip*x e+iq*x p 
/ VP 

(4 

q 
tn. 6) 

Exchanging the order of integration so that the r integral is done first one gets 

a a-function (either 63(;-~) or a3(rqJ). Doing the q integration next eliminates * 
the 6-function; then one does the x0 integral, leaving 



Using the explicit form for /J pv W gives 

Dpv (P) = [ -gpv + pPp,/m2 
-1 i(p2-m2+iC) - ia 

where 6 
PO 

is the Kronecker 6; the 6 6 po vo term is the noncovariant piece. 

The integrals in Eq. (II. 6) can be done more carefully using convergence 

factors to make all integrals absolutely convergent. The orders of integration 

can then be exchanged legitimately. With convergence factors one has . 

~~~ (p) =(1x0 lar2dr /dQ / [ei(p-q) Ox + e-i(p+q) l x}PPv (s) 
q 

x exp 
{ 

-ax0 - ar - ElgOl - Eld 
-1 PO 9) 

where the 5 integral has been written in terms of polar coordinates (dQ is the 

solid angle differential) o The constants Q! and E (which must be positive) make 

the integrals absolutely convergent D By putting lower limits 7 and 0 on the x0 

and 2 integrations one can study different orders of integration for the x integral. 

Thus to find the result of performing the 5 integral before the x0 integral in 

Eq. (II. 1) , one takes the following limit in Eq, (II. 9) : E- 0 first (to get the q 

integration correct before taking any other limits), Q! -0 second, 8 - 0 third, 

and 77 -0 last. To do the 2 integration last one takes the limits in the order 

E -0 first, then ~-0, then a! -0, then 8-O. 

The integral with convergence factors present can be computed explicitly 

when cz, E, y, and 13 are small, neglecting small terms. The result is 

BPV(p) =D 

(II, 10) 
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where D Spv(p) is the standard form for Dpv (p) given by Eq. (lI.8) 0 If 9 and 0 

are both small but of the same order, the second term is of order 1; terms of 

order ‘I, 0, etc., have been dropped. If 0 - 0 keeping 77 fixed the second term 

vanishes, leaving the standard form; but if 77 - 0 keeping 0 fixed one gets 

Dpv (P) = D spv@) + (ima2) -i gpv + 5 6p06v o (II. 11) 

Hence the order of integration matters in Eq. (II. 1); to get the standard form 

for Dpv(p) one must write 

DClv (P) = Lim (rl rho +/“dxo 
‘I -00 1 

/d3z eipgx D,,(x) (II. 12) 

For any finite 71 the point x=0 is excluded from the integral. However, 

except for this point the function D pv( ) x is covariant (the Fourier transform of 

the noncovariant piece of DClv (p) is proportional to s4(x) and vanishes if x#O). 

So the noncovariance in D 
/AU (I.4 

is entirely due to the noncovariant definition of 

the integral in Eq, (II. 12) 0 This result can be shown directly. If DCLv (p) is 

computed in a Lorentz frame moving in the z direction with velocity v, using 

Eq. (II. 12) in the moving frame, and then Lore& transformed back to the fixed 

frame, one gets (by transforming Eq. (II, 8)) a function D ,,(P,W 

DpV (P, v) = i(p2-m2+ie)-1 
( 
-gcLv+pppv /m2 > -i 

( $lO +v6 3 J t$o+v8v3 ) 
( l-v2)m2 

(II 0 13) 

The function D ,,(p,v) must al so result if one transforms the integral of Eq. (II. 12) 

from the moving frame to the fixed frame. Since D,,(x) is covariant, the only 

change is in the boundary of integration; one gets 

Dpv (P, v) = Lim (rl -00) / o [~xo-yx3( - y~(l-v~)~“] eipox DpI’ (3 
X (II. 14) 
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i.e., the region lxo-vx31 < q(l-v 2 l/2 ) is excluded from the range of integration. 

Since the scale of 77 does not matter one can also specify the excluded region as 

IQ-m31 < rl* The difference between DpI, (p, v) and DcLv (p) must come from the 

difference in the excluded regions. That is 

D&p,v) - D&P) = Lim 
77---O 

(II. 15) 

where Rl is the region 1 x01 < q , 1x0-vx3 I>r) andR2istheregionlxol>q, 

15j-VX31 < rl* 

The regions Rl and R2 both collapse in the limit 7 -0, so for the limit 

q -0 to be nonzero D TV has to be singular within these regions. Both regions 

are spacelike relative to the origin except for a region of linear size q. The 

function DClv ( ) x is singular only on the light cone and at x=0; these singularities 

lie in the region of linear size T, and must be strong enough to overcome the 

small volume of integration. It is worth showing explicitly how the singularity 

of DClv (x) at x=0 results in a nonzero limit, for in doing so one can deduce a 

general rule for when the integral of a T product may be noncovariant. 

The explicit form of Dclv (x) is known; it is 10 

DpvtX) = - -L V V DO(x) 
m2 I-1 v 1 

where D,(x) is the free propagator in x space for a scalar particle: 

Do(x) = J emipox i(p2-m2+ic)-1 
P 

For small x 

DO(x) = - (4~~)~~ (x2-if) -1 (Ito 18) 

(II. 16) 

(II. 17) 
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The most singular term in DPI, (x) for small x is 

D&X) = (2n2m2)-l { -gP,x2 + 4”cIxV (x2-ie)-3 (II. 19) 

Without affecting the limit (If. 15) the regions RI and R2 can be redefined to lie 

within the region 1x01 < t0, -121 < r0 where t0 and r0 are small but held fixed as 

37 -c 0. Within this region both DClv (x) and elp’ ’ can be approximated by small x 

expansions; as will be shown later only the leading terms from these expansions 

contribute to the limit (II. 15) e Only the leading terms will be discussed explicitly. 

Also for simplicity only the 00 component of D flv (0) will be discussed. Approxi- 

mating Doe(O) by Eq. (II. 19) gives 

A = DoO(O,v) - Doe(O) = Lim 
77 -0 

d*x (2n2m 2, 
-1 (-x2+ 4x$ 

- ie (II. 20) 

The regions RI and R2 are now 

RI: lx01 < q, lxo-vx3~ > ‘I, lx01 < to, and I$< r. 

R2: lx01 >q, 1x0-vx31 < 7, IX01 < to’ and 1y< r() 

The 2 integrations can be done explicitly; it is easily seen that terms depending 

on r. will not contribute in the limit q -0, With such terms dropped, the 

integrals have the explicit form 

A = -(2-/rm 1’ 1 1 
+ lr,l -xo+it + rb+xO + rb-XO+ie 



where 

r a = (x0-1)/v (II. 22) 

rb = (xo+q)/v (IL 23) 

(the symmetry for x0 - -x0 of Eq. (R. 20) was used to eliminate integrals with 

x0< 0). The x0 integrals can also be done explicitly; the result is independent 

of to when 17 is small and gives 

A = ( -i/m2) v2( 1-v2)-l (IL 24) 

which agrees with Eq. (II. 13). \ 

The reason one can generalize the above calculation easily is that its quali- 

tative features can all be determined by scaling arguments. The terms in A 

which stay finite for rl - 0 are unaffected by to and rc, and in the leading approxi- 

mation D cl~ (x) depends only on x not on rn’ except as an overall factor. Hence 1 

becomes the only dimensional parameter in the integrals. So to get qualitatively 

the dependence of the integrals on 7 one can replace x0 and ,z by the dimensionless 

variables y. o =x /q, z=s/‘,, and collect factors of q. When y. and2 are of order 

1 the limits defining RI and R2 do not depend on 7. So in Eq, (II. 20) the substi- 

tution gives 

-3 
d4y (277 2 2 -’ m ) -y2+ 4~: 

which is independent of q; the regions RI and R2 are 
11 

(II. 25) 

RI: lyol < 1, IYo-vY31 ’ 1 

R2: lyot > 1, IYo-VY31 < 1 
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Thus from a scaling argument one sees that A will be a constant for 77 - 0 

(however only an explicit calculation can show that the constant does not vanish). 

One might worry about the effects of the light cone singularity (y,= $1 but yofO) 

on the scaling analysis, but one can see by tracing through the detailed calcula- 

tion that the is in x2-ie makes the light cone singularity integrable and does not 

destroy the scaling arguments (provided one does not choose to and r. so that 

ti - ri=O! ) 

The importance of the scaling argument is that if one had extra powers of 

x, or x0 in the numerator of Eq. (Il. 20)) the scaling argument shows that A would 

vanish. This can be verified by explicit calculation. This means that A does 

not change if one puts e lpox in the integral, since the terms pox, (P*x)~, etc., 
. 

in the expansion of e 1p’x do not contribute in the limit q-0. Likewise less 

singular terms in D ,,tx) d o not contribute to the lit-nit. Hence the explicit cal- 

culation gives the more general result 

Doo(p,v) - Doe(p) = ( -i/m2) v2/(1-v2) tn. 26) 

in agreement with Eq. (II. 13) 0 

Even more generally one deduces the following general rule. Let 

TOI 02(0) be a T product of two arbitrary local operators O1(x) and 02(0) 0 

It does not matter whether these operators are scalars, spinors, tensors, or 

whatever * Let 

M(p) = / eipnx <AITO+x) 02(0)IB> 
X 

be the Fourier transform of an arbitrary matrix element of the T product. If 

the matrix element itself scales as x 4+d as x - 0, with d > 0, then M(p) is 

covariant and independent of the order of integration, The hypothesis of operator 

product expansions’ predicts that no matter what matrix element is considered 
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leading short distance behavior of the matrix element will be a function of x only 

except for an overall factor (as was the case for D cLv (x)19 so that the scaling 

analysis applies. 

The conventional integral for DPy (p) can be divergent. The current of a free 

Dirac field gives a simple example of this. The divergence is simply the well- 

known divergence in the lowest order vacuum polarization diagram for electro- 

dynamics . However, we are not calculating vacuum polarization here, so the 

divergences cannot be removed by a renormalization, The calculation here is of 

the Fourier transform of the propagator of the current; to remove these diver- 

gences, the Fourier transform integral must be subtracted. As usual with 

subtractions, there is some arbitrariness in the exact form of the subtracted 

integral. The calculation will be described briefly. The current j,(x) is 

j,(x) = : T(x) yp $44 : (II. 28) 

where +!t is a free Dirac field and : *. . : denotes Wick ordering. The propagator 

DP,(x) is now 

where 

So(X) = i{ e-ip’x ({pP +m) (p2-m2+ie)-l 

= 

When x is small the most singular term in So(x) is 

S(p) z i(27r 2 -’ f xp (x2-ie)-2 ) 

(It. 29) 

(L 30) 

(If. 31) 
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As a result 

Dpv (4 = -r 
-4 

( 
2 

gpvx - 2x x 
) 

-4 
p v (x2-ic) (II. 32) 

. 
for small x. The integral / DClv (x) erpox d3sdiverges as x0 --0; from a scaling 

argument the divergence sho.uld be proportional to xi3* The divergence can come 

only from izt- x0 in the integral so it is legitimate to use the approximation (II. 32) 

in doing the calculation of the divergence; The integral can now be done explicitly 

and gives 

/, d3x eipox DpV(x) = (i/6n2) ix01 
-3 

-QV 
+S 

po%o 
(II. 33) 

There can also be terms of order lx01 -2 , lx01 -1 , etc. So computing the integral 

of Eq. (II. 12) gives a divergent result. The way to avoid this divergence is to 

subtract the integral so that the scaling argument predicts convergence. The 

simplest subtraction is to subtract a Taylor’s series expansion of e ipox :one 

defines 12 

Dpv(p) = f {eip*” -1 - ip*X + i (P*X~}D~~(~) 

P 
(II. 34) 

The leading singularity of the integrand now scales as x -3 instead of x -60 As a 

result the scaling arguments show that Dpv (p) is finite and covariant. The terms 

subtracted are a quadratic polynomial in p. In effect one has subtracted infinite 

constants multiplying p2 , p, and 1 from the old form of DILv(p)* As usual, one 

is always free to add finite constants times p2, p, or 1 to D cLv (p); to keep Dlly (p) 

covariant the added terms must also be covariant. 

Even for cases like the free vector meson propagator where the unsubtracted 

integral is finite, one is free to use a subtracted integral to define D 
p,(P) 

. One 

can make as many subtractions as one likes, but one subtraction is sufficient to 

define a covariant form for D pv fp) D 
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Axiomatic field theorists have shouted since prehistoric times that the 

Fourier transforms of T products are ambiguous. There is an excellent dis- 

cussion of the role of these ambiguities in renormalization theory in Bogoliubov 

and Shirkov. 5 Nevertheless the popular view is that a Fourier transform such 

as Dpv (P) is a unique and even physical quantity at least relative to a given 

Lorentz frame 0 The axiomatic view must in the end replace the popular view, 

since the ambiguity in D 
/LV @) 

in examples like the Dirac current of a free fermion 

field is beyond question. Unfortunately, much experience has been acquired with 

the unsubtracted form of the definition of DCtv (p) and more general transforms 

like M(p) in Eq. (II. 27). One must now distinguish two problems. The first is, 

given that the standard definition of the Fourier transform exists, to show in 

practical situations that no physics is changed by using a subtracted formula 

instead. This may not be trivial to demonstrate but is not a very rewarding 

subject to pursue. The second question is what happens to the physics when sub- 

tractions are necessary. There is already one example known where the necessity 

for a subtraction changes a current algebra prediction, namely the Adler-Bell- 

Jackiw-Schwinger anomaly which changes the current algebra prediction of the 

7r” lifetime. 13 One must be prepared to find other applications where sub- 

tractions have nontrivial effects 0 It is certainly worth looking for such effects, 

especially when the use of conventional Ward identities gives unsatisfactory 

results, as in 7 decay. 14 

It may help in understanding the problem of the ambiguity in DclV (p) if one 

can understand why it was possible for nonaxiomaticists to conclude that D ,dp) 

is unique. The reason lies, I believe, in a conscious or unconscious assumption 

that nonaxiomaticists make about the nature of field theory. The assumption is 

this: any local operator, such as a current, becomes an observable when 
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averaged over a region of space, the time being held fixed. By an “observable”, 

I mean an operator which can be multiplied by itself or by other fields, without 

producing singularities 0 The best way to show that this assumption is made is 

to look at the popularly accepted form for an equal time commutator. The equal 

time commutator of two local fields O,(x) and O,(y) is expected to be a sum of 

a-functions and derivatives of S-functions in the spatial variables 2 and ye These Y 

6 -functions can be eliminated by averaging 0, (x) say over a region of space; if 
.L 

p(xJ is an averaging function then (5) o~(x~, 5) d3z, 02(xo$ 1 is completely 

free of singularities 0 Even more, one assumes that the unequal time commutator 

c/ /+I O&)‘~) d 
3 
E? 02(Y()‘$ 1 is continuous and differentiable in y. for yo=xo. 

This assumption is implicit in the equal time commutator formula 

~2(xo,y) = i 1 II O1(xo,$ 11 (II* 35) 

where H is the Hamiltonian and the double commutator is again expected to be a 

sum of a-functions. If the unequal time commutator were not differentiable in 

y. at yo=xo then the equal time commutator with 6, would diverge. 

Given the assumption that integration with 9 makes operator products be 

smooth in time, it is easy to derive the usual form of the Ward identity for 

DClv(p) from the definition (II. 12). One writes 

PPDPv (P) = Lim (7 -00) J (-iVp eip’x) DPv (x) 6[xol - 71 
X 

(II. 36) 

Integrating by parts, one gets 

#Dpv tp) = lim (I -t 0) f x eipox [iVPDPv(xd Bhxol -71 

+i e J 
ip-x 

DoV(x) 
X 

tn.33 

- 17 - 



I 

Since jP is assumed to be conserved, VPjP(x) is zero, and since x0 is never zero 

in the integral, VP <C?lT j,(x) jv(0)lfi> = <nlTVPjP(x) jv(0)I R> = 0. So the first 

term vanishes and one is left with the surface terms, These terms may be 

written as follows. Let 

Q(L), x0, =Jd3z e-iE*e j,(x,,t5) 

Then 

(IL 38) 

p”DPv (p) = Lim (v-0) i <a 1 
I 
eiPo’ Q(p) jvP) - e 

-iPorl 
jv (0) Q@ -I) W> 

(II. 39) 

According to the assumption stated above, the productsQ(;,q) jv (0) and jv(0) Q(;, -q) 

should be free of any singularity for r) -0, in which case the limit gives 

#DPv(p) = i <“1[&(11,% jv(O$a> (II. 40) 

which is the usual Ward identity relating #DPv (p) to an equal time commutator. 

If the assumption that Q(p,q) is an observable breaks down, l5 the limit (It. 39) 

may not behave like a commutator, since the expression for finite 77 is not a 

commutator. An example of this occurs in Section III. 

The assumption that integrating an operator over space only gives an ob- 

servable is a basic tenet of canonical field theory, since one builds the Hamiltonian 

of a canonical theory out of space-averaged operators, and the Hamiltonian has to 

be an observable, The assumption has been rejected by axiomatic field theory 

from the beginning since the currents and other local products in free field 

theories violate this assumption (as is shown by the example of a divergent propa- 

gator discussed earlier). In axiomatic field theory one assumes only that 

operators averaged over space and time give observables; this hypothesis was 

formally stated by Wightman but the idea dates back to the discussion of 
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measurability of fields by Bohr and Rosenfeld. 16 Unfortunately the assumption 

that space-time averages give observables is not very helpful in dealing with the 

specific problems posed by the singularities of T products. 

Some general conclusions of this section are as follows: 

1. The precise definition for the Fourier transform of a T product 

in common usage is exemplified by Eq. (II. 12) o 

2. T products in x-space are covariant; any noncovariance in their 

Fourier transforms are entirely due to the noncovariant v-limit 

chosen to define the Fourier integral. 

3. The definition (II. 12) is capable of giving divergent results in 

which case a subtracted definition, as in Eq. (It. 34)) will have 

to be used instead. 

4. If the integral of a T product is defined as in Eq. (II. 12)) then 

the equal time commutators appearing in Ward identities must 

be defined as a limit as in Eq. (II. 39) e 
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III. SCALE INVARIANCE AND PERTURBATION THEORY 

To begin this section the commutators of the generator of scale transfor- 

mations will be derived. Ward identities for the dilation current will then be 

written for matrix elements involving the fields $J and $4 of the ?,$I~ theory. It 

will be assumed to start with that all integrals of T products are conventionally 

defined and all Ward identities have their customary form. The exceptions will 

be discussed later. 

If the field theory is scale invariant, 17 then there exists a set of unitary 

transformations U(s) with the property 

u+(s) c$(x) U(s) = sd cp(sx) (III. 1) 

The constant d is called the dimension of $0 The unitary transformations U(s) 

can be written in terms of an infinitesimal generator D: 

U(s) = e -i(kn s) D 
W.2) 

The logarithm of s appears in the exponent so that U(s) will satisfy the composi- 

tion law 

Let s be l+~ with E small, Then from Eq. (III. 1) one derives 

i[D, WI] = (d + $Vp) WI tm= 4) 
For each composite field in the theory there will be a corresponding commutator. 

In particular 

i b, G4(x)] = (4 + pVp) e4(X) (III. 5) 

where dI is the dimension of q4(x). The generator D is expected to be the integral 

of a local “dilation current” DP(x): 

D= / D&x) d3x CI (III. 6) 
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The current DP must be conserved if scale invariance holds, in which case D is 

time independent O 

Now consider the Ward identities. To allow for the breakdown of scale 

invariance, let DC1 have a divergence S: 

V’D,(x) = S(x) 

and consider the matrix element 

M(xI. o e xn) = <aIT $(x1) 000 Nxnl S(Y) t Q> (III. 8) 
Y 

where I R> is the vacuum state. Substituting V I.rDP for S and integrating by parts, 

the conventional calculation gives 18 

M(xlo . . xn) = J y VP <h IT $(x1). . . $(xn) D’(y) 1 a> 

+ i<Q/T 
I 
(d+x 1’ 

+, . .+ i<alT #(x1) 9(x,)*. n 

m- 9) 

The integral of the gradient vanishes and one is left with the commutators. It 

is convenient to bring the derivatives VI, etc., outside the T product, which 

results in further equal time commutator terms. However, these further 

19 commutators cancel in pairs. Consider the case n=2, for example. Then the 

result of moving the gradients is 

M(xl,x2) = i (2d+xI 0 5+x2 0 V2) <Q IT $(x1) $4~~) 1 Q> 

-i x1() Wl() -x20) a I 
[ 
m1) ? m,) I, I Q > 

-i 53) Q1() -“2o) <Q I w,, 1 I Q> (III, 10) 

- 21- 



The two commutator terms cancel. This is true for all n; so 

M(xIe o o xn) = i (nd + x 0 V1 + O O O + x 1 naVn) Wl-xn) (III. 11) 

where 

The Ward identity (III, 11) is the starting point of the analysis of this section. 

If scale invariance is exact, M must vanish. So we shall try to make the functions 

M(xle o o xn) vanish in perturbation theory. The dimension d will be treated as a 

fudge factor chosen to make M vanish if possible, This will be possible in order 

h but not in order h2. Having found that the functions M cannot vanish in order h2, 

they will be calculated explicitly and used to infer the form of VPD 
I-1’ 

Next some explicit perturbation formulae will be written out for vacuum ex- 

pectation values involving G(x) and c$~(x). Only connected graphs will be con- 

sidered (disconnected graphs will be discussed later). Let Kc(xl.. *xn) be the 

connected part of <s2[ T $(x1). o. $(xn) I a> and let Wc(xl. . .xn, y) be the connected 

part of the matrix element <Q IT @(xl) O D O @(xn) :#4(y):I a>. By :e4(y): is meant 

a Heisenberg field which reduces to the Wick product :e4(x) : in the free field 

limit. In the interaction representation one defines (before renormalization) 

W(xl*. e xns Y) = <a 1 T $+x1) Q,(x,) .e l $txn) :c#$Y, : ew 
{-iXJ :+;l(z):}j Q> 

z 
(III. 13) 

where (PI(x) is the scalar field in the interaction representation. WC is the con- 

nected part of W. The matrix elements Kc will be quoted to order h2, the matrix 

elements WC to order A only. The vacuum expectation value WC(y) will not be 

computed since it can be renormalized to zero by subtracting a c-number from 

the Heisenberg field :+4:Q Matrix elements involving products of two or more 

Heisenberg fields :c$~: wil.1 not be discussed; hopefully the analysis of the WC 

functions is sufficient to determine the properties of :G4:. The nonzero, 
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unrenormalized graphs for Kc and WC (to order A2 and A respectively) are: 

K&xl,. 0 9, xn) =/J . ../ e~P1(xl-xn)...~iPn-l(xn~l~xn)Kc(pl,.~~,pn~l) 

‘1’2 ‘n-1 
(III.14) 

Kc(p) = D(P) = DO(p) + 96 ih2 D:(P) c(p2,A2) (III. 15) 

where D(p) is the interacting meson propagator, DO(p) the free meson propagator 

with zero mass, and c(p2, A2) is the Feynman graph shown in Fig. la computed 

with a cutoff A. Formulae are: 

DO(p) = i(p2 + ie) -1 
w. 16) 

C(P2, A2) = JP(S2,A2) D()(q-P) 
4 

p(q2, A2) = i / D 
k ’ 

(k) Do(q-k) Do(k,A) Dotq-k& 

(III. 17) 

(III. 18) 

Do(k,A) = A2(A2-k2-is) -1 (III. 19) 

p(q2, A2) is the F eynman graph shown in Fig. lb, also with a cutoff. Calculation 

of p and c in the limit of large cutoff gives (see the Appendix) 

p(q2, A2) = - (16 x2)-l &i [ (-q2-ie)/A2] 

c(q2, A2) = -(512 n4-l q2 b [(-q2-icj/A2] + CA2 + c1q2 

(III. 20) 

(DI. 21) 

where c and cl are numerical constants; terms of order q2/A2 or smaller for 

large A have been dropped. These formulae are relatively simple because the 
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mass of C$ is zero. Further formulae: 

Kc(pI,P2*p3) = -24ih Do(P1) Do Do Do(-P1-~2-~3) 

x l-12A 
1 

It is a nuisance to write.out terms which differ only by a permutation of the 

P [ (PI+P2)2, A2 ] - 12~ P[CPI+P,~, A”] - 12 A P[(P~+P~~, 

(III. 22) 

momenta so in the following formulae only the number of such terms will be given: 

Kc(P1. l -I’,) = -576 A2 Do(pl). o . DO(p5) Do(-pl-*. . -P5) Do(P-i+P2+P3) I 

-+ 9 permutations 
I 

(III. 23) 

Wc(X1’ 0 0 xns Y) =I*. ./ e-ip,‘(xl-y). . . e-ipn*txn-y) Wc(pl.. .pJ (III.24) 

pl pn 

wc(pI’p2) = -96 A DotPIJ Do(p2) { c(P;, A2) +C(P;, A2)] (HI. 25) 

wc(PISP2SP3*P4) = 24 DotPl) DO(P2) DO(p3) Do(p4) { l- I2 A P [(pl+p2)2, A”] 

+ 5 permutations of the A term (III. 26) 

Wc(P1’ 0 0 l , p6) = -576 i h Do(pI). . . Do(p6) {Do(p1+p2+p3) + 19 permutations I 
w. 211 

The renormalized formulae for Kc and WC are obtained by modifying c and 

p and redefining the couplin, v constant but otherwise using the formulae given 

above D The renormalized c is obtained by dropping the constants c and cl and 

replacing A2 by an arbitrarily chosen but fixed “reference momentum” K 
2 

. 

2 Likewise the renormalized p is obtnincd by replacing A2 by K a The renor- 

mslized functions xR and pli are 

C,(clz) = - (512 r4js1 q2 m [(-q2-ic)/K “1 (III. 28) 

- 24 - 



and 

P,(q2) = - (16 7r2)-l h [(-q2-ie)/K ‘1 (III. 29) 

The rationalization of these modifications is as follows. 

The function c occurs in two.different formulae; the modifications have a 

different significance in the two cases. This is also true of the function pa When 

c is a correction to the propagator, the modifications amount to a mass and 

wave function renormalization. In particular, replacing c by zero ensures that 

the renormalized mass is zero through order h2; replacing cl by 0 and A2 by 

K 2 are both wave function renormalizations. It is necessary to introduce the 

arbitrary parameter K (which has the dimensions of a mass) into the theory be- 

cause there is no naturally occurring parameter with the dimensions of a mass 

to replace the cutoff inside the logarithm. The value of K is unimportant since 

changing K only changes the normalization of the field 4, which is arbitrary. 

Similarly, when p is a correction to Kc(p,p,,p2) the modification of p is a 

coupling constant renormalization; when p is replaced by PR one must also re- 

place x by a renormalized coupling constant A,. The renormalized coupling 

constant depends on K in the sense that if K is changed to K ’ one must change 

A, to A,, , with 

A 
K’ 

= A, + (9 $/47r2) J?n (K 12/K 2, + order (hi) (III. 30) 

in order that Kc(pI,p2,p3) be independent of the choice of K o 
20 

When c is a first order contribution to Wc(pI, p2) the modifications have a 

different interpretation. If the unrenormalized formula for Wc(p,,p2) is Fourier 
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transformed to x-space, one obtains (see the appendix) : 

wc(x1,x2,fi = (3/16n6) A [D~(x~-Y) [(xl-fi2-i~~2 + DO(x1-3T) [N2-fi2-i~]-q 

2 
- 192 h(c A ) DO(xl-Y) DO(x2-Y) 

-96hicl [ DO(x2-Y) a4(xl-y) + DO(xl-Y) S4(x24 (III. 31) 

where DO(x) is the Fourier transform of DO(p), and the first term is correct only 

for xl-y and x2-y nonzero. The term proportional to c can be rewritten 

-96 hcA2 <52/T $(x1) $,(x2) :~$(y) : 1 Q >: Replacing c by 0 is equivalent to sub- 

tracting -96 c xA2 :~$~(x) : from the unrenormalized operator :e4(x) :. This sub- 

traction is one of two needed to define a finite renormalized form of the Heisenberg 

field :e4(x) :. The other subtraction needed to define the renormalized form of 

:$4(x) : is a subtraction proportional to A, :G4:. This subtraction is generated 

when one replaces A by K in the function p, p being considered as a correction 

to the function Wc(pl,p2,p3,p4). Replacing cl by 0 in Wc(pl,p2) is simply a 

redefinition of the Fourier transform of Wc(xl,x2, y) : 

When Wc(x1,x2,y) is Fourier transformed, the cl term in Wc(xl,x2,y) will 

not contribute because by definition the points xl=y and x2=y are excluded from 

the region of integration (see Section If) 0 However, the unsubtracted Fourier 

transform of Wc(x1,x2, y) diverges because of the singularities 
[ 
(x,-Y)~ - ie I 

-2 

and 
r 
(x,-Y)~ - ie 

I 
-2 in the first term of Eq. (III. 31) e 21 This means the Fourier 

transform must be subtracted. The unsubtracted Fourier transform would be 

Wc(P1, p2) = J J eip1’x1eip2’x2 Wc(xl,x2, 0) 
x1 x2 

(III. 32) 
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The singular term for x1 - 0 in the integrand has the form 

eipzax2 (3/16a6) A DO(x2) (x! - ie) 
-2 

o 

The singular term in x1 is present for any x2 so one cannot approximate the x2 

dependence of the singular term. One cannot subtract this term unchanged be- 

cause it does not go to zero fast enough when x --m. 1 To avoid an infrared diver- 

gence one subtracts 
iK OX 

e 1eip2'x2 (3/16x6) A DO(x2) (x: - it)-’ 

where K p=-,2o 
CL 

is any four-vector with magnitude K~K Putting in the factor 

e lK ‘x1 does not change the dependence of the subtraction on p1 and p2, so it is 

a legitimate modification. The renormalized, subtracted formula for Wc(p,,p2) 

lS 

-(3/161r6)hK e 
iK OX 

'e ip2’x2 Do(xd (x!f - ie) 
-2 

- (3/16?r6) A, e 
iK.X 

2 eiploxl Do(xl) (xi - ie) 
-2 I (rn.33) 

with A replaced by % in \Vc(xl’ x2, 0) (and the c and c1 terms dropped). This for- 

mula reproduces the renormalized form of Wc(p,,p2) (given by Eq. (III. 25) with 

A, replacing h and xR replacing c) . 

The subtractions in Eq. (III. 33) depend on p1 and p2 in the form 

[Do@,) + Do(pl)] ; h ence one is always free to change the formula for \.Vc(p,,p2) 

by adding a finite constant times 
1 
Do(pl) + DO(p2) 0 

I 
* Changing CR back towards 

c by replacing K by A and adding the c1 term is exactly a change in \;Vc(p1,p2) 

of this type. Hence c1 is a subtraction constant which one is free to set equal to 

zero D 
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Now study the matrix elements of the divergence of the dilation current, 

using the Ward identity (III. 11) D First note that 
. 

(nd+ xl0 1 . ..+ xn*vn) e v+ 
-iP1* (x1-xn) e-lPn-l’ (xn-1-xn) 

. . . 
(III. 34) 

= 
( 
nd + ~10 vpl +. . .+p,-l* vpn-1 

> 
e 

-Qy txfxn) e-iPn-l- txnpnl 
. . . 

Using Eqs. (III. 11) and (III. 14) and an integration by parts one gets . . 
e 

-1y Py$.J 
. . . 

e-lPn-l l txn- 1-q 

M(~le l 0 ~~-1) 

(III. 35) 

with 

M(pl*. .Pn-1) = i nd - 4(n-1) - pl* VP -. . . -p,-1. VP 
( 1 n-l > 

K(P~. . .pn-l) (III. 36) 

The connected part of M is related to the connected part of K by the same equation. 

One can also define 

V(xlo . oXn, y) = J <QjT+(xl) .0. #enI :@4tY): S(z) I n> 
Z 

and obtain 

V(xl.*.xn y) = 
-v 

-iqtyy) 
eQ. e . . . 

e-iPn* (x,-Y) 

, 
1 ‘n 

V(P1. * .P,) 

with 

V(P1. ’ * - 4n - P1* Vpl-. . . -P; vpn w(p,. . .pn) 

(III. 38) 

(III. 39) 

It is straightforward to obtain explicit formulae for the connected parts of hl to 

second order in A, and the connected parts of V to first order in A,; . The 

- 28 - 



dimensions d and 4 will be left as unknowns for the moment. For example 

MC(p) = i (2d - 4 - po VP) D(p) = i (2d - 4 - p* VP) X i (p2+ ic) -1 

(-p2-iC)/K 2 II (III. 40) 

Separating the term where VP acts on (p2+i E) -1 from the term where VP acts on 

the logarithm, this becomes 

MC(p) = i(2d-2) D(p) - i (6 A: /16 7r4) DO(P) (III. 41) 

But to order A:, one can replace Do(p) by D(p) in the second term. The resulting 

formula for MC(p) and analogous formulae for other MC and Vc functions are: 

MC(P) = ,i [2d - 2 - 3 $/(8~4)] D(P) (III. 42) 

Mc(p1*p2pp3) = i (M - 4 - 9 A, /2) Kc@,,p2,p3) (III. 43) 

Mc(Pl’s 0 P,) = i (6d - 6) Kc(~loo .P,) (III. 44) 

VJPJJ P2) =i(zd+P- ) c( 1, 6 W P p2) + 3 A, (87+$-l ~oO=‘l) +DO(P2d (III. 45) 

Vc(PI. l * p4) = i(4d+dI- 8 -9h,/nT Wc(plo a ‘p4) W.46) 

Vc(pl. o .p,) = i (6d+dI - 10) Wc(Pl. 0 ‘p6) 

Equation (III, 45) for Vc(pl, p2) is incorrect because its derivation assumes 

that Wc(P1, P2) is unsubtracted. The correct formula will be derived later. 

The first application of Eqs. (111.42) - (lII.47) is to show that scale invariance 

breaks down in order hz e To determine the validity of scale invariance the 

equations for MC wil1 be discussed order by order (the equations for Vc will be 

discussed later) y In the free field limit the only nonzero Rlc is MC(P) and it too 
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is zero if d=l. This agrees with the known result that the free field theory is 

scale invariant and $ has dimension 1. To first order in A,, MC(p) and 

Mc(pl, p2, p,) do not trivially vanish, but by setting d=l both are zero. So we 

infer that scale invariance holds to order A, and d is 1 to this order, In order 

~f the situation is as follows. J’$(P~. . a p,) vanishes because Kc(pl. O .p,) is 

already of order A: and 6d-6 is zero to order 1. The function hfc(p,,p2,p3) 

cannot vanish: Kc(p,,p2,p3) is of order A, and d is already determined to be 1 

through order A, so 

Mc(P1’P2’P3) = -i (9A,/2) Kc(Pl,P2,P3) (III. 48) 

The function MC(p) vanishes to order A, 2 ifdis 

d = 1 + 3~; /( 16 *4j (III 0 49) 

The nonvanishing of Mc(p,,p2,p3) in order A: means S(x) is nonzero in order 

so scale invariance breaks down in this order. It does not help to change d 

in order to make Mc(p1,p2, p3) vanish in order hf ; this would require a change 

in d of order A, which would make MC(p) nonzero in order A, , which would be 

even worse o It will be assumed in what follows that d is given by Eq. (III. 49) o 22 

It appears that scale invariance is exact through order A, O If so the quantities 

Vc must vanish to order A, D Consider first Vc(pl’ p2, p3, p4). Since 

WG(p1,p2,p3,p4) is of order 1, Vc vanishes only if 

(III. 50) 

Since d is already known, this gives 

dI=4+ 9hK/r2 (III. 51) 

So the dimension of :$J~(x): changes in order 1, . To order A, , Vc(pl. o .p,) 

vanishes (note that Wc(p10 O ‘~6) is itself of order AK). 
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Before examining Vc(p,,p2), the correct Ward identity for Vc(pl,p2) must 

be obtained. To do so requires careful attention to the definition of Fourier 

transforms 0 
23 For Vc(pl,p2) we shall use the standard definition (Vc(x1,x2,y) 

will turn out to be zero so the standard definition exists). So 

v&P1,P2) = Lim trl -O)$ d4k1/ d4x2 
lX10’>77 lx2ol >7? 

eiplexl eip20x2 Vc(x1,x2, 0) 

(III. 52) 

The region IX.,~-X~~ I <: 77 is also excluded from the integral. By analogy with 

Eq. (III. 11) 

V&x1,x2, 0) = i (2d + dI + x1* Vl + x2* V2) Wc(xl,x2, 0) (III. 53) 

When this is substituted in Eq. (III. 52) one can integrate by parts giving 

VJP,,P~) = Lim (1) -0) i -8-pl* Vpl-p2. VP )/ / eipl’xl eip2*x2 Wc(xl,x2, 0) 

2 x1 x2 

+ Lim(q -0) E(rl ,P,,P,) (III. 54) 

where the integral over x1 and x2 still excludes 1 xl0 1 < 77, I x2o1 < T, and 

I5-7201 < 77. The term E(7,plp2) is the sum of surface terms. It turns out 

that the surface terms at ~~~~~~~~ 1 = rl are negligible but the surface terms at 

x1o = * 7 or x2o = f rl have to be computed giving 

WY ,pl,p2) = i 

+ x2o 6(x20+?) 
I 

eipl’ “l eip2* x2 Wc(xl, x2, 0) (III. 55) 

with the regions lxlol < q, etc., excluded still. Because of the 6 -functions, the 

factors xl0 and x2o are of order 7 , so only the singular part of Wc(x1,x2, 0) is 

- 31 - 



is important in the integral; for csarnple the integrals with x 
10 = rt. r] come prc- 

dominately from small x1. IIcncc I? is approsimately 

E(q,Pl,P2) = - i?/ j [6(x10--?)+ “(xlo+“)) eiP2’x2(3h,,/1Gr6) DO(x2)(xf-ic)-2 

x1 x2 

- iy 6(X2o -y) + 8(x20+“)} elpl’xl (3h,/16 r6) DO(x1)(x~-i~)-2 

(III. 5G) 

These integrals can be performed explicitly giving 

Et7 +P,) = - PA,/8 n4) [Do(pl) + Do(p2)) (III. 57) 

To complete the construction of the Ward identity one must replace the unsuls- 

tracted Fourier transform of WC in Eq. (III.54) by its subtracted form. The 

result is 

Vc(p,,p2) = i 2d+dI-8-pl*Vp 
1 

-p2*Vp 
2 

y$Py PSI 

with 

- (3~~ /8 ~4 [ DO(P1) + Dotpa)} + Lim (7 - 0) WI 9 PlP2) (III. 55) 

F(~,P~,P~) = i Vp1-p20~p 
2 

(3h, /lG n6) (III. 59) 

iK ‘X 
le 

ip20x2 2 c) 
D&x2) (sl-iE) 

2 -- 
DO(sl) (s,-ic) 

i 
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I 

Eq. (III. 58)) one has (correct through order A~): 

Vc(P1’P2) = i 
( 
-2 -PI’ VP -P2* VP 

1 2 1 
Wo(pl,p2) 

- PA, /ad [ DotPl) + D&P~)} (III. 60) 

This Ward identity has an extra term which does not appear in the conventional 

form [Eqo (III. 39)]. It is not caused by the subtractions in Wc(p,,p2). It came 

from the surface terms E(T ,pl,p2) arising when xl.VWc(x1,x2, 0) and 

x2’vw&+ 0) were integrated by parts in the integral of Eq. (III. 52). According 

to the conventional analysis given earlier (cf. Eq. (III. 10)) these surface terms should 

have cancelled. They would have vanished had the assumption underlying the conventional 

analysis been correct m Namely if sd3zl Wc(xl,x2, 0) were a smooth function of 

x1o at xlo=O (and likewise for $d3z2 Wc(xl,x2, 0) at ~~~‘0) then the integral 

(III. 55) for E(r) pl, p2) would have been of order rl. In practice the integral 

Jd3zl W&xl9 x2 , 0) is of order ]x~~I-~ for xl0 - 0 and cancels the explicit factor 

x1O in Eq. (III.55); hence E(r] ,pl,p2) has a finite, nonzero Iimit for 9-O. 

Using the explicit renormalized formula for Wc(pl,p2) to order A,, one finds 

that Eq. (III. 60) gives Vc(pl, p2) = 0. So a11 the functions Vc vanish to order A,, 

as expected, and the field :$4(x) : has a dimension dI given by Eq. (III. 51). 

Since Mc(pl,p2,p3) does not vanish, the operator S(x) (the divergence of 

DF(x)) is nonzero. Can it be identified? It has been shown that all connected 

matrix elements of S(x) vanish in order A,” except for Mc(pl, p2, p3), and 

Mc(p1,p2,p3) is proportional to Ko(pl,p2,p3), or to be precise nlc in order AZ 

is proportional to Kc in order A, . Transforming to x space, and using the 
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perturbation formula which defines Kc in order h, , Eq. (III. 48) becomes 

Mc(X1sX2’X3’ 4 x ) = - (9 a+) $ <ok $(x1) 9,(x,) 9,(x,) +,(X4) :+;tz):I~> (=61) 
Z 

A comparison of this formula with Eq. (III. 8) suggests that 

S(x) = - (9 &2) :e4(x): (III. 62) 

This hypothesis gives back Eq. (III. 61) and also makes all other connected matrix 

elements MC vanish to order 1:. 

Can one understand how a term proportional to :$4(x) : appears in the diver- 

gence of D ? It will be shown that this is to be expected, given that the operator 

:$4(x): changes its dimension in order A,. To simplify matters consider not 

S(x) but the integral 

/ d32 S(x) = dD/dxo (III. 63) 

The operator D must contain an explicit time dependence proportional to xoH, 

where H is the Hamiltonian; 17 this is necessary to give the x,V,$(x) term in the 

commutator of D with $O So let 

D =xoH+DA 

The formula for dD/dxo is 

dD dD -z-m 
dxo dxo 

i[D,H] = H -i DA,H [ 1 
The Hamiltonian contains the interaction term 

HI = a,< Id32 ~$~(x): 

(III. 64) 

(III. 65) 

(m. 66) 
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The contribution of HI to dD/dxo is III - i 

:$J~(x): is 

The commutator of DA with 

[ 
DA, :~~(x) :] = -i (dI+z*S) :G~(x) : (III. 67) 

Integrating over 2, and using an integration by parts on the gradient term 

(III. 68) 

So the contribution of the interaction to dD/dxo is - (dI-4) HI, which is 

- A, (d.+)sd3~ :$4(x):. Using Eq. (III. 51)) this is (-9$/7r2) sd3z:+4(x) :. According 

to Eq. (III. 62) the total dD/dxo is half of this so there must also be a contribution 

to dD/dxo from the unperturbed part of the Hamiltonian. This analysis shows 

that a term of order A: :G4(x) : is to be expected in V’DII(x), given that :q4(x): 

changes its dimension in order A, D 

To conclude this section the various assumptions and undiscussed problems 

will be listed. The above discussion concerned only connected graphs but it can 

be shown that the conclusions are unchanged by the disconnected graphs (such as 

the products of two propagators in the four-point function) O The matrix elements 

of two or more :e4(x): fields were not computed (thus avoiding the problems 

associated with the product T :G4(x) : :G4(y) : when x=y) e In deriving Ward identities 

the surface terms at time f w were assumed to vanish; this should be checked by 

explicit calculation of the matrix elements of D,(x), since one is dealing with a 

zero mass theory. In second order in X, , for which Dp is not conserved, it was 

assumed that the equal time commutator of D(xo) with c$ could still be computed 

from the matrix element MC(P) as if D were conserved; this will have to be checked 

by explicit calculation. 22 However, even if this assumption is incorrect it will 

not change the calculation of Mc(pl, p,,,p,) to order ~t , since this calculation 
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involves the commutator of D with Q, only to order A, 0 So whatever the commutator 

of D with $ is in order A: , there will still be a A: :G4(x) : term in S(x); there may 

be other terms also. The presence of the A: :c$~(x): term in S(x) makes it likely 

that the equal time commutator of D(x6) with q(x) will diverge in order A! o This 

is because the integral (III. 8) which defines M(xl, x3) diverges in order A: if S(x) 

is A: :e4(x) :; this in turn is a consequence of the nonintegrable singularity of 

W(x1,x2,y) for y-x1 or x2 in order A,. 

Given that the interaction :$4(x): changes its dimension in order A, why 

does not the free part of the Hamiltonian also change its dimension in order A, ? 

If this were to happen then scale invariance would break down in order A, instead 

of A;. This is another question that will not be discussed here. 

The analysis of this section has been carried through for the zero mass A44 

theory. One may ask, why not work with the finite mass theory instead? The 

reason for not using the nonzero mass theory is that when the mass is nonzero 

the divergence S(x) contains a term proportional to :e2(x) :, which is nonzero in 

the free field limit. This means the matrix elements M(x10 D *x,) will be nonzero 

in the free field limit. To show that S(x) contains a term proportional to A: :e4(x) : 

in addition one must calculate matrix’ elements of : r#~~(x): to order A: ; one must 

also argue that terms proportional to :c$~(x) : are not permitted to occur as part 

of the renormalization of :I$~(x) :. The argument cannot be rigorous, for if one 

is flexible enough about how one renormalizes there is no argument that forbids 

the use of finite :$4(x) : counterterms in renormalizing :e2(x) :. Furthermore the 

zero mass case is discussed because it is only for the zero mass case that the 

canonical Lagrangian formulation of the A@ 4, theory predicts scale invariance, 

so it is only for the zero mass case that there is a contradiction between the 

prediction and perturbation theory calculations m 
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In the renormalization of Wc(pl, p2) the constant c 1 was interpreted as a 

subtraction constant. It is possible to give the constant cl a different interpre- 

tation. If one del’ines the renormalized form of :G4(x): to include a subtraction 

proportional to cl :c$ VpV’#r, this will also eliminate the cl term from Wc(pl, p2) o 

This is because the matrix element , 

J/ 
eipl-l e iP2*x2 <a 1 T $+x1) $(x2) :$+O) VJ’ 4I(o) : 1 a > (III. 69) 

x1 x2 

computed by Fey11 !nan rules, is D()(P1) Do(P2) * This is proportional 

to {DO(Pll ‘Do(~2))t which is exactly the form of the cl term in Eq. (III. 25) 

(using Eq. (III. 21) for c). This procedure for eliminating the cl term is more 

conventional than to interpret cl as a subtraction in a Fourier integral. Unfor- 

tunately the procedure is nonsensical. The field :$IV~Vcl~I: vanishes because 

e,(x) satisfies the free field equation V~V~$,(x) = 0. This means that :$VpVcl$: 

also vanishes in lowest order so subtracting it from :c$~(x): does not change 

:$4(x) : in order A, . Furthermore the integral in Eq. (III: 69) should vanish since 

integrand vanishes o However the Feynman rules give a nonzero result for this 

integral. There is nothing wrong with this; the term given by the Feynman rules 

is a term which in x space involves a-functions of x or x2, which one is always 1 

allowed to add to a T product, even if one of the operators in the T product 

vanishes ,0 While there is nothing wrong with adding 6-functions to the T product, 

it is not a sensible thing to do. In any case cl is a subtraction constant in a 

Fourier integral. It does not matter whether it is recognized as such or snuck 

in by the device of subtracting :$ V 
P 

V’@: from :~$~(x) : and using the Feynman 

rules to introduce a subtraction in the definition of integrals of T products in- 

volving :$ VpV’$:O 
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IV. MISCELLANY 

In the previous section, it was necessary to know the behavior of the matrix 

element <Q IT $(x1) $(x2) :$4(y) : I R) for x1- y or x2 - y. This behavior was 

determined by explicit calculation. ?his is a problem which can be understood 

in general in terms of operator product expansions. 
24 

In this section the operator 

product expansion for T $(x) :+4(y) : will be discussed through order A, using the 

matrix element W(xl, x, y) of :$4(y) :. At the end of this section the dimension of 

the field x$~(x): will be calculated through order h, for the case of an isospin 1 

field 6; it will be shown that the isospin 2 component of :e2: has a different di- 

mension (in order A, ) than the isospin 0 component of :$J~(x) :. A similar isospin 

splitting was postulated in a previous paper1 to explain the AI=1/2 rule in weak 

interactions o 

In the free field theory the operator product expansion for the product 

T r$(x) :04(y): is derived from the Wick expansion of this product: 

T G(x) :#4(y): = 4 DO@-y) ~$~(y) : + :$(x) $4(y) : 

= 4 DO@-y) :$~~(y) : + :G5(y): + (XL - +j :$4(y) VP q(Y) : + D - l 
two ‘1 

In the final form of this formula, functions of (x-y) multiply local operators at the 

point y; any such formula is called an operator product expansion. The expansion 

is an expansion in terms of x-y and makes sense when x-y is small. In perturba- 

tion theory one looks for a generalization of Eq. (IV. 1) in the form 

T Cp(x) :G4(y) : = En Cn(x-Y) On(Y) W.2) 

where the Cn(x-y) arc functions of x-y and O,(y) are local fields at y* The functions 

Cn(x-y) may be singular as x ’ -yO The operators O,(y) are Heisenberg operators 

whose matrix elements will be functions of A, , * the functions Cn(x-y) can also 
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change with A, 0 One can separate the two dependencies because only Cn(x-y) can 

depend on x and because the same functions Cn(x-y) must occur no matter which 

matrix element of T G(x) :+4(y): one studies. To first order in A, perturbation 

theory is scale invariant, which restricts the behavior of the functions Cn(x-y) 0 

As shown in a previous paper, ’ C,(x) must scale as 

Cn(sx) = s[dn-d-dJ C,(X) 

where dn is the dimension of the operator On(x). If 

and 

dn = dnO + ‘K dnl 

C,(x) = cnow + A, cnltx) 
then the expansion of Eq, (IV. 2) to order A, gives 

d 
Cno(SX) = s [ g no- cn()tX) 

[: 1 d 
Cnl(sx) = s no 

-5 
(drill 

(The dimensions d and dI are taken from Eqs. (IlI.49) and (III.51).) 

To learn something about the functions Cn(x-y) and the operators O,(y) in 

order A,, we study the matrix element W(xl, x, y) for x near ye The function 

W(xl, x, y) has no disconnected diagrams (given that the vacuum expectation value 

<a I :04(y) : I a is renormalized to zero) so W(xl, x, y) = Wc(xl, x, y) which is given 

by the renormalized form of Eq. (III. 31): 

W(xp, y) = (3/16 “6, A, [ DO(xl-y) [(x-y)2 - iclN2 + DO(x-y) [(x1-yj2 - icJ2} (IV. 8) 
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In terms of z--y this is 25 

W(X~,X, y) = (3/16 “6, A, (z2-icje2 2-l 2 -2 
DO(xl-y) - (4~ ) (Z -ie) 

-1 2 (x1-y) -ie 1 
There are only two terms when W(x,, x, y) is expanded in z 0 Comparing with the 

operator product expansion, one should have 

w(xlJt 53 = c, C,(z) <aI T Cptx,) On(y) 1 Q> (Iv. 10) 

From the scaling law (IV. 6) the term proportional to (z2-ic) -2 must involve an 

operator On of dimension dnO =l while the term proportional to (z2-ic) -1 must 

involve an operator On of dimension 3. There is only one operator of dimension 1, 

namely 4 itself. The coefficient (z2-ic) -1 is a Lorentz scalar so it must involve 

a scalar field On. On must be odd in $ since $ :$4: is odd. The only possibilities 

are VPVP @(x) and x$~(x):. These are not linearly independent because they are 

related by the field equation of the $4 theory; it is convenient to regard VPV” $I 

as the dependent field, so the only field left is :$3:0 So the expansion for 

W(xl, x, y) should be26 

W(x,,x,y) = C,(z) <Qb- $(x1) NY) IQ> + C,(z) (Ql’V(xll :+3W tQ> (Iv. 11) 

The first matrix element is in lowest order the free propagator; comparing with 

Eq. (IV.9) gives 

-2 
C,(z) =(3/16 n6) A, (z2 - ic) (Iv. 12) 

The matrix element <a 1 T @(xl) :$3(y) : 1 R> vanishes in order 1 and has not been 

computed here to order A,, * the function C,(z) is known in order 1 from Eq. (IV. 1) 
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to be 4DO(z). Comparison of Eqs. (IV.8) and (IV. II) gives 

<QlT @(XI) ~$~(y):] fi> = (3/64r6) A, [(XI-y&c]-’ (Iv. 13) 

The most singular term in the operator product expansion of T (p(x) :04(y): 

is the term C,(x-y) G(y) because @(y) is! the field of lowest dimension in the 

expansion, It is this term that has caused all the troubles with subtractions and 

breakdown of conventional Ward identities in Section III, To order h, this term 

does not affect the other connected functions Wc(xI,x2,x3,x, y), etc., because 

C,(z) is of order A, and the connected parts of <Q 1 T $(x1) @(x2) $(x3) G(y) 1 a>, 

etc., vanish in order 1. 

The analysis of the other connected matrix elements Wc(xl, x2, x3, x, y) , etc O, 

for small x-y is complicated and will not be given. 

In a previous paper’ it was postulated that there would be specific local fields 

of isospin l/2 and 3/2 involved in nonleptonic weak interactions, and that these 

fields have different dimensions, the isospin l/2 field being of lower dimension 

than the isospin 3/2 field. If this is true it was shown that the AI=1/2 rule is 

universal, with all AI=3/2 decays being suppressed by a power of (m/mw) where 

m is a strong interaction mass (- 1 BeV) and MW is the weak boson mass or the 

equivalent, The assumption is not true of the free quark model. In the free 

quark model the relevant local fields are the isospin l/2 and 3/2 parts of the 

Wick product :jPa(x) j:,(x): with j,,(x) being the chiral SU(3) currents of the 

model; both AI=1/2 and AI=3/2 components of the Wick product have dimension 6. 

So it is worthwhile to consider how perturbation theory changes the dimensions 

of such a Wick product. To simplify the calculation a simple Wick product 

:+i(x) ej(x): is discussed, where $i(x) (i=l, 2, or 3) are the components of an 

isospin 1 scalar field. The interaction Lagrangian density will be 
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Consider the matrix element 

Nijke(X’Y, Z) = ’ ’ IT pi Qj(Y) :~k(‘) I, : I ~2) 

To order 1 this matrix element (before renormalization) is given by 

NijM(x,y,z) = / / emipotxez) e-iqQ(y-z) Nijka(P,q) 
PC-l 

(Iv.14) 

(Iv. 15) 

where p is defined by Eq. (III. 18) e The field :Gi(x) Qj(x): has isospin 0 and 

isospin 2 components 0 The isospin 0 component is ci :4;:; the isospin two 

components can be written as the traceless tensor :c$~$J~: - l/3 aij c, :$:. 

There is a corresponding decomposition of N ijka(P'~' 

Nijke(P,cl) = “ij”ke NO(P,~ + (aikajp+ sic ‘jk - 2/3 ~ij 6kJ N2(ps9) w. 17) 

where No is the isospin 0 component of N.. 
iIkQ 

and N2 the isospin 2 component. 

Using Eq. (IV, 16) and using the renormalized form of p (Eq. (III. 29))) one gets 

NO(p,4) = (2/3) DO(p) DO(q) I -t (5 h,/4n2) In [(-(p+q)2 - iE)/K 2 
I II 

(IV. 18) 

N2(p,q) = DO(p) Do(q) 1 + (hK/2r2) J!n - ie)/K (Iv. 19) 

The renormalization is a wave function renormalization (with different renormali- 

zation constants for the isospin 0 and isospin 2 components of :+i$j:)O Let do and 

d2 be the dimensions of the isospin 0 and isospin 2 components, respectively, of 

:ylj:o The Ward identities which scale invariance imposes in No and N2 
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are 

i(2d -t do -8-poV p - cl0 vq) NO(p,9 = 0 (IV 0 20) 

i(2d -+ d2 -8-pov p - q* vql N20’, 9 = 0 (Iv. 21) 

As in the case of the neutral field theory of Section III, d is 1 through order h 
K’ 

Explicit calculation using Eqs. (IV. 18) and (IV. 19) gives 

do = 2 + 2.5 (hK ,‘T”, (Iv, 22) 

d2=2+hK/n2 (N.23) 

so in order h, the dimensions do and d2 indeed differ, 
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APPENDIX 

In this appendix the calculation of p (p2, A2) and c(p2, A2) (Eqs ., (III. 17) and 

(III. 18)) will be described briefly. Then the calculation of the Fourier transform 

of Wc(pl,p2) (Eqs, (111.25) and (III.21)) will be discussed. The calculation of 

p(p2, A2) is a stand ard Feynman diagram calculation. The answer for finite A 

can be obtained exactly in closed form, the result being 

p(q2,A2) = (1/16n2) (2 - 2A2/q2) b (1- q2/A2) - In (-q2/A2) 

2 2 l/2 
+ (I-4A b-l ) +=$$&f]j 

with q 2 being replaced by q2 + ie if necessary. For q2<< A2 this reduces to 

P(q2,Ay = - (l/16 a2) Qn (-q2/A2) 

(A. 1) 

(A.3 

giving Eq. (III.20). For q2 >> A2 p is proportional to A4(q2jm2 l!n (q2/A2). The 

formula for c(p2, A2) is 
. 

c(p2,A2) = i / p(q2, AS [(q-p)2 + ie]-’ 
q 

(A.31 

The function p drops off rapidly enough at large q2 so that the integral for c 

converges (for finite A). The function c will be calculated first for spacelike 

p , and then determined for timelike p through analytic continuation. For space- 

like P one can choose a Lorentz frame in which p. is 0. In this frame the integral 

over q. can be rotated from the real axis to the imaginary axis (counterclockwise) e 

The result can be written in terms of Euclidean four vectors 

c(-p2, A2) = / P(-q2, A2) [(q-p)2]-’ 
q 

(A. 4) 
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where q is the four vector (ql, q2, q3, q4) (and similarly for p) and q2 is 
2 q1 + qi + qi + qi (and similarly for qe p and p2) o The integral over q can be 

performed in hyperspherical coordinates : 

q1 = q cos 0 

q2 = q sin 6 cos $ 

q4=qsin9 sin$sin+ 

$ = (2qm4 /oeq3 dq J” sin2 8 d0 J” sin C$ d$ J2’ d@ 
q 0 0 0 0 

Performing the angular integrations gives 

C(-p2, AT = (8 ~~p~)-~{’ o q3 p(-s2, A2) dq + (l/8 977 j=i pW2, AT dq 
P 

(A.51 

66) 

64.7) 

(A.9 

(A.91 

(A 0 10) 

When p2 is small compared to A2, the integrals can be computed using the approxi- 

mate form for p (Eq. (A-2)) except in a constant term (the second integral with p 

replaced by 0) 0 The result is Eq. (III.21) with 

c = (8 7r2A2)-l{ q p(-q2, A21 dq 
0 

and cl = 3(1024n4j-1. The constant c is independent of A because p depends 

only on the ratio (q2/A2) o 

In Fourier transforming Wc(p,,p2) the only integral which is not already 

known is an integral of the form 

1 

(A. 11) 

(A, 12) 

- 46 - 



For x=0 this is highly divergent, but for x+0 the exponent serves as a convergence 

factor o If one wishes to be careful one can insert an explicit convergence factor, 

say exp -IPo177 - IP1i37 - IP21-q - 1~~17 with q > 0, p. to p3 being the components 

of p. Then one writes 

Qn (-p2 - ic)/A2 ] 4 4 0-l [ emiwA2 _ eiu@2+i’)] da (A. 13) 

After substituting this formula in Eq. (A. 12) the p integration can be done ex- 

plicitly, leaving 
00 

u(x) = (i/16n2) J- 0 
us3 exp [ -ix2/4w] dw 

(if the convergence factor is inserted in Eq. (A. 12) the result is to cutoff the 

integral (A. 14) for w < r) 2). One can change variables to v = w -1 and then com- 

pute the integral giving 

-2 u(x) = (l/i7r2) (x2 - ie) (A. 15) 

The ie is present because x2 needs an imaginary part -ie to ensure that the 

integral (A o 14) converges o 

- 47 - 



REFERENCES 

1. K. Wilson, Phys. Rev. , 1499 (1969) o 

20 The other paper in the series is K. Wilson, Report No. SLAC-PUB-734, 

Stanford Linear Accelerator Center (1970). 

3. For a discussion of scale invariance according to canonical field theory, 

see G. Mack and A. Salam, Ann. Phys. (N.Y.) 53, 1’74 (1969) 0 See also - 

Ref, 6. 

4. M, Gell-Mann and F. E, Low, Phys, Rev, 95, 1300 (1954). 

5. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized 

Fields (Interscience Publishers, Inc., New York, 1959)) Chapter VIII. 

6. C, G. Callan, S. Coleman, and R. Jackiw, Report No, CTP 113, MIT 

preprint (December, 1969) 0 

7. An excellent discussion of the ambiguity in T products is given in Ref. 5, 

pp. 144-145 and 168-191. 

8. The ‘noncovariance” of the propagator of a free vector meson field is dis- 

cussed in Ref. 5, pp. 141-142. For more general currents the problem is 

discussed by K, Johnson, Nucl. Phys. 25, 431 (1961). For more recent 

discussions of the ‘tioncovariance” of T products, see R. F. Dashen and 

S. Y. Lee, Phys. Rev, 187, 2017 (1969), and references cited therein. 

9. The metric of this paper is (1, -1, -1, -1). 

10. Eqs D (II. 16) and (II0 18) can be derived from formulae in Appendix I of 

Ref, 5 (the equations at the top of p. 652 are incorrect by a minus sign and 

there are factors of i relating the propagators of this paper to those of 

Ref. 5) 0 

11, The original limits 1x01 < to, 131 < r. become iyol < to/q , I,$ < ro/T. In 

the integrals of Eq. (II. 25) these upper limits can be replaced by Q) without 

- 48 - 



I 

changing A, when 27 is small. In scaling analyses of more general problems 

(discussed after Eq. (II., 26)) replacing to/v, ro/r by 00 may lead to diver- 

gent integrals D Then one must make a more sophisticated analysis, using 

the scaling argument only for values of y - 1 and computing explicitly the 

integral for y large, up to of order.7 -1 e However the large y region will only 

give terms of order 7 since this region is away from the singularity of D pv; 

hence the scaling analysis will still determine whether or not A can be nonzero 

for q--+0. 

12. The subtraction ip*x might seem unnecessary since the integral of xD j.llJ lx) 

should vanish by Lorentz invariance. Unfortunately one often has to use a 

noncovariant definition of the integral as in Eq, (II0 12) in which case the 

integral of xD clv (x) might not vanish. 

13. J. Schwinger, Phys. Rev, 82, 664 (1951) ; 

J. S, Bell and R. Jackiw, Nuovo Cimento 60A, 47 (1969); 

S, L, Adler, Phys. Rev. 177, 2426 (1969). 

For a discussion explicitly in terms of divergences and subtractions in 

Fourier transforms of T products see K. Wilson, Phys. Rev, 181, 1909 

(1969). For further references see R. W. Brown, C-C. Shih, and B. L. 

Young, Phys. Rev. 186, 1491 (1969). 

14. See Ref. 1 for a possible resolution of the q-decay problem and further 

references 0 The explanation of rl decay offered in Ref. 1 fails if all nine 

pseudoscalar fields are divergences of currents, as in the quark model. 

The reason is as follows: According to Ref, 1, the 77 -decay amplitude 

when the no four momentum is zero is given by a matrix element 

<T 1[f03(0) 3 QA~] t lr’r-> where f is a coupling constant, cr3 is the third 

component of the isovector u field, and Q,, is the third component of the 

- 49 - 



axial charge. Since the ~6 has zero four momentum, the full four momentum 

of the 17 is carried by the *’ and 7~~. Hence the commutator must not equal 

a divergence, for any divergence has zero matrix element between states of 

the same four momentum. But in conventional SU(3)X SU(3) the commutator 

is one of the pseudoscalar fields. One can arrange that the commutator is 

not a divergence by assuming that there are only eight axial currents instead 

of nine (this was done in Ref, 1) or by assuming that the field w introduced 

in Ref. 1 does not commute with the ninth axial charge, See S. Glashow in 

Hadrons and Their Interactions, A. Zichichi, Ed. (Academic Press, New 

York, 1968) and M. Gell-Mann’s Hawaii Summer School lecture notes 

(Cal Tech preprint, 1970). This difficulty in explaining 7 decay was pointed 

out by G. Preparata (see R. Brandt and G. Preparata, to be published) 0 

15. The operator Q(O,xo) is independent of x0 because jP iz conserved; therefore 

it automatically satisfies the smoothness assumption. But Q(p,x 
n) 0 

) need not 

be smooth in x0 for nonzero 9: The problem of defining equal time commu- 

tators within the framework of axiomatic field theory is discussed in R. Schroer 

and P. Stichel, Commun. Math. Phys. 3, 258 (1966) and A. H. Volkel, Univer- 

sity of Pittsburgh preprint N-Y-O-3829-36 (1969) and Free University of 

Berlin preprint 0 

16. See A. Wightman and L. Garding, Arkiv for Fysik 28, 129 (1965) especially 

pp. 131-133 and 153-154, and references cited therein. 

17. For more detailed discussions of scale invariance, see: for free field 

theories, J. Wess, Nuovo Cimento 18, 1086 (1960); for interacting field 

theories (including Ward identities) G. Mack, Nucl. Phys. B5, 499 (1968)) - 

See also Refs, 1, 3, and 6, and D. Gross and J. Wess, CERN preprint. 

Some recent preprints are S. P. DeAlwis and P. J. O’Donnell, Toronto 

- 50 - 



18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

University preprint (1970)) L. N. Chang and P. G,O. Freund, California 

Institute of Technology preprint (1970)) P. de Mottoni and H. Genz, II Institut 

fur Theoretische Physik der Universitat Hamburg preprint (1970), K. Wilson, 

Stanford Linear Accelerator Center Report No. SLAC-PUB-737, and 

M. Gell-Mann (Ref o 14) .- 

Surface terms at time yo=&a are neglected. In a zero mass theory this can 

be a mistake; it is assumed here that the neglect is legitimate. 

D. Gross and J. Wess (Ref, 17) 0 

For further discussion of the dependence of the coupling constant on the 

parameter K , see Ref. 4, 

These singularities cause a logarithmic divergence; this can be shown using 

the methods of Section II. 

It was suggested by S. Coleman (private communication via R. Jackiw) that 

4 has a dimension in second order despite the breakdown of scale invariance. 

See the end of this Section for further discussion. 

There are many aspects of the derivation of the Ward identity for Vc(p,,p2) 

that should be examined carefully. In practice only one problem seems to 

cause difficulties, namely the singularity in the product T $(x) :+4(y) : for 

x -y and only this problem will be discussed. 

For background, see Refs. 1, 2, and references cited therein. Ideas com- 

pletely analogous to operator product expansions and scale invariance have 

been developed independently for classical statistical mechanics by Kadanoff D 

See L. Kadanoff, Phys. Rev. Letters 23 1430 (1969) and references cited -’ 

therein. 

2-l The zero mass propagator Do(z) behaves as (z ) for all z0 

It seems a bit strange that other local fields such as VhV” :e3(y): do not occur 

in this expansion; presumably they will bc involved in higher orders in A, . 
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