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ABSTRACT 

The analytic structures of the virtual forward Compton scattering amplitude 

as a function of one and two complex variables is investigated for various com- 

binations of variables which involve the virtual photon mass. This is done both 

by using the DGS representation and by using the Feynman perturbation theory. 

The role and significance of complex Landau singularities is discussed. In 

general these are branch points but it is found that at t=O some of these become 

poles. The effect of these complex singularities and of overlapping cuts on the 

ordinary single variable dispersion relations and the mass extrapolations in 

Vector Meson Dominance Model is explained. 

Using the Cutkosky discontinuity formula for Feynman graphs the analytic 

structure of the discontinuities across various normal threshold cuts of the non- 

Born term part of this amplitude is deduced. One finds that the two variable 

analyticity of the amplitude implies a single variable analyticity for these 

discontinuities. 

It is shown that in general the inelastic structure functions W and E cannot 

be expected to have a simply determinable analytic structure. But under certain 

conditions W and w can be identified with boundary values of the discontinuities 

across the s and u channel normal threshold cuts in the virtual forward Compton 

scattering amplitude, respectively. This is used to show that the contribution 

to W and w from certain types of Feynman graphs under certain conditions are 

analytic functions of one complex variable and only for such cases can one use 

crossing symmetry to relate the inelastic electron scattering structure functions 

and the annihilation structure functions. 

The motion of the Landau singularities of vW2 is shown to provide a possible 

explanation for its observed rapid approach to %caling” for finite but large final 

state masses. 

-2- 



I. INTRODUCTION 

In recent literature on inelastic electron scattering, increasing use has been 

made of analytic continuations of the inelastic electroproduction structure func- 

tionsla, b, c and single variable dispersion relations in the virtual photon mass 

q2 for the virtual forward Compton scattering amplitude le,f and for its integrated 

absorptive parts. lg Power series expansions in q2 for fixed center-of-mass 

energy s have been used in the analysis of experimental data on these electro- 

production structure functions D lh The Vector Meson Dominance Model (VDM) 

depends crucially on “smooth” analytic continuations in the mass q 2 li, j, k and , 

so do some theorems of current algebra. lm We would like to know the limitations 

and range of validity of all such analytic continuations, dispersion relations and 

power series expansions D For this purpose, we investigate the analytic structure 

of the virtual forward Compton scattering (VFC) amplitude T as an analytic 

function of one and two complex variables and demonstrate a method of deducing, 

in certain cases, the analytic structure of its discontinuities across fixed cuts 

and of the inelastic structure functions. 

Our analysis is based on the Feynman perturbation theory, 2 and we only 

consider massive scalar particles. We ignore spin and renormalization since 

these do not affect the position of the singularities on the physical sheet. However, 

the strength (residues of poles and discontinuities across cuts) and the nature of 

these singularities does depend on spin, renormalization and the nature of the 

couplings. Besides these, renormalization can also affect the singularity 

structure on unphysical sheets. Our results therefore apply to the kinematic 

singularity free invariant amplitude and we hope that the physical sheet analyticity 

is valid even if the perturbation theory fails 2a, 3 (as in the case oi strong 

interactions). In this paper we do not attempt any rigorous proofs but simply 
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demonstrate some important theorems and physical features relevant to the 

problem. 

In Section II we collect the basic definitions used throughout the paper. 

In Section III we start by giving a practical discussion of the DGS repre- 

sentation4 and show how one can deduce the analyticity of the VFC amplitude 

directly from this representation for any combination taken as the pair of 

independent variables. The results are tabulated in Table I. From our analysis 

we find that the DGS representation implies the same analyticity for the full VFC 

amplitude as we obtain from the subsequent perturbative analysis. However for 

a single box diagram we do get a larger domain of analyticity than implied by the 

DGS representation. This is because in the absence of knowledge of the detailed 

structure of the DGS spectral function, the DGS representation is incapable of 

showing an analytic continuation with complex singularities except by giving an 

infinite cut along the whole real axis (which separates the whole complex plane 

into a pair of disjoint half-planes). We show how to determine the DGS spectra1 

function for an arbitrary Feynman graph and use it to show that for the box 

diagram the DGS representation gives the same analytic structure as perturbation 

theory for the absorptive part of the box graph. This analysis also demonstrates 

a practical technique of determining whether the contribution of a particular 

Feynman graph to the inelastic structure functions5 %cales” or not in the 

Bjorken limit. 1 

In Section IV we use well-known techniques 29% 7 to determine the analytic 

structure of the Feynman integral for the box diagram with unstable external 

legs at t=O. On the basis of it we conjecture results for the complete VFC 

amplitude in all orders consisting of all possible Feynman graphs. The proof 

of these conjectures is left to a subsequent paper. The off mass shell continuation 
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is defined by the Feynman integral and the physical boundary is determined by the 

Feynman prescription of giving an infinitesimal negative imaginary part to the 

masses of all internal legs which are presumed stable (the resonances can also be 

treated as stable particles for the purpose of determining the physical sheet singular- 

ities 6’ 3. Fixing t=O is found very useful in trying to generalize our analysis to all orders 

because at t=O the dual diagram8 for the VFC amplitude is topologically similar to the 

dual diagram for the vertex function. Therefore the two amplitudes are required 

to have their Landau singularities similarly located (though their nature could 

be different) 0 An analogous result does not hold for the second-type’ or mixed 

singularities 7C which are not determined by the usual dual diagrams. One 

expects 9a that the pure second-type singularities in all orders stay away from 

the physical sheet and are located at the edges of the physical region (at ~0, 4M2, 

u=O, 4M2). However, we cannot make any definite statements about the mixed 

second-type singularities D 7c 

We indicate why we expect that an analysis of all orders of 

bation graphs at t=O will show that besides the Born term poles 
2 

Feynman pertur - 

the only Landau 

singularities on the physical sheet of the complex q- plane for fixed s=sR+ ie 

(or vice-versa) are the s-independent normal q2-threshold branch points (for 

real time-like q2 > 0) and a set of complex anomalous singularities qz (s) , which 

move with s, and correspond to the single loop box or triangle reduced diagrams. 

In particular this shows that the Landau singularities of the full VFC amplitude 

nearest to the origin and on the real plane are given by the lowest order Feynman 

graphs, This is a reflection of a similar well known result for the vertex 

function. 8e 

When all the external legs are stable (or when s is below the normal threshold) 

the VFC amplitude has only real singularities on the physical sheet. These real 
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singularities are the Born term poles (due to weakly connected Feynman graphs 

which separate into two graphs on cutting a single line) and the normal and 

anomalous branch points. When the external legs are unstable some of these 

anomalous branch points move over into the complex plane to give the complex 

Landau singularities D We find that at t=O some of these anomalous branch points 

coalesce to form simple anomalous poles (which come from the strongly con- 

nected graphs) ,, We demonstrate this explicitly for the single loop box graph 

and give reasons why we believe this need not be true in similar situations for 

arbitrary Feynman graphs. This structure has important implications for 

ordinary single variable dispersion relations (with semi-infinite real cuts and 

poles) and for mass extrapolation in the Vector meson Dominance Model (VDM) . li’j’k 

We find that ordinary single variable dispersion relation can cease to exist 

either when left and right hand cuts overlap giving a cut along the whole real 

axis or when we get complex anomalous singularities. Thus fixed ZJ dispersion 

relations in complex q2 exist for all real v while fixed real q2 dispersion rela- 

tions in v cease to exist for q2 >_ 4.j~~ [1 - (/~~/4M~;1. S imilar results for other 

choices of variables are listed in Table I. 

To study the mass extrapolation in VDM we consider the physical sheet 

analytic structure (see Fig. 1) of VFC amplitude in the complex q2 plane for 

2 real s fixed above the threshold, i, e. : Re s 2 (M+p) , b-n s -+ 0+ 0 From 

Fig. 1’7~ and our subsequent discussion we will find that we have a real cut 

= 1 Q) 
Z 

3 4~~ 5 q2 i I due to the normal q2 threshold together with a moving 

(with s) overlapping cut 
= [ 

u G i (s-4M2+u) 5 Re q2 5 00 , Im q2 4 0-t 1 due to 

the u channel normal threshold with the physical region squeezed between them. 

In addition we have the complex anomalous singularities like q:(s), the u channel 

(9 Born poles Pu , and the vector meson resonance poles on the second sheet at 
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mE-impTp o VDM requires an analytic continuation of the VFC amplitude from 

the p pole to the origin. For small sR, c u overlaps c z squeezing the physical 

region between them and the above analytic continuation is not possible since the 

continuation path A leads off to the unphysical sheet in E ---) 0+ limit. But for 

large sR this cut moves to the right exposing the physical boundary and the 

analytic continuation is possible along a path B. -This is the well known lj reason 

why VDM is expected to work for large real s only. Now the mass extrapolation 

assumption for VDM amounts to dominating the absorptive part across the normal 

q2 cut cz by the p pole with a width (which parameterizes the effect of this cut), 

cutting off u-channel poles P,(s) by the form factor and ignoring the 
c, 

cut due 

to its distance. But VDM also ignores the contributions of the complex anomalous 

singularities. This we find to be unjustified because even though, at large real 

s, these anomalous singularities may have a small effect on the modulus of the 

VFC amplitude at q2=0, due to their large (of order of sR) distance from the 

origin, they can still have very significant effect on the phase of the amplitude 

(or its ratio of real to imaginary part). Related results for the case t#O have 

been recently obtained by Potter and Sullivan. lk 

In contrast to the DGS representation, the advantage of our perturbative 

analysis is that we can deduce the single variable analyticity of the discontinuities 

of the non-Born term part (the strongly connected Feynman graphs) of the VFC 

amplitude across the various normal threshold cuts. The Born terms give non- 

analytic delta function contributions 0 The single variable analyticity of the 

discontinuities is found as a straight forward consequence of the two variable 

analyticity of the amplitude. These facts are apparent from the Cutkosky’s 

discontinuity formula, 2a, 10 from which one can also show that the non-Born 

term parts (nonresonant final states) of the inelastic structure functions are a 
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boundary value of the discontinuity functions on and only on the cut free part of the 

real axis, when the mass of the undetected final state is kept fixed. These facts are 

explained further in Section V. There we also discuss the special class of graphs 

for which the inelastic structure functions can be analytically continued from the 

scattering region to the annihilation region. Ib,c,l 

In a separate publication 11 we discuss an interesting application of our 

analysis which is based on the observation that the physical x-sheet anomalous 

singularities x*(s) of W(s) x) rapidly approach their s independent asymptotic 

position once s is large enough. We propose that this may provide an explana- 

tion of the rapid approach to “universality” of the inelastic electron scattering 

structure functions. A simple minded discussion of the physical basis of this 

proposal is given in Section I%C and V. 

Most of the sections of this paper can be read independent of each other. 

In particular we suggest Sections IV. C and V to those interested in practical 

applications of our analysis. 
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II. DEFINITIONS 

The forward Compton scattering amplitude represents the process YN- ?N 

when there is no four momentum transferred from the photon to the nucleon. This 

process is shown in Fig. 2. For future reference we list the relevant kinematic 

variables below (our metric is (1, -1, -1, -1) andii=C=l); 

1. The photon mass q2 = z. 

2. The nucleon mass P2 =M2 (fixed). 

3. The energy of photon in the rest frame of the nucleon is proportional 

tov= 2q*P. 

4. The direct channel center-of-mass energy equals 

S=(p.I+p2)2=(q+P)2=z+~ +M2. 

5. The momentum transfers t = (p2+p4) 2 = (P-P)2 = 0 (fixed) 

u = (P2+P3)2 = (P-q)2 = z-v+M 
2 

These satisfy s + u = 2 z + 2M2- 

6. The scaling variables are 

2q*P v w=-=-- 
-92 z 

and x,Z,A. 
V w * 

If we keep P2=M2 and t=O fixed we know from Lorentz invariance that T is a 

function of two invariants. We choose these to be either the set (z, v) or the set 

(z, s) and study the analytic structure of T(z) v) and T(z) s) as functions of complex 

z, v and s. 

When the spins of the photon and the nucleon are considered, one finds that 

T is a multicomponent Lorentz tensor T WI 
PV 

where a,p are spinor indices and 

p, v are vector indices. Then one can use Lorentz invariance 2h,Q to expand 
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the tensor amplitude in terms of a complete set of linearly independent tensors 

{g;:(i)} formed out of qp, Pp, yf@), and c:), as follows: 

Tta@ = 
PV c 9:@(i) Ti 

i 

Here the coefficient Ti are scalar functions of linearly independent invariants 

and we call these invariant amplitudes. These are chosen to be free of kinematic 

singularities, which can be discovered applying conservation laws like four 

momentum conservation and gauge invariance. lj,Q 

It is well known 28,c that the analytic structure of the invariant amplitudes 

is the same as that of a corresponding amplitude with all spins ignored. That 

spin is an “inessential complication” in the study of analyticity, is most easily 

understood in terms of the Feynman graphs in which spin just adds extra mo- 

mentum dependent terms in the numerator of the integrand but does not affect 

the denominators whose zeros give the usual Landauian’ and second-type singu- 

larities. ’ On the other hand, it should also be clear that spin will be very 

important important in the study of the asymptotic behavior 2a which is an input 

for the dispersion relations. This will not concern us in the present paper. 

However, when discussing specific cases we should remember that these spin 

,factors can lead to cancellations within a particular Feynman integral or between 

different ones in a sum of Feynman integrals. From now on we shall ignore all 

the spin factors and only consider scalar particles. Hence, our results will 

only apply to the kinematic singularity free invariant amplitudes. In the same 

spirit we will also assume as usual that the infrared and ultraviolet divergences 

have been removed by.suitable cutoff. 
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III. RESULTS FROM THE DGS REPRESENTATION 

Using the LSZ reduction formulae, 
2h 

the forward Compton scattering ampli- 

tude can be defined in three ways (ignoring spin) a 

TR(q, P) =/d4x eiqox ‘=IWo) [ JIG% J2P) 1 1 P> 

TA(q,P) = -Jd4x eiqox <Pb+xg) C JIW, J,(O) 1 b> 

or 
TT(q, P) =/d4x eiqox <P 1 T, (J&x) J2UW 1 p> 

where JI(x) and J2(x) are local electromagnetic currents and T, the positive time 

ordering operator 0 For a stable nucleon these definitions agree for various 

physical values of the four momenta q and P. This is seen as follows: 

T+(JI(x) J2(0)) = 6 (x0) [3+x) 9 J2(o)] + J2(0) J1(x) 

= -0 (-x0) [ J#) , J2(0) 1 + JIM J,(O) 0 

Therefore 

TTtq, p) - TR(% p) =fi4X eiqex (P 1 J2(0) J&x) 1 P > 

= c tV4at4) (q-PtPn)<P1J2(0)In><“lJ1(0)IP> 
n 

Energy conservation and the stability of the physical nucleon of momentum P 

(PO >_ 0) forbids it to decay into a physical single particle of momentum q (q” L 0) 

and another system of momentum Pn(Po L 0) o Therefore P,=O, i. e o : the only 

intermediate state allowed is the vacuum. But < P I J2(0) I Q > = 0 from LSZ 

assumptions . Therefore in the physical region of s-channel (q” > 0) , 

TT(q, P) = TR(q, P) e Similarly in the physical region for the crossed channel 

(So < 0)) TTt%P) = TAtq,P). 
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This shows that in the appropriate physical regions TT coincides with TR A0 , 
For unphysical (and complex) values of the momenta one must define the amplitude 

T by means of an analytic continuation. 2m,n Then the function TT, TR and TA 

will simply be different boundary values in the appropriate regions of this unique 

analytic continuation T; To seek this analytic continuation it is convenient to start 

with TR or TA rather than TT since the locality of the retarded (or advanced) 

commutator (i. e. : vanishing at space-like separations) allows its fourier trans- 

form to have a large domain of analyticity. 2 On the other hand it is perfectly 

possible to arrive at this unique analytic function T by analytic continuing any 

representation for the scattering amplitude which has the suitable analyticity and 

agrees with TT in the physical regions. This fact will be used in our subsequent 

discussions in this section. We should observe that even though the Feynman 

perturbation theory is derived using the form TT(qo P) I the analytic structure 

obtained by analyzing connected Feynman diagrams reflects the analytic structure 

of the retarded (or advanced) commutator. This is because Feynman graphs 

involve positive energy particles and conserve four momentum so that the extra 

terms J2(0) J1(x), or J1(x) J2(0) are not seen in the diagrams contributing to the 

respective channels. To be precise, the connected Feynman diagrams correspond 

to the connected part of the retarded (or advanced) commutator defined by 

e (*X0) <PI b,(x) 9 Jai&j JP)connected = 0 (*X0)< p t[J&X), J24 1 p> - 

- +x0) s(4)(~-Pr)<Q$J,(x). JzO] tfi > 

The term 0(*x,) (P-P’)<fil[J1(x), J2(0)llG> corresponds to the disconnected 

graphs shown in Fig. 3a. 
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When discussing analytic continuations we will be interested mainly in the cut 

structure of the amplitude in the complex planes. Since pole graphs do not affect 

such structures, we shall ignore them in all our discussions D 

Let us now consider the amplitudes TR(q, P) and TA(q, P) p Using the identity 2hp j 

eiqOxO 
co 

6 t*q 5 *(2ni) -’ / -dqb e 
iqbxO 

[qb-qoTie]-l (or a subtracted version), it 
-00 

is easy to show that TR is analytic in the upper half q. plane and TA is analytic 

in the lower half q. plane. We can define a function T which equals TR in the 

upper half plane and TA in the lower half plane. The two half planes are separated 

along the whole real axis with the discontinuity in T across real q” axis being the 

absorptive part of T which equals 

OD A(q,P) =$d 4~ eiqx <P([JI(x), J2(0)l iP> = T(qo+ie) - T(qo-ie) 0 
-00 

In case this discontinuity vanishes across some finite interval of the real q” 

axis we can analytically connect TR and TA across this segment and then T defines 

a real analytic function of q”, otherwise not. On the other hand if this absorptive 

part is nonzero along the whole real q” axis then TR and TA are not analytically 

connected, However, we will see from the analysis of the Feynman graphs that 

one may still be able to define a analytic continuation of TR (and a different one 

for TA) into the lower half plane, but this continuation will have branch points in 

the complex plane (and corresponding complex cuts) and will not be a real analytic 

function. Here again we must remember that as long as we can find an analytic 

function which equals TR or TA in the appropriate physical regions it is a per- 

fectly legitimate analytic continuation into the unphysical region, though the 

domains of different analytic continuations would be different. This fact will be 

very useful in under standing the Compton amplitude for q2 > 0 o 

- 13 - 



I 

To understand the physical significance of the absorptive part A(q, P) we put 

in a complete set of physical (in or out) states, use translational invariance and 

integrate to get 

A(q, P) =Jd4x eiqox <PIIJl(x), J2(0)l jP> 

= (2$ c [~t4)(9iP-pd (PIJ1(D)Jn><nlJ2(0)lP> 
n 

- s(4)ts-p+p,) <P 1 J2(0) In> Cnl JIP) I P>] 

Now for all q2 in the s-channel physical region (q” > 0, P” > 0, Pi 2 0, see 

Fig. 4)) energy conservation and stability of nucleon makes the second term 

vanish so we get for all q2 

A(qS “tphysical = (2~)~ c fit4)(q+P-pd <P I J+O) In><nl J2P) I P> 
n 

The various parts of this commutator correspond to the various classes of 

connected unitarity diagrams C, P and D shown in Fig. 3. Its disconnected part 

(Fig. 3a) is not needed for the present considerations. These parts are real 

quantities defined as 

C(q, P) = (2?Tj4 c 8(4) (q+p-pk) <PIJ+O)lk)c <klJ2P) IP>, 
k 

D(% p) = t2q4 c 
at4) (q-P& <.n I J,(O)(I)c (1, P(J2(o)1p)c 

e 

+ <PIJI(0)IP,P)c<PIJ2(O)jn>c 

P(q, P) = p-l4 c 
*PQ (q-P--Pm) <filJ,(o)lPm)c <m, PIJ2(0)(fi>c 

m 

Ata P) = Ctq, P) + D(s, P) f Ptq, P) 
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where the subscript c denotes connected part of the matrix element. From 

Fig, 3b,c,d, we observe that the unitarity diagrams for C, P and D are topo- 

logically similar to the Cutkosky discontinuity diagrams for the discontinuities 

across various s, u and z channel normal threshold cuts respectively. The 

relationship between C, P, D and discs T, discu T, discz T respectively will 

be discussed later. 

Using the LSZ reduction techniques its easy to show the crossing relation 

ctq, P) = f P(q, -P) 

where (+) or (-) sign refers to a Boson or Fermion target (P) respectively 

reflecting the Pauli principle. For q” > 0, q2 < 0, C is like the structure function 

W for inelastic electron scattering (e-t- N - e--t- anything). For q” > 0, q2 > 0, 

P is like the annihilation structure function w for the reaction (e+e- + N+ anything). 

Its clear that to use this crossing relation we need to analytically continue the 

two sides of the equation to common domains. If the existance of such analytic 

continuation can be established, then it can be used to connect inelastic electron 

scattering and annihilation structure functions. The regions in which these 

functions are nonzero are shown in Fig. 4. In region I only C contributes. In 

region II, (C+D) contribute. In region III, IV and V (C+DtP) contribute. In 

region VI (P+D) contribute. In region VII P contributes and in region VIII none 

contribute and thus the commutator must vanish. This is because kinematics 

require that C contributes for s L 0 (in fact M2), P contributes for u 2 0 (and 

z 2.0, but may be analytically continued into region VII keeping u fixed), and 

D contributes for z 10. We should observe that C, D and P cannot vanish 

identically in any finite subregion of the unphysical region IV if they are analytic 

functions. But this does not restrict the value of their sum which represents 

the full commutator and need not be analytic. A similar remark applies to 
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regions III and V . Thus the vanishing of the sum (C+D+P) in regions III, IV and 

V (as indicated by Bjorken’s analysis lb,d,f for the asymptotic limit functions) 

together with analyticity could be expected to impose rather strong restrictions 

on the functional form of C , D and P. 

To study the support of the absorptive part A(q, P) it is convenient to use the 

DGS representation4 which is derived on the following assumptions: 

1. Microcausality [Jl(x) , J2(0)] = 0 for all x2 < 0 (space-WC 

2. Rapidly vanishing asymptotic behavior in a! for 

~(a, p) 3 Jb(x2) d(Px) eviolx2 e-p(p*x) <P I[IJ,(x) 9 J2(0)l 
-00 

p> 

(we shall assume the unsubtracted form) 

3. T P or C invariance 

Nakanishi4, has shown that every connected Feynman diagram satisfies a 

DGS representation so that we should expect the results obtained from the DGS 

representation to be valid for each perturbation diagram. This is discussed 

further at the end of this section. 

The DGS representation for the fourier transform of a causal commutator 

states that 

= 
JJ dP do E (P. q + ,6P2) 8 (q2 + 2pqs P -o-) 
-1 -P2P2 

where H(cr,p) is real, irrespective of the nature of currents because of T P or C 

invariance . The terms for n > 0 correspond to terms in A which do not vanish 

as Iv/ --+a~ for fixed z or IzI -+oo for fixed v (where we express the polynomials 

in z by those in v using their linear dependence due to 6(z+v -u)) . 4d,i,j For 
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example such terms can arise when spin is not ignored. They would also occur 

when the commutator has Schwinger terms (since fourier transform of 

(dn/d(x2)1 8(x2) is (q2)“). Using crossing symmetry of the whole Compton 

amplitude (which require symmetry under v - -v) we can also show that 

H(c+,--p) = H(u,P). 

We will be concerned with the case when the nucleon is massive and stable 

and we will ignore the subtraction terms, since they are known not to affect the 

analytic structure of the matrix elements. With these restrictions we can write 

(using our notation) 

A(q,P)z 
J 

4 d x e iq~x<P~[J,(x),J2(O$P> =j;‘d%d~~(~ipMz)s(rigU-ai H(cr,p) 

The physical region in the real (z, v) plane and the support of the spectral 

function H(c , P, in real (V , P, plane are shown in Figs D 4 and 5. 

From their representation for A(z) V) , DGS are also able to derive a repre- 

sentation for TR which is 

1 QJ 

/J 

Real Polynomial P(z) v) 
TRt% p) = dP c-b 

A -1 0 z+pv -?z;l+pM2j ’ in z and v 

The support of H(a, fi is deduced from the behavior of the commutator in the 

physical region. The physical region (where Energy 2 mass) is v 2 L 4M2z e 

The s-channel reactions lie in s = z + v + M2 L Mi and the u-channel reactions in 

u=z -v+M2 ?M2 u. For MS -M > 0 and MU -M > 0 these two regions are disjoint 

and this nucleon stability condition is crucial to our analysis (if these conditions 

are violated the analyticity is reduced drastically). The support c of H((T, P, is 

bounded by -1 L p L 1, (T 2 2pMP+p2 and u 1 -2pMfl+p2 assuming Ms=MU=(M+p)2 

where p is the pion mass. c is shown in Fig. 5. 
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For every point in the (z, V) plane the absorptive part A@, V) receives con- 

tribution from the integral along the line in the (cr , p) plane given by the equation 

z + pv -o-= 0 

The parabola v 2 = 4M2z generates a set of lines in the (c, P, plane which have as 

their envelope the parabola c = -p2M2 0 Thepartofthelines=z+~+M~ = ME 

in the physical region generates a pencil of lines through (C = M2 -ME, ,L3 = -1) 

lying between tangents of positive slope and the line p = +l. Similarly the line 

u = z-v + M2 = Mi gives the tangent to u = -p2 M2 through (o- = M2-Mt, p = +q. 

All the lines generated by points in v 2 2 4M2z intersect the parabola (or at least 

touch it) and the e-function changes sign inside the parabola (or at the point of 

contact) where H((T, P, vanishes. Also in the support of H(cr, p), E (v /2+/3M2) = E(V) 

for v lying in the physical region of the (z , v) plane. 

Using the fact that due to the stability of the nucleon the s-channel physical 

region(where the term (P 1 Jl(x) J2(0) 1 P> contributes) is disjoint from the u- 

channel physical region(where the term <P ’ J2(0) J1(x) 1 P> contributes)DGS show 

that one can write 

TTt% p) 

We see that DGS representation for TR A defines a function which is analytic 
, 

in the physical region ( since there the sign of (; ) + PM2 is fixed but due to the i 

presence of i (; +PM2) e it cannot be continued to unphysical values of v since 

(;+PM’) can go through a zero and change sign. On the otherhand the repre- 

sentation obtained for TT is continuable to the unphysical v regions provided Im TT 
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vanishes over a real interval. To determine the support of Im TT we use the fact 

that the nonvanishing contribution to the integral defining Im TT comes from the 

intersection of the line z +pv -cr= 0 with the support of H(u,P) o From Fig. 6 we 

observe that for arbitrary fixed real v and z variable or for z fixed less than p2 

and v variable we can always find a pencil of such lines corresponding to a real z 

interval or real v interval respectively, which do not intersect the support and 

therefore gives a vanishing value of Im TTO In such cases the DGS representation 

for TT defines a real analytic function of z for arbitrary fixed real v with a cut 

along a part of real z axis. Similarly for fixed real z < p2 we get a real analytic 

function of v 0 But if we fix z > p2 then the line z +pv -C = 0 always intersects the 

support for all real v and in general we will get a nollzero Im TT for all real v o 

In this case we do not have a real analytic function of v but instead a function which 

has a cut along the entire real axis and the DGS representation for TT can not be 

used to continue in v from the upper half plane to the lower half plane D However, 

as we shall see in the analysis of Feynman graphs, we may still be able to find an 

analytic continuation of the amplitude from the upper half v -plane to the lower half 

v -plane, but this continuation will have complex branch points and correspondingly 

cuts in the complex plane. At this point we should note that in the case z > p2, the 

nonvanishing of Im TT for all real v may not imply the nonvanishing of A for all 

real v 0 This is because for certain v in the unphysical region E (t +pM’) can 

change sign on z +pv - r= 0 inside the support and so may cause the integral for 

A to vanish. 

A similar analysis in Fig. 7 shows that for fixed s > (M+/L)~ the amplitude is 

not a real analytic function of z and for fixed z > p2 the amplitude is not a real 

analytic function of s. Of course below these thresholds (which are the lower bounds 

on actual thresholds) we do get the amplitude to be a real analytic function of one 

variable. The reason is that for fixed s as we vary z the u-intercept of the 
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integration line rises while its slope decreases and (for say s > (M+p) 
2 
) this can 

cause the integration line to intercept the support for all real z. In fact we observe 

that whenever a variable is such that varying it can cause this intercept to rise 

simultaneously with falling slope we can expect to get a nonreal analytic function 

(above the threshold for the fixed variable). On the other hand if the intercept falls 

simultaneous with falling slope, then we may expect a real analytic function. Using 

these rules we can analyze the amplitude for any combination of a pair of invariant 

variables and the results are indicated in Table I. 

We thus see that the representation for TR derived from the DGS representation 

for A defines an analytic function in the physical region but does not provide an 

analytic continuation of TR A to the unphysical regions. Instead the representation 
, 

for TT is in a continuable form and the two agree on the various physical regions. 

Since T is defined to be the analytic continuation to unphysical region of the physi- 

cal region amplitude (TR or TT) we choose the DGS representation for TT to define 

T for all z and v (or z and s, etc.). Hence in general we have 

m 

T(z,v) = P(z, V) + dc JJ 0 -1 

N v mhm(g, p) + C (z+@v -c$ i$cr, p, 
n=O 

z+pv -u 

for all z and v o TT(z, v) is ‘always a boundary value (at Im z > 0, Irn v > 0 

in the s-channel physical region; at Im z > 0, Im v < 0 in the u-channel physical 

region) of an analytic function T(z, V) of two complex variables. As we have 

seen, it may not always be a boundary value of a real analytic function 
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of one complex variable when the other variable is fixed above certain real values. 

We also note that this analytic continuation is conjugate symmetric in the two 

complex variables, i.e.: 

T(z*,v*) =T*(z,v) 

This property will also be reflected by the analytic continuations obtained from 

Feynman graphs 0 This does not necessarily imply that the physical amplitudes 

T(z) vR -+ ie) or T(zR * ie , v) are real analytic functions of one complex variable D 

Now 

A(z,v) = I1dBcc e(; +PM2) 6(z+@ -u) H(u,@ 

d@(z + @v -c) H((T, p) 

H(c,P) 

for v > 0 and (z, v) in the 

physical region ( v2L 4M2z) 

for v < 0 and (z, v) in the physical region 

6(z-c) { H(c,P) - H(o-,-/3)} =0 [ for v = 0 and any z 

while 

I(z,v) = -$T(z,v) dm 6(z + /3v -c) H(cr, p, 

= disc TR = A, in the s-channel physical region 

= disc TA = -A, in the u-channel physical region 

Thus the absorptive parts A(z) v) and I(z) v) agree in the various physical 

regions. They can differ in the unphysical region v 2 < 4M2z, and here I(z) v) 

need not represent the commutator 0 But in the unphysical region the definition 
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of the fourier transform of the commutator is arbitrary since neither the DGS 

representation nor any general principles indicate any analyticity for these 

absorptive parts, and so we have no a priori criterion to choose one over the -- 

other. Thus different representations of the commutator in the unphysical region 

which agree on the physical region will give the same amplitude and the same 

physics. Since we have chosen a particular representation for the amplitude on 

the, a priori, basis of analyticity, it is convenient to choose its total imaginary 

part I(z, v) to define the commutator even in the unphysical region. One advan- 

tage of such definition is that the analytic continuation of the amplitude into a 

particular complex domain is unique and so has a unique imaginary part. In the 

particular case of a real analytic function (only real cuts) the total discontinuity 

across the real cut gives the imaginary part. For an analytic function with 

complex cuts (as is needed to define analytic continuation of the amplitude in 

case the DGS indicates nonvanishing imaginary part across whole real axis) the 

imaginary parts in the real region on the physical sheet are related to the dis- 
7 continuities across the complex cuts also. This will become clear when we 

discuss Feynman graphs. As an example we should note the fact that since the 

DGS representation for T tells us that T is a real analytic function of z for all 

fixed real v we can, therefore, unambiguously define the imaginary part I(z, v) 

as the total discontinuity across the (real) cuts in the z plane for any real z and 

u and we can take this to define the commutator for all real z and v . 

Before we conclude this section we discuss the Nakanishi’s 4c method of 

deriving the DGS representation from the Nambu 2,6a,b,c representation for an 

arbitrary order Feynman graph for the virtual forward Compton scattering 

amplitude and apply the results to the box graph of Fig, 8a. In particular we 

explicitly demonstrate how to use this representation to study the “scaling” of 

the contribution of any Feynman graph to the inelastic structure functions W. 
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For an arbitrary Feynman graph, with N internal legs and I independent 
2a, 6abc loops, for the VFC amplitude the Nambu representation is written as 

T(z, s,M2) = lim 
E - 0-k 

where G is a constant. For a u-channel graph the variable s is replaced by u. 

Applying circuit theory 2a, 6 one can show that the discriminant 

D(+ . . . aN, z,s,M2) = ~s(~l~*.4YN) s~~z(a!l”‘“‘~N)z+~ut(yl”“,arN) u 

+ 6M@+ . . ..aN) M2 

while C(ai) is a sum of products of {o! i{ and for 3a 

OICYill tu((ajt) Z 0 v=s,z,u,M, {j\= 1,2 ,..., N 

and 

Again we define 

5&q - $pi) 
+@i) = ($xJ + {z(“i) + ($Y.J ’ -IL L 0 5 IL 
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anduses=z+v+M2andu=z-v+M2towrite 

and 

To get a representation with a DGS type of denominator we use the identity 

00 

J du 6(-h _ i-$ a0 du aun ’ “’ -co (A-$+l nr -m J (A-c) 
after n partial integrations. 

We use S(C ai-l) to extend the CY~ integrations to infinity and assume suitable 

convergence properties so as to be able to interchange the order of CY~, P, (T 

integrations to get 
00 00 

T(z,s,M2) = G dP J/ n” da! 
'laj) 

S(u-‘4) 

i=l i (z+Pu -CT) N-28 

-m 0 -Q) 

00 
= W-1) N-2Q-1 

(N-2Q-1) ! J/ 
dp ; ltl dori “~~N-2Q-2s~~-3s’~-~’ aN;F;‘a”) z+pu -u -co --Q) 

If we define the DGS spectral function 

00 
G 1N-2Q-1 -) J N C(n.JN-2Q-2s SW@) 

H(uy p, = (N-28-1) ! El dai 

aN-2P-1 S(U-$1 

77 
N-2Q bN-2Q-1 

0 
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I 

we get the DGS representation 

00 

T(z, v) = 
J-J 

@ &$$ 
-00 -a 

To find the support of the spectral function H(cr, P, we use the delta functions 

and note that by its definition 

-ll$Ll for OIql 

implying that H(u, P, is nonzero only for 0 <_ @ <_ 1. Similarly H((+,/3) is nonzero 

only for emin 5 O- 5 Qmax where @ min(max) is the minimum (maximum) value 

of $ subject to the constraint that +=p lie at a fixed given value in the interval 

[-I, 11. 

Therefore the support of H(cr, fl is the two dimensional region 

To get a feel for the representation we determine its spectral function for 

some example. 

For poles of the form T(z) v) = C/z-m2 we get H(u, p) = C S(p) 6&r-m 2, . 

For poles of the form 

we get 

1 1 T(z,v) =T f 2 
s-m u-m 

H(cr, p) ={6(@1) f 6(@+1)] s(u-m2+M2) 

while 

H(u,@ = 0(1-p2) -& a((+-m2+M2) 

gives 

T(z,v) = 2 

(s-m2) (u-m2) 
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Now we use this method to determine the explicit DGS representation for the 

box diagram of Fig. 8a. Here N=4, Q=l 

$=a a 2 4 

sz = ~4(y+~3) 

‘, = cr2(o! ISa! 3) 

while 

q = cr4(al+~2+a3) = cY4(1-cr4) 

+= 

ti= 

C= 

Q!2 =-EL 
ci p2+cY3 l-cY4 , cr2 <l 0 < l-Q4 - 

5 aim: 
i=l 

-a2(1-a2)M2 (I-(Y~)/A~+cx; M2 
ZZ 

a4(1-a4) a4(l-a4) 

a! +o! +a! +cY 1 2 3 4 

So the DGS representation is 

where 

00 

;5 dy 
i=l 

a 
a(T w--e 

Performing the al and a! 3 integrations using one delta functions gives 

1 1 (l-o! 
H(u,p) = -G JJ da2 dor4 

4-(“2) e (lsaqma!2) cr2 
s P-l-a4 a(l- 

0 0 CY.$l-cX4)2 ( ) 
-a- S(u-$q 
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Put l-a4=a and T = y and use the 8 -functions to get 

Use a delta function to do the y integration to get 

Assuming we can interchange the order of integration and differentiation we get 

H(u,P) = -G [e(p) -etp-i)] (l-p, -&.[l -p-&- 02$$,pp2+p2 
-cl! 

Call 

We define 

g(a) =u- $202M2-porl.l 2+p2 (a -a!$ (a -Q! _ ) 
a( l-O!) 

E u+ p2M2 
a(cr-1) 

where 

a* (u,p) = (“+pp 2, + 2 u2+2p (p -2) u _ p2p2(4M2-p2) 

2(u + p2M2) 

g ‘(cY) = (u-t P2M$ 
I 
(2a!--+-q ( o! -a+)@! -qpa-1) 

cY(cY-1) - cY2(cv-l)2 I 
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Doing the 01 integration we get 

I(u) = [ 8 <“$ - eta+-1) 1 [ etq - my-l) 
/&+)I tl-a;)2 + 

1 
Ig'@+) I (l-q2 

where the 8 functions are interpreted to vanish if cr+ are complex. 

To see the use of having the explicit form of the DGS function we calculate 

lim v Im B(z,v) forz < 0 and x = 5 fixed 
v -+a 

We expect from our calculation in Section IV that for z c 0 

lim 
v *co, x fixed 

v Im B(z,v) = lim -k discs B(z,v) 
v--,021 

= tConstj (1+x) bt-~) - w-~-id 
M2x2+p2x+p2 

To calculate this from the DGS representation we note that 

m 
Im B(z,v) = -7r 

J-J- 
du IL3 H(cr,@ 6(z+pv -o-j 

-03 -co 

Doing the p integration and using the support of H(u, P, we get 

lim v ImB(z,v) 

v 360 (3 
= .;: &c+(;-x) - O(f-x-11 H(O, z-x) 

Assuming we can interchange the order of integration and the limit and assuming 

that the limit of a product of distributions is the product of their limits we get 

lim 
v -00 

Now one may be tempted to claim without further assumption 
If that 

,l?. Hip, s-x) = H(u, -x) 
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I 

But it is important to note that this could be false since H(u, P, is a distri- 

bution which is defined as a limit of a sequence. So to use the above result we 

must assume that we can interchange the limit v -+ 00 and the limit of the sequence 

defining the distribution. Assuming this we get 
00 

lim v Im B(z, v) = -7~ 
Jf 

du 8 (-x) - et-x-i) H(u, -x) 
V-+aD -a 

Substituting the H(u) -x) obtained for the box graph we get 

lim v Im B(z,v) = n G [0(-x) - 0(-x-l)] (1+x) 
V-+QJ 

ZZ r G [et-~) - e)-x-q] (1+x) [I(+~) - I(-~)} 

Now I(- Q)) = 0 since the delta function cannot be satisfied for 0 5 CY 5 1. 

To calculate I(+ao) we note that 

so that 
2 2 

o! - + 

Then 

I(C) = [ eta+) - W.-l) 1 IQ+1 WV) - WL-1) 
+ 1 ICI 

(cr+x2M2) (l-a+) 1 CY+-CY- 1 (u+x2M2)(l-a-)~cy+-~-~ 

1 
uza 2 2 2 M x +/J x+p2 
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Therefore 

lim vImB(z,v)= ?rG [et-~) - et-X-ijj (1+x) 
lf+oO M2x2+p2x+p2 

which agrees with the result obtained by direct laborious calculation of the 

d&continuities. This demonstrates the utility of having the explicit form of the 

DGS spectral function of any Feynman graph for studying the “scaling” of its 

contribution to the inelastic structure functions ., 1 For this purpose one should 

also include spin which has the effect of altering the function C(a) and adding 

external momentum dependent factors in the numerator, 9a but the technique for 

obtaining the DGS representation remains unchanged. We should also be careful 

about the infrared and ultraviolet divergences. 2a, 6 

The above result also shows that the complex anomalous poles in the dis- 

continuities indicated by our general analysis are also shown by the DGS repre- 

sentation when the explicit form of the spectral function is calculable. On the 

other hand, in spite of being equivalent to the Nambu representation, the DGS 

representation in its general form is very inconvenient to continue into the 

unphysical region due to the apparently singular nature of its spectral function. 

That is why, for example, the resonance poles on the second sheet are hard to 

represent in the DGS form. 
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I 

IV. RESULTS FROM PERTURBATION THEORY 

To understand what happens to the analyticity of the amplitude T when its 

absorptive part is nonzero on the entire real axis we study the analytic structure 

of the Feynman integral represented by the box diagram of Fig. 8. This is the 

simplest graph exhibiting a nontrivial cut structure. Since spin is unimportant 

in our discussions, we take all particles to be scalars and the internal masses 

in Fig. 8a are chosen to reflect the t=O symmetry of the graph. The generalized 

Mandelstam representations in the complex s and t planes for this diagram have 

been extensively studied by several authors in cases when one fixed external 

mass is unstable or when a pair of equal external masses are unstable l2 (like 

off-mass-shell forward Compton amplitude) D Unfortunately these representations 

do not display the analytic structure at t=O in the complex mass plane and so we 

have to start afresh, 

A. The Bjorken-Landau-Cutkosky Method 

We use the Bjorken-Landau-Cutkosky method6 for analyzing the singularities of 

integrals D The details of this method are very clearly explained in the first two 

chapters of the book ELOP 2a, c and hence omitted here. We simply outline the 

method to establish notation and terminology. 

It is well known 2,6-10 that the singularities (in the space of complex external 

variables) of the analytic continuations of integrals, like the Feynman integral, 

arise when the singularities of its integrand moving as functions of the external 

variables, either lie at an “end point” of integration or two (or more) of them 

“pinch” the integration hypercontour between them so that it cannot be distorted 

without crossing one of them. This is because if such situations did not arise 

in all the integrations, then we could use the Cauchys theorem to deform the 

contour away from the singularities of integrand to define an analytic function. 
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This analytic function would analytically continue the Feynman integral since 

the distortion of the hypercontour is equivalent to moving the external variables 

away from the singular point of the Feynman integral. The original integral is 

then a boundary value of this analytic continuation. 

Such analysis applied to the Feynman integral shows that all its singularities 

are given by a set of equations first obtained by Bjorken 2e and Landau8” which 

require that 

1. For each internal line i of the Feynman graph either qf =mF 

or ai=O where {ait are the Feynman parameters; and 

2. For each loop j of internal momenta 
q 

a! .q.=O where 
3 11 5) 

denotes summation along the jth loop of internal momenta. 

For a given Feynman graph the leading singularity corresponds to all ai > 0 

(no CY i=O). The q-orders lower singularities correspond to q of the ai= and the 

remaining Q! . 
I 

> 0, and are shared by the reduced or contracted graphs in which 

the q lines with (yi=O have been shrunk to a point. The location of the complete 

set of singularities is given by the leading singularities of the original graph 

together with all its reduced graphs. 

The physical boundary is determined by the Feynman prescription of giving 

all the internal masses an infinitesimal negative imaginary part (rnf - rn: - ie) . 

The solutions of Landau equations with all czi 2 0 correspond to singularities 

of the Feynman integral with undistorted hypercontour. In the presence of several 

branch points the definition of the various sheets of the complex domain depends 

on the choice of the cuts attached to these branch points. We define the “physical 

sheet” as the sheet of the normal threshold cuts which carries the physical 

boundary. Normal thresholds, in general, are the lowest order singularities 

of a given Feynman integral and they lie in the physical region. 6~ We collectively 
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call the higher order singularities the anomalous singularities. The anomalous 

singularities found on the physical sheet are the ones which move onto it during 

the process of analytic continuation. Amongst the various possible methods 2a, c, 6d 

for the anomalous singularities to come on the physical sheet the most common 

is the mechanism of “critical intersections” and much less common ones are the 

mechanisms of ‘lcusps” and “acnodes”. 13 The type of graphs or the conditions 

under which cusps and acnodes have been found do not seem to occur for the 

scattering amplitude at t=O, since its dual diagram is topologically similar to that 

of a vertex. We therefore, assume their absence and restrict our discussion 

to the mechanism of critical intersection which corresponds to a pinch moving 

onto the undistorted hypercontour past an end point. With this mechanism the 

only anomalous singularities found on the physical sheet are the ones which climb 

onto it through the normal threshold cuts or through the cuts attached to the 

(lower order) branch points which have previously come onto the physical sheet 

through the normal thresholds. The required condition for one Landau singularity 

to change sheets by moving through the cut attached to another Landau singularity 

is that their Landau curves “touch effectively” (or intersect critically) 0 For two 

Landau curves to “touch effectively” they must touch and at the point of touch have 

identical values for all the Feynman parameters Q!~~ It is easy to prove that the 

intersection (if it occurs) of any Landau curve with any one order lower Landau 

curve is necessarily effective. But as we will see (in Figs. 13 and 14) that once 

an effective touch is established one must check that the singularity does in fact 

cross the lower order cut. 

These singularities can be poles or branch points depending on various 

factors like the dimensionality of space time, the redundancy in the Landau 

equation for a given graph, spin, form factors and nature of the couplings. The 
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poles and the branch points can be distinguished in practice by one of two methods. 

Either we calculate the discontinuity (using the Cutkosky formula”) across the 

given singularity and see if it is finite or a delta function. A delta function dis- 

continuity indicates a pole. Alternatively we calculate the discontinuity across 

a lower order singularity and -in it see explicitly the presence of the pole due to 

the given higher order singularity. 7c 

The singularities obtained from the solution of the Landau equations fall into 

three main classes which are conveniently categorized in terms of the Nambu 

representation (see Section III). These are the Landau singularities (D=O, CfO) 

or the mixed or pure non-Landauian (or second type) singularities (D=O, C=O) . 

The Landau singularities 638 correspond to pinches and end point singularities 

when all the components of the loop momenta are finite. The second-type 9,7c 

singularities correspond to a wide class of special solutions of the Landau equa- 

tions which correspond to pinches when either all (pure) or some (mixed) compo- 

nents of the loop momenta are infinite. In the present paper we shall mainly 

concern ourselves with the Landau singularities since very little is known about 

the Reimann sheet properties of the second-type singularities. The presence 

or absence of the second-type singularities depends on the dimensionality of 

space time but can also be affected by spin and derivative couplings. It has been 

expected 9a that the pure second-type singularities for a scattering graph always 

stay away from the physical sheet and their position can be found in terms of the 

momenta pi of the external legs only. They are located at the edges of the 

physical region (s or u = 0, 4M 2, where 

(i) det (pi*pj) = 0 (i, j=l, 2, , . 0 E = number of external legs) 

and 

(ii) pj - f pi = 0 
i=l 

and 
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The situation regarding the mixed second-type singularities 7c is not so 

clear, They originate on the unphysical sheet, since they need C(a) for a sub- 

graph to vanish (and C(a) being a sum of products of E’S cannot vanish for 

a >O). But it is not known in general whether they come onto the physical sheet 

through a cut on the physical sheet, when an analytic continuation is performed. 

The necessary conditions for this to occur are that the second-type singularity 

curve either has an ‘effective intersection” with some other curve that is 

itself singular on the physical sheet or that the curve contains acnodes or 

cusps. 2a, 13 

The reason the second-type singularities can be important even if they stay 

on the second sheet is that the discontinuities in general display the singularities 

of both the physical and the second sheet, and in fact that is how the second-type 

singularities were discovered. It is the lack of knowledge of the second sheet 

singularities that restricts us to discussing only the single variable analyticity 

of the discontinuities which only involves the ordinary and virtual 2c anomalous 

singularities on the physical sheet of the amplitude. 

B. 

and 

The Box Diagram 

Consider the general box diagram of Fig. 8. Using the Feynman parameters 

doing the loop integration we obtain the “Nambu Representation” for this graph 

to be 

1111 

B(pl 3 p2 9 ~3 9 P4) = (Const) flff 

da1da2da3d04 S(ol+o2+o3+o4-‘) Co 

0000 D2 

where 

D = ~2~4s+~1~3t + a4a1P: + CY~~~P~ + (~2~3Pi + a a P2 - 3 4 4 

c=a1+a2+a3+o! 4 
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If we define the variables 

‘i’ ‘j ~ y..=-, m 
13 

Yji ? y.. = -1 
i j 11 

then for the single loop box graph the equation of the surface of Landau singularities 

is given by 

det (yi j) = 0 
, 

and the vanishing of the various minors of det (yi j) corresponds to the lower order , 

singularities due to the reduced graphs shown in Fig. 9. For future reference we 

list the equations for the various Landau surfaces in the two dimensional complex 

space of external variables, starting with the leading singularity. 

1. The “Box singularity” which corresponds to Fig. 8 or 9a: - 

In this case we need ml = m3 = ~1 

det yij = - 2 t cB3(t) where 
I-1 

-1 
M2-n2-mi 

2~ m2 

GB3(t) = 
M-p2-mg 

2P “2 
-l+J- 

4v2 

2 2 s-m -m 
2 4 

z-p2-rnt 

2m2 m4 2/J “4 

At fixed t=O the Box singularity is given by the equation 

2 2 s-m -m 2 4 
2m2 m4 

z2-p2-mi 

21.1 “4 

-1 

g(O)=0 and ml=m3 3 
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which is identical to the equation of the physical sheet “Triangle singularity” 

corresponding to the reduced graph of Fig. 9b. For t#0 one defines a complex 

cut joining 14c the box branch point (l/&- type) and the Triangle branch point 

( h t type) - But in the t=O case these two points coincide giving a collapsed cut 

which, as we will see later, acts like a simple pole lend and could have dominating 

effect in the appropriate regions. 

2, The “Triangle singularities” corresponding to Figs. 9b,cl,c2: - 

Corresponding to Fig. 9b we have the anomalous threshold surface CA 

whose equation g3 (‘)=O can be written as 

2 2 M2z2 + (M2-m2+p2) zu + /J v +Az=o 

where 

A E I 

The shape of its conic section with the real plane (z,, v R) is determined by the 

discriminent which turns out to be A. It is an ellipse, parabola or hyperbola 

according as A 5 0, It is easy to see by an analysis similar to that for the 

triangle graph in ELOP, that the condition for this triangle singularity to be on 

the physical sheet of the VFC amplitude is A < 0, i.e. : an elliptic curve with 

the normal threshold surfaces as tangent planes. This then restricts m to be 

In/r-pi < m < M+pO Figures lO,ll, and 12 show the real section of this surface 

=* under various conditions. To obtain the solution of the above equation for 

general masses we recommend that the reader use the method of dual diagrams. * 

To draw the complex parts of CA requires another two dimensions. To get 

over this difficulty we use the searchline method. We imagine a plane in the 

complex (z, v) space. This is 

v=@z+q ) fi’,q real 

Imv=~Imz 
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It intersects the real conic section of the quadratic surface CA in the real 

(z,, v R) planes at two unique points. If its slope is kept fixed and the intercept 

77 increased the line moves upwards in a direction perpendicular to itself and 

the two points of intersection form a pair of continuous curves on the Landau 

surface. Eventually these two real intersections with the search line coalesce 

and after that they are no longer real and become a pair of complex conjugate 

points, with the imaginary parts of their coordinates related by the above 

equation. Nothing is missed since every complex point lies on one and only one 

search line. 

Using such search lines we discover that attached to the positive gradient 

arcs of the real conic sections are two parts of a complex surface with 

s = $J > 0 while attached to the negative gradient real arcs are two parts of a 

complex surface with E = @< 0. Along horizontal tangents $ = 0, Im v = 0, 

Im z arbitrary while along vertical tangent $ = cu , Im v = arbitrary, Im z = 0. 

In using this description of the Landau surface to perform analytic 

continuation it is frequently important to distinguish the directions along 

which we approach the real section. For this purpose we define the follow- 

ing limits 2c onto the real section. When we approach the real domain along 

Im s/Imz > 0 we call it the “corresponding half plane limit” and when we 

approach along Im s/Imz < 0 we call it the “opposite half plane limit”. Further- 

more, the limit onto the real section of the Landau surface that is defined by 

givingz, s (or z, v) small imaginary parts whose relative sign is the same as 

that which they take on the attached complex Landau surface (i.e. : the same 

as the sign of the slope of the search line) will be called the “appropriate limit”. 

When their relative sign is opposite to that taken on the attached complex Landau 

surface we call it the “inappropriate limit”. It is easy to see that these limits 
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are different if and only if the sections of the real axes being approached in both 

variables lie in a cut, i.e. : the real section lies in a crossed cut. 

If the complex Landau surface is not singular on the physical sheet, then the 

appropriate limit cannot be singular. If the inappropriate limit is singular then 

the singularity is found just past the real boundary of the physical sheet approached 

by going through the real cut (Fig. 12b) 0 Such arcs of real singularities (Fig. 12a) 

which are singular in the inappropriate limit (and hence lie in the region of crossed 

cuts) are called virtual singularities. These virtual singularities are present in 

the non-Euclidean region (A(z, s, M2) > 0) on the real axis (when E -+ 0) which lie 

inside the crossed normal threshold cuts. Their presence is, therefore, not 

important for the discussion of the domain of analyticity on the physical sheet of 

the amplitude, though they are near its physical boundary (which lies above or 

below the cut). On the other hand, their importance for the study of the discon- 

tinuities is seen by the fact that in the limit c: + 0+ 

discs T (z,+i E’, sR) = T(zR+ie’, sR+ie) - T(zR+i6’, sR-ie) 

So we are simultaneously taking the corresponding and opposite half plane limits 

of the amplitude T and therefore disc s T will carry both the ordinary (appropriate 

limit) and virtual (inappropriate limit) anomalous singularities of T. 

To find which segments of this four (real) dimensional surface CA is singular 

on the physical sheet we use the fact that the Feynman parameters a! vary con- 

tinuously on this surface so knowing the Q!‘S at its effective intersections with the 

lower order singularity (the normal threshold tangents) we can deduce the CY’S 

on the whole real conic section of =A’ In particular the real segment (solid lines 

in Figs. 10, 11 and 12) with all CY 2 0 is singular on the physical sheet. The 

complex segment occurs on analytic continuation by distorting the hypercontour 

when a’s are complex. 
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At t=O the singularities corresponding to the reduced graphs in Figs. 9c2 

and cl are found to coincide with the normal z threshold (Fig. 9e) and the normal 

MB-threshold (Fig. 9f) respectively. 

3. The s-channel normal threshold corresponds to Fig. 9d, and gives the 

plane 

s-M2 = Z+Y L 2pM+p2 

and 

Ims=o , Irnz=-Imv 

4. The z-channel normal threshold corresponds to Figs. 9c2, e giving the 

plane 

z L 4p2 ) Imz=O , v arbitrary 

This completes the description of the whole Landau surface of B. 

To establish the analytic continuation of B in two complex variables we just 

have to show that we can start from the physical boundary and find a singularity 

free path to continue the Feynman integral into the complex unphysical domain 

making suitable detours when we hit its singularities. To discover the physical 

boundary we use the Feynman prescription to find 

Im D = (‘Y~cx~ + CY~CY~ + o!40!3) Im z 

Therefore the physical boundary of a Feynman integral with real internal masses 

is 

Imz >O, Imv >o - 

The two variable analyticity is then easily established using techniques 

explained in ELOP, To see that this continuation is conjugate symmetric, 

- 40 - 



1. e. : B(z, V) = B*(z*, v *), we just have to note that the properties of all the 

complex segments of the Landau surface are invariant under complex conjugation, 

So that if we start at some real point (zR, v ) R and continue to some point (z, V) 

the distortion of the a-hypercontour forced on us, if any, when we meet singu- 

larities will just be the complex conjugate of that forced on us if we continue 

instead by a complex conjugate path to the complex conjugate point (z*, v *) and 

thus the value of B obtained at (z *, v *) will just be the complex conjugate of that 

obtained at (z, v) . 

To establish the analyticity in one complex variable keeping the other fixed 

in the physical region we have to study the singularities on a particular search 

line z=zR+ie or v=vR+i6. In such cases the Landau curves shown in Figs, 10 

and 11 give physical sheet singularities while the Landau curves of Fig. 12 do 

not contribute since they are singular in only the inappropriate limit on the real 

(z,v) plane.2c’6dyk Therefore, from now on we will not consider them any 

more, but remember that these virtual singularities occur in the discontinuity 

since the whole of the real arc in Fig. 12a on which the points E and F lie is 

singular in the inappropriate limit. These singularities are nonsingular in the 

appropriate limit because during the process of analytic continuation they never 

cross a cut to come onto the sheet chosen as the physical sheet, as shown in 

Fig. 12b, 

If we consider B(z) I, R +ie) as an analytic function of z. Figure 13a shows 

the location of various branch points for various values of 11~~ The solid lines 

indicate the motion of these branch points on the physical sheet while the dotted 

lines indicate their motion on the unphysical sheets, We see that c, gives a 

fixed branch point zN on the real axis at z =4p2* c, gives a branch point VN of 

which moves just below the real axis. The anomalous branch 
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point A corresponding to the triangle singularity CA is on the unphysical sheet 

when v As 11~ is increased A crosses over into the physical sheet 

through the cut attached to zNand when v R increases through v R = 2vM - ~1 2’2 - M 

A again crosses over into the unphysical sheet through the cut attached to the 

moving branch point uN which ieads A beyond this point. So ultimately for large 

VR we are left with the two branch points vN and %. In the limit E -+ 0+, vNlies 

on the real axis. B(z, v R~ ir) therefore has only real cuts attached to the branch 

points zN and vN, and is therefore a real analytic function for all fixed v R. 

When we consider B(zR + ie ,V ) as an analytic function of v . Figure 13b 

shows the location of various branch points for various values of z R. For 

zR 
2 P3 <2/L +ijf- the branch point vN due to cs lies just below the real axis on 

physical sheet while the branch point A due to c A lies on the unphysical sheet. 

As we increase zR through 2~ 2 P3 + M the branch point A moves below the real 

axis and then crosses over onto the physical sheet through the cut attached to 

the vN branch point. As zR is increased more the two branch points move 

infinitesimally below the real axis (A below vN) till we reach z R=4/J2. Beyond 

this value of zR, the branch point moves to finite distance below the real axis 

and since it does not cross any cuts in this process it stays on the physical 

sheet. This corresponds to the complex segment of c A attached to AB. Thus 

for zR > 4p2, in the limit E ---) O+ we get a real branch point v N and a complex 

branch point A at ‘I~, and B(zR+iC, V) is no longer a real analytic function of 

v 0 This is consistent with what we expected from our discussion of the DGS 

representation and also shows that the reason DGS representation indicates a 

nonreal function of v for z R > p2 (lower bound to 4~~) is that the analytic con- 

tinuation acquires complex branch points 0 At this point we should note the 

importance of keeping c nonzero and determining the magnitude of the imaginary 
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parts of various branch points (using search lines) D If in the above discussion 

A was above vN then as we would go through zR= 4~‘: A would move down and 

cross over onto the unphysical sheet through the cut attached to A. It is because 

A is below vN that it remains on the physical sheet as a complex branch point. 

We can similarly discuss the analytic structure of B as a function of one 

variable while the other is fixed for various sets of variables. The motion of 

singularities in the case (z, s) shown in Figs. 9 and 14 and Table I indicate the 

results for all such possible sets of variables. 

C. The Blankenbecler-Nambu-Mandelstam Method 14 

To obtain further insight into the origin and nature of these complex 

anomalous singularities we consider the fixed t=O dispersion relation for our 

box diagram which in the nonanomalous case (say z < 0) is ca 
B(s,z) =& J ds’ 

discs B(s’,z) 

s’-s , t=o 

(m2+m4)2 

Using the Cutkosky’s discontinuity formula, 10 assuming a coupling constant g 

at each vertex in Fig. 8 and defining at t=O, qi =qi = K , qi = p, qf”7, 

ml=m3=p we get 

7 K 

dP W-ma W$) 
s 

max 
dT 6( 7 -mi) 

max 
dK& 

7 K (K -II) 2 
min min 

where /3 
Enx g ’ (7, p) are the extrema relative to qg when two 

of the three squared four momenta are kept fixed. They can be shown 2a, 10 to 

be determined by the Landau equation: 

where the a! ‘s serve as Lagrange’s undetermined multipliers. 
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From these equations we determine the integration limits to be as follows 

P =o P =CO 
min max 

7 min =o 7 ,,=th-h2 

K max(~,~, M2;7,p) = M2+P - (z-M2-s)(T+-s)/(Xs) 
min 

where the triangle function is 

and the masses of the external legs are 

p; = pi = z 

Integrating we get 

p; = pi = M2 

discs B(s,z) = 

where 

f(s,z) = p2 s s (z) [ - + ] [s-w] = m; [z -z+ts;J p -z-w] 

s*(z) = rni + rni - 
(M2-m~-~2)(z-m~-P2) 

a-J2 

z*(s) = rni+p2 - i 
M2-mi-p2 s-mz-m2 )( 

2m,2 
,‘+ -gm) 

2 

If we use this expression for discs B(s, z) without the 0 -function to define it 

for all real s then it is an analytic function of z for fixed real s (though it need 
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not be analytic in s) . We can use this to define the analytic continuation of B(s,z), 

for all z, by varying z and suitably distorting the integration contour to avoid the 

approaching singularities of discs B. As we increase z from small values to a 

point above its normal threshold cut (iO e. : Imz=tiE , Rez > (m,+p) 2, the path 

followed by the poles in discs B due to f(s,z)=O are shown in Figs. 15, 16, and to 

avoid it we must distort the integration path as shown. The final position of this 

pole (determined by the fixed z) then determines the anomalous threshold, which 

being a solution of a quadratic equation, can be in the complex s plane. The 

complex conjugate root of f does not cross the integration contour and so gives 

no singularity of the amplitude on the physical sheet. If we has increased z to 

a point below the cut (iO e. : Imz=-ie, Rez > (m2+p))) then the anomalous thres- 

hold would be in the complex conjugate position. 

By similar techniques one can deduce the single variable analyticity of the 

integrated absorptive part 
Q) 

R(z) = 
J 2 

ds’ discs B(s’, z) 

(m2+m4) 

It is easy to see that the roots of f(s,z) represents the anomalous singularities 

given by the Landau equations. In the present case of single loop box graph at 

t=O, this singularity turns out to be a pole. This is a peculiarity of fixing t=O 

when qi=qi causes a double pole in the integrand of the Feynman integral. The 

double pole on first (K) integration gives a simple pole which survive the re- 

maining (T, @) integrations by successively pinching with the remaining simple 

poles. For general t#O this singularity is a cut joining the triangle and box 

branch points of discs B. 14c,d This cut collapses to a pole when t * 0. We find 

no such poles on the physical sheet for multilooped Feynman graphs, This is 
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easy to understand if we focus our attention on one momentum loop and lump the 

remaining integrations together. Then a sufficient condition to get a pole in the 

final amplitude (irrespective of the sheet it lies on) is that the starting integrand 

have a double (or higher order) pole so that the “first (K) integration” yields at 

least a simple pole. Then the integrands for the remaining two (p and 7) inte- 

grations must be such that they do not “smooth” this pole into a cut on successive 

integrations. This requires that these remaining integrands provide pinching 

poles. Hence only a single loop Feynman graph at t=O whose four legs are ele- 

mentary particles (l/p2-m2+ie) or resonances (l/p2-m2+imT) can, in general, 

give such anomalous poles. 

Using similar arguments one can show that inclusion of spin turns these 

anomalous poles into a poles into a pole plus a cut at the same point, and that 

inclusion of form factors can “smooth” out these Landau singularities. 

For applications to the study of “scaling”1 of the inelastic structure functions 

it is convenient to know the analytic structure of discs B for fixed real s in the 

complex x-plane. The Landau singularities of discs B(s,x) are located at 

x*(s) = z,(s)/[s - M2 - zJs)] 

and they move as we vary s. From the above formula we see that when s is 

large compared to a suitable combination of the internal masses, 11 these singu- 

larities x,(s) move rapidly to positions extremely close to their asymptotic 

position x,(00) . The rapidity of this approach to “asymptopia” can be deduced 

from the above equations. In a separate publication 11 we discuss how these 

observations could provide a possible explanation for a rapid approach to 

“universality” (or s-independence) of the inelastic electron scattering structure 

functions 0 
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To intuitively understand this explanation of “Universality” let us consider 

the following model of discontinuity of a box diagram (t=O) with spin, for large 

real s and fixed x=z/v 

co K 

const 
J 

@ V-m$ W$) 
s 

S max 
discs fj(s,x) s 

&XSo 0 K mm 

where 7 h(s,z, M ) represents the second type singularity at the 

cal region and the factor of K is the effect of spin. Integrating 

edge of the physi- 

we get 

&------ S,Z,M ) discs%(s,x) 0~ F(s,x) =j?n 

Or 1 1 

Kmax(S’X) - P2 
I 

where as s-00 for fixed finite x 

K min(s>Q -P2 -- & tx+l+sh2) 1 
max(s, x) -p2 - c,(x) = a quadratic s-independent function of x 1 

This shows that singularities in F(s, x) arise when the edges of the allowed phase 

space K max approach the exchanged mass p’. For large finite s the singularity 
min 

(K min -P 3 = 0 is very far (at x=- l-s//3 fr om the region of interest -15 x IO 

in the complex x-plane. On the other hand the singularities (Key -p2) = 0 are 

close to the experimental region and s-independent since the edge ~~~ of the 

phase space has stopped moving. So if we assume that the variations with s in 

the “shape” of the function F(s,x) versus x, are controlled by the motion of the 

nearby singularities, then we should expect F to attain a universal s-independent 
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shape once K max(s, x) is s-independent., However, the s-dependence of the over- 

all magnitude of F(s,x) is determined by all its singularities and will, in particular, 

be affected by the distant s-dependent singularity (K,~-J.L~) =O. In case (like 

above) this distant singularity is giving a divergent contribution due to ultraviolet 

divergence in the graph, the magnitude of F will diverge as s -+ QJ. This is the 

source of “nonscaling” behavior in certain field theoretic models of inelastic 

electron scattering. In 

We may choose to take the philosophy that the ultraviolet divergences are a 

disease of the theory rather than of nature and assume that there exists a realistic 

causal and unitary S-matrix theory without such divergences. Then we know3 

that the physical sheet analytic structure (i.e. : the position of the singularities 

but not their nature) obtained from finite order Feynman perturbation theory 

(with a cutoff) is expected to be the same as that obtained from this unitary s- 

matrix theory. In such a theory the experimental data in the region 

-1 L x L 0 should be expected to show the effects of the nearby singularities 

tK max-p2 = 0) , rath er than the effects of the distant singularities ~~~~~~~~ = 0) 

which are obtained in the asymptotic models based on summing leading ultra- 

violet divergences D In This provides the motivation for constructing models 11 

of inelastic electron scattering structure functions which are based on their 

analytic structure and dominant singularities. 

It is easy to generalize these arguments to arbitrary graphs, and specially 

those that correspond to a peripheral production of the intermediate state. In 

this way one can also see why the physical x-sheet singularities correspond to 

box or triangle shaped reduced graphs. 
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D. Single Variable Dispersion Relations for the Full VFC Amplitude 

As far as dispersion relations 192 are concerned, we find that one can always 

write fixed real v R dispersion relation in z for the amplitude B with integrals 

over only real contours and real poles, as long as the asymptotic behavior is 

“decent” enough to be handled by a finite number of subtractions. Also because 

of the Sugawara-Kanaz awa theorem 2h,m,n one just needs to check the asymptotic 

behavior in only one direction in the complex z-plane. On the other hand in case 

of real sR fixed above the normal threshold there are complex singularities in 

z and the above theorems fail. In such cases one can again use the Cauchy 

theorem to write dispersion-like relations but now one must include the contri- 

bution of the complex cuts. We must also independently check that the contri- 

bution from the circle at infinity does in fact vanish, or can be taken into account 

by a suitable number of subtractions. This can usually be done with the help of 

a wider class of the maximum-modulus theorems called the Phragmen-Lindelof 

theorems. 2m,n 

To see what happens in a realistic model of the full scattering amplitude we 

consider a combination of the s-channel and the u-channel box diagrams of 

Fig. li’a at t=O, each of which can be obtained from the other by the simple inter- 

change v -, -v . We will now find that our analysis will give the same analytic 

structure as expected on the basis of the DGS representation. 

The possible physical sheet Landau singularities for such a combination T 

are shown in Fig. 17b in terms of the complex variables (z, u) D By methods 

already explained, it is easy to see that the physical region amplitude is a 

boundary value of an analytic function of two complex variables. The physical 

boundaries are (Im z > 0, Im v > 0, v > 0) for the s-channel physical region 

and (Im z > 0, Im v < 0, v < 0) for the u-channel physical region. 
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We have to be careful when we consider the single variable 

analyticity in v keeping z = zR + i E fixed. In such cases the DGS representation 

for T(zR + ie , v) indicates a cut along the whole real v-axis when z R > p2Q But 

this does not, & priori, rule out the possibility of finding an analytic continuation 

in v with complex singularities but a large domain of analyticity. In fact we saw 

that such an analytic continuation does exist for the s-channel box diagram. But 

when we consider the amplitude T(zR + ie , v) to be the combination of the 

s-channel and the u-channel box graphs we find that the v -plane analytic structure 

to be as shown in Fig. 18 ,, We find that for z > 2pM+h2 the s-channel normal cut c 
S 

overlaps the u-channel normal cut c and the physical region of the combined 
U 

amplitude T (which is above the c cut and below the C cut when these cuts are 
S U 

chosen parallel to the real v -axis) is squeezed between these two normal cuts and 

vanishes in the limit E - 0+ a Clearly under such circumstances we cannot deter- 

mine the physical value of the amplitude as the boundary value of such an analytic 

continuation in one complex variable. One way to rectify this situation would be 

by defining a different analytic continuation by distorting the cuts, but then we 

would risk exposing the singularities on the unphysical sheet, since during the 

deformation of cuts these unphysical singularities could cross through onto the 

physical sheet, The other choice is to consider an analytic continuation in v which 

is separated by a cut along the whole real v -axis, the s-channel physical region 

being just above this cut and the u-channel physical region just below. This, we 

would observe, is precisely what happens in the case of the DGS representation. 

On the other hand if we fix Y = vR, Im v = 0 and consider the analyticity in z we 

find that we do get a real analytic function of z for any v inspite of the u-channel 

cuts and that the physical boundary of this real analytic function of one complex 

variable is Im z > 0, i.e. : z=z R + ieO The location of the physical boundary is 
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most easily deduced from the expressions for the imaginary parts of the denomi- 

nators in the Nambu representation of the s and u channel box diagrams. These 

are, respectively, of the form 

Irn D(s). = (a+b) Im z + b Im v + c 

=aImz+bIms+c 

and 

Irn D(u) = (a+b) Im z - b Im v + c 

= (2b-ta) Im z - b Im s + c 

where a > 0, c > 0, b L 0 and E-W. 

If we consider the pair of variables (z, s) we find that we again run into the 

problem of overlapping cuts in the complex s-plane if we fix z =zR+ i6 with 

zR > (2pM+/?. At zR > 4~ 2 [1 - b2/4M217 th’ f is unction ceases to be real analytic 

in s because of anomalous thresholds. Similarly if we fix s = s R, Im s = 0 we get 

a real analytic function of z only if s < (M+F)~* 

From this discussion we conclude that for the full forward Compton scattering 

amplitude we cannot expect much more single variable analyticity than that implied 

by the DGS representation and shown in Table I. 
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V. THE ANALYTIC STRUCTURE OF DISCONTINUITIES AND 

INELASTIC STRUCTURE FUNCTIONS 

The two variable analyticity of the amplitude T( s, z) implies a single variable 

analyticity of the difference 
I 
T(sI, z) - T(s2,z) 

I 
in the complex z plane if we keep 

s1 and s2 fixed. Cutkosky 10 used this fact, in the framework of Feynman pertur- 

bation theory, to determine the single variable analyticity of the discontinuities 

of the amplitude across fixed cuts. He showed that the singularities of a given 

Feynman integral F(t) which are also the singularities of the discontinuity 

F,(t) (across the cut due to the reduced graph with m legs on mass shell) are 

those which correspond to the (reduced and full) Landau diagrams in which lines 

have been added to the given reduced diagram which defined the original singu- 

larity. The other Landau singularities of F(t) appear on both sheets (corre- 

sponding to the given fixed cut) and their cuts cancel when we calculate the dif- 

ference. The singularities of F which correspond to the reduced graphs with 

additional internal lines i, i > m on mass shell, appear on only one of the two 

adjacent sheets connected by the branch point corresponding to the reduced graph 

with m lines on mass shell (e.g. , the anomalous threshold due to triangle graphs 

moves from second to first sheet of normal thresholds due to bubble graphs) 0 

This discontinuity can also carry the non-Landauian singularities. These facts 

can readily be seen from the structure of the Cutkosky formula for calculating 

discontinuities (remembering that in applying this formula one integrates in the 

physical region and then analytically continues into the unphysical domain) 0 This 

formula can also be used to calculate the discontinuity Fm ,,-,(t) of the dis- 
, 

continuity function F,(t) across a (fixed) cut corresponding to a reduced graph 

in which the additional internal lines i, m< i <m’ are also on mass shell, and 
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we find that 

(the sign of F m, m1-m(5) is, in fact, defined by this relation) 0 This result can 

be obtained by the following replacement in the original Feynman integral 

1 
(q2-P2)r+1 -+I 

-27ri) O(q”) d” 
r! 

W2f 
~(s2-P~ 

The Cutkosky formula defines an analytic function of the internal masses and 

external invariants whose domain of analyticity must be found by analytic continu- 

ation, This in general, could be a very difficult problem. But in the special case 

when we are interested in the single variable analyticity in the second variable of 

the discontinuity across a fixed cut in the first variable (like normal s-threshold cut) 

the problem is much simpler. Then it only requires the knowledge of the ordinary 

and virtual anomalous singularities on the physical sheet of the second variable (like 

complex z-plane) 0 This will become clear from our discussion and Cutkosky’s 

analysis 0 In practice we are interested in the various boundary values of this func- 

tion. For example discs T(zR+iE, sR) across only the normal s-cut is one such 

boundary value above the real z cut which corresponds to giving all internal 

masses a small negative imaginary part when one starts to encounter singularities 

on the real axis. (This is because discs T is of the form T20) These small 

imaginary parts are inessential on the cutfree region of the real axis. On the 

other hand we observe from their definition that the inelastic structure functions 

are a different boundary value whose boundary is discovered by the prescription 

of putting mf 4 rnf - ie for the internal masses in initial state and rni 2 +m +i.f f 

for the internal masses in the final state, when one encounters real singularities. 
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(This is because they are of the form lT12.) The mixed nature of this prescrip- 

tion makes it difficult to determine the boundary for arbitrary graphs. 
7c, 10 

But in the regions of the real axis where the discontinuities are cutfree (and pure 

imaginary) the -I ic are irrelevant so that their values will agree (up to factors 

of i) with those of the various inelastic structure functions defined by similar 

formula, even though the imaginary part of the amplitude in this region is a sum 

of different discontinuities across various cuts and not a boundary value of any 

discontinuity function. This follows from the conjugate symmetry (T*(s*,z*) = 

T(s, z)) of the VFC amplitude from which we see that 

discs T(sR, z) s T(sR+ic ,z) - T(sR-ie ,z) 

C 1 
* =- discs T(sR,z*) 

Hence, on the cutfree part of the real z-axis we can reach the point z*=z=zR 

where 

1 
* 

T(sR,zR) = pure imaginary 

This is not possible on parts of the real z-axis lying inside a cut. Similarly 

we find that 

C 1 
* 

2i Im T(sR+ie , zR+ie) = discs T(sR, zR+ie) - discz T(sR+iE ,zR) 

In this formula discs T represents the contribution of the connected direct channel 

graphs of 

graphs of 

definition 

Fig. 3b while discz T gives the contribution of the semi-disconnected 

Fig. 3d, to the total imaginary part of the VFC amplitude. Since by 

Im T(sR+ie ,zR+ie) must be real, hence 

T(sR,zR+ie) 1 II = Re discz T(sR+i6 ,zR) 
3 

= i discz T(~R’ zR) 1 
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which is related to the imaginary part that the inelastic electron scattering 

structure functions develop due to the presence of the double discontinuity graphs 

(like the semi-disconnected graphs) when we try to continue the structure func- 

tion to the annihilation region (where z is time-like) D 

Thus we see why a simple relation between the discontinuities or the struc- 

ture functions and the imaginary parts of the amplitude only holds in cases when 

the amplitude is real analytic (T*(s*,z) =T(s,z)) rather than when it is conjugate 

symmetric (T*(s*,z*)=T(s,z)). 

Using the Cutkosly formula we can identify discs T, discu T and discz T, on 

their cutfree sections of the real axes, with the non-Born term parts of the struc- 

ture functions C(s) z) , P(u, z) and D(z) s) respectively. The conventional function 

W and E are trivially related to C and P respectively. The Born terms give non- 

analytic delta function contributions to C, P and D. 

To understand the main features of the analytic structure of the discontinu- 

ities we first consider the example of disc s B. This was explicitly evaluated in 

the last section. We leave the detailed discussion of higher order to a subse- 

quent publication 0 We find from this calculation that for fixed real sR > (m2+m4)2, 

discs B(sR, z) is analytic in the whole z plane except for a pair of anomalous 

singularities at f(sR,z) = 0. For sR < (m2+m4)2, discs B(sR, z) = 0. Since 

discs B(sR, z) is not required to be analytic in s R, this sudden disappearance 

of anomalous singularities for s R < (m2+m4)2 should not be surprising. When 

A(M2,mi,p2) < 0 (Euclidean case) the anomalous singularities are at complex 

conjugate points z*(s) D When A(M2, rni, p 2, > 0 (non-Euclidean case) the anomalous 

singularities represents a pair of virtual anomalous singularities on the real axis. 

We note that there are no cuts along the real z-axis in discs B(sR,z) even though 

BtsR, z) does have a cut (m4W2 <_ z L Q)* This just reflects the fact that 

- 55 - 



I 

discs B(sR, z) must only contain ordinary and virtual singularities of B which 

correspond to adding lines to the reduced graphs defining discs B. It could have 

real cuts for z > 0 if the virtual singularities were branch points or if it had 

vertex corrections like in graphs of Fig. 19. The real cuts would join the pairs 

of virtual branch points and extend to infinity from normal threshold branch 

points 0 

For fixed zR the above formula of discs B(sR,zR) was used without the 8 

function to define it for all s and we noticed that it had both the s-channel nor- 

mal threshold branch points (instead of only one like the amplitude). This is 

easily understood by the fact that in using to continue this formula to s below 

(m2+m4)’ we necessarily cross over into the unphysical sheet in the s plane of 

one of the amplitudes B(sRi ie , zR) and therefore as a function of s the discs B 

necessarily exposes the singularities on both the physical and the adjacent unphy- 

sical sheet. This is also seen from the definition 

discs B = BIIs - BIs 

where the numerical subscript denote the sheet of the normal s-threshold cut. 

We see that discs B must carry the singularities of both the first and the second 

s-sheets, This complicates the analysis of its analyticity in the complex s-plane 

and that is why we restrict ourselves to the complex z-plane keeping s fixed. 

Keeping v fixed also complicates the analytic structure in the complex 

z-plane since 

discv B(vR,z) = discs B(sR-zR-M2,z) 

From this relation it is clear that the analyticity of this function cannot be simply 

related to the single variable analyticity of any amplitude since for fixed v R’ 
complexifying z requires simultaneous complexification of sR and, as indicated 
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above, this exposes all the singularities on the unphysical sheet of s plane all of 

which are not known to us. Besides the Landau singularities, the unphysical 

s-sheets can carry the second type singularities and also the singularities which 

come from the divergence of the sum of the perturbation series. 15 

Thus great care mustbe exercised when discussing the single variable 

analytic continuations of the discontinuities across moving branch cuts to make 

sure that analytic continuations are meaningful (that is, there exists a reason 

for the discontinuity to be an analytic function of one variable) and that the 

singularities coming from the unphysical sheets of the amplitude are correctly 

taken into account. 

We should, however, observe that since the discontinuities across given 

fixed normal cuts do not have these normal branch points, the inclusion of 

crossed channel diagrams does not affect their single variable analyticity, like 

it did for the amplitude. 

To summarize we find that in general discs T(sR, z) , discu T(uR, z) and 

discz T(zR, s) across the respective fixed normal s, u or z threshold cuts are 

analytic functions of the second complex variable when we fixed s, u or z, 

respectively, at real values. Besides the real normal threshold cuts (coming 

from double discontinuity graphs like those of Fig. 19) they carry the ordinary 

(complex) and virtual (real) anomalous singularities. On the other hand the 

non-Born term parts of the inelastic structure functions C(sR, z) , P(uR, z) and 

DtzR 9 s) are boundary values of these discontinuity functions, respectively, on 

and only on the cutfree part of the real axis. 

Since there are no real singul&ities for space like zR < 0 the non-Born 

team part of the inelastic electron scattering structure function W NB 
(SR”R) 

z for fixed real s R is a boundary value on the real z axis of an 
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analytic function in the experimentally accessible region z R < 0. This is not 

true in general for time like zR > 0 due to the presence of double discontinuity 

graphs (like Fig. 19) causing real cuts in region zR > 0 and due to the presence 

of real virtual anomalous singularities. If, however, for some dynamical 

reason the contribution of the double discontinuity graphs (like the semi- 

disconnected graphs) vanishes and the real cut joining the pairs of virtual 

anomalous singularities lies out of the time like region of interest, then in this 

cutfree time like region the W NB 
@R’ R z ) is again a boundary value of an analytic 

function. An example of such dynamical reason lc,l is the transverse momentum 

cutoff and s - oo limit in the Drell-Levy-Yan model which causes the graphs like 

those of Fig. 21 to give vanishing contribution. 

As far as the complex part of the z-plane of discs T(sR,z) is concerned, we 

find from the formula for z*(s) that the complex anomalous box singularities 

move towards the right (Re z > 0) or left (Re z < 0) half-plane according as 

(M2 - rni -p2) is negative or positive. For a single loop Feynman graph baryon 

conservation requires (M2 - rni -p2) to be negative so that the left half z-plane 

is singularity free. This inequality is even stronger for box singularities from 

multilooped Feynman graphs (Fig. 20) since m2 and p now represent the sum 

of the masses of reduced legs $ p and & respectively. Thus one is justified 

in expanding W NB as a Taylor series in z for fixed real s in the region Rez < 0. lh 

As an interesting application of these ideas we study whether we can use the 

general crossing relation between the inelastic electron scattering structure 

function W and the annihilation structure function q to relate inelastic electron 

lc scattering to annihilation. Crossing implies that 

W(s=u, cd) = * Kqu=s, -cd) 
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where the Pauli principle gives positive sign for scattering off bosons and nega- 

tive sign for scattering off fermions. The inelastic electron scattering experi- 

ments measure W(s, w) for s > (mZ+m4)2 and 1 < w < +oo while for the annihila- 

tion cross section we need w(u, w) for u > (m2+m4)2 and -1 < w < 0 which can 

be obtained from the crossing relation if we know W(s=u, w) for s > (m2+m4) 2 

and 0 < w < 1. But for a general graph discs T(s, o) for fixed real s has a 

normal threshold (real) cut wth _ < w 5 +l together with real cuts joining pair of 

virtual anomalous singularities that lie in the region w 5 +l. Therefore in 

general the boundary value (above the cut) of discs T(s, w) for fixed real s, does 

not represent WNB (s , w) in the region w 5 +l due to the presence of real cuts 

and so the crossing relation cannot be used. 

However, if the amplitude T is restricted to the class of t-channel ladders 

with point couplings lc,n (corresponding to a multiperipheral production of inter- 

mediate states) then disc s T is free from the normal threshold cuts in w. One 

still has the real cuts connecting the virtual singularities in the region w < +l 

but these genera.lly lie at a finite distance away from w---tl. Under such con- 

dition we obtain a cutfree interval from wc < w < 00 with wc < 1 where the 

boundary value of discs T gives C(s) w) 0 We can therefore use crossing to obtain 

P(u=s, w) in the limited region -1 S w < -wc D This result for finite energies is 

the analog of the result obtained by Drell, Levy and Yan lc,l! for asymptotic 

energies. On the other hand we find no reason at finite energies for the analy- 

ticity conjectured by Pestieau and Roy. lb 

Further discussion of the analytic structure of the discontinuities and the 

inelastic structure function will be undertaken in separate publications. There 

we will use the method of dual diagrams8 to generalize the analysis to all orders 

of Feynman perturbation graphs at t=O and show that the only Landau singulari- 

ties that come on the physical sheet of the complex z-plane for fixed s=sR*ie 
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(or vise-versa) are the s-independent normal z-threshold branch points (for real 

time like z > 0) and a set of anomalous singularities z*(s), which move with s, 

and correspond to the single loop box or triangle reduced diagrams. Their 

equation is given by 

z9t(~) = T+ K -(M2-pi~) (S-T-@/@&* l/(W) h(M2,@,K)h(S,T~@ 

where p, T and K are the squares of the sum of the masses of the bottom, top 

and vertical reduced legs respectively as shown in Fig. 20. 

In case (Euclidean) the lower vertex is internally and externally stable, then 

A(M’, p, K) < 0 and z* represent a pair of complex conjugate ordinary anomalous 

Landau singularities when h(s,~ ,P, > 0 (i.e., s > (6 Jf12). On the other hand, 

in case (pseudo-Euclidean) A(M2, p, K) > 0 then z* represent a pair of virtual 

anomalous singularities on the time like part of the real x-axis. The physical 

z-sheet is defined to be the sheet of the normal z-threshold cuts (or the lowest 

order Landau singularities) that carries the physical boundary. The box and 

triangle singularities are coincident at t=O. 

2c, 6,8 These facts follow from the following consequences of the Landau equa- 

tions and four momentum conservation: 

1. The dual diagram for the VFC amplitude (t=O) has to be drawn in a two- 

dimensional plane and is triangular (Figs, 20, 21). 

2. A two-dimensional dual diagram with 1 internal dual vertices (corre- 

sponding to P independent loop momenta) and N internal dual prongs (corresponding 

to N different internal line momenta) must satisfy N< 2l+l to give a nontrivial 

solution of the Landau equations. 

3. A p pronged internal dual vertex must be drawn in a (p-l) dimensional 

space. Each prong could be multiple internal lines like OA and OC in Fig. 20. 

This condition is called “tautening” of the dual diagram. 
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The only anomalous singularities found on the physical sheet are the ones which 

can climb onto this sheet through the normal threshold cuts or through the cuts 

attached to the branch points which have previously come onto the physical sheet 

through the normal thresholds. The sufficient condition2a’ ” 6 for one Landau 

singularity to change sheets by moving through the cut attached to another Landau 

singularity is that their Landau curves, “touch effectively” (or intersect critically) o 

This need not be a necessary condition if we have acnodes or cusps, in the Landau 

curves D Here we assume their absence. 13 

For two Landau curves to “touch effectively” they must touch and at the point 

of the touch have identical values for all the Feynman parameters Q! D It is eacy - 

to see that, in the Euclidean region, for two Landau curves to touch, the dual 

diagram of the higher order singularity at the point of touch must simultaneously 

form the dual diagram for the lower order singularity being touched. For this 

reason the leading singularity of Fig. 22 cannot touch the one order lower singu- 

larities of Fig. 23. This geometric criterion for touching is sufficient for our 

proof since Landau and Okun and Rudin have shown that in a theory with stable 

internal lines the multilooped reduced graphs with dual diagrams like in Fig. 22 

give leading singularities in the Euclidean region only. Only the single loop 

reductions can give singularities in both the Euclidean (ordinary) and the pseudo- 

Euclidean (virtual) regions. 8 For example of Figs. 22 and 23, the leading 

singularity of Fig. 22 cannot touch the one order lower singularity of Fig. 23 

because of the tautening of the internal dual vertex Ol (or 02) D On the other 

hand it can touch the two orders lower singularity at z =(D02+02A)2 but this 

touch is not effective if M is stable so that the angle 0 < AOIB < 7r. For it to 

be effective we need Q! 
01°2 

=0, which cannot happen if the above condition is 

satisfied by the angle AOIB. This just reflects the fact that the reduced diagram 
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corresponding to 0102 line being absent cannot be singular unless both z and M2 

are simultaneously unstable. On the other hand the lower order singularity 

corresponding to a single loop reduction of Fig. 23 can come onto the physical 

sheet at P through the normal z-threshold cut. 

We wish to thank R. Blankenbecler, J. D. Bjorken, S. D. Drell, M. Nauenberg, 

K. G. Wilson, M. Einhorn, R. Haymaker and T. -M. Yan for very fruitful discussions, 
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FIGURE CAPTIONS 

1. The analytic structure of the virtual forward Compton scattering amplitude 

in the complex q2-plane for fixed real s. 

2. The virtual forward Compton scattering amplitude. 

3, The unitarity and discontinuity diagrams. 

4. The various physical regions for the forward Compton amplitude. 

The experimentally accessible areas show the different reactions 

which involve parts of the forward Compton amplitude in the definition of its 

inelastic form factors. (H is any hadronic system.) 

5. The support c of the DGS weight function H(U) B, 0 

6. The integration line z + /3v -u = 0 for various z and v e 

7. The integration line z + p(s-M2-z) -cr= 0 for various z and s. 

8. The direct channel box diagram (a) for special masses (b) for general 

masses D 

9. The reduced graphs for the leading and lower order Landau singularities 

for the direct s-channel box diagram. 

10. The Landau curves in the real (z, v) plane for the case m=M. The equation 

of the ellipse AB A’B’ is 

2 2 M2z2 + p2 zv +/J v - p2(4M2-p 3 z = 0 

and the coordinates of the points of tangency are 

A = (4/~~, -2~~) ; 

B’ = 2p2 &, +M-cL 2 2 + M A’ = (0,O) . , 

- 69 - 



11. The Landau curves in the real (z, s) plane for the case m=M. The equation 

of the ellipse AB A’ B’ is 

M2z2 + /.~~@~-3M~-s) z + j~~(s-M~)~ = 0 

and the coordinates of the-points of tangency are 

A = (,4p2, M2+2p2) ; 

12. 

13. 

14. 

15. 

A’ = (0,M2) ; B’ = 2p2 +$ , (M-P)~ 
1 

al The real section of Landau surfaces for m L M+p when we get an hyperbola. 

9 Virtual singularities close to the physical boundary of discs B(z) sR) . 

a) The single variable analyticity of B(z) vR+ ie) in the z plane. 

b) The single variable,analyticity of B(zR+ ie , v) in the v plane. 

a) .The single variable analyticity of B(z) sR+ ie ) in the z plane. 

b) The single variable analyticity of B(zR+ ie , s) in the s plane. 

The motion of the pole in discs B(sR,q) as z is increased, and the 

accompanying distortion of the integration contour 0 

16. 

17. 

The single variable analyticity of discz B(zR, s) in the s plane, of 

discs B(z, sR) in the z plane and of discs B(sR,w) in the o plane. 

The analytic structure of the sum of direct and crossed channel box 

diagrams o 

18. The single variable analytic structure of T(zR+ ie , v) in the v plane 

showing the overlap of the normal cuts. 

19. 

20. 

Typical double discontinuity graphs leading to real cuts in the discontinuity 

functions D 

Typical reduced Feynman graphs leading to anomalous box or triangle 

singularity at t=O and the corresponding ‘tautened” dual diagram. 
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21. The dual diagrams for Feynman graphs representing scattering amplitudes 

and vertex functions. 

22. Typical possible dual diagram for leading singularities of VFC amplitude. 

23. Dual diagrams of one order lower singularities. P represents the point of 

“effective touch”. 
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