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ABSTRACT 

Mack and Kastrup have proposed that broken scale invariance is 

a symmetry of strong interactions 0 There is evidence from the 

Thirring model and perturbation theory that the dimensions of fields 

defined by scale transformations will be changed by the interaction 

from their canonical values. We review these ideas and their con- 

sequences for strong interactions. 
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Symmetry is of fundamental importance to our understanding of elementary 

particles 0 Lorentz invariance and isospin invariance are taken for granted. In 

the last decade we have learned from Gell-Mann the importance of broken sym- 

metries : SU(2) x SU(2) , SU(3), and SU(3) x SU(3) e ’ It is natural to look for further 

exact or broken symmetries, especially in strong interactions where SU(2) x SU(2), 

etc., are important and the dynamics is not understood. The search for further 

symmetry includes study of possible further space-time symmetries, extending 

Lorentz invariance, The study of free field equations (Klein-Gordon equation, 

Maxwell’s equations, etc.) has provided two suggestions for such symmetries: 

scale invariance and conformal invariance. 2 I will discuss only scale invariance 

here for I have not studied conformal invariance in detail. Scale invariance is 

an invariance of the free field equations only for zero mass. The zero mass 

equations such as VP VP+(x) = 0 contain no parameters with the dimensions of 

a length; this fact leads to scale invariance of the solution. Since there are no 

zero mass particles in strong interactions, it is not obvious how scale invariance 

would be relevant. But with the success of the broken symmetry SU(3) x SU(3) 

one has learned to derive useful physics from symmetries which are far from 

exact. 

The hypothesis that scale invariance would be a broken symmetry of strong 

interactions was first clearly stated by G. Mack. 3 Mack was encouraged by 

H, Kastrup ‘who had been writing about scale invariance in strong interactions 

for some time. 4 Since Mack’s work, a number of people have become interested 
f 

in the idea. However, to date the hypothesis has not been nearly so successful 

as broken SU(3) x SU(3). The problem has been to find experimental predictions 

resulting from broken scale invariance. At present the score is: one prediction, 

not yet tested; one explanation, which is untestable, and one clarification of 
. 
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theoretical interest only. The prediction is that the total cross section for e+ -e- 

annihilation into all possible hadron states will behave as l/q2 for large q2, 

where q is the four-momentum transfer to the hadrons. 5 

The explanation is an explanation of the AI=1/2 rule in nonleptonic weak 

decays (K - TM, etc ,,). 6 The- clarification is the idea that there be an SU( 3) x SU( 3) 

singlet field w(x) in the Lagrangian which acts as a nucleon mass term and breaks 

scale invariance, 7 in addition to the SU(3) X SU(3) breaking terms8 which give the 

7r and K masses. 

There is one extraordinary feature of scale invariance which makes it 

interesting regardless of the little contact it has with experiment. The extra- 

ordinary feature is the “anomalous dimension”. When one makes a scale trans- 

formation on a field +(x), it goes into $(sx) times a scale factor sd; s is the scale 

factor and d is called the dimension of the field. In quantum mechanics the trans- 

formation is accomplished by a unitary transformation U(s) : 

u+(s) @(x) U(s) = sd $(sx) (1) 
The number d is a quantum number defining a representation of the group of scale 

transformations, just as the angular momenta j and m a.re quantum numbers for 

the rotation group. The unique feature of the dimension is that it can vary with 

a coupling constant. This is true only of scale invariance; the behavior of a 

field under Lorentz transformations, isospin, SU(2) x SU(2), etc. is unchanged by 

varying coupling constants D The reason d can change while other representations 

do not is that d is a continuous variable (i.e. ) any value of d is permitted by the 

scaling group) while the representations of other symmetries are described by 

discrete variables like j and m. This distinction does not mean that d must change 

as a coupling constant changes; the initial discovery of the changes in d was a 

complete surprise O 
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Anomalous dimensions are found in the Thirring model (the Fermi interaction 

in one space ‘and one time dimension)’ and in ordinary perturbation theory. 10,ll 

In these examples they always arise together with an infinite wave function re- 

normalization e The connection of anomalous dimensions to renormalization meRns 

that renormalization has a more fundamental significance than one might suspect. 

The anomalous dimensions are of practical significance: for example, they are 

crucial for the explanation of the AI=1/2 rule, 6 and may determine the leading 

corrections to the efe- annihilation cross section at high q2 (see below) e 

In the remainder of this talk, we shall first review some of the ideas of 

broken scale invariance 0 Then two examples of anomalous dimensions will be 

cited. Finally, the implications of anomalous dimensions will be sketched, for 

example, the nonexistence of a scale-invariant S matrix and an explanation of 

the AI=1/2 rule. 

To illustrate the ideas of broken scale invariance, consider a simple example: 

a free scalar field G(x) 0 2 
To start with consider the zero mass limit which is 

exactly scale invariant. The free field theory can be defined by a field equation 

vpvp $44 = 0 
and an equal-time commutator 

(3) 

One can also specify the Hamiltonian 

(4) 

The easiest way to see that the theory might be scale invariant is to note that if 

$@,t) satisfies the field equation, then so does $(sz, st) where s is a constant 

scale multiplying 2 and t. (Similarly one motivates rotational invariance by noting 
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that $(Rx,t) is a solution where R is any rotation matrix.) The field 

$‘(x, t) = Cp(sz, st) however does not satisfy the commutation relations: one finds 

= s i S3( spg) = s -2 i 6 3(z-$ (5) 

It is easy to restore the commutation relations: we redefine 4’ to be 

cp’(x, t) = s+(sx, St) (6) 

The field equation and commutation relations uniquely define the quantum field up 

to a unitary transformation, so there must be a unitary operator U(s) satisfying 

u+(s) @(x,t) U(s) = @(x,t) = s$(sx,st) 

which is Eq. (1) with d=l. 

(7) 

I have avoided discussing the Hamiltonian, because it is not invariant to 

scale transformations. The reason is that H has dimensions so when lengths are 

scaled, H must be scaled also. In fact, if H’ is the Hamiltonian for c$‘, then 

H’ = ;fi3& { d’(z, t,2 + [v@ (5, t)12] 

=; J l d3z s4$2(sz,st) + s4 V@‘(sz,st) I 
By changing variables from 5 to sz one finds 

H’ = sH 

(8) 

(9) 
This means that 

U+(s) HU(s) = H’ = sH (10) 

A symmetry whose transformations do not leave H invariant is nothing new. The 

Lorentz transformations are even more destructive, transforming H into a linear 

combination of H and the momentum operator %. However, in both cases the 
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transformation law for H is fixed by the symmetry. In the case of scale trans- 

formations one can see that U+(s) IIU(s) must be sH by considering the formula 

i$$%P) = [I, 1-I-j (11) 

Transforming this formula with U+(s) 0 D 0 U(s) gives 

s2 i $$ (~5, st) = [s+(s~, St), U+(S) HU(s)] (12) 

For this to agree with the previous equation requires that U+(s) HU(s) be sH. 

The vacuum is invariant to scale transformations: 

U(s)lR> = IsI> (13) 

The transformations of particle states will not be discussed here. 

One can use scale invariance to determine scaling laws for vacuum expecta- 

tion values o For example consider the propagator 

D(x) = WIT+(x) $(O)lfl2) (14) 

For future use let d be unspecified in Eq. (1) D Using Eqs. (1) and (13) and the 

unitarity of U, one can write 

D(x) = < “IV+(s) T G(x) U(s) U+(s) $(O) U(s) i Q;2) 

=s 2d <fttTc$(sx) $@)I S-2) 

2d =s D(s4 (15) 

It follows &at D(x) scales as (x 2, 
-d 0 Another scaling calculation gives the be- 

havior of the propagator D(p) in momentum space: 

D(p) = 2d D(sx) d4x ; (16) 

. 
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a change of variable to y=sx in the integral gives 

D(P) = s 
2d-4 

J 
eiP l (Y/S> D(y) d4y = s 2d-4 D(s-‘p) (17) 

2 d-2 which means D(p) scales as (p ) O With d=l this gives the usual zero mass 

2 -1 form of the free propagator, namely (p ) O From these formulae it is easy 

to see why d is called a dimension,, The propagator D(x) behaves as (x 2 -d ) 

times a dimensionless constant O Hence dimensional analysis gives the dimen- 

sions of C#I as -d in units of length or d in units of mass (ii and c are 1 as usual) o 

The constant multiplying (x 2 -d ) cannot carry dimensions because there are 

no dimensional constants in the theory; the vacuum state is dimensionless be- 

cause of the dimensionless normalization condition <a 152) = 1. 

What happens to scale invariance in the finite mass free field theory? We 

can see from considering the propagator D(p) that for p - m the exact propagator 
2 -1 

(P2-m ) is quite different from the zero mass propagator; but for p2 large 

(Le., large virtiJa1 mass) the propagator reverts to the zero mass form, In 

x space the equivalent result is that D(x) is almost scale invariant at small 

distances: 

D(x)= - - ’ + (m2/8n2) j!n(m2x2) + -. . 
4xX2 

(18) 
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for small x. The idea that scale invariance becomes exact in the limit of small 

distances12 ’ 1s similar to the hypothesis that equal-time commutators are exact 

to SU(3) x SU(3). IL If scale invariance becomes exact only at large virtual masses, 

as is suggested by the form of the free propagator, it is a severe limitation on the 

usefulness of scale invariance, since it means the on-mass-shell S matrix is 

unaffected by scale invariance. We shall consider the S matrix problem later, 

concluding from more detailed analysis that there is indeed little apparent con- 

nection between scale invariance and the S matrix if there are anomalous dimen- 

sions D Problems such as e+-e- annihilation which involve only large virtual 

masses and no on-mass-shell variables can still be very much affected by scale 

invariance 0 

There is much to be said about broken scale invariance which I must omit. 

Further questions include defining the infinitesimal generator2 and the hypothesis 

of a partially conserved dilation current, 3 coupling of the dilation current to 

scalar mesons and possible Goldberger-Treiman type relations, Ward identities, 

etc., i.e., all the apparatus familiar from SU(3) X SU(3) D l3 There are also 

questions of what scale invariance would imply for the S-matrix if the S-matrix 

were invariant o 14 Here we shall specialize on the idea of anomalous dimensions 

and its implications 0 

First we should look at the evidence for the existence of anomalous dimen- 

sions. Two’ examples will be cited here, one from the Thirring model and one 

from renormalized perturbation theory. Consider the exact propagator of the 

Thirring model, derived by Johnson: 9 

G(z) = i <52 I T G(z) F(O) I R > = exp G(p) (19) 
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where Go(z) is the free propagator (in a space with one space and one time 

dimension) and Do(z) is the free propagator for a scalar field: 

Do(z) = -(i/4X) &I(-z’+i~) (20) 

Also 

b = &4n2 (1 2-l 
- A2/47r ) ; 

where A is the Fermi coupling constant. 

(21) 

The formula given above is the unrenormalized formula; subtracting 

Do(O) ensures that G(z) is consistent with the canonical commutation rules as 

z - 0. Unfortunately Do(O) is infinite; to remove this itiinity requires an in- 

finite wave function renormalization, after which G(z) is inconsistent with the 

canonical commutation rules (see Johnson’) D The exponential of Do(z) is a 

power of z2; as a result G(z) scales as 

G(z) - (,2)-l/2-b (22) 
This means the dimension of G is 

d = ; + h2/4n2 (1 - X2/4r2)-l (23) 

So d varies with A, changing from l/2 (the canonical value in one space dimen- 

sion) for A=0 to a for A=2n. 15 The singularity in G(z) at z=O is spectacular for 

A near 27r! 16 

What happens in ordinary perturbation theory? Consider the ~~~ interaction 

of a zero miss pseudoscalar field $I~ 17 
This interaction is scale invariant ac- 

cording to canonical field theory 18 
: the added term in H is 

A s q4(x) d3s 
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Under the scale transformation U this becomes 

A U+(s) 
s 

$4(z, t) d3% U(s) = A s~/$~(s~, st) d3s 

=s [ ^s +4& St) d3z} (24) 

so it transforms like the rest of H. In order A the field r#~ does not show an 

anomalous dimension, but the composite field $4(x) does. Consider the matrix 

element 

W (P1*P2SP3’P4) = Jk”l’“l. I;c, eip40x4 < 521 Wxl) 44x2) +(x3) W,, +4tx) 1 fl> 
x1 

(25) 

calculated to order A. The connected part WC of W is found to be 17 

Wc(~,,~2,~3,~4) = 24 Do( 0 l Do(p4) [ 1+ (3A/47r2) h [-(PI+P~~/A’] 

+ 5 permutations of p’s in the A term 
I (26) 

where A is a cutoff;D6(p) is the free zero mass propagator for the scalar field. 

The cutoff dependence can be removed by a wavefunction renormalization. If the 

dimension of $4 is called dI and the dimension of $ is 1, the scaling law for W C 

is 

dA4 -16 
Wc(spl. 0 .sp,) = s Wc(P1’ 0 ‘P4) 1 (27) 

In order 1, dI=4, but in order A it must change to account for the logarithms in 

Eq. (26). The easiest way to see this is to note that to order A, Eq. (26) is 

equivalent to 

Wc(P1* P2, P3, P4) = 24 Do(pl). . . Do(p4) [ [-(pl+p2)2/A2]3ti4.Z, 5 permutations] 

(28) 
From this formula one has 

Wc(SP1’ 0 0 SP4) = s (9X/n2-q 
Wc(pI’P2’p3Jp4) (29) 
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Comparison of Eq. (29) with Eq. (27) gives 

dI = 4 + 9h/r2 (30) 

This means that $4(x) no longer has dimension 4 in the presence of the perturbation. 

This in turn means that the h$4 term in H no longer scales properly: H does not 

go into sH under a scale transformation. As a result the theory ceases to be scale 

invariant: the breakdown occurs in order h2* (So one cannot expect Eq. (28) to 

hold beyond order A.) This breakdown of scale invariance for zero mass renor- 

malized perturbation theory is true of other standard theories, e.g., quantum 

electrodynamics or pseudoscalar meson theory. 

One sees in the second example especially the connection of renormalization 

to the anomalous dimension; with a cutoff the logarithm must involve the cutoff 

in order to have a dimensionless argument. 

What are the consequences of anomalous dimensions for strong interactions? 

First, we observe that the prediction of the asymptotic behavior of the e+-e- 

annihilation cross section is unaffected by anomalous dimensions. The total 

cross section for annihilation into hadrons is 5 

uToT(q2) = - 16n2 (u2(q2)-2J eiqox p:(x) d4x 

with 

(31) 

P,,(x) = <QljcL(x) jJO)I fl> (32) 
, 

where q is the momentum transfer to the hadrons, a! is the fine structure constant, 

and j 
P 

(x) is the electromagnetic current of the hadrons. The scaling law for j 
/J 

(x) 

is fixed by Gell-Mann’s current commutators. For example, if j i,(x) is the 

charge -I- 1 component of the weak current, one has 

(33) 
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Let 

U+(s) j,(st) U(S) = Sd j,(sz, St) 

U+(s) j,‘,cc,t) U(s) = Sd jiw(sx, St) 

(34) 

(It is assumed that all components of all SU( 3) X SU(3) currents transform alike.) 

Transforming Eq. (33) gives 

‘+ (sy St) J()w &Y 1 
But 

C 
j,(S~, St), jdwtsz St) 1 = jiwts> St) 6 3(sp$ 

= SW3 j~wtS~, St) fi3(;-z 

(36) 

(37) 

For the two equations to agree one must have d=3. 

Substitution of the scaling law (34) with d=3 into Eqs. (31) and (32) gives the 

prediction that p,,(x) scales as x 
-6 and 

With broken scale invariance the scaling law should hold for small x; this means 

the scaling law for oTOT should hold for large q2. The proportionality constant 

cannot be predicted. lg 

Second, we examine a negative consequence of anomalous dimensions. Namely, 

there are no single particle states in the scale invariant zero mass limit of strong 

interactions, if the fields of strong interactions have anomalous dimensions. The 

problem is the usual infrared problem; in the zero mass theory every particle is 

surrounded by a cloud of infrared particles, and one can never separate a particle 

from its cloud. One consequence of this is that there is no S matrix in the scale 

invariant limit. Thus there is no reason to expect the S matrix to be approximately 
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scale invariant at large energies in the finite mass theory. 20 
To see that there 

are no single particle states in the scale invariant limit consider the pion propa- 

gator D,(p) as an example. By the analysis described earlier, D,(p) is propor- 

tional to (p 2 A-2 ) where A is the dimension of the pion field. If A is not equal to 

the free field value 1, it must-be larger than 1, since for large p2, D&p) cannot 

2 -1 21 be smaller than (p ) a But if A > 1, D.(p)has no pole for finite or zero p; 

it has only a branch point at p2=0 which is less singular than a pole. This is a 

typical symptom of infrared problems. 

With anomalous dimensions one possible application of broken scale invari- 

ance is ruled out; one cannot look for scale invariance in high energy large angle 

processes unless one can somehow disentangle infrared effects. 20 Kastrup4 

has worked on this problem but one is a long way from a solution. 

The absence of single particle states in the zero mass limit gives another 

negative result D Namely, one cannot predict the Bjorken scaling laws for deep 

inelastic electron scattering 22 from the assumption of broken scale invariance. 23 

The validity of the Bjorken scaling laws has been shown by Callan and Gross 24 

to depend on properties of the equal time commutator of jp and d jp/@ t. If broken 

scale invariance holds, this commutator must be scale invariant. However,one 

does not know a priori what local fields will occur in the commutator, or what 

the dimensions of these fields will be, and this information is crucial. See a forth- 

coming paper by G. Mack (Center for Theoretical Physics, University of Miami) . 

A third consequence of anomalous dimensions is that they make possible an 

explanation of a universal AI=1/2 rule. 6 I can only give the essence of the explana- 

tion here. For simplicity imagine that the weak interactions are mediated by an 

intermediate boson of mass m w0 We assume that mW is large compared to 

typical strong interaction masses, i.e. , mW >> 1 GeV. The matrix element for 
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a typical nonleptonic decay is 

cos e sin e/$2 < f IT ji\$x) jy s(O) 1 i> tiV (x, mw) d4x (3% 

where G is the weak coupling constant, 0 is the Cabbibo angle, I i > and I f > are 

the initial and final hadron states (e.g., I A> and lpn> ), jys is the strangeness 

changing weak current, and #I’ (x, mw) is the propagator for the intermediate 

boson. It is crucial to the analysis to discuss this matrix element in x space, 

instead of Fourier transforming the matrix element and integrating over the 

momentum space propagator. It is also crucial to observe that the boson propa- 

gator is negligible at distances large compared to m$. Hence only small dis- 

tances x are important in the integral and one can expect scale invariance to be 

relevant. However, the states Ii> and If > are low energy states and far from 

scale invariant; so to use scale invariance one must isolate properties of the 

product Tjl,(x) jVs(0) which do not depend on the states Ii > and If > . Such a 

property has been proposed; it is an operator product expansion. 25 The idea of 

the expansion is that for small enough x the product T j-&x) jy s(O) is indistinguish- 

able from a local field at 0. This expressed by writing the product as a linear 

combination of fields at the origin: 

T j:,(x) j&O) = c CWV(x) On(O) 
n 

(40) 

where the fields On(O) are a complete set of local fields; the C nclv (x) are functions 
, 

of the separation x. This expansion is an operator relation independent of the states 

Ii> and If > . Scale invariance makes predictions for the behavior of the functions 

C nctv (x) just as it does for propagators. Namely, CWV (x) scales as x 
-6+d, 

where 

dn is the dimension of the field Oil. Since x is small the largest term in the ex- 

pansion corresponds to the field On which has the smallest dn. In some free field 

models, such as the quark model, the field of smallest dimension that contributes 
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is the Wick product :j+ * pw(o) jy &O). which has both AI=1/2 and AI=3/2 parts. 

But with anomalous dimensions one can have the field of lowest dimension be 

pure AI=1/2, with all AI=3/2 fields having high dimensions. 26 If this is the 

case the AI=3/2 part of T j;(x) jV s(O) will be smaller by a power of x than the 
. 

AI=1/2 part. Since x is no larger than mW, the result is to suppress all AI=3/2 - 

amplitudes by a power of --1 27 
( > 
m 

w ’ Furthermore if mW is very large (> 10 GeV) 

the suppression could be enormous, with observed AI=3/2 amplitudes being 

electromagnetic. If the observed AI=3/2 amplitudes are not electromagnetic 

but come from the AI=3/2 part of the weak amplitude then probably mW cannot 

be terribly large; however we don’t know what power of mW occurs in the sup- 

pression factor so we cannot give a numerical bound for mwO 

The assumptions of this explanation are as follows: 

1. Broken scale invariance. This is the big assumption q 

2, Anomalous dimensions. The evidence for this is fairly compelling 

from known field theories. 

3. AI=1/2 dominance. See Ref. 26. 

4. Operator product expansion. The evidence for this from known 

field theories is compelling. (I have not yet completed a paper 

describing a thorough but nonrigorous study in perturbation 

theory. ) 

Can anomalous dimension be measured? If the theory of corrections to scale 

invariance proposed in Ref. 6 is correct, then anomalous dimensions can be 

measured in e+-e- annihilation, at least in principle. The theory of corrections 

to scale invariance works as follows. 28 The part of the Lagrangian which breaks 

scale invariance is assumed in Ref. 6 to be 

2x1 = xouo + X8US + A w (41) 
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where hoc0 + h8u8 is the SU(3) x SU(3) breaking term of Gell-Mann, Oakes, and 

Renner, except that the scalar fields o. and o8 used here are normalized by their 

short distance behavior and differ by a dimensional constant from the fields u. 

and u8 of Gell-Mann et al. -- The fields co and o8 have an unknown dimension A, 

the field w has unknown dimension A1, but both A and A1 must lie between 1 and 

46 . In the presence of scale breaking one has dimensional constants, namely 

the constants, ho, As, and A, whose dimensions must be chosen so that =J.Z’I has 

dimension 4 in mass units. This means X0 and ~~ have dimension 4-A and h has 

dimension 4-A1” The rule governin, m scale breaking corrections to pPV (x) at 

small x is that they must be power series in ho, A~, and A, and that they must be 

consistent with SU( 3) x SU( 3) symmetry. The result is that there can be terms of order 

2 
x0, X0$ etco2 but not of order ~~ or ~~ 0 If w carries no internal symmetry there can be 

a term of order A. An alternative is that w is not invariant to an axial baryon number, 
29 

in which case there is only a term of order h2. A second rule is that the scale 

breaking terms must be dimensionally correct. Since P ~~ (x) has dimension 6 

this means the terms of order h2 in pPv (x) behave as (x 2 -3+(4-Al) ) which leads 

to a correction proportional to (q2) *ID5 in oTOT(e++e- - hadrons) D Likewise 

2 A-5 there will be corrections proportional to (q ) . So corrections to the asymptotic 

form of the e+-e- total cross section scaling as nonintegral powers of q2 would be 

experimental evidence for anomalous dimensions. 

In the examples of anomalous dimensions cited earlier they were always 

accompanied by infinite wave function renormalizations, If one is to have a more 

detailed theory of anomalous dimensions, it will be necessary to solve the re- 

normalization problem for strongly coupled field theories. 30 It cau no longer be 

wished away! 
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