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ABSTRACT 

Starting from the assumption that the inelastic states in the unitarity 

relation can effectively be represented by a set of quasi-two-particle states, 

a K-matrix formalism is set up for high energy elastic scattering and diffraction 

dissociation processes. Using agruments similar to those of Freund it is shown 

that the Pomeranchuk contribution to elastic scattering and diffraction dis- 

sociation can be generated by multiple exchange of an exchange degenerate 

quantum number carrying Regge trajectory R, by considering at the same time 

a formation of a sequence of excited intermediate states of the colliding particles 

between the individual R exchanges. This unitarization procedure leads to an 

imaginary as well as a real contribution for vacuum exchange corresponding 

basically to sums of double and triple R exchange contributions, respectively. 

At the same time the K-matrix formalism produces an absorptive correction to 

the input Born terms. The consequences of the proposed model are worked out, 

particularly as regards the asymptotic behavior of total cross sections and the 

interpretation of the crossover phenomenon. 
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1. INTRODUCTION 

It is well known that Regge theory provides a reasonably good 

description of inelastic processes at high energies. Elastic scattering, 

however, is still less well understood. This is related to the fact that the 

true nature of the Pomeranchuk trajectory is unknown. Originally introduced 

as an ordinary Regge pole carrying the quantum numbers of the vacuum and 

possessing the largest intercept allowed by unitarity, it soon became clear 

that this trajectory had very special properties: i) its slope turned out to be 

smaller than that of quantum number carrying trajectories which have a slope 

of order 1 GeV -2 ; ii) there seem to be no particles related to the Pomeranchuk 

trajectory. Furthermore, the following well-known conceptual difficulty 

appears. Iterating a Pomeranchuk pole in an elastic scattering amplitude 

produces cuts in the angular momentum plane which accumulate at j = 1 for 

vanishing t and dominate each other for increasing order of iteration at negative 

t. This seems to indicate that the full Pomeranchuk contribution is basically 

a more complicated object. As an ansatz to a more refined theory for elastic 

scattering various phenomenological multiple scattering models have been dis- 

cussed, describing the Pomeranchuk contribution effectively as a superposition 

of Regge cuts. It has been found useful, in order to incorporate this multiple 

scattering aspect into the theory, to treat elastic scattering in the Glauber- 

eikonal type of approximation. 1,2,3 However, it is still unclear to what extent 

the Glauber multiple scattering picture 475 , which was originally intended to 

describe the scattering of composite objects at energies where particle crea- 

tion and annihilation are negligible, can in fact be regarded as a satisfactory 
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description in the relativistic domain. In order to be able to include inelastic 

states in the multiple scattering chain, we will not use the Glauber model here. 

The main reason is that the implications of unitarity in relativistic particle 

scattering are not easily incorporated into that model. Our aim is to satisfy 

s-channel unitarity at least in a certain approximation to be discussed in detail 

below. We therefore choose as our starting point a K-.matrix type of para- 

metrization for the scattering amplitudes in the way first discussed by 

Blankenbecler and Goldberger’ and by Baker and Blankenbecler7 in connection 

with the Fourier-Bessel representation of scattering amplitudes8. Our approach 

has some resemblance to recent investigations of the multiperipheral model 12 

although in detail it is quite different. 

Furthermore, we will not assume a Pomeranchuk trajectory as an 

input term, i. e. as a “driving term” in this formalism. Instead we shall in- 

vestigate under what conditions a vacuum exchange contribution can be generated 

from multiple exchange of lower lying trajectories, allowing for a whole set of 

excited intermediate states. The basic diagrams producing a Pomeranchuk 

contribution in this formalism will be those shown in Figure 1, where the transfer 

of the vacuum quantum numbers in the t-channel corresponds to a back and 

forth exchange of quantum numbers carried by a trajectory R, together with 

an excitation of all possible *I resonances” in the intermediate state produced 

by the incoming particles a and b at a particular c.m. energy squared 

s = (Pa +pb12. Our basic statement will be that, although the Regge cuts cor- 

responding to a double R-exchange and a certain well-defined quasi-two-particle 

intermediate state in Figure 1 are asymptotically suppressed in the near forward 

direction compared to single R-exchange, the consideration of a with energy 
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growing number of excited states between the R-exchanges can in fact com- 

pensate this suppression of the individual terms in the sum and can indeed 

produce a vacuum contribution which dominates elastic scattering asymptotically 

without having to postulate in the theory a Pomeranchuk pole in the beginning. 

The plan of our presentation will be as follows. In Section II we 

introduce the multi-channel K-matrix description of scattering amplitudes in 

the impact parameter language and discuss various approximations inherent 

in our approach. In this section we state our main results for particle-particle 

scattering and extend them in Section III to the case of particle-antiparticle 

scattering where additional annihilation channels are open. In Section IV the 

implications of the proposed model regarding the real part of high energy for- 

ward scattering amplitudes and the existence or nonexistence of a Pomeranchuk 

limit as well as a Pomeranchuk theorem are studied. Section V is devoted to 

a discussion of the crossover phenomenon, and Section VI to some final remarks. 

II. THE K-MATRIX FORMALISM 

Our starting point will be the impact parameter representation for 

the scattering amplitude at high energies 13 . Neglecting complications due to spin 

and isospin the elastic s-channel scattering amplitude is, in our normalization, 

given by 
Do 

f(l)@ t) = 2ns -- , s bdb n(l)@ s) , J 0 (bs--iJj 
0 

14 The elastic differential cross section and the optical theorem read 

(1) 

gZ 1 

4nq2s 
I f(l)(s t) I2 , , (2) 
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and 

rmf(l)(s,t=O) = *q fig tot @) 

where q is the relative momentum in the c.m. frame, given at high energies 

byq= &&. 

It was shown by Blankenbecler and Goldberger’ and by Cottingham 

and Peierls” that unitarity is expressed at high energies in a simple manner 

in terms of the Fourier-Bessel coefficients n 0) (b, s). To leading order in s 

the unitarity relations for the n (1) (b, s) correspond to the ones for the partial- 

wave amplitudes, i. e. one has 

n(s) 

(1) 
@Is)-77 

0) 
@A* = n(‘)(b, s) &b, s)* + c qt2)(b s)qt2+b s)*+ h(l)@ s) 

j=l j 
, 

j ’ , 

(3) 

Here the amplitudes n y)(b,s); j =1,2,... n(s), are the amplitudes for transi- 

tions to the open two-body channels, and h 0) (b, s) represents the overlap 

function” ‘17 * m the impact parameter representation, describing the effect the 

transitions to multi-particle intermediate states have on the elastic amplitude. 

Conventionally the sum over the two-body ltquasi-elastic” and the true 

inelastic transitions in Eq. (3) are called the overlap function, being denoted 

by g(l)@ s) , - 

To satisfy s-channel unitarity there are now in principle two possi- 

bilities open. On the one hand one can try to parametrize elastic scattering 

globally in terms of the combined effect of all inelastic states appearing in the - 

unitarity relations; i. e. make a suitable ansatz for g (1) (b, s). On the other hand 
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one can try to find a set of quasi-two-body states (2)j; j = 1,2,. . . n(s), such 

that Eq. (3) is approximately satisfied with h (1) (b, s) = 0. The first alter- 

native was advocated in a number of papers 16,17,18 following the original 

suggestion by V. Hove 19 , and most recently in Ref. 20. We shall follow here 

the second alternative and investigate the consequences which result from it. 

Introducing a matrix n (b, s) of dimension (l+ n(s)) for all the coupled 

quasi-two-body to quasi-two-body channels we write Eq. (3) for h (1) (b, s) M 0 

as 

21 To satisfy this relation we now introduce a K-matrix parametrization for the 

impact parameter matrix n (b, s), and write 

rl@, S) = N@, s)*[l - iN(b, s)]-’ = [l- i N(b, s)]-‘. N(b, S) (5) 

Here the matrix N(b, s) - the “Born matrixl’ - contains the driving terms 

which we will relate below to single Regge pole exchanges. The full unitary 

amplitudes, whit h constitute the matrix n (b, s), will then automatically contain 

the iterated Born terms describing multi-Regge pole exchanges. In particular 

the unitarized amplitudes will develop a piece which can be identified with the 

exchange of the vacuum quantum numbers and hence can be interpreted as the 

Pomeranchuk contribution. 

The matrix N(b, s) will be represented as 
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N@+b s) Nt2+b,s) Ni2+b, s) . . . . N12) , 1 n(s) (by ‘) 

N12)(b s) Nt3+b s) 1’ 1’ B 12 (b, s) 
” l l Bin(s) (bs s) 

N@,s) = .(‘)&I s) B (b s) 2 ’ 12’ Nt3+b s) . . . . B 2 ’ 2n(s)@’ ‘) 
. . 
. . 

A corresponding labelling of rows and columns is assumed for the matrix 

?I@, S). N (1) @, s) is the single Regge exchange term for the elastic scattering 

in the impact parameter representation, and N B)@, s) is the corresponding 

quantity for the transition from the initial state a + b to the quasi-two-body 

state labelled (2)j containing one or two resonances denoted by a: and/or bi. 

(3) Finally, the Nj (b, s) describe elastic scattering of these resonances, and the 

Bjj,(b, s) represent the transitions between the various excited two-particle 

channels. 

We point out that, since the individual Born terms entering in (6) are 

real and N(b, s) is symmetric because of time reversal invariance, the form 

(5) for the matrix n@, s) indeed implies h@, s) = 0, where h@, s) is now a 

(n(s) + 1) x (n(s) + 1) overlap matrix. This relation holds because in the K- 

matrix language one has 

h@,s) = (I-iN(b,s))-‘. &[N@,s)-Nt@,sjl- (I+ iN’(b,s))-1 (7) 

We are aiming at a description of high energy elastic scattering and 

diffraction dissociation and shall construct the individual Born terms by con- 

sidering only the dominating exchanges for large s, i.e. Regge trajectories 

having intercepts of order a(O) = 0.5. Remember that we do not regard the 
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conventional Pomeranchuk pole as a possible input here, quite independently 

of the fact that it does not satisfy the required reality condition. As men- 

tioned above, a vacuum contribution will, under certain conditions, come out 

automatically as a result of the unitarization procedure implied by the form 

(5) of the impact parameter matrix. 

To construct the matrix (6) explicitly we take as the single scattering 

contributions to the amplitudes the terms corresponding to the exchange of an 

exchange degenerate Regge trajectory R in the t-channel, having trajectory 

o(t) = a!(O) + o’t, with intercept a(O) = 0.5 and slope CY’ = 1 GeV -2 , i.e. we 

take a trajectory corresponding to p and f” or w and f” (f”= PI). We therefore 

write: 

fsingle scatt. (s, t) = gRm = f- 
Q! (t) 

i 1 
P 

0 
(8) 

where p is a real symmetric constant matrix constructed in analogy to Eq. (6), 

with matrix elements ,B O); p(2), ,!3 (3) j = 1 2,. . . n(s) and B 
j j’ ’ 

, jj, j,j*= 1,2,. . .n(s). 

so is a scaling energy taken as usual to be so = 1 GeV2. To be specific we 

consider the elastic channel to be pp, n+p or K’p scattering. The corresponding 

antiparticle reactions, where additional charge or hypercharge annihilation 

channels are contributing, will be considered in Section III below. 

Notice that we have assumed a certain ghost killing mechanism opera- 

ting in Eq. (8). The factor l/sinra!(t) contained originally in the signature 

factor of the Regge pole contribution is assumed to be cancelled by a corres- 

ponding factor in the conventional Regge residue P(t), i.e. we put P(t) = 

sin no(t)= ,B , with p taken to be constant. One could call this 1fmaximal ghost 

killing” for an exchange degenerate trajectory in contrast to a weaker ghost 
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eliminating mechanism operating possibly for non-exchange degenerate 

trajectories which we will discuss in Section IV below. 

The Fourier-Bessel transformation of JZq. (8) together with the above 

assumption of a linear Regge trajectory now yields the Born matrix N(b, s) 

according to 
co 

N@, S) = NR@, S) = & f 
0 

xdxgR(s,-x2) Jo@x) = & P?o@9s) 

f 

(9) 
s 0 

Withyo(b, s) given by 

b2 

Let us now carry out the matrix inversion implied by Eq. (5), first 

without using the information provided by JIq. (9). In order to be able to proceed 

one has to introduce a simplifying assumption. We are going to suppose that the 

coupling between different excited two-body channels (the B.. , in Eq. (6)) are 
JJ 

small compared to the other elements of the matrix N(b, s), i. e. 

(Bjj I)2 << Ni2) N;:). We shall find below that the B.. (or, correspondingly, the 
11’ 

fijj, ) are related in our description to diffraction dissociation processes which 

are experimentally known to be about a factor l/6 to l/8 smaller than the 
23,24 corresponding elastic scattering . Neglecting therefore quadratic terms 

in the B.. (1) (1) 
11’ 

and using the abbreviations A (b, s) = 1 - i N (b, s) and 

Aj(3)(b,s) = 1-iNj(3)@,s); j=1,2 ,... n(s), one obtains for the elements in the 

first column of the matrix n (b, s), i. e. for elastic scattering of particles a 

and b,described by n (1) (b, s), and for resonance production by the same 
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incoming particles,described by n j(2)@, s); j = 1,2, . . . n(s): 

(a= 
9 n(s) 

( 1 
*w 2 n(s) Nt2)Nt2)B 1 + C jf 3 + i C j? jl? jlj?l 

jl=l A(l ) 
‘1 
3 

j 1, j T? *t1)A!f)*t3) 

jt# jl? 3 jf’ 

(lob) 

(l) We now introduce the further assumption that A = A(3), j = 1,2,. . . n(s), which, 
j 

loosely speaking, means that the initial and final state interactions in the pro- 

cess a + b - (2)j = a; f bi are equal. The next step now is the evaluation of 

the sums appearing in Eq. (10). Our claim is that although the individual Born 

terms are of order l/fi(compare Eq. (9)) the s-dependent sums of squares or 

third powers of such contributions may asymptotically be of considerably larger 

size compared to the contributions of the individual terms in the sums which 

are of order s -1 and sm3j2 , respectively . 

We define with the help of Eqs. (9) and (10) 

C(b,S) = Al Nj y@) ( t2) 
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Dj(b, S) 
n(s) c d2)(b,s)~ 
jI=l jt 

(b S) = jfj 9 d2)P jr j?j @lb) 

0) n(s) 
D@,S) = C Dj~,S)Nj(2)(b,Q) = C . , Nt2+b s) Nt2+b s) B 

j,j’ 3 
‘1 J , (b s) 

j=l W ’ 

Writing each sum over j as a double sum over the individual excited states 

contained in the two-particle intermediate state which can be produced by R- 

exchange, one sees that the quantities C(b, s), Dj@, s) and D@, s) correspond 

to the diagrams shown in Figure 1, Figure 2 and Figure 3, respectively, The 

blobs in these diagrams contain all possible excited states (resonances) of 

variable mass up to a highest one with mass depending on s. 

Let us first treat the sum appearing in Eq. @a). 25 Following Freund 

we write it as 

(12) 

First a comment on the limits appearing in the summation over i and k is in 

order. A particular intermediate state (i, k) in Figure 1 will only contribute 
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appreciably to forward scattering if it can be produced with small momentum 

transfer tmm” 0. Now tmin is given by 

it I min 
2 2 

M “aTmb;C ’ 
I 

(13) 

It is therefore required that the masses of the intermediate particles appearing 

in Eq. (12) have to obey the relation 

“a* 2 nQ 5 P2S 
i 

(14) 

where p2 is some small constant mass. Assuming, moreover, the a? and bl to Lie 

on a linear Regge trajectory of slope z’ M 1 GeV -2, the masses of the inter- 

mediate excited states are given by 

2 ma* = m2 1 
=m2+L , 

i a cr? 
i=1,2,...ni(s) 

(15) 

n-f;= rn: = rnE+% , k=l,2,...nk(s) 

Taking Eq. (14) into account the highest possible values of ni(s) and r+(s) are 

obtained as indicated in Eq. (l2). 

Let us now justify the last step in EZq. (12). 25 
Following again Freund 

we assumed the coupling strength between the excited intermediate state labelled 

(i, k) and the “elastic state” to be proportional to (ik) ‘42 . Here K is some 

constant determining the relative coupling strength of the various higher excited 

states I al, bl > to the elastic or ground state I a, b >. 

One can now investigate different assumptions concerning the value of 

K which determines the behavior for large s of the quantity C@, s). The most 



-14- 

natural choice seems to assume that all excited intermediate quasi-two- 

particle states are coupled equally strongly to the elastic channel independently 

of the masses of the particles produced. This corresponds to K M 0 and leads 

to the following behavior of the sum (12) for large energies 

n(s) 
pJ;2,, = c(f-) 1%; 

Here C is a positive constant which we shall show below to be related to 

Pomeranchuk exchange. With the result (12 I) one obtains finally for C(b, s): 

C@,s) = c log% Io@,s) . 
( ) 

2 

sO 

(12 ‘) 

In a completely analogous fashion, making the same assumption for the sum 

c ,B(2)p . which were made for the sum (12), one derives for the quantities 
., 3 j’ j’3 

Dj (b, s) corresponding to Figure 2 the result 

Dj@, S) = Dj log ” 2 

0 

(16) 

where the constant D. will be related below to diffraction dissociation processes, 
J 

i. e. the production, via Pomeranchuk exchange, of quasi-two-body states con- 

taining excited baryons and/or mesons. Familiar examples of such processes 

are, for instance, N* and/or vector meson production in nN-collisions. 

For consistency with the derivation of Eqs. (lOa) and (lob) one must 

require that D. 
J 

< C in analogy to (Pjj *)2 ” P 
J!2)+(H)forj,j’=1,2 ,... n(s). 

We shall return to this point below where we discuss the implications of the 
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assumptions made so far, and in particular study the mechanism which will 

give rise to a vacuum exchange contribution in this K-matrix description. 

To conclude our discussion of Eqs. (11) we finally have to deter- 

mine the large s behavior of the sum (11~) corresponding to Figure 3. With 

the help of Eq. (17) the Eq. (11~) can be written 

(18) 

Applying here the same argument which led to Eqs. (16) and (17), i. e. assuming 
n s) 

again equal strength of all terms in the sum c D P(2) 

-&Jlog$- 
j=l jj 

, would result in a large 

s behavior D(b, s) F(b), which can be shown to violate Froissart’s 

bound. Atmostpositive powers of logs 
sO 

are allowed to appear on the right-hand side 

of EQ. (18) in order to yield an elastic forward scattering amplitude bounded by 

-2 log& 
2 

( 1 so so 
as s goes to infinity. We therefore conclude that the contributions 

n(s) 
of the higher excited states appearing in the sum c D./3i2) are more strongly 

n(s) (2) 2 

( 1 

j=l 3J 

damped as compared to the sum c ,Bj . Without offering a deeper justi- 
j =l 

fication we assume that the sum on the right-hand side of Eq. (18) behaves for 

large energies as the largest possible power in s consistent with the Froissart 

bound. In particular we assume that 

n(s) 
c D pt2) zz 

jr1 j j 
DA (h$-)", 

with D being a constant and m an arbitrary positive integer. This leads to 

D@,s) = D log ( $+l(Yo@,sp 

(19) 

(20) 
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We are aware of the fact that the assumptions made to arrive at 

Eqs. (l9) and (20) are more difficult to justify theoretically than those which 

lead to Eqs. (16) and (17). Moreover, the power m of the factor log 2 in 
sO 

Eq. (19) is unknown. We shall explore the consequences of various possible 

values for m in this K-matrix approach in more detail in Section IV where we 

investigate its connection to the real parts of forward elastic scattering 

amplitudes at very large s as well as the existence of a Pomeranchuk limit. 

For definiteness we shall assume in .most of the following discussion that 

m = 1, which will be shown in Section IV to imply a Pomeranchuk theorem in 

this formalism. 

Raving obtained the high energy behavior of the sums appearing in 

Eqs. (lla-C) we can now, after insertion of the results given by Eqs. (16), 

(17) and (20) into Fqs. (lOa) and (lob), make an expansion of the right-hand side 

of these equations in powers of l/,/m Remembering that the unitarity 

relations (3) in the impact parameter language were only valid to leading 

order in s, we neglect in Eq. (lOa) and (lob) all terms of order l/s and smaller. 

With C@, s), Dj(b, s) and D@, s) as given by Eqs. (16), (17) and (ZO), respec- 

tively, the result for the unitarized elastic scattering as well as resonance 

production amplitudes is now given by 

77 (1) (1) (1) tbs s) = qp (b, s) + qR @, s) = 1 ;‘$.. s;,f$$,s’s, , , 

+ N(l) (b s) l- C&s)-2iD@,s) 

’ [l + C(b,s) +iD(,s)]’ 
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q(2)@,s) = 
j 

@lb) 

i Dj@,S) Nt2+b, s) . 3N(l)@ , s) D (b s)(l- C(b s)] * , 
= l+C@,s) + iD(b,s)’ l+C@,s)+iD(b,s) - [l+C(b, I) + iD(b, s)]” 

Considering Eq. (21a) we see that the nnitarization procedure has 

generated from the driving terms N (1) and N$) of order l/l/(s/so) not only an 

“absorptive correction” to N (1) represented by the factor multiplying the Born 

term in Eq. (2la), but in addition a contribution 

+I)~ s) = iC@, s) - DP9s> 
P ’ 1 + C(b, s) + i D(b, s) (22) 

which behaves like a constant at large s (apart from logarithmic factors). 

After Fourier-Bessel transformation (compare Eq. (1)) the contribution (22) 

gives rise to a term proportional to s, which can be interpreted as representing 

the Pomeranchuk exchange contribution since it corresponds to no net quantum 

number exchange. For the imaginary part of qp (‘b,s), which is determined by the 

double R exchange contributions representedby C@,s) and shown in Figure 1, the 

latter is evidently true since the two step processes canproceed by twice the ex- 

change of quantum numbers (p or w component of R), or twice the exchange of 

vacuum quantum numbers (PI component of R). For the (supposedly small) real 

(1) part of np (b, s), which is basically determined by a threefold exchange of the 

trajectory R and represented in Eq. (22) by D(b, s), the requirement that no net 

quantum numbers are transferred corresponds to a restriction on one of the 
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R-exchanges in Figure 3, i. e. only the P’- component of R is allowed to be 

effective. 

The contribution originating from Eq. (22) has a number of interesting 

properties. First of all it represents a superposition of cuts in the angular 

momentum plane, since - as is clear from Eq. (22) - it can be written for 

large s as a power series in (C(b, s) + iD(b, s)) corresponding to an iteration 

of graphs of the type shown in Figure 1 and Figure 3. We point out, however, 

that the multiple scattering series obtained by expanding the denominator in 

Eq. (22) can in general only be assumed to converge for very large s since 

C (b, s) and D@, s) are of order const/log 2 . 26 

sO 
For low values of s the Fourier- 

Bessel transform of the right-hand side of Eq. (22) must in general be performed 

(1) as it stands in order to yield the Pomeranchuk contribution to f (s, t). It is, 

however, interesting to determine the “effective” contribution provided by 

Eq. (22) for large s and small t (corresponding to large impact parameters), 

which is given by 

P@ s) P ’ M iC(b,s) - D@,s) = iClog so (Y&Y S))‘- D(log t)” (yo@, s))3 (23) 

Eq. (23) leads after Fourier-Bessel transformation to 

(24) 

This equation shows that for a purely imaginary high energy elastic scattering 

amplitude in the near forward direction, i. e. for D/(4nsoa’) small compared to 

C, the “effective Pomeranchuk pole trajectory ” at large s and small t is given 
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in this model by ( oP(t)) eff = 1 + $ t, which means that the slope of the 

effective P-trajectory is one half of the generating exchange degenerate tra- 

jectory o(t). If the real part of the elastic scattering amplitude at large s, 

although small, is non-negligible, one gets a further contribution having an 

effective slope ar/3. 

We remark that a slope of the order aI/2 is of the right magnitude 

to explain the shrinkage found in elastic pp collisions up to the highest avail- 

able energies 27 . This shrinkage corresponds to a slope of an effective 

Pomeranchuk pole given by CI& = (0.40 f 0.09) GeV -2 
. A similar shrinkage 

seems to be observed in K+p scattering corresponding to a somewhat larger 

effective Pomeranchuk slope 28 . We are inclined to take the result that our 

model predicts the forward peak in particle particle elastic scattering to con- 

tinue to shrink at approximately the correct rate as energy increases as a 

support for the described picture for the Pomeranchuk contribution. 

In contrast to the Glauber-eikonal type of description of elastic scat- 

tering proceeding via multiple exchange of a supposedly existing single 

Pomeranchuk pole of natural parity, it turns out that in our description the 

Pomeranchuk term - even in lowest order rescattering - does not have a 

definite natural or unnatural parity, The reason is that already the lowest 

order term given by Eq. (24) and corresponding to the graphs shown in Figure 

1 and 3 represents a Regge cut (double or triple R-exchange), which cannot be 

associated with a definite parity being exchanged in the t-channel 29 . This is 

true despite the fact that the leading quantum number changing trajectories 

going into R, i.e. f”(Pr), w or p, are all of natural parity. 

Similar arguments apply to the Pomeranchuk contribution to resonance 

production, which is represented by the first term on the right-hand side of 
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Eq. (21b) corresponding basically to the diagrams shown in Figure 2. The full 

diffraction dissociation amplitude can, analogously to the elastic case, be de- 

pictured as consisting of a sum of terms corresponding to a chain of graphs of 

the type shown in Figure 1 and 3 together with a final link of the type shown in 

Figure 2. As for elastic scattering this multiple scattering series corresponds 

to the expansion of the denominator in the expression for 17 j2b (b, s) in Eq. (21b). 
, 

From experiments on N* production in pp collisions one concludes 

that the constant Dj appearing in the amplitude n i2P(b, s) for diffraction dis- 
, 

sociation is smaller than the constant C (describing predominantly the elastic 

scattering) by a factor l/6 to l/8 at incident laboratory momentum between 6 

and 30 GeV/c, 23,24 giving thus a posteriori a justification for having neglected 

quadratic terms in the p.. , 
33 

in deriving Eqs. (10) above. 

It is obvious from the above discussion that the Pomeranchuk con- 

tribution to elastic scattering as well as to diffraction dissociation processes 

does not factorize. Furthermore, the phase of the vacuum contribution to 

elastic scattering is given by the relative strengths of the diagrams shown in 

Figure 1 and 3. A similar statement applies to diffraction dissociation. We 

shall come back to this point in Section IV. 

We finally mention in connection with Eq. (21a) and (21b) that the K- 

matrix formalism described above leads automatically to a damping of the in- 

put Born terms. This “absorptive correction I( to the quantum number changing 

(1) contributions contained in the second term, called nR (b, s) in Eq. (2la), and in 

the second and third term, called n (2) j, ,@, s) in Eq. (21b), is given in terms of 

the quantities which determine the high energy elastic scattering. We shall 

see in Section V in treating the crossover phenomenon how this absorptive 
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correction to single Regge exchanges can in principle be used to determine 

properties of the elastic scattering. 

In summing up let us list the assumptions made in the course of the 

derivation of the Eqs. (21): 

i) The inelastic states contributing in the unitarity relations can be 

represented by a set of quasi-two-particle states (resonances). 

ii) The coupling strength for the transition between different excited 

two-particle channels in the Born matrix is smaller than the cor- 

responding coupling to the elastic channel, i. e. (pjj,)2<c p. 1’2’. p;$); 

j, jr = 1,2,. . . n(s), such that terms quadratic in the p.. , are negligible. 
JJ 

iii) The coupling strength for producing a certain resonance from the 

elastic channel is independent of the mass of the produced resonance; 

and the density of the excited states is that provided by a linearly 

rising Regge trajectory. 

iv) The diagonal elements in the Born matrix are all approximately 

equal, i. e. p(l) M pi3); j = 1,2,. . . n(s). 

As mentioned at the beginning of this Section i) is our main assumption. The 

assumptions ii), iii), and iv) could in principle be altered and the consequences 

for the vacuum contribution be worked out in essentially the same framework. 

In concluding this section we would like to stress that we do not pretend 

to have shown that indeed Pomeranchuk exchange in particle-particle collisions 

is necessarily being generated by multiple Regge pole exchanges combined with 

the excitation of resonances in the intermediate state. In deriving 

Eqs. (Ha) and (21b) the above stated assumptions had to be made which 

are difficult to justify a priori. We, however, do believe to have demonstrated 

that the described interpretation of the Pomeranchuk contribution is possible 



-22 - 

and in fact plausible. We shall, therefore, derive in the following sections 

some consequences of this picture for the Pomeranchuk contribution. In 

particular, we shall study the total cross sections and the crossover of elastic 

differential cross sections in this model. Before we can do this we, however, 

have to investigate whether or not the presented approach to particle-particle 

collisions can also be applied to particle-antiparticle collisions and what the 

implications are in this case. 

III. PARTICLE-ANTIPARTICLE SCATTERING AND THE CONTRIBUTION 
OF THE ANNIHILATION CHANNELS 

Up to now we have treated elastic processes like pp, n+p or K+p- 

scattering and the associated diffraction dissociation processes. We have 

pointed out that the Pomeranchuk contribution to such processes can in an 

average sense be generated from an exchange degenerate Regge trajectory, 

considering at the same time all the possible quasi-two-particle inelastic 

intermediate states which can be produced at a certain energy. Now the ques- 

tion immediately poses itself: can pc, n-p or K-p collisions be understood in 

a similar way? How do the charge or hypercharge annihilation channels, which 

can in addition contribute here, influence the description? 

We shall introduce in this K-matrix model an identical coupling of 

the exchange degenerate Regge trajectory R in pp and in pp collisions. This 

assumption has to be made in our approach in order to guarantee the Born terms 

representing the exchange of the trajectory R to be real in pp as well as in pp 

collisions (and correspondingly in the other pairs trfp and Kp). We thus take 

the view that the additional annihilation channels, which can contribute to pp 

collisions compared to pp collisions, are in fact negligible at high energies 30 . 
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At low energies these annihilation channels, of course, affect the amplitude 

for pp scattering, forcing it to be different from the amplitude for pp scattering. 

We shall attribute, for instance, the fact that o~~~(s) is larger than c$~: (s) at 

present energies in the familiar way to a different coupling of the lower lying 

trajectories in pp and in pp collisions. More specifically we will attribute 

it to the fact that the w and p -exchange contribution is odd under charge con- 

jugation and hence enters with a different sign in the pp- amplitude compared 

to the p&amplitude. Having generated the vacuum contribution in an average 

sense from the lower lying trajectories we, therefore, set up a model by con- 

sidering afterwards for the Regge exchange described by N 0) (b, s) in Eq. (2la) 

the correct individual Regge pole contributions allowing, furthermore, for a 

breaking of exchange degeneracy. 

The above remark that we will consider the effect of the annihilation 

channels as negligible at high energies now implies that we have in Eqs. (16), 

(2 0) anit (21) 

C zz c- 
PP PP 

(25) 
D = D- 

PP PP 

and correspondingly for the other pairs **p and SP. The content of Eq. (25) 

is equivalent to the statement that the exchange degenerate trajectory R, which 

is supposed to give rise to a real Born term for pp as well as for pp scattering, 

is even under charge conjugation. 

We remark that it would be aesthetically more attractive to generate 

the Pomeranchuk contribution in pp and pp collisions from the exchange of an 
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object having mixed properties under the C-operation. This, however, destroys 

the reality requirements and therefore, by Eq. (7), our basic assumption that 

a set of two-particle channels are able to represent the true inelastic channels 

openat a certain (1arge)value of s If we were to give up this idea we have essen- 

tially returned to the overlap function approach or a combination thereof with 

our present parametrization. Our aim, however, was to explore the other 

extreme and assume that a quasi-two-particle description of the intermediate 

states in the unitarity relations is in fact possible. Having now stated all the 

assumptions involved in our approach we proceed to work out the consequences. 

IV. THE REAL PART OF THE ELASTIC FORWARD SCATTERING AMPLITUDES 
AND THE TOTAL CROSS SECTIONS 

From Eq. (21a) or more directly from Eq. (24) it follows that for 

m = 1 the ratio of the real to imaginary part of the elastic forward scattering 

amplitude at high energies is given by 31 

* = t(s) = 4 4nfIs0 c . 
, i 

We have neglected in Eq. (26) the contribution of the lower lying trajectories 

which are of order (s/s~)-~ compared to the leading term. While in the con- 

ventional Regge pole theory t(s) is predicted to approach zero, in this model 

5 (s) is predicted to go to a constant, provided, of course, the value of m is 

taken to be one. The magnitude of this constant depends on the contribution of 

the diffraction dissociation channels on the elastic transition (compare Figure 3), 

and its sign on the sign of D. In the next section we shall give some evidence 

which indicates that D is likely to be positive. 



-25- 

From forward dispersion relations one knows that the fact that t(s) 

is bounded by a constant implies the Pomeranchuk theorem which states that 

particle-particle and particle-antiparticle total cross sections approach the 

same constant limiting value at asymptotic energies 
32 . Assuming quantities 

of order (D/~TcJ’s~)~ to be small compared to those involving C in confirmity 

with our assumption ii) in Section II, one obtains for the Pomeranchuk con- 

tribution to the total cross section from Eqs. (2) and (21a) 

‘Jt;p = 
46 2 hnf$)(s,t=O) = g s bdb - 

6 0 1 + Q(S) e-@ 2 ‘2p) 

46 = ~cuTlog+ log[l + Q(s)] 
0 

(27) 

with Q(S) = C 1 

(4ssoc!‘)2 log 2 
sO 

At very high energies one can expand the logarithm in Eq. (27), set q M 2 , 

and show that the total cross section approaches its asymptotic limit in this 

model in a logarithmic way from below, i. e. : 

(2 8) 

with 

atott”) = c 
2na’s; 

(2% 
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An asymptotic behavior of the kind (28) is typical for cut models 

for the Pomeranchuk contribution. It can also be obtained in the Glauber- 

eikonal type of approach by iterating an ordinary Pomeranchuk pole of slope 

of order 1 GeV -2 as was shown in Ref. 1. 

We finally write the Pomeranchuk contribution to the total cross 

section compactly as 

CT&(s) = 4”“4’*J;; log s @tot{ “) 

sO 87ro’ log -% 
sO 

(30) 

Apart from the slope o1 of the generating trajectory which is assumed to be 

1 GeVe2 there enters only one parameter into Eq. (30), namely utot(m) for the 

process in question. 

In the conventional Regge pole description the total cross sections 

at non-asymptotic energies, for instance for pp and pp collisions, are given 

by a constant piece, identical for pp and pp, originating from an assumed 

Pomeranchuk pole, plus various contributions of order (s/so)-* coming from 

the lower lying trajectories which differ for pp and pp according to the C- 

parity exchanged, i. e. P’& w in the chosen example. In the present model 

the total cross section is, at finite energies, given by a logarithmically rising 

Pomeranchuk contributions given by Eq. (30), plus Regge pole contributions 

decreasing like (s/so)-* originating from the Fourier-Bessel transform of 

the term q(l)@ s) in Eq. (21a). R ’ This term describes the true Regge pole con- 

tribution including the absorptive correction. Remember that for N(l)(b s) , 

in Fq. (21a) we take in our model as described in Section III the terms cor- 

responding to the true non-exchange degenerate Regge pole contributions 
33 
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with their known transformation properties under charge conjugation. Ne- 

glecting again terms quadratic in D one obtains for the total cross sections 

for pp and pp collisions 

utot(s) = u&(s) + * 

s-c@, ‘1 D(b, s) 
(I+W, s,)2 - 4i (1 +c(b, s))3 

Here N(l) p, (b, s) and Nt)(b, s) are the Fourier-Bessel transforms divided by s 

(compare Eq. (9)) of the conventional P’ and w-Regge pole contributions which 

are given by Eq. (32) below. C@, s) and D(b, s) were defined in Eqs. (16) and 

(20) (compare also Eq. (29)). The positive sign under the integral in Eq. (31) 

corresponds to pp- scattering, the negative sign corresponds to p&scattering, 

where we have assumed 

pole contributions, i. e. 

the sign convention of Barger et al. 34 for the Regge 

( -iTop, 
p1: -3 l+e )B (t)(z)@P’(t)= -9 (ctgjo,,(t)-i)~p,($f(t) sinnap, P’ so 

(32) 

( -i7rcrW (t) 
w ’ - * 

l-e 
sin now(t) )Pw(t)($@)= -$(tgi aw(t)+ i)pW(t)(%rU”’ 

To be able to compute the Fourier-Bessel transforms of these expressions and 

obtain N$!, ,(b, s), a certain ghost killing mechanism has to be operative. In 

Section II we assumed for the exchange degenerate trajectory R that its residue 

contained a factor sinncr(t), which was called there maximal ghost killing 

mechanism. However, for a non-exchange degenerate trajectory such a factor 
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induces additional zeros in the amplitude in addition to those which are 

required for the ghost elimination. In the non-exchange degenerate case it 

is sufficient to assume that the residues in Eq. (32) contain for the positive 

signature PI-pole a factor sin L 2 o,,(t), and correspondingly for the negative 

signature w-pole a factor cos f o,(t). This situation could be called minimal 

ghost killing. We shall not discuss here further ghost eliminating mechanisms 

and their influence on the total cross sections in this model. We only remark 

that a definite mechanism has to be adopted for all the poles appearing for 

arbitrary negative t in Eq. (32) before the Fourier-Bessel transform can be 

computed and Eq. (31) be applied. A more detailed comparison with the experi- 

mental data on total cross sections using the theoretical ideas outlined above 

will be presented in a later publication. In this paper we want to study first 

the various theoretical possibilities contained in the described K-matrix 

formalism. 

Up to now we assumed m = 1 and considered the coefficient D measuring 

the diffraction dissociation contribution to elastic scattering to be small compared 

to C such that quadratic terms in D could be neglected. Let us now assume 

m = 2 in Eq. (19) and discuss the implications in this case. 

Although the constant D is still considered to be small the additional 

factor log -!Z 
sO 

appearing now in D@, s) will eventually force the D-contribution 

to dominate such that the Pomeranchuk contribution to n (1) (b, s) is, at very high 

energies, given by 

#+b s) = - 1 +;f$s, ; D@, s) = D P ’ f (33) 
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It is easy to show that the real as well as the imaginary part of the elastic 

forward scattering amplitude now behaves for large s like ?- log -% , and that 
so so 

the total cross section is given by 

D2 
u$,tS) M i TQ’lOg $ log 1 + (4~cr,s [ 1 )6 ; m = 2 . 

0 
(34) 

Considering finally arbitrary positive values of m bigger than 2 in 

Q. (19), changes the diverging asymptotic behavior (34) by an additional factor 

In detail one obtains the large s behavior: 

&s) - (m-2)7 log+ log log +. 
( ) 

for mz 3 
0 

(35) 

where y is a constant. It thus results from Eq. (35) that an arbitrary power of 

log s 
sO 

in Eq. (l9) is still in agreement with the Froissart limit for total cross 

sections. 

Having investigated the consequences of the possible values of m in 

Eq. (19), we do not pursue the possibility of logarithmically diverging total 

cross sections any further here. Instead we ask the more interesting question: 

Does the proposed K-matrix model provide an example for the behavior: 

Re f(l)(s, t = 0) - A log s 
so so 

(36) 

Im f(l)(s t = 0) N s , S’ 0 
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According to the usual arguments involved in the proof of the 

Pomeranchuk theorem the Eqs. (36) imply that although total cross sections 

become constant asymptotically they in fact approach different constant values 

for particle-particle and particle-antiparticle scattering, i. e. the Pomeranchuk 

theorem is violated. It would be illuminating to have a relativistic model for 

elastic scattering satisfying E&s. (36) explicitly without having to derive this 

property from a forward dispersion relation under the above stated assumption 

regarding the particle-particle and particle-antiparticle cross sections at 

infinity. In particular, after the total cross section measurements from 

Serpukhov have appeared it would be interesting to investigate relativistic 

theories in which the Eqs. (36) are true. Unfortunately the model proposed in 

this paper is not of this category. It is impossible to obtain the behavior (36) 

starting from an expression for np (l)(b, s) having the structure of the right- 

hand side of Eq. (22). At most one can obtain from Eq. (22) the behavior 

’ , Imf(l)(s, t = 0) - .!- for C@, s) as given by 
sO 

Eq. (16) and D@, s) as given by Eq. (20) with m = 3/2. 

V. THE CROSSOVER PHENOMENON 

Since the results on total cross sections from Serpukhov have ap- 

peared a number of theoretical models have been investigated “,“,“,1 which 

predict a logarithmic approach to asymptotic conditions similar to the behavior 

obtained in Eq. (28) above. Moreover, the question has been raised whether 

the Pomeranchuk theorem in fact holds or whether total cross sections approach 

different values for particle-particle and particle-antiparticle collisdons, or 

even grow logarithmically. Even if the latter two possibilities were rendered 
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unlikely by new experimental data as, for instance, precise determinations of 

the phases of elastic forward scattering amplitudes at high energies, one would 

still have to conclude - assuming now a Pomeranchuk theorem to hold - that 

asymptotic conditions are approached only at extremely high energies. Tn such 

a situation it would be interesting to see whether there are further measurable 

quantities related to the limiting values gtot(m). In the K-.matrix model pre- 

sented in this paper this is in principle true for the crossover point. We briefly 

recall that the corssover point is the momentum transfer value t = tc o of . . 

order - 0.2 to -0.3 GeVB2 where the differential cross sections for pp and pp, 

n+p and n-p, and K+p and K-p, intersect, respectively. 

For a long time this crossover phenomenon presented a difficulty in 

the framework of the Regge pole theory and could only be accounted for by the 

insertion of ad hoc zeros into the residue functions of certain lower lying tra- 

jectories. This prescription, however, was in disagreement with factorization. 

On the other hand, the crossover phenomenon can be understood in models 

which include absorptive corrections to Regge exchanges, avoiding at the same 

time the contradiction withthe factorization principle for Regge poles 
38 . 

We have seen in Section III that the K-matrix model produces besides 

a vacuum exchange contribution also an absorptive correction to the Regge pole 

exchanges. Moreover, the damping factor which results from the unitarization 

procedure leading to Eqs. (21) above is expressible in terms of the same 

quantities which govern the elastic scattering. We, therefore, ask the question: 

What kind of constraints result in this model from the crossover condition? 

In particular, can one obtain some connection between the constants C and D 

or - what amounts to the same thing - between atot and D/(47rcu’soC) 
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appearing in Eq. (21), (26), and (30). We first derive the crossover condition 

in this model. Then we turn to its numerical evaluation under a certain 

assumption regarding the ghost killing mechanism. To be specific we consider 

the case of elastic pp andpp collisions. 

The vanishing of the cross section difference (da/dt)pp- (da/dt)pp 

at the crossover point is usually attributed to the vanishing of the interference 

term between the (absorptive corrected) w- contribution and the Pomeranchuk 

contribution. The w-term is supposed to be the only exchange with C-number 

-1 present in pp and pb interactions. A possible p - contribution is usually 

neglected. The crossover condition, therefore, reads in our language 

o= [(~p~(~pF]t~tc~o~ = & (f; (“4.0.%%.0,) + fP(s~tc.,.,f:(s.t,.,.)) 

(37) 

where fp(s, t) and fJs, t) are given by 

fp(s, t) = 27rs bdb ic@, s) -D(b, s) J(blr-t) 
0 1-c C@,s)+ iD(b,s) 0 (38) 

and 

fJs, t) = 27rs f bdb N(l)(b s) 1-C@,s)-2iD@,s) (30) 
0 w ’ 

[l+C@,s) + iDhsl1 
2 Jo@ fi 

with C(b, s) and D(b, s) as defined in Eqs. (16) and (20) (the latter with m = 1). 

Considering again only linear terms in D one derives from Eqs. (37) - (39) 

the following general crossover condition for one participating Regge trajectory - 
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here the w-trajectory: 

0 = b~J=c$)(b,s)Jo@,,/~) . 

3 

bdb [Re Ni)(b, s)A(b, s)- Im Nt)(b, s)*B(b, s) 1 Jo(bJT) 1 (40) . 
bdb Re N$)@, 4 B(b, s) Jo(bl ,/c) 

I 

where 

A(b,s) = 4 
R s ,-3b2/& 

1 + Q(s) e-b2’2p I 3 

B@,s) = 
l_ Q(s) ewb212’ 

+ Q(s) ea2’2p 2 1 
-b2/2p 

Imq$)(b,s) = + 
1 + Q(S) e-b’2p 

(4lc) 

Req(l)(b,s)= - R(s) e -3b2/4; 

P 

I 

2 l 

+ Q(s) e 

-b2/2i; 

(414 

@lb) 

(414 

We have used here as abbreviations the quantities Q(S) defined in 

Eq. (27) (compare also Eq. (29)),and R(s) defined by 
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R(s) = D 
(4r(r’s0)310g; l 

0 

Furthermore, one has 

D/(4no?so) 
-f&= c = D’ . 

(42) 

(43) 

If D were exactly zero and the ghost killing mechanism for the w- 

(1) trajectory known such that NW (b, s) could be regarded as uniquely given, the 

Eq. (40) would allow a determination of ctot(~) from the experimental mea- 

surement of the crossover point. In practice, however, there are a number of 

difficulties. Firstly, the crossover points are not known accurately enough. 

For the pair pp, pfr the crossover point is, from the data of Foley et al. 40 

at plab = 11.8 GeV/c, found to be at t M - . 0 20 GeV2. The differential cross 

section curves for n+p and n-p at plab= 12.4 GeV/c 41 intersect in a broad 

-2 region around t = - 0.37 GeV . There seems to be no reasonably accurate 

determination of the crossover in high energy I? p-scattering. Secondly, the 

assumption of only one contributing Regge-trajectory in Eq. (40) might be mis- 

leading, in particular since we are studying a situation where the leading Regge 

pole contribution (the’ second integral in each term in Eq. (40)) is very small 

near the crossover point. It is, therefore, not necessarily safe to neglect 

other contributions, for example the p-pole 42 . A further uncertainty is intro- 

duced by the particular ghost eliminating mechanism obeyed by the trajectory 

(compare the discussion at the end of the last section). Despite these dif- 

ficulties we have numerically investigated Eq. (40) on a computer, primarily 

to get at least some approximate numerical information about the values for 
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D’ = D/4nC 43 
which are involved. Remember that our derivations above 

and in the preceeding sections were based on the assumption that D’ is small. 

Quadratic terms in D1 were neglected throughout. It would therefore be 

interesting to see what values of D’ are needed in this formalism to account 

for the crossover phenomenon. 

We do not consider the numerical results given below to be more 

than a qualitative estimate. Assuming the minimal ghost killing mechanism 

introduced in Section IV and taking ow (1) = 3 44 we derive from Eq. (40) for 

plab=ll.8 GeV/c and for various assumed values for tc o the possible values . . 
of atot and D1 for pp and pp collisions shown in Figure 4. 

We first note that the result is rather sensitive to the actual value 

of t C.O.’ The upper three curves in Figure 4 correspond to the value tc o = 

-0.2oGeV2ha - vmg an estimated statistical error At = 5 0.02 9. -* Ge 
C.O. For 

increasing positive values of D1 the corresponding values for CJ 
toP) are found 

to fall. The opposite is true for negative D’. Positive values for D1 seem, 

therefore, to be favored. However, this statement has to be checked by a more 

detailed analysis of the pp and pp differential cross section data in the framework 

of the K-matrix model. 

The value for u:: (m) obtained f rom the data of Ref. 31 are definitely 

too large. If at about plab = 100 GeV/c the contribution of the lower lying tra- 

jectories to the total pp and pp cross sections are supposed to be small and 

neglected, and if a total cross section of 35.7 mb - corresponding according 

to Barger et al. 34 to the Pomeranchuk limit in a pure Regge pole model - is 

identified with the Pomeranchuk contribution given by Kq. (30), one expects a 

value of 51 mb for u pp tot (m). (This value is considered to be an upper limit on 

f~p9.) h the P resent model, and with the additional assumptions made in 

numerically evaluating Eq. (40), a crossover value of about tc o = - . 037GeV2 . . 
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at plab = 11.8 GeV/c incident protons or antiprotons is needed to obtain such a 

value (compare Figure 4). A more definite statement about the crossover 

predicted in our model can evidently only be obtained from a detailed fit to 

the experimental data on pp and pp differential cross sections. We note in 

passing that in the Glauber-type of analysis of pp and p5 scattering carried 

out by Chiu and 2,45 Finkelstein the crossover obtained from a fit to the ex- 

perimental differential cross section data at this energy is found to be at t = 

- 0.37 Ge?. It would be interesting to have new and accurate experimental 

information on the crossover points. We finally remark that the K-matrix 

model predicts the crossover to be shifted to smaller values of I t I when the 

collision energy increases. 

VI. DISCUSSION 

Neglecting complications due to spin and isospin we started from the 

assumption that the inelastic states in the unitarity relations can effectively be 

presented by a set of quasi-two-particle states. A K-matrix formalism for 

high energy scattering was proposed using as a framework the impact parameter 

representation of scattering amplitudes. It was shown with the help of this 

unitarization procedure that the Pomeranchuk contributions to high energy 

elastic scattering and diffraction dissociation processes can be interpreted as 

being due to multiple Regge pole exchanges accompanied by the formation of a 

sequence of excited intermediate states of the colliding particles. In terms 

of j-plane properties this interpretation of the vacuum exchange contribution 

corresponds to a superposition of cuts in the angular momentum plane. 
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The consequences of the proposed model for Pomeranchuk exchange 

were investigated in some detail. The model predicts that elastic differential 

cross sections shrink with increasing energy at a rate corresponding approxi- 

mately to an effective Pomeranchuk pole having a slope oh M 0.5 GeV -2 in 

agreement with the recent Serpukhov measurements. If a Pomeranchuk theorem 

holds, the asymptotic limit of total cross sections are predicted to be approached 

in a logarithmic fashion from below. Finally, the crossover phenomenon was 

investigated, which is in this model due to the vanishing of a Regge pole contri- 

bution corrected for absorption and being odd under charge conjugation. The 

absorptive corrections to conventional Regge pole expressions predicted by the 

model are given in terms of quantities characterizing the elastic scattering in 

the asymptotic region. It was pointed out that the analysis of the crossover 

condition provides information about total cross sections at asymptotic energies. 

We conclude by noting that the proposed K-matrix model is not limited to small 

values of momentum transfers. However, for large values of t it probably 

becomes essential to take the spin of the external particles into account. 
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FIGURE CAPTIONS 

Figure 1 Double Regge exchange diagrams contributing to elastic 

scattering. 

Figure 2 Double Regge exchange diagrams contributing to diffraction 

dissociation processes. 

Figure 3 Triple Regge exchange diagrams contributing to elastic 

scattering. 

Figure 4 Dependence of atot on D’ for various assumed values of 

the crossover point in pp and pg scattering at plab= 11.8 GeV/c. 
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