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ABSTRACT 

The charged scalar theory of pi-mesons interacting with a fixed nucleon 

source is truncated as follows: r-mesons are permitted to exist only in a set of 

discrete states W,(k) such that k is of order Am in the state em(k); 12 is an 

arbitrary constant above 4 x 106. Also two mesons of the same charge cannot 

occupy the same state. The resulting Hamiltonian can be solved by a perturbation 

expansion in h-l provided there are only a finite number M of states @m. When 

M -00 the renormalized coupling constant and ground state energy diverge in 

perturbation theory (in the coupling constant). If the unrenormalized coupling 

constant is allowed to go to infinity as M --COO it is proven that the renormalized 

theory exists (without ghost states) for any value of the renormalized coupling 

constant. The proof uses the perturbation analysis in A -1 carried to all orders. 

This analysis leads to the definition of a transformation T which eliminates one 

meson degree of freedom from any given Hamiltonian, replacing it by an effective 

Hamiltonian with one less degree of freedom. The effective Hamiltonian gives 

exactly all energy levels of the original Hamiltonian except those with mesons in 

the removed degree of freedom. The renormalizability of the theory is proven 

using topological properties of T. In particular there is a sub-transformation TA 

with a nontrivial fixed point PC whose properties determine the principal features 

of the renormalized theory. The idea of the fixed point is a generalization of the 

Gell-Mann-Low eigenvalue condition for the bare coupling constant of quantum 

electrodynamics, 
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I. INTRODUCTION 

The problem of renormalization has been remarkably unimportant in the 

study of pure strong interactions (i. e., strong interactions without radiative or 

weak corrections). The ideas developed since 1954 - dispersion relations, 

Regge poles, current algebra, and pole dominance ‘L all can be formulated and 

applied without encountering any of the divergences that occur in unrenormalized 

perturbation theory. As a result one gets the impression that renormalization 

is no more than a technical modification which one makes on closed loop Feynman 

graphs when very accurate perturbation formulae are needed, as for the electron 

magnetic moment. This impression has encouraged the idea that Lagrangian 

models of current algebra, such as field algebra and the Quark model, can be 

analyzed for their equal time commutators as if renormalization were unnecessary. 1 

An entirely opposite picture results from exactly soluble models of field * 

theories with interaction. There are two known model theories which require 

wave function or charge renormalization, namely, the Lee model2 and the 

Thirring model. 3 It is well known that the renormalized Lee model has a ghost 

state. The Thirring model involves the Fermi interaction for a zero mass spinor 

field in one space and one time dimension. The model has a solution after re- 

normalization, but the solution has radically different behavior at short distances 

than one would expect from a canonical Lagrangian picture. The renormalized 

spinor field does not satisfy canonical commutation relations. 3 More generally, 

the renormalized theory is scale invariant, as one would have predicted from 

the Lagraugian (there are no dimensional parameters in the Thirring model, 

the only parameter being a dimensionless coupling constant). However the re- , 

normalized fields (but not the conserved currents) have different scaling properties 
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from those one predicts from the canonical commutation rules. The dimension 

of the spinor field (which determines its scaling properties) depends on the 

coupling constant and can vary from l/2 to 00 .4 

The only known relativistic theories where renor.malization does not affect 

the short distance behavior appreciably are the “superrenormalizable” theories . 

which may require mass renormalization but do not require infinite coupling 

constant or wave function tienormalization in perturbation theory. 5 In these 

theories the short distance behavior is close to the free field behavior. Un- 

fortunately there are no acceptable four-dimensional superrenormalizable 

theories. 

In a recent paper, it was proposed that there would be nontrivial renormali- 

zation effects in strong interactions. 6 It was postulated that these effects would 

have the same form as in the Thirring model, namely scale invariance would be 

valid at short distances but the dimensions of local fields would be different from 

any free field model (except for the currents of current algebra whose dimensions 

are fixed by the algebra). It was shown that renormalization effects could account 

for a universal AI = l/2 rule in weak interactions and could determine the con- 

vergence or divergence of some of the. Weinberg sum rules. 

The fact that the AI = l/2 rule might be explained by renormalization effects 

means that renormalization can be of great practical importance. One would like 

to understand renormalization better. The Lee model and the Thirring model 

fall far short of providing the depth of understanding required. The reason is 

that both models have very special features and the renormalization of these 

models may simply reflect these special features. The Lee model is special 

because of the decoupling of the N-6 channel from the many-particle channels. 

This decoupling is the simplification that makes solution of the Lee model 
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possible. The Thfrring model is speci& for many reasons, but in particular the 

electromagnetic current of the Thirring model satisfies a free field equation 

which is the starting point for solving the model. Also there is no coupling con- 

stant renormalization in the Thirring model. xf there had been coupling constant 

renormalization in the Thirring model it might have shown the same diseases as 

the Lee model which does involve coupling constant renormalization. 

The purpose of this p&er is to define and solve a new model of coupling 

constant renormaU.zation, The new model is a cousin of the Lee model but its 

renormalization is very different from that of the Lee model. The new model is 

a derivative of the charged scalar theory of pions coupled to a fixed nucleon source* 

The model Hamiltonian is obtained es,sentially by projecting the Hamiltonian of the 

charged scalar theory onto a specially constructed subspace of the original 

Hilbert space. The result of renormalizing the model is that the renormalized 

theory exists without ghosts, the renorma&ed coupling constant is arbitrary but 

the unrenormalized coupling constant is infinite. 

The model of this paper cannot be solved in closed form. To make it soluble 

by series expansions a large parameter A is introduced artificially into the model; 

-1 the model is then solved by an expansion in A . The way A is introduced is by 

restricting the pi mesons of the model to be in one of a discrete set of wave 

functions em(k), where the mean’momentum of em(k) is Am (in units of the pion 

mass). Thus instead of the pion energy being continuously variable from 1 to ~0, 

it is restricted to the discrete values 1, A, A2, etc. This means the Hamiltonian 

has some terms of order 1, some terms of order A, etc., so one can do pertur- 

bation theory when A is large, This idea was explained in an earlier paper7 

where a more complicated version of the model was proposed. 
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Because the model cannot be solved in closed form the renormalization 

analysis is much more complex than for either the Lee model or the Thirring 

model. The analysis is further complicated,because one cannot simply study 

the lowest order term in the A-l expansion. To prove the renormalizability 

of the theory one must show that the expansion in A-’ of the renormalized 

theory is finite to all orders and that the sum of the series converges. To prove 

this a rigorous analysis of the model is given using formal techniques of analysis 

in Hilbert space plus some topological methods. The formal analysis is possible 

because the model is specially constructed to involve only bounded operators. To 

ensure that no unbounded operators occur, the number of n mesons per state 

em is limited to one of each charge, and the total number of states $m is cut 

off at m=M. One investigates the limit for M--a, but for any finite M one has ’ 

bounded operators . 

The author recommends that the papers of Lee’ (on the Lee model) and 

Johnson’ (on the Thirring model) be read before attacking the present paper. 

They provide some background on exact solutions of renormalizable theories 

and are very much simpler to read. 

There are three interesting features in the model of this paper. The first 

is simply that a finite renormalized theory exists. Actually, all that is proved 

is that the renormalized energy levels exists. Because there are no continuum 

(momentum) states open to pions there is no scattering in the model; all energy 

levels are discrete and hence calculating the energy levels is the most important 

problem in the model. The theory is found to be free of ghosts. No matrix 

elements of operators other than the Hamiltonian are discussed. In particular 

the nucleon isospin operators are not examined, which means we cannot compute 

the renormalized coupling constant as conventionally defined. The reason these 



operators are not considered is that the analysis that would be required exceeds 
< 

the author’s patience. 

The second feafure of the model is that scale invariance is preserved in the 

renormalized theory for energies large compared to the pion mass. The un- 

renormalized Hamiltonian of the full charged scalar theory is scale invariant 

in the limit of zero pion mass. This invariance is preserved in the unrenormalized 

Hamiltonian at the model except that it is a discrete invariance: only scale trans- 

formations which take wave functions em(k) into wave functions em+f(k) occur 

in the model. The renormalized energy levels exhibit scale invariance when the 

energies are large, .but the scaling law is different from What one predicts from 

the unrenormalized Hamiltonian. To be precise the unrenormalized Hamiltonian 

HO goes into A- O when $J, - $m+l 1H , apart from terms of order 1, but the re- 

normalized Hamiltonian HR goes into A-‘/3 HR where p is a constant (about l/2). 

So the model of this paper supports the hypothesis that renormalization can 

preserve scale invariance at large energies but will change the scaling laws of 

operators. 

The third feature of the model, and probably the most important, is that in 

order to prove the renormalizability of the model it is necessary to define and 

study a topological transformation T acting on a space S of cutoff Hamiltonians. 

The space S contains the unrenormalized cutoff Hamiltonians for any cutoff M. 

However, it also contains cutoff Hamiltonians involving arbitrarily complicated 

interactions involving products of arbitrarily many meson creation and destruction 

operators. In other words the space S includes nonrenormalizable interactions 

of arbitrarily complicated structure. The transformation T takes a Hamiltonian 

with cutoff M into a Hamiltonian with cutoff M-l without changing the physics of 

these Hamiltonians. To be precise, the original Hamiltonian and the transformed 
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Hamiltonian have exactly the same energy levels except for those energy levels 

with mesons explicitly present in the state GM; such levels, are not present in 

the transformed Hamiltonian. The transformation defines how the coupling con- 

stants of all possible interactions must change as the cutoff M changes in order 

to keep the energy levels of the theory fixed. Having very many coupling constants 

all changing as the cutoff changes is analogous to having an infinite number of 

counter terms in a renormalization analysis in ordinary perturbation theory. 

One has an infinite number of counter terms when one tries to renormalize a non- 

renormalizable theory. This is customarily regarded as a disaster, for one 

presumes that for every infinite counter term there is an arbitrary finite counter 

term, leading to an infinite number of parameters. This disaster does not occur 

in the model. The reason is that strict bounds on the coupling constants will be 

included in the definition of S, and one cannot introduce extra free parameters 

without violating these bounds, What actually happens is that the possible re- 

normalizable theories of the model are described by effective cutoff Hamiltonians 

obtained by applying T an infinite number of times to the original unrenormalized 

uncutoff Hamiltonisn. This means that the renormalized Hamiltonians must lie 

in a subspace RS of S, where RS is the limit of the subspaces Tm(S) for m-a . 

The space RS is found to be a three-dimensional space for given cutoff M. Hence 

there are only three adjustable parameters in the renormalized Ramiltonian 

they are a scale factor, an additive constant, and the renormalized coupling con- 

stant (suitably defined). 

If one is interested only in the first two features of the model one can probably 

skim the hard parts (Section V and Appendix B). One would read these sectionsin 

detail only to check for mistakes. However to understand the transformation T 

one must study the whole paper in detail; it is hard to have a clear understanding 
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of the role of the transformation T without studying the spaces Tm(S); one must 

see how these spaces shrink with m to the limiting space RS, and one must 

understand in practice the relevance of these spaces to the renormalization 

problem. At present the only way to get the necessary practice is to work 

through the model of this paper. 

Gell-Mann and Low have given a general discussion of nonperturbative re- 

normalization theory, using quantum electrodynamics as an example. 8 The 

relation of their work to the type of model considered here is discussed in 

Section VII. The idea of a transformation T in which an infinite set of coupling 

constants are transformed as the cutoff M is reduced is a generalization of 

Gell-Mann and Lowps idea of a cutoff-dependent electromagnetic coupling e(A). 

In the author’s previous paper on model Hamiltonians, 7 a more complicated 

model was discussed, in which r mesons were allowed to have any momentum 

mtheintervals O<k<ko,A/2<k<A , A2/2< k<A2, etc., where k. was a 

constant. This meant the meson creation aud destruction operators were con- 

tinuum creation and destruction operators, which are hardly suitable for rigorous 

analyses. The A-l expansion was proposed but only carried out in lowest order. 

Even the lowest order calculation was complicated by the fact that the unperturbed 

Hamiltoniaus were themselves insoluble field theoretic Hamiltcniaus. One had 

to guess the qualitative structure of their solution. Furthermore as the cutoff 

M went to infinity the coupling constant iu the unperturbed Hamiltonian had tc 

become large resulting in closely spaced isobar states,’ which interfered with the 

perturbation calculation in A -1 . None of these difficulties are present in the 

model of this paper. The meson creation and destruction operators of this paper 

are defined to be discrete and bounded. The unperturbed Hamiltoniaus are finite 

dimensional and diagonalizable. in closed form (cf. Table I) e The energy level 
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spacing of the unperturbed Hamiltonian does not become small for large coupling - 

the isobars in the previous theory involved many mesons in a single quantum state 

and this is forbidden in the present model. This means the present model lacks 

much of the physics of the full charged scalar theory; but it still illustrates the 

renormalization problem, which is its only purpose. 

This paper divides into three stages. The first stage consists of Sections II, 

III, and IV. In Section It, the Hamiltonian of the model is defined. In Section III 

the perturbation expansion in -1 A is formulated for the cutoff Hamiltonian and 

some properties of the expansion are worked out in low orders, In Section IV a 

perturbation formula is defined which allows the -1 A expansion to be defined to 

all orders in a convenient form. The second stage consists of. Sections V and 

VI. In Section V the transformation T is defined. Its principal properties are 

stated (Theorems 1 - 4, the proofs of these theorems are in Appendix B) D Then 

the topological analysis required to prove renormalizability is carried through. 

Finally, the renormalized Hamiltonian is defined for any given renormalized 

coupling constant. In Section VI scale transformations are defined, and the 

scaling properties of the renormalized energy levels are computed. The third 

stage consists of Section VII, where it’is shown that the transformation T is more 

than a technical device to prove the existence of the renormalized theory. 

Specifically it is shown that the renormalized theories are not the unique solution 

of any uncutoff Hamiltonian; instead the transformation T is involved in the defi- 

nition of the renormalized theory, and this definition is most simply stated in 

terms of one of the fixed points of the transformation. We also relate the re- 

normalization program of this paper to conventional renormalization theory and 

especially tc the Gell-Mann-Low analysis. 
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II. THE MODEL HAMILTONIAN 

The unrenormalized Hamiltonian of the model is as follows: 

H = 2 
m=O 

Am (akam + bmbm 
I 

- l)+go (a,+b;)T++go (a;+b,) T-1 (n.1) ,* 

where go and .A are constants, T 
+ and T- are the isospin raising and lowering 

operators for the nucleon, and the operators am and bm are ?r+ and ?r- creation 

operators respectively for the state $;,. The subtraction -1 is included for 

irrelevant reasons. The constant A must be large ( > 4x lo6 in the rigorous 

analysis). To prevent two or+ or two n” from occupying the same state, the 

operators am, a:, bm , and b: are assigned the commutation relations of a 

set of Pauli spin operators: 

2 = 0 

[a,, bm] = km, b:] = [am, an] = 0 (etc.) (m # n) 

. W.2) 

(II* 3) 

Gw 
where [ ] is a commutator, is an anticommutator. The Hilbert space on which 

H acts is a product space. The components of the product are, first, the two- 

dimensional nucleon space with the bare proton state 1 p> and bare neutron state 

In> as a basis. Secondly, for each wave function qGrn there is a component space 

of four dimensions. A basis for each such component consists of a vacuum state, 

a n’ state, a T- state, and a n+n- state, each meson being in the state em. 

The model Hamiltonian can be arrived at starting from the full Hamiltonian 

of the charged scalar fixed source theory’ if one replaces the fixed momentum 
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creation operators a’ and $ of the mesons by 
!z .lrr 

After these substitutions are inserted in the full Hamiltonian, one must drop any 

off diagonal products such’as aiam (n# m) and replace integrals such as 

(where “h is (1 +j$)1’2) by order of mag- 
I, 

nitude estimates, assuming the functions Jim(k) are normalized to one and vanish 

unless $-Am. There is no need for the model Hamiltonian to have any con- 

nection with the fixed source theory, because the model will be studied on its own 

merits. The connection with the fixed source theory is used only to provide a 

language to describe the operators am, etc. Likewise, the wave functions w,(kJ 

play no role in the analysis of the model; their only purpose is to give an intuitive 

meaning to the operators am, etc. 

One can cut off the Hamiltonian by restricting the sum over m to a finite 

range, say 0 S m d M. Then the Hamiltonian becomes a finite bounded matrix; 

in this case it is diagonalizable without renormalization. The problem of re- 

normalization arises when one tries to let M-m . Then one has au infinite 

number of degrees of freedom, which is well known to be a source of difficulties. 
10 

th 
To compound the situation the scale of energy associated with the m degree of 

freedom increases as Am, so that the most important degrees of freedom are 

those with m NM instead of small m. Clearly one has difficulties in the limit 

M-a regardless of what happens in perturbation theory; but it is still worth 

showing that in perturbation theory one has a problem specifically with coupling 

constant renormalization. Let 1 P> and 1 N> be the normalized physical proton and 
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neutron states, i.e., the ground states of H. The renormalized coupling constant 

it3 

gR=go<++IN> (II.7) ,1 

using the definition analogous to that used in the full charged scalar theory. The 

matrix element <P I T* 1 N) can be computed to second order in go by straight- 

forward perturbation theory. If the cutoff M is finite then 

gR=gf) -g; W+l) + O(g;) + tn. 8) 
The cutoff momentum kM is of order AM so M is proportional to log kM; hence 

gR is logarithmically divergent as in the full chsrged scalar theory. The diver- 

gence for M -00 is directly due ‘to there being an infinite number of degrees of 

freedom in the no-cutoff limit. 

The structure of the energy level spectrum of the cutoff Hamiltonian can be 

seen by a qualitative analysis. It is convenient to call a meson in a state em(k) 

an “m-meson”. Let the cutoff Hamiltonian be denoted HM. It has the structure 

HM=CMAmom 
m=O 

where Om is independent of A snd involves only m-meson operators and the 

nucleon operators 7:’ and r-. 
.’ 

The smallest part of H 
M is Oo* This is the only 

part of HM involving O-mesons, and for A large O. is a perturbation on the rest 

of the Hamiltonian. The remainder of the Hamiltonian has energies of order A 

or larger so should have energy level spacings of order A ; each level is four-fold 

degenerate (at least) because each level is independent of the presence or absence 

of O-mesons. Adding O. splits these levels, with the splitting being of order 1. 

Next one can discuss the effect of the term A OI; clearly this should lead to .a 

gross spacing of order A, neglecting fine structure due to Oo. But AO, can 
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itself be regarded as a perturbation; there exist (neglecting AO, and Oo) a 

spacing of order A2, then a spacing of order A3, etc. 

The problem of renormalization is the problem of computing the ground state 

and those excited states which have a finite energy above the ground state in the 

limit M-)00 o This means calculating states with an energy of order Am above 

the ground state, for any m, but with m held fixed when M- 00 . In practice one 

calculates only energy differences between the ground state and various excited 

states. The ground state energy itself diverges for M-L==. An energy difference 

of order Am is much smaller than the basic energy scale A M , when M is large, 

so a very precise calculation is required to give these energy differences accur- 

ately. This fact plus the fact that the model cannot be solved exactly, and must 

be solved as a perturbation expansion in -1 A ,is the reason this paper is so long. 

The model Hamiltonian is invariant to three symmetries: charge conservation, 

charge conjugation, and time reversal. The charge Q is 

Q=xm(amam-bmb,)+ 1/3(~~+1) 

where 112 7z is the z component of the nucleon isospin; Q commutes with H. 

The charge conjugation transformation interchanges or+ with ?r-, p with n, Let 

UC be the unitary transformation giving these interchanges; then 

Uz amUc = bm 

IID bmUc = a m 

u; T+uc = T- 
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(It. 12) 

(II. 13) 

(II. 14) 
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The time reversal transformation is an anti-linear unitary transformation UT 

with the properties 

U; amUT = a: 

U; bmUT = b; 

u; T+uT = (T+)* 

U; HUT = H* 

(II. 15) 

(II. 17) 

(II. 18) 



HI. PRELIMINARY ANALYSIS OF THE MODEL HAMILTONIAN 

In order to solve the renormalization problem, one must first be able to 

solve the cutoff Hamiltonian for arbitrarily large cutoff M. In this part, we give 

a preliminary discussion of the solution of the cutoff Hamiltonian for large M. 
11 

The constant A is also large, but held fixed and M can be arbitrarily large even 

compared to A. The cuto’ff Hamiltonian naturally separates into an unperturbed 

Hamiltonian and a perturbation: 

HM =HOM+HIM 

where 

and 

Orn = akam + bmbm - l+gO(a,+bm)~++gO(++b,)T~~ (HI. 4) 

m 1) 

(J-=3 

m* 3) 

The operator OM is easily diagonalized. One can ignore the mesons in states 

other than $M, then OM acts on the eight-dimensional Hilbert space involving 

the nucleon and mesons in the state eM. Due to charge conservation the matrix 

for OM separates into submatrices of size 3x 3 at most. The eigenstates of OM 

are given in Table I [the variables (m,g) of Table I must be replaced by (1, gd]. 

It has two degenerate ground states: a state IP) of charge 1 and a state IN) of . 

charge 0. The ground state becomes highly degenerate when mesons in other 

IP> and states $m are considered, since one can add such mesons to the states 

IN> without changing the eigenvalue of OM. 
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The Hamiltonian HOM has an energy level spacing of order AM (go AM if 

go is large) while HIM is,at most of order AM-l (go AM-’ for go large). Hence 

one is allowed to treat HI M as a perturbation when A is large, for any value of 

go. However one must carry the perturbation expansion out to order M at least 

because one ultimately is interested in energy level spacings which may be of 

order 1. In the lowest order of degenerate perturbation theory, the ground state 

of H and excited states at energy A M-l or less above the ground state are given 

by an effective Hamiltonian . 

H eff =EOM+PqMP 

where ROM is the ground state energy of HOM and P is a projection operator on 

the ground states of HOM. Heff acts on a product spsce whose components are 

the two-dimensional space with basis IP) and IN > and the meson space for the . 

states em, 0 c: m s M - 1. One can introduce isospin raising and lowering 

operators 7fR for IP> and IN> ; then Heff involves a set of operators 

1. 
[ 

f 
T R’ am 

(OrmrM-1), etc. which are equivalent to the operators of HMBl.’ The only 

way P affects the operator HIM is through the nucleon operators T+ and’ T -; the 

meson operators in HIM are unaffected, To express Heff in terms of TR one 

must express PT”P and PT-P in terms of 7 R and the meson operators. The , 

operator PT+P affects only the states I P> and IN) not the meson states, and be- 

cause it increases the charge by one unit, PT+P must be proportional to T; . 

The proportionality constant Z is found from Table I to be (using the constants 

of Table I) 

Z =<P~T+IN> =(m’+g 3 (m2+2g2)-l 
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With m=l and g-go this is. 

zt&-J~ = (1-b I$) (1 -I- 2!$)-’ l (In* 7) 

Likewise PT P is Z (go) TV. Hence PHIM P has the same form as HM itself 

except that M is replaced by M-l and gOTf is replaced (in Eq. HI. 4) by gMm17H, 

with 

&M-l = htg,,) 

h(g) = g(l+ g2) (l+ 2g2)-l . 

(III. 8) 

tm. 9) 

When degenerate perturbation theory is carried to higher orders, one still 

computes an effective Hamiltonian Heff which acts on the space of ground states 

of HOMe The effective Hamiltonian is no longer just PHIMP but contains higher 

order terms in HIM, for example, the second order term is . 
-1 

PHICna(l-P)(Eo~ - HOM) 3Mp* The term of nth order involves products of n 

interaction Hamiltonians and n-l energy denominators. It is useful to discuss in 

a schematic way the types of terms generated in the higher order calculation. 

Let xm stand for an operator of the form anam c b&b, - 1, am + bm, ‘or 

aL+b me Let T stand for any nucleon. operator, TR for any Operator acting on 

lP> and IN > . Let xi stand for operators made of any product of operators of 

typex m. One can easily make’s table of the type of operators that can occur in 

H eff for a given order in A , remembering that Heff involves HIM times products 

Of tEOM 
-1 

- Hod HIM, the whole product being projected with P. The results . 

are shown in Table II. 

The formulae for the higher order terms of the degenerate perturbation cal- 

culation are too complicated to quote explicitly, Fortunately they are not needed; 

it is sufficient to have upper bounds for each type of term and these can be 
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obtained. Table II gives the order in A of each term and all that remains is 

to obtain numerical upper bounds. This will be done in Section V. 

The Hamiltonian Heff has a basic energy scale -AM-l which is still much 

larger (for large M) than the energy scales of interest. Heff can again be analyzed 

by perturbation theory. One writes 

H eff = HOeff + HIeff (III. 10) 

The unperturbed Hamiltonian is 

HOeff = 
M-l 

A ‘M-1 (gM-1) (In. 11) 

where OMml (gMml) is the same as OMel exceptthat go is replaced by gMWl and T* 

by T;. 

.-. ._. 
All other terms in Heff form the perturbation HIen, .which is at most of order AMB2. 

The eigenstates of 0 M-l (gMWl) can be determined from Table I; like OM it has two 
.._. 

degenerate ground states IP’ > and IN’ > if mesons in states other than, $,-, 

sre ignored. One can use degenerate perturbation theory starting from the states 

IP’ > and IN’ > to determine the eigenstates of Heff of energy AMB2 or less above 

the ground state. Again one must calculate the perturbation analysis to many 

orders, in order to keep terms with energies of order 1 or larger. The result 

is a second effective Hamiltonian HLff involving meson operators a m etc Q I for 

m 5 M - 2 and isospin operators 7R *’ connecting the states 1.P’ > and IN’ > . 

One can determine the type of operators that occur in HLff for each order in 

A. The basic operators are operators acting on lP’> and (N’ > , denoted T’~, 

and meson operators of type xm for m s M - 2. The results are shown in Table 

’ III. In constructing Table HI, one uses the fact that operators of the form 

(xMMl) rR and (xMelf TR in HIeff are reduced to the form TX in HLff. Further- 

more, the symmetries of the theory ensure that an operator of the form 7’ 
R in 

H eff not multiplied by a meson operator can only be a constant. The important 
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result illustrated by Table III is the following. To compute Hbff, one must 

compute many orders in a perturbation treatment of HIeff. HIeff itself divides 

into two parts. The simple part of H .Ieff 
are the terms coming from PHIMP; 

these terms have the structure tim2 TV, xMW3 TV, etc., and depend only on the 

single constant gMml. The complex part of ~~~~ comes from the higher order 

terms in HIM , and includes all terms of type (Q-~)~ TV, (xMm2) (xMm3) 7R9 

etc. In computing H&, even the simple part of HIeff generates all types of 

terms in H&, through terms of order (HIef2, (HIeff)3, etc. The important 

fact is for a given term in HLff, say (k-2)2 TH, its coefficient comes predom- 

inately from the simple part of HIeff, an d hence the coefficient is primarily 

determined by the constant gMml. HIeff also has an (x~-~)~ TV term but this 

affects the coefficient of (x~-~)~ ok only in order A My4 whereas the dominant 

part of the coefficient is of order A M-3 . Because of this result one can give 

bounds on the complex terms like (x~-~)~ TH in Hkff which depend on gMWl Only 

and do not involve the size of the corresponding term in Heff. These bounds are 

of crucial importance for the rigorous analysis; they ensure that the complex 

interactions cannot increase without bound as one repeats the perturbation analysis 

many times.‘ Furthermore, it means that Table III has the same form it would 

have had if one had started with the cutoff M-l, and obtained H& by solving 

HM 1e The only exception is the constant in Table III. of order AMe 

One can repeat the perturbation analysis many times generating a sequence 

of Hamiltonians which will be denoted HN(M). The Hamiltonian HMW1(M) is 

H eff’ HM-2tM) is H& . In general HN(M) is the effective Hamiltonian after 

M-N perturbation calculations; HN(M) involves the meson operators am, etc. 
jr for m ~5 N, and isospin operators analogous to ~~ or T:' . The operator HN(M) 

gives the energy levels of H with energies of order AN or less above the ground 
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state. For each operator HN(M) one can give a classification table analogous to 

Tables II and III; the result is Table II with M replaced by N, except for constant 

terms. The unperturbed part of HN(M) would appear to be just ANON where 

f$ = h tgN+$ (HI. 12) 

This is what one gets if the unperturbed Hamiltonian is defined as the term of 

order AN in HN(M) . However, to ensure that the perturbation is small even 

when M-N is much larger than A, the unperturbed part of HN(M) will be defined 

to include other terms of the form ( N a + b+ T+ N) , or (aN + bN)T-, regardless of 

their order in A. The unperturbed Hamiltonian’ still has the form ANON ‘gN), 

but gN differs from h(gN+l) -in order A”. Since one has to compute a whole 
i 

.sequence of constants gN (N = M - 1, M - 2, etc.) the s&all differences between 

gN and h (gN+$ for each N csn build up to a macroscopic effect when M-N is 

large. 

To compute an eigenstate of energy Am above the ground state of HM, one 

must take the effective Hamiltonian Hm(M) and solve for states corresponding to 

excited states of the unperturbed part of Hm(M). One could set up a perturbation 

method for computing these states. It will not be necessary for the purposes of 

this paper to discuss these states in d&ail, so the perturbation method will not 

be developed here. 
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IV. A PERTURBATION FORMULA 

There are various standard formulae for the effective Hamiltonian that re- 

sults when a perturbation HI is treated to all orders. They all have drawbacks, 

so a suitable formula will be derived here. The formula obtained below has two 

properties: The effective Hamiltonian is hermitian, and involves only unperturbed 

energies in energy denominators. The second property is useful because the un- 

perturbed energies are known explicitly. The first property is obviously useful, 

and is not true of many standard formulae. 

Let H = Ho + HI and let P be the projection operator on the ground states of 

Ho. Let I$> be any eigenstate of H with an energy E close to the ground state 

energy E. of Ho. It is convenient to have an operator R which’gives the part-of 

I$> outside the space pro jetted by P in terms of the part of I $> inside the space. 

That is 

(1-P)t$> = RPI$> (IV. 1) 

Such an operator can be defined as follows. The eigenvalue equation has two parts : 

Ejl-P)($> = (1-P) H(i-P)l$> + (1-P) HIPI+> (IV. 2) 

EPI$> = PHI (l-P]+> + PHPI@ (IV. 3) 

If an operator R exists satisfying Eq. (IV. 1) one can multiply the second equation 

(Eq. (IV. 3)) by R and subtract from the first, giving 

0 = (1-P) HR + (1-P) HI - RPHIR - RPH 
I 

P I $‘> . (IV.4) 

Equation (IV. 4) will certainly be satisfied if we demand that 

(l-P)HR + (l-P)HIP - RPHIR - RPHP = 0 
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This equation can be cast in a form suitable for iteration in HI, Prom the 

original definition of R, it should take states within the subspace projected by 

P into states orthogonal to this subspace; we can also require that R gives zero 

acting on states outside the subspace. This means that 

R=RP 

R = (1-P) R 

(IV. 6) 

(IV. 7) 

Assuming this, and using the fact that PHOP = EOP, one can rewrite Eq. (IV. 5) 

as 

or 

(EO-HO)R = (1-P) RIP + (1-P) HIR - RHIP - RHIR 

-1 R = (Eo-Ho) (l-P-R) HI(PtR) . 

(IV. 8) 

w 9) 

This equation can be solved iteratively to give R as a power series in HI. It is 

easily seen that the expansion satisfies the assumptions of Eqs. (IV. 6) and (IV. 7). 

The argument so far does not prove that any operator R satisfying Eq, (IV. 9) 

will also satisfy Eq. (IV. l), but this will be established later if HI is sufficiently 

small. 

One cau now write Eq. (IV. 3) as 

EPi+> ={PH~P + PH~P+ PHIR (IV. 10) 

One could therefore define Heti to be Ho + PHIP + PHIR except that PHIR is not 

hermitian. The reason for this is that although two eigenstates 1 JI,> and 

I JI,> with distinct eigenvalues are orthogonal, the corresponding projected states 

P I $,> and P’I.e2> will probably not be orthogonal, and therefore cannot be 
I 

distinct eigenstates of a hermitian operator. 
.’ 

To remedy the situation, one notes 

that 

<$, I JI,> = +l$IP I J;> + <$~R+R I Q2> (IV. 11) * 
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This suggests replacing the projected states P I$,> and P I$,> by the states 

(l+ R+R)1’2 P 1 $l> and (l+ R’R)l’2 P 1 Q, > , which are still states in the sub- 

space projected by P but have the same scalar product as I$,> and I$,>. The 

operator (1 + R + l/2 R) is well defined as a power series in R+R when HI is small. 

To obtain Heff, write the eigenvalue equation as 

(E-H) (P+R) PI+> = 0 

and multiply by (P+R+): 

W--R+) (P+R) Pt$ > = (P+R+) H(P+R) PI+> 

Now 

(P+R+) (P+R) = P+R+R = (l+R+R) P 

using Eqs. (IV. 6) and (IV. 7). Hence, multiplying Eq. (IV. 13) by (l+R+R) -l/2 

gives . 

E’qb> =Heff I+> 

where 

I$> + =(1+-R R) 1’2 PI+> 

H eff = (1 + R+Rj l/2 (p-I-R+) H(P+R) (1+R+Rj112 

The formula for Heff is evidently hermitian. 

The above argument is not rigorous, so it must now be proven that the 

eigenvalues of Heff are the eigenvalues of H near E , and that eigenstates IQ) 0 

Of Heff become eigenstates of I J/> of H through the formula 

I+>= (P+R) (1+R+Rj1’2 I$> 

Assume that R is defined by Eq. (IV. 9) solved by iteration assuming HI is 

small. It is shown in Appendix A that the iteration converges if HI is sufficiently 
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small. The solution satisfies Eqs. (IV. 6) and (IV. 7). From these and Eq. (IV. 9) 

one obtains 

(l-P-R) H(P+R) = 0 

which is essentially Eq. (IV. 5). Also 

(IV. 19) 

This is because 

(l-P-R) (P+R) = 0 (IV. 20) 

(l-P-R) (P+R) = (l-P)(l-R)(l+R)P = (l-P)R2P (IV. 21) 

and 

R2=RP(1-P)R=O w* 22) 

Let I$> be an eigenstate of Heff in the subspace projected by P, and let E be 

its eigenvalue . Define I$> by Eq. (IV. 18). 

One can write 

(1+R+R)l’2 (E-Heff) PI#> =O (1x23) . 

Using Eqs. (IV. 17), (IV. 18) and (IV. 14), Eq. (IV. 23) may be rewritten 

(P+R+)(E-H)i$> = 0 (IV. 24) 

This equation cannot be used to infer that (E -II) 1 JI) = 0 because P-k RS p&je&s 

onto a subspace and does not have an inverse. However, from Eqs. (IV. 19) and 

(IV. 20) one can obtain 

(l-P-R)(E-H)I$> = (1-P-R)(E-H)(P+R)[(l+R+Rj1’2,,$>) = 0 (IV. 25) 

Adding Eqs. (IV.24) and (IV.25) gives 

(l+R+-R) (E-H) I$> = 0 
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It is shown in Appendix A that (1 -t R’ -R) has an inverse (for sufficiently small 

HI) so this equation does imply that I JI > is an eigenstate of H with eigenvalue E . 

The Hamiltonian Heff has matrix elements equal to zero except within the sub- 

space projected by P. Within this subspace Heff has d orthogonal eigenstates, 

where d is the dimension of the subspace. These eigenstates define (through 

Eq. (IV. 18)) d orthogonal eigenstates of H (orthogonality is easily verified). The 

energies of these eigenstates are close to E. because Heff is approximately 

PHP when HI is small so that R is small. 

An alternative form of Heff is obtained, as follows. Write 

Using (HO-EO)P = 0 and Eq. (IV. 9), one can rewrite this as 

H + eff = EOP+(l+R R) -li2 (P+R+) {HI(P+R) - (I-P-R) HI(P+R) 

H + eff = EOP + (l+R R) -112 (p+R+) (HI+HO-EO) (PI-R) (l+R+R 

Using Eq. (IV. 14)) this simplifies to 

H + l/2 eff = EOP +P(l+R R) 
-I/2 HI (P + R) (1 + R+R) 

,jm (IV. 27) 

(I+ R+R)-1’2 

(IV. 28) 

(IV* 29) 

This formula is not manifestly hermitian, but Heff is still hermitian since it is 

still defined by Eq. (IV. 17). 
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V. EXACT PERTURBATION ANALYSIS OF THE MODEL 

The outline of a method of solving the cutoff model Hamiltonian HM has been 

given in Section III. One uses the definition of Heff given in Section IV in each 

degenerate perturbation calculation. The result is that starting from HM, for 

any M, one defines a sequence of effective Hamiltonians denoted HN(M) involving 

meson operators a , a+ b b’ for 0 5 m <, N and isospin operators which m m’ m’ m 

will be denoted 7f regardless of what states they act on (ip>, In>, or IP>, IN>, 

or IP’ >, IN’), etc.). The effective Hamiltonians involve very complicated 

interactions, not just the Om terms of the original model. From the analysis 

of Section HI, one can expect to get upper bounds on these terms such that a 

ANON term is the dominant term in HN(M) provided an appropriate coupling 

constant replaces go in ON. The Hamiltonians HN(M) give the energies of the 

ground state of HM and the excited states of HM in which only the first N degrees 

of freedom are excited. If the energy levels are counted from the lowest level 

up, the ground state being number one, then HN(M) describes the first 2 2N+3 

levels of HMO 

The limit of no cutoff, that is the M -00 limit, can be studied by studying 

the limits of HN(M) for fixed N, as M-m o This means one is studying a fixed 

number of energy levels as M increases. It will be proven in this section that 

the limit of HN(M) for M - 00 exists provided one makes the renormalizations 

one expects from ordinary perturbation theory. This means that before letting 

M -m one must first subtract a constant EM from HN(M) and allow the bare 

coupling constant goM to vary with M. The variation will be such that goM-a 

as M-a, i.e., the interaction term in HM swamps the free meson energy in 

the limit M -CC. The proof requires that A be larger than 4 x 106* The limit 
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may exist for smaller A but in this case the upper bounds used in the proof no 

longer apply. 

The Hamiltonians of this paper involve only bounded operators: the operators 
+ 

am’ am, 7+, T-, etc. All have operator bounds of order 1. Anyone with ex- 

perience in rigorous quantum mechanics knows the joys of having only bounded 

operators. This ensures that terms that look small by a power of A will indeed 

be small if A is large enough; for finite M the perturbation expansions in A -1 

will be easily proven to converge and one can concentrate on the problems of the 

M-W limit. 

The analysis of the limit for M - cc is still very complex ; it will be pre- 

sented here in a formal and not well-motivated manner, Before presenting the 

procession of theorems and definitions, the basic problem involved will be 

sketched briefly. The essential problem is to have a bound on the difference 

11 HN(M, g()M) - EM - HN(L, goL) + ELII where 11 11 is the ordinary operator 

bound, and the dependence of HN(MJ on goM has been noted explicitly. One 

must be able to show that this bound goes to zero as M and L go to CO , provided 

the sequences g [ OM}andkM} have been chosen appropriately. The crucial step 

in establishing such a bound will be to show that the difference HN(M) - HN(L) - E 

is arbitrarily small when M and L are large provided E is properly chosen and 

provided the terms of order ANOh which dominate HN(M) and HN(L) have identi- 

cal effective coupling constants (see Theorem 10). This condition will force one 

to have different bare coupling constants; goM # goL. As a preliminary to 

proving this theorem it will be proved (Theorem 1) that HN(M) is dominated by 

a term of the structure ANON with an appropriate effective coupling constant in 

ON. This proof is necessary because otherwise one might worry that terms nomi- 

nally of order AN-l or less would be multiplied by powers of M, which would 

dominate the AN term when M >>,4 . 
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In order to clarify the calculation of bounds some topological language will 

be used. A space S of Hamiltonians will be defined which includes the effective 

Hamiltonians HN(M) as special cases. The perturbation analysis which defines 

HNW1(M) given HN(M) defines a transformation T on the space S. The space S 

will be defined so that T(S) is contained in S. A metric will be defined on S, and 

convergence questions discussed in terms of this metric. The Hamiltonians 

HN(M), considered for all possible values of go, define “curves” in S. 

The exact and rigorous analysis of the renormalization problem begins here. 

The first step is to define the space S of Hamiltonians. It is convenient to adopt 

a specific way of representing the Hamiltonians that will be included in S. Let 

H be any Hamiltonian involving the meson degrees of freedom O-N plus nucleon 

operators, for example HN(M) for some M. It will be convenient to renumber 

the meson operators, making the switches ao, bo- aN, bN, aI, bl- aN-I, bNWl, 

etc. In the new numbering am creates a meson in the state $,-,. This is to 

be true for all N, so the state associated with a; is different for different N. It 

is also convenient to separate an additive and a multiplicative factor from H, 

writing 

H=JX+df 

where J and E are constants. A normalization condition will be imposed on k%?, 

determining J, but the separation of & from JZ will be left indeterminate. 

(The transformation T will be defined to determine J, %’ and E separately.) 

One now lets $6 have the following structure: 

X= mVol + 42 gVo2 T+ + 42 gVo3 T- + g: &*akml + F: Ck 
= 
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where zk is a vector (Vkl, Vk2) Vk3) and 

ykz$kzm = 

T ml = Amrn (a: am + bL.brn -1) 

T m2 = (l/(2) A-” (am + bk) 

T m3 = (l/42) ;lsrn (am + bm) 

tv* 3) 

and %l’ qt2’ Ak3’ and Ck are operators which depend only on 7 f and the meson 

operators numbered from 0 to k. The vector notation bk, &, etc. is used purely 

for convenience. The constants m and g will be required to satisfy a normalization 

condition: 

m2+2g2=l w* 7) 

To ensure this normalization condition, m and g will be represented as 

m = cos 6 w 8) 

g = (l/Jz) sin 6 w. 9) 

The set of parameters J, 8, N, and 0, and the operators hk and Ck will be 

called the “decomposition” of H. The representation is highly redundant; for 

example, CN is by itself totally arbitrary. The reason for using this redundant 

representation is the following: Otie can see from Table II that the operators : 

ak, bk for large k (new numbering) appear in any effective Hamiltonian HN(M) 

predominantly in terms such as Xl l A0 or E2 l $. Terms which must go into 

Ck (the < terms of Table II) have much smaller coefficients. Hence by making 

the separation one can put stringent upper bounds on the operators Ck. 
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The space S will be defined in two steps, the first step being to define a 

subsidiary space SA. 

Definition. A point PA E SA consists of an angle 6 and an infinite set of 

/operators bk and Ck (0 5 k .< a). The angle 6 is restricted to the range 

0 5 8 5 n/2. The operators hk and Ck can depend. only on the nucleon isospin 

operators T & 
and the meson operators a a+ b m’ m’ m’ andbmforOsm_<k. 

The dependence on these operators is arbitrary except as follows. The operators 

&k and Ck must satisfy the following operator bounds: 
, 

llAklll I 200 mg2 Amkml (V. 10) 

IIAk211 I 200 72 g3 A-k-! (V. 11) 

IIAk311 S 200 42 g3 fk-l 

Ilc, I\ I 200 gZ-A-2k-1 
(V. 12) 

(V. 13) 

where m = cos 8, g = (l/42) sin 8, Secondly, the operators hk and Ck must 

satisfy symmetry requirements : AkI and Ck must carry charge 0 while Ak2 

creates one unit of charge and Ak3 destroys a unit of charge. Under charge 

conjugation A kl -+ %l, Al2 ++ A13, and Ck --) Ck. Under time reversal &A-t g 

andc +C*. k k A1so Akl and Ck must be hermitian, while A 
k3 = Ai2. These 

requirements ensure that Ye(defined by Eq. (V. 2)) is hermitian and invariant 

to the symmetries. The parameter 8 and the operators Ak and Ck will be called 

the decomposition of PA. 

The powers of A in these bounds are what one would expect from Table II; 

the coefficients are hindsight bounds. It is convenient for the following analysis 

to insist that an infinite set of & and Ck be specified even if a particular 

Hamiltonian involves only a finite subset of them. The superfluous bk and Ck 

can be chosen arbitrarily subject to the restrictions of the definition of SA. 
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The space S is defined as follows: 

Definition. A point P E S consists of three constants J, B , and N, and a point 

PA E SA. The four objects J, E , N, and PA will be called the decomposition 

of P. N must be an integer, J must be positive, but &’ is arbitrary; There are 

no upper bounds on J, IS I , or N. 

Next the transformation T acting on S will be defined. Many details of the 

definition are handled in Appendix B, only an outline is given here. Any 

Hamiltonian H in S has a dominant term of the form 

HO g(ao+bo T +g ao+bo +y (+ )Tj 

The remaining terms in H form a perturbation HI: 

HI =H-HO 

(V.14) 

(V. 15) 

Fromthe definitions (V. 1) and (V. 2) and the bounds (V. 10) - (V. 13), HI is of order 

J A-1 or less and therefore can be treated as a perturbation relative to Ho. In 

particular, one can use the formulae of Section IV to define a new Hamiltonian 

H eff whose eigenvalues are the eigenvalues of H near the ground state energy 

of Ho. 

Suppose H has a decomposition (J; 8, N, PA) (with PA in SA). The 

Hamiltonian Heff can also be decomposed in the form (Jr, 8”, N’, ,PA) with PA 
, 

in SA, that is Heff can be written in the form defined in Eqs. (V. 1) - (V. 9). 

(The resulting operators AL, etc. satisfy the bounds of Eqs. (V. 10) - (V. 13); 

see Theorem 1.) Specific formulae for J,, 8,, Nf , and PA (i.e., g’, m’, $, 

and C$ are obtained in Appendix B. (Cf. , Eqs. (B. 20) - (B. 24).) The general 

form of these formulae is as follows: 

N’ = N-l (V. 16) 

J’ = 11-l J TB (PA) (V. 17)’ 
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and 

8’=&+~TC(PA) '(V.18) 

= TA tp,, (V. 19) 

where TB (PA) and TC (PA) are functions depending on PA but not N, J, or 8, 

and TA is a transformation on the space SAY independent of N, J, or 6. It is 

clear that J and Q will be multiplicative and additive factors in H eff so do not 

effect TA, TB, or T c. It is less obvious that TA, TB, and TC can be defined 

to be independent of N; this result is proven in Appendix B. Equations (V. 16) - 

(V. 19) define the transformation T. 

The reason for defining the subsidiary space SA is that the transformation 

TA acts on this space, and it is convenient to do much of the topological analysis 

on the transformation TA rather than on T itself. The space SA is a continuous 

closed space; in particular, it does not involve the discrete variable N. . 
The unrenormalized cutoff Hamiltonians HM are all in S. The decomposition 

of HM &.n be defined to be 

J= A”(1+2g;y’2 (V. 20) 

8=0 (Vi 21) 

8 = talc1 (42 go) (V. 22) 

m=(l+2gi)-l/q g=go(1+2gt)-1’2 (V.23) 

-Ak = ($= 0 (all k) (V. 24) 

go must be positive so that 0 lies between 0 and ?r/2. Note that m I 1 and 

g 5 (l/42), th’ is is required by the normalization condition (V. 7). 

In Appendix B several theorems about the transformation TA are proven. 

These theorems will be quoted below and are the basis for the analysis in this 

section. 
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Theorem 1. If PA E SA then TA(PA) is also in SAY i. e., 

TA@A) = ‘A (V. 25) 

Theorem 2. Let PA E SA have a decomposition (8, &, Ck) , and let TA(PA) 

have the decomposition 19,) #, and CL. Let m = cos 0 and g = (l/(Z) sin 8. 

Then 

tan 6’ = J2 g,,/m,, 

TB(PA) = (rn,12 + 2 g,,2)1’2. 

w* 26) 

(V-27) 

where 

Also 

1121” - ml < .Ol mg2 (V. 28) 

Ig” - g(l-g2)l c .Ol g3 (V. 29) 

(TC(PA) + 11 < .Ol (V. 30) 

(l-.51sin26)tan01tan6t~(l-.48sin28)tan0 (VW . 

Theorem 3. Let PA and TA(PA) have the decompositions defined in Theorem 2. 

Let the component Akl of bk vanish for all k. Then 

Af,l = 0 (all k) (V. 32) 

mtt = m 

where m,, is the constant in Theorem 2. 

(V. 33) 

The significance of these theorems is essentially as follows. Theorem 1 

ensures that if the decomposition of PA satisfies the bounds (V. 10) - (V. 13)) then 

so does the decomposition of TA(PA). A consequence of Theorem 1 is that the 

effective Hamiltonians HN(M) are in S for any N, any M, and any value of go. 

Theorem 2 gives limits on the values of TB(PA), TC(PA), and 8’ which depend 
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only on m and g, not onbk and Ck. The constants m” and g” appear in an inter- 

mediate stage in the calculation of Heff. To lowest order in A -1 , g” is equal to 

g (1 -g2); this follows from Eq. (HI. 6) using Eq. (V. 7). The bounds in 

Eqs. (V. 28) - (V. 30) were originally of order A-l, but were replaced by 

numerical bounds (valid for A > 4 x 10 6 ) for convenience. Theorem 3 shows 

that Akl will vanish for the effective Hamiltonians HN(M). It was not obvious 

(to the author, at least) that this would be so. 

Before presenting Theorem 4, a metric must be defined in the space SA. 

Let PA = (6, $$k, Ck) and PA = (6” $, CL) be two points in SA. It is convenient 

to define two distances in SAY one being a distance between 6 and 6 ‘, the other a distance 

between the operators A {-k’ ‘k} and the operators AL, CL . .It is also con- 
.I I 

venient to use the notation IPA - PAI for the pair of distances (dl, d2), 

Definition. Let PA = (6, -&, Ck) and PA = (6,’ .&‘, CL) be in SA. Then 

1 ‘A - PAI = (dl, dz) with 

dl = 2 lsin l/2 (6 - et)1 

d2 = Max 
I 
42 Ak+l II Aki - Akill Y A2ks1 ll’k - CHll ] 

where the maximum is over all possible values of k and i. 

n in terms of m, g, m’, and The distance dl is more transparent if written 

g’: 

dl = (m-m’)2 + 2 (g-gfj2 

(V.34) . 

(V. 35) 

l/2 (V. 36) 

No a priori rationale for these definitions of dl and d2 will be given. A certain 

amount of experimentation was required to determine how to define these dis-. 

tances; the above formulae turned out to be useful. It is clear from Eqs. (V. 35) 

- 34 - 



and (V.36) that the metric satisfies the triangle inequality and that )PA - PiI = (0, 0) 

only if PA = Pi . 

Theorem 4. Let PA and Pi be in SA. Let IPA - Pk\ = (dI, d2) and 

ITA PA) - TA (Pi) 1 = (di, d!J * 

Then 

.38 dl -10s5d21 di <, 20dl +10w5 d2 tv* 31) 

/ 
db Il100dl+.06d2 (V.38) 

The coefficients low5 and .06 are numerical upper bounds to terms behaving 

8s A -l. These bounds are valid for A > 4 x 106. The first set of bounds force d; 

,to be of order dl unless d2>> dl; di cannot be much less or much greater thandlunless 

d2>> dl. The second bound is a straight upper bound on db. In particular if 

dl = 0 then d; is smaller than d2, Hence as long as 6 = 6’) the transformation 

TA brings the points PA and Pi closer together. 

The four theorems stated above are proved in Appendix B, The only 

assumption is A > 4 x 106. The remainder of the analysis of this section is self- 

contained. The next stage is a set of topological theorems and definitions. First 

one defines a set of curves QL in the space SA. They are generated by the effective 

Hamiltonians HN(M) as a function of the coupling constant go. The curves turn 

out to depend only on the difference L = M - N, not M or N separately. It is convenient to 

parameterize these curves by their 6 coordinate rather than by the unrenormalized coupling 

constant. The parameter in these curves will be denoted t. Let the decomposition of Q,(t) 

be written 

te Ltt) ’ ;IzL#) Y c,,(t)) . 
Definition. -Q,(t) is the curve 

co(t) = t 

,A&) = co@ = o 
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Definition. The curve QL is defined iteratively for L > 0 by the relation 

QL = TA tQLml) 
If one were parameterizing using the unrenormalized coupling constant, one 

would have had Q,(t) = TA (QLel (t)). With the alternative parameterization, 

Q,(t) must still be the transform of some point on QLwl. This point can be 

denoted QL-l(FLtt)): 

Q,(t) = TA (QL-1 [FL(t;I ) 

(V. 41) 

(V. 42) 

Definition. The parsmeterization Q,(t) of QL is to be chosen so that 

6 L(t) = t w J-4 (V, 43) 

In practice this definition defines the function FL(t). 

We shall also be interested in the inverse function f,(t) to FL(t). This fun&ion 

satisfies 

QLtfLtW = TA tQ,$N (V. 44) 

Since the 6 coordinate of Q, (fL(t)) is fL(t), one has 

f,(t) = 6 coordinate of TA(QLBl(t)) (V. 45) 

The next theorem gives several properties of Q,(t), fL(t), and FL(t). c These 

properties will be established simultaneously in a proof by induction. 

Theorem 5. 

a. Q,(t) is a single-valued function of t defined for 0 L t L n/2, 

b. fL(t) is a continuous single-valued fnnction of t defined for 0 L t L n/2 

satisfying 

fL(0) = 0 

fL(7r/2) = n/2 

0 c f L (t) fl t for 0 c t <n/2 

(V. 46) 

tv.47) 

(V.48) 

- 36 - 



c. FL(t) is a continuous single-valued function of t defined for 0 <, t < n/2 

satisfying 

FL(O) = 0 (V. 49) 

FL@/9 = 7r/2 (V. 50) 

t < FL(t) < n/2 for 0 < t < n/2 (V. 51) 

d. Consider any pair of numbers t and t’ in the range 0 to n/2. Let 

IQ,(t) - Q,(t’)I = (dly d2) . Then 
d2 I 4000 dl (V. 52) 

If,(t) - f,(t))1 I 40 It - t’l (V. 53) 

IFL(t) - FL(t))1 5 40 It - t’[ (V. 54) 

Part a is the crucial part of the theorem. It states that the curve Q,, pro- 

jected on the 6 axis, covers the full range 0 I 6 I 7r/2 once and only once. If, 

for example, the curve QL covered only part of this range, the theory would not 

be renormalizable a This point will be discussed later. 12 

Proof of Theorem 5. The property a and Eq, (V. 52) hold for L = 0. That is, 

Q,(t) satisfies a from its definition, and IQ,(t) - Q,(t))1 = (dl, 0) for all t and t’ 

so satisfies (V. 52). Suppose property a and Eq. (V. 52) are true of Q,-,(t) e We 

prove a - d for Q,, FL, and fL. Equations (V.46) - (V. 48) are consequences of 

the inequalities (V. 31) (remember. that the 6 coordinate of Q,-,(t) is t). Now 

let t” and t”’ be two parameters in the range 0 to n/2. Let IQL-l(t”) - QL~,(t”‘)( 

= tdls d2)s and let ITAtQL-1 (t”)) - TA(QL-l(t’r ‘))I = (di, db). These distances 

must satisfy the inequalities of Theorem 4, and d2 satisfies Eq, (V. 52) by as- 

sumption. These equations can be combined to give inequalities not involving d2: 

.34dI5. di L 21d 1 (V. 55) 

d; < 1340 dl (V. 56) 
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Note that 

dl = 2 lsin l/2 (t” - t”‘)l 

di = 2 lsin l/2 [fL(t”) - fL(t”‘;l/ 

v.57) 
(V. 58) 

Because t”, t”‘, fL(t”), and fL(t”‘) all lie between 0 and n/2, the arguments of 

the sines lie between -n/4 and 7r/4. For angles # in this range 

(2div?r) lqll L pin $1 2 lrgi (V. 59) 

One deduces from Eqs. (V.55) and (V.57) - (V.59) that 

(fL(t”) - fL(P’)( i (21 ?r/BIk) 1 t” - G”l, (V. 60) 

This proves that fL(t) is continuous; it also proves Eq. (V. 53). Since fL(t) is 

continuous and satisfies Eqs. (V.46) and (V. 47), there must be at least one root 

t’ to the equation t = fL(t’) for any t between 0 and x/2. This equation cannot have 

two roots t” and t”’ for if t = f,(P) = fL(t”‘) then di = 0; by Eq. (V. 55)) dl must 

also be zero which means that t” = t”*. Finally if t = fL(t”) then t <, t” <, n/2 

(using Eq. (V.48)). Hence FL(t) (the inverse function to fL(t)) satisfies c. Now 

let t and t’ be arbitrary parameters in the range 0 to n/2. 

t”’ = FL(t’). Then t = fL(t”), t’ = fL(t”‘)* Using Eqs. (V 

one gets 

/FL(t) - FLU’) 1 < n(. 68 Jz,-l It - t’ 

Let t” = FL(t) and 

55) and (V.57) - (V. 59), 

(V. 61) 

which proves Eq. (V. 54). Furthermore, the inequalities (V. 55) and (V. 56) give 

di <, 4000 di which proves Eq. (V. 52) 0 Finally, a is a consequence of c, using 

Eq. (V. 42) and the continuity of TA (Theorem 4). 

The next problem is to discuss the limit of the curve QL for L -00, Deter- 

mining the limit of Q,(t) for L-m with t held fixed is equivalent to determining 

the limit of the Hamiltonians HN(M) for M -Q) holding the effective coupling 
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constant in HN(M) fixed. It is convenient to introduce subsets SL of SA which 

contain QL. The set So is the set S 
.A 

itself, the definition of SL is 

Definition. SL for L > 0 is the set 

sL = TA @L-l) (V. 62) 

SL consists of all points in SA which can be obtained by applying the trans- 

formation TA L times to some point in SA. Evidently all points in SL also are 

in SLml: 

Theorem 6. 

sLc sL-l for L L 1 (V. 63) 

The following theorem gives an upper bound on the %ross-sectional size” 

of SL for given angle 6 : 

Theorem 7. Let PA and Pi be any pair of points in SL. Let IPA - PA\ = (dl, d2). 

Then 

d2 I 4000 dl -I- 300 x (. 2)L (V. 64) 

The cross section is the maximum value of d2 for dl = 0. Theorem ‘7 states 

that the cross section goes to zero as L-a ; the spaces SL shrink to a single 

curve as L -00 (see below). 

Proof of Theorem ‘7. The proof is by induction. For L = 0 the theorem is true 

simply because the bounds (V. 10) - (V. 13) force d2 to be less than 300 for any 

pair of points in SA. Suppose the theorem is true for SL 1. Let PA and PA be 

two points in SL. Let IPA - PAI be (di, db). There must exist (by definition of 

SL) two points PD and Pb in SLWl with PA = TA(PB), PA = TA(Pb) . Let . 

IPB - P;31 be (d,, d ). 2 Then the distances d ,., d2, di, and db satisfy Eqs. (V.37) 

and (V. 38). Also d2 satisfies the inequality (V. 64) with L-l substituted for L. 
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Combining these inequalities gives 

.34 dl - .003 X(.2)L-15 di 

d; <, 1340 dl + 18 x (. 2)L-1 

These inequalities can be combined to give 13 

db s 4000 d;l + 300 X (. 2)L 

(V. 65) 

(V.66) ’ 

tv. 67) 

Q.E.D. 

The next three theorems will be used to show that the curves Q,(t) have a 

limit curve R(t) for L-00. The curve R is the limit of the subsets SL for 

L -+a. The curve R has the property TA(R) = R: it is an invariant subspace of 

the transformation TA. 

Theorem 8. Let PL be a sequence of points with PL E SL. Denote the 0 
I I 

coordinate of PL by BL. Assume that eL approaches a limit 6 for . 

L-50. Define Pk to be PL r = TA (P,). Denote the 0 coordinate of P;I 

by 0L. Then 

a. Lim PL exists: call this limit R 
L--)00 

b. Lim 8; = 6’ exists 
L-a 

C. Lim PL = TA(R) 
L-+m : 

Proof of Theorem 8. Let L be large and K be even larger, Because SKC SL, 

both PL and PK are in SL. Let IPK - PLl = (d,, d2). Then 

and by Theorem 7 

(V. 68) 

d2 < 4000 dl + 300 x (e 2)L (V. 69) 
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One can make both dl and d2 arbitrarily small by choosing L and K large enough. 

This is true of d1 by the assumption that BL approaches a limit for L -‘a. It is 

true of d2 from Eq. (V. 69). Hence by the Cauchy criterion the sequence PL has 

a limit R. That is, if PL has a decomposition BL, hLk, CU, then BL, Ati, and 

‘Lk all have limits for L -a, and the limits 8) A Mk, and Ck define the point R. 

TO prove b and c consider the distances IPL - RI = (dip d;l> and 

IP;1 - TA(R)I = (d’;, d>. S ince Eqs. (V. 68) and (V. 69) hold for any K, they hold 

for the limit K - * , giving 

di = 2 Isin1/2 (eL - e)l (V. 70) 

d\ <, 4000 di + 300 X (* 2)L (V. 71) 

One can make di and db arbitrarily small by making L large enough. Therefore, 

due to inequalities of Theorem 4, one can also make d!i and di small enough by 
. 

making L large enough. Hence c is true, and b is a corollary of c. 

Theorem 9. 

P” E s L L’ Let the 8 coordinates of PL and P;I, be BL and B;1 respectively. 

Assume that the sequences BL and 0: approach the same limit 8 as L--+00 . , 

Then 

Lim PL = Lim Pi 
L--r@J L-+W’ 

(V. 72) 

The proof is simple. Let IPL - PLl = (d,, d2). Then since PL and PL are in 

d1= 2 I sin l/2 (eL - 6;) I 

d2 L; 4000 d1f 300 x c.Z)~ 

(V. 73) 

(V. 74) 

As L --)a, d1 - 0 and hence d 2 - 0 also. Q.E.D. 
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Theorem 10. 

a. Lim Q,(t) = R(t) exists for all t in the range.0 5 t 5 7r/2. 
L-00 

b. Lim 
L-CQ 

fL(t) = f(t) exists (0 L t 3 n/2) . 

Co TA ,tWW = R (f(t)) (V.75) ’ 

d. f(0) = 0 tv* 76) 

f(n/2) = lr/2 tv* 77) 

0 < f(t) < t (0 c t < n/2) (V. 78) 

e. Lim 
L-co 

FL(t) = F(t) where F is the inverse function to f; also both 

F(t) and f(t) are continuous single-valued functions of t defined for 

0 < t c n/2 . 

f. F(0) = 0 (V. 79) ’ 

F(n/2) = 7r/2 (V. 80) 

t < F(t) < n/2 (0 < t < n/2) 
. 

(V. 81) 

Proof of Theorem 10. Part a is a consequence of Theorem 8a. Now let PL= Q,(t) 

be a sequence as in Theorem 8; define PL = TA(PL) as in Theorem 8. Then 8L 

is 

(V. 82) 

By Theorem 8b, 8;1 has a limit; this is true for any t so the function fL(t) has a 

limit f(t) for L -00. This proves’b. To prove c, compare the sequence Pk 
I I 

with the sequence Pi = QL (f(t)). These two sequences satisfy the assumptions 

of Theorem 9. Hence they have the same limit point. By Theorem 8c, PL has 

the limit TA (R(t)). By Theorem 10a PE has the limit R(f(t)) e This proves C. 

To prove d one uses c and the inequality (V. 31) (note that the 0 coordinate of 

R(t) is t since the 8 coordinate of Q,(t) is t for all L). 
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To prove e let t be arbitrary in the range 0 I t s ?r/2 and define the sequence 

tL = FL(t). Let L and K (K > L) be large. Then t = fL(tL) = fK(tK). Therefore 

’ = fLttL) - fKtk) = [fLctL’ - fC’tLi=, + [k(tL) - fK(tK;l 

Therefore 

1 fKttL) - fKt$oI = If)&) - fK(tL) 1 

(V. 83) 

(V. 84) 

Now use Theorem 5d: 

= 4o 1 fLttL) L fKttL)l (V. 85) 

The function fL(t) approaches f(t) for L -NJ on the closed interval 0 ,< t <, n/2. 

Hence this limit is uniform in t. Hence, lfL(tL)-fK(tL)I is arbitrarily small 

for sufficiently large L and K irregardless of the value of tL. This means * 

FL - %I - 0 as L and K approach * : hence the sequence tL has a limit for 

L-m. This is true for any t so FL(t) hasa limit F(t). Since FL(t) is the in- 

verse to f,(t), and since both FL and fL are continuous uniformly in L by 

Theorem 5d, F(t) is the inverse to f(t) and both are continuous. Also since FL 

and fL are single-valued, so are F and f. Finally f is a consequence of d and e. 

Armed with Theorems 1 - 10, one can now at&k the renormalization problem. 

One starts with a sequence of unrenormalized cutoff Hamiltonians HM. The bare 

coupling constant go is permitted to vary with M and is denoted goM. In addition 

HM is permitted to have an additive constant aoM also varying with M. The 

renormalization problem is to choose the sequences goM and boM so that HM 

has a finite limit for M 4 to. Since the number of degrees of freedom changes as 

M +* one has to specify what one means by the limit. To be precise we demand 

that each energy level, counting in order of increasing energy, has a finite limit. 
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This is equivalent to demanding that the energy levels of the effective Hamiltonians 

HN(M) have limits as M --*a keeping N fixed, since the effective Hamiltonians 

HN(M) describe the first 22N+3 energy levels of HM. The limit of HN(M) for N 

fixed is a simpler limit since now the number of degrees of freedom is fixed. 

It will be found that HN(M) has a limit as an operator for M ** (the limit Will be 

denoted HRN), which ensures that the eigenvalues of HN(M) have limits. There 

are other parts to the renormalization problem, namely computing matrix elements 

of the operators T+T-, am, etc. between eigenstates of the renormalized Hamil- 

tonian. These other problems will not be discussed. 

The effective Hamiltonians HN(M) (with HM(M) defined to be HM) are all in 

the space S. Denote the decomposition of HN(M) by (JN(M), cN(M), N, PN(M)) 

where, in turn, PN(M) is a point in SA with the decomposition (6’.(M), kN(M), 

CkN(M)). Denote the decomposition of the original cutoff Hamiltonians HM . 

bY (JoMs ‘OM’ M, PoM); the decomposition of POM is (eoM, 0, 0) and JoM 

and BoM a”: 

JoM = AM (1 + 2 g;M)1’2 

‘OM = tan:’ (J2 god 

Since HN(M) is defined as the transform by T of HN+l(M) one has 

Since PN(N) lies on the curve Q,, this means PN(M) is on QM N: 

PNtM) = QM-N (‘N(M)) 

Also one has 

JN,ltM) = ‘-’ $tM) TB [pN(M;] 

w. 86) 
(V, 87) 

(V.88)’ ) 

(V. 89) ‘a 

(V. 90) 



and 

&N-l(M) = ‘N(M) + JN(“) TC ['N(M;I 

i 
from Eqs. (V. 17) and (V. 18). Finally, one has from Eqs. (V. 89), (V. 45)) and 

(V. 42) 

‘N(M) = fM-N [eN+liw] 

6 N+l(q = FM-N ‘N(M) c 1 

(V. 91) 

tv. 92) 

(V. 93) 

The condition HM(M) = HM means JM(M) = JM and eM(w = eoM. 

One wants to choose the sequences BOM and eM so that the Hamiltonians . 

HN(M) have a limit for M+ * . Customarily one would fix BoM and gM by 

requiring that the renormalized coupling constant and the ground state energy 

be fixed independent of M. We cannot calculate the renormalized coupling con- 
* 

stant since this requires knowing the ground state matrix element of T , and * 

these matrix elements are not discussed in this paper. So a more ad hoc 

procedure will be used. Clearly if HN(M) is to approach a limit for Md m, the 

sequences gN(M) and Q,(M) must approach limits as M-, 00. The simplest 

way to ensure this is for aN(M) and e,(M) to be independent of M. This cannot 

be true for all N, but it can be arranged for one value of N, say N = 0. So let 

Be(M) be a constant OR (between 0 and n/2) and let ’ go(M) be 0. 

Given co(M) = OR and &‘o(M) = 0, for all M, one can reconstruct the complete 

double sequence HN(M) . First one computes ON(M), for all M and 1 I N <, M 

using Eq. (V. 93). Secondly one computes goM = (l/162) tan BM(M) and JoM 

from Eq. (V. 86). Third, one computes all the JN(M) (0 I N < M) from 

JM(M) = J()M and Eq. (V.90). Finally one computes gN(Mj (1 5 N I M) from 

Eq. (V. 91). The points PN(M) are given by Eq. (V. 89). 
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Now one can consider the limit for M+ 00 of HN(M). The results are stated 

in Theorem 11. 

Theorem 11. Assume OR f n/2. Then 

a. Lim HN(M) = HRN exists for all N 
M-)w 

Let HRN have the decomposition (JRN, IRN, N,,, PRN) and let the 6 

coordinate of PRN be BRN. Then 

b* PRN = We& 

C. HRN = T HRN+l , i.e. II 1 
(V. 94) 

(V. 95) 

8 RN = ftelQJ+l) 

JRN = *-’ JRN+l TB(pRN+l) 

‘RN = ‘RN+1 + JRN+l TC ‘RN+1 E 1 
PRN = TA ‘RN+1 [ 1 

(V. 96) 

tv. 97) 

(V. 98) 

* (V.99) 

Proof of Theorem 11. The first step uses induction in N. For N = 0, Be(M) has 

a limit OR for M-+ m by definition. Hence the sequence PO(M) satisfies the 

assumptions of Theorem 8. Hence PO(M) has a limit for M - CO ; from Theorem 

10, this limit is R( BR) . Now suppose that ON(M) and PN(M) have limits BRN and 

PRN = R(eRN) respectively. Consider the sequence 6N+1(M) as a function of 

M. It is given by Eq. (V. 93). Since ON(M) has a limit OR,, since the function 

FMmN( 0) has a limit F( 6), and since FMwN (6) is continuous in 8 uniformly in 

M (see Theorem 5d), the sequence 0,,(M) must have a limit OR,,. Also 

6 RN+1 = F(eRN). Hence eRN satisfies c. Since eNtl(M) has a limit, PN+l(Mj 

has a limit (Theorem 8) ; the limit is R( BRN+l) (Theorems 9 and 10). Because 

ORN is f( 6RN+1), one has 

RteRN) = TA R(eRN+l [ )3 (V. 100) 
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(Theorem 10~): By induction one has established limits for e,(m and PN(M) 

for all N, as M --+ 00. The limit P 
RN satisfies b and c and BRN satisfies c. The 

next step is to look at the scale factors JN(M), We use Theorem 3. The points 

of the curve Q. satisfy the prerequisites of Theorem 3; hence all the curves QL 

have the property that Akl vanishes for all k at any point on the curve. In 
/’ 

pZWtiCI&lr AkN1(M) vanishes for all k. Look & TB PN(M) . Let PN(M) be the [ 1 
point PA of Theorem 2. Using the notation of Theorem 2 and the result of 

Theorem 3, 

TB(PN(W) = (m2 + 2 g” 
2 l/2 . 
) (V. 101) 

tan 8’ = J2 g”/m (V. 102) 

Note that 6 1 is 6 N-1(M), 6 (notation of Theorem 2) is ON(M), and m = cos 8. 

One can eliminate g” to obtain 

TBtPNtM)) = cos e,pq/c0s eNml(Mj 

using Eqs. (V. 36)) (V. 37), and (V. 90)) one obtains 14 

JN(M) =AN [,,S eN(Iq]-’ (V. 104) 

. 
(V. 103) 

Since BN(Mj has a limit ONR for M-, a , so does JN(M), provided BNR is not n/2. 

But from c and Theorem lOf, one sees that BNR < n/2 if eR < n/2. So JN(M) has 

a limit JRN. 

JRN = AN [cos em]M1 (V. 105) 

Using Eq. (V. 91)) one can now show that eN(M) has a limit &RN for M -, 00. 

It is easily seen that JRN and gRN satisfy c. This completes the proof of 

Theorem 11. 

The existence of the renormalized energies has now been proved. The 

renormalized theory is defined by the sequence of renormalized cutoff Hamiltonians 
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HRN. Because ,of Theorem llc, this sequence has a common set of eigenvalues: 

HRN describes the first 22N+3 of these. The complete set of eigenvalues defines 

the complete renormalized Hamiltonian HR . Unlike the renormalized Lee model, 

the present renormalized theory has no ghost states: the bare coupling constants 

gOM are real for all M and all the Hamiltonians H 
;M 

(and HN(M) and HRN) are 

hermitian. The limit of goM for M-+=J is ~0; this is proven in Section VII. 

To conclude this section, it will be shown that the set of renormalized 

Harniltonians HRN is independent of the choice of the unrenormalized cutoff 

Hamiltonians HM, in the following sense. 

Theorem 12. Suppose that the cutoff Hamiltonians HM have the decomposition 

(JOM’ ‘OM’ M, PoM) where POM lies on a one parameter curve Q;(t): 

'()I,$ = Q; teoM) (V. 106) 

Suppose that the curve Q;(t) is any curve in the space SA defined for . 

0 I t 5 7r/2, such that t is the 6 coordinate of Qb(t) and the bound (V. 52) 

of Theorem 5d is satisfied by Qb. 

Construct the sequence of effective Hamiltonians HN(M) starting from 

HM , and let HN(M) have the decomposition (JN(Mj, gN(M), N, PN(M)). 

The points PN(M) lie on curves QrMWN (t) defined by analogy with Q,(t) e 

Let ON(M) be the 6 coordinate of PN(M). 

Let JN(M), gN(M), and ON(M) be determined by the boundary conditions 

‘g(M) = eR (V.107) 

(V.108) ’ 

Jo(M) = (cos -1 eR) 

Then Theorem 11 holds for these HN(M) and the limiting Hamiltonians 

HRN are independent of the choice of the curve Qb. 
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To prove Theorem 12 one first rederives Theorems 5 - 11 with QL replacing 

Q,; the arguments are unchanged except in Theorem 11 where the scale factors 

JN(Mj are computed using a different boundary condition. To show that JN(M) 

has a limit as M -00 one must show that TB(P) is a continuous function of P. 

This is true; the proof will be omitted. 

To show that the limiting Hamjltonians HRN are independent of the starting 

curve Qb, we show that the limiting Hamiltonians HRN are uniquely determined 

by their properties, as specified in Theorem 11, plus the boundary conditions. 

Using Theorem llc, one finds 

e RN+1 = F(eRN) (V. 110) 

So one can corqpute eRN for all N given OR0 = OR. Then by llb, PRN is deter- 

mined. Then one can use llc to determine J 
RN and ‘RN starting from the 

. 
boundary conditions (V. 108) and (V. 109). 

The scale factors Jo(M) were specified in this discussion instead of JM(M) 

simply to ensure that HRN would be independent of the choice of curve Qb . 
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VI. APPROXIMATE SCALE INVARIANCE IN THE RENORMALIZED THEORY 

When a quantum theory is invariant to the orientation of, the coordinate sys- 

tem, it must be rotationally symmetric - that is, there must exist unitary 

operators R which generate rotations and which commute with the Hamiltonian. 

One can then diagonalize the generators of infinitesimal rotations simultaneously 

with the Hamiltonian; one can classify the resulting eigenstates by angular mo- 

mentum eigenvalues, etc. 

Likewise, when a quantum theory contains no parameters with the dimensions 

of energy, it must be invariant to a choice of energy scale. This immediately 

implies that the theory is invariant to a set of unitary operators U(s) which change 

all energies by a scale factor s. The Hamiltonian H is not invariant to U(s), since 

H is itself an energy; -instead, one has 

U+(s) H U(s) = sH tn. 1) 

There will be an infinitesimal generator D which generates infinitesimal scale 

transformations (a transformation with s = 1 -I- E: whe& E is infinitesimal) e 

However, D does not commute with H and cannot be simultaneously diagonalized 

with H. Instead, scale invariance is used to generate a set of energy levels with 

any energy SE given a level with energy E. 

In field theoretic problems there are usually mass parameters in the theory, 

but sometimes these parameters become negligible at high energies or short 

distances. For example the propagator of a free scalar or spinor field at 

short distances is independent of the free field mass and is equal to the propagator 

of the zero mass theory. The free zero mass scalar and spinor field theories are 

scale invariant e 15 The standard interacting field theories (quantum electro- 

dynamics or pseudoscalar meson theory) have only masses as dimensional . 
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parameters, but when solved in perturbation theory they do not become scale 

invariant at short distances (large momenta). The propagators of the interacting 

theories involve logarithms of (q2/m2) where m is a renormalized mass and q the 

argument of the propagator. However, if one holds the renormalized coupling 

constant e fixed then at very large q2 the logarithmic terms become so large that 

the terms of order e 2k logk (q2/m2) in the perturbation expansion are much larger 

than the Born approximation. To determine the propagator for this range of q2, 

in particular in the limit q2 -00 one must sum the complete perturbation expansion. 

There are presently no methods for doing this (see especially the remarks of 

Bogoliubov and Shirkov”). There is then a question of whether the mass depen- 

dence will disappear at values of q2 so large that the complete perturbation ex- 

pansion has to be summed. The best analysis of this problem. in relativistic 

theory is that of Gell-Mann and Low. 8 

In the model, what happens is this. The energy levels of order An expandedin 

powers of the renormalized coupling constant gR have terms of order nkgk which 

prevent any scaling laws from holding. But when n is so large that ngR >> 1 the 

complete series in g 
R 

must be summed, and then the theory becomes scale in- 

variant, in a manner to be explained below, If gR itself is of order 1 rather than 

small, then scale invariance sets in for much smaller n; the only requirement’is 

n>>l. 

There is a feature of scale transformations which distinguishes them in a 

very fundamental way from all other symmetries of the theory. The other sym- 

metries (charge symmetries, etc.) are well defined in the presence of the cutoff 

M of the model. The scale transformations arenot. The scale transformations 

of the model are transformations U 
I 

which take the creation and destruction 

operators a+ , a m b+ and bm, m’ m’ for any m, into the operators aL+mt am+m, bm+f* I 
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and bm+l* (Because the momentum continuum has been replaced by a discrete 

index m the scale transformations are labeled by a discrete variable P instead of 

a continuous variable s.) Since the creation and destruction operators satisfy the 

same commutation relations for any m, the transformation should exist and be 

unitary, except for endpoint effects. Namely in the cutoff theory there are no 

operators am, etc., with m > M, or m < 0. So the operators aM, etc. cannot be 

transformed. To have scale transformations well defined one must have operators 

a m’ etc. defined for -oo< m<a,. But this raises a new problem: if there are 
. 

an infinite number of a m, then they act in an infinite product Hilbert space, which 

is inseparable and therefore hard to work with. 10 This problem has not been 

mentioned up to now since it was evident once the unrenormalized Hamiltonian 

was defined that one could only solve it by introducing a. cutoff M. Furthermore, 

when the limit M--m was defined in Section V, it was defined only for the effective 

Hamiltonians HN(M) for fixed N, which act on Hilbert spaces with a fixed and finite 

number of meson degrees of freedom. 

‘The natural way to show that a theory has an approximate symmetry is to show 

that it departs only a small amount from a theory with the exact symmetry. In the 

present example of scale invariance, this would require constructing a version of 

the model which is exactly scale invariant. But this is very difficult precisely 

.because of the problems of the infinite number of degrees of freedom. The problem 

is not the problem of keeping the pions with arbitrary large m. It was shown at 

the end of Section V that one could define a renormalized Hamiltonian HH which 

includes all the renormalized energy levels including those involving m-mesons 

with arbitrarily large m. The set of such energy levels can be ordered by their 

energy and therefore form a countable set of states, which one can think of as 

defining a separable subspace of the original inseparable space. The problem is 
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that the exactly scale invariant theory would have to include degrees of freedom 

m with m- -00. With such terms present there would be on every gross energy 

level an infinite sequence of fine structure, hyperfine structure, hyper-hyperfine 

structure, etc. , with the net result that in a finite energy interval there would be 

an uncountable number of distinct energy levels. These would not form a continuum 

because each energy must be the sum of terms of order A -1 , Am2, A-3, etc. with 

coefficients of order 1. 

Rather than try to develop a formalism for handling the difficulties of the 

inseparable space of energy levels of a scale invariant theory, we will define 

approximate scale invariance to mean simply that for each energy level of HR of 

sufficiently large energy, there is another energy level which is approximately a 

factor so larger in energy. The factor so will be determined below; it will be of 

order A. The correspondence will not be one to one; for an energy level of 

energy E, there will be four energy levels of approximately energy sOE due to the 

fact that the energy levels of energy sOE involve one more meson degree of free- 

dom. 

One can try to predict the value of so by considering the unrenormalized 

Hamiltonians HM a If one applies the scaling operator U1 to HM one gets 

+ 
U1 HMhzoPJ1 = 12-l HM+l(go) - i+O, (VI. 2) 

where U1 is the operator that takes am into am+,,, and O0 is the term of order 1 

in HM+l. Since the eigenvalues of (A-lHM+,(g,) - A-%,) differ in order 

A”’ from the eigenvalues of A-l HM+l(gO), it follows that HM(gO) and A-lHM+l(g,) 

have the same eigenvalues except for fine structure of order A-‘. 

Suppose that HM(go) had a well-defined limit as M-m for fixed go. Then in 

particular the energy levels of HM(gO) and HM+,(gd would be the same for suf- 

ficiently large M (excluding energies of order the cutoff, that is energies of order 
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AM). But then a given energy level of HM would be A-l times the energy of a 

level of HM+l, from Eq” (VI. 2). For sufficiently large M this level of HM+I is 

also a level of HM. Hence for every energy level of HM of energy E, there would 

be another level with energy AE. So the factor so would be A. 

The prediction is wrong; so is not A. The reason for the failure is that the 
\ 

renormalized energy levels are obtained by solving Hamiltonians HM(goM) where 

gOM changes with M. It will be shown later that gOM-a as M -00 so even for 

large MS goM is not constant. 

The idea that operators do not scale as predicted from an unrenormalized 

theory was used in a recent discussion of approximate scale invariance in strong 

interactions. 6 However, the analogy to the model of this paper is inexact since 

in the strong interaction problem, the scaling law for the Hamiltonian is fixed by 

general arguments; it is the other fields in the theory, such as the pion field, whose 

scaling laws (dimensions) were permitted to be arbitrary. 

The remainder of this section is devoted to the technical problem of computing 

the nature of the energy levels with energies of order An with n large, and ex- 

tracting the scale factor so. It will be shown not only’that these energies scale 

by a factor Afl’, where /3 is approximately l/2; it will also be shown that the error 

to this scaling law itself scales like A, as if the Hamiltonian consisted of two terms, one 

scaling as A@ -1 , the other as L2 under a scale transformation .(cf O , Eqs. (VI. 24) 

and (VI. 25)). 

In the following it is assumed that the function f(t) and the “curve” R(t) defined 

in Section V are differentiable. I have not proved this. 

The renormalized theory is defined by a sequence of Hamiltonians HRN. 

These Hamiltonians are determined by three parameters JRN, &‘RN, and ORN. 

We must study HRN when N is large. This requires knowledge of J RN’ ‘RN’ 

and 8 RN for large N. 
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First look at the sequence BRN . 
I I 

Since BRN is the 8 coordinate of PRN, 

and since PRN is the transform TA of PRNel, one can apply the inequality 

(V. 31) to obtain 

I 
1 - .51 sin’ 6RN+1 

I 
tan f3RN+1 5 tan 8 RNS l-.48 sin’ 6RN+l 

I 
tan 9 RN+1 

VW 

First of all this implies that 

8 RN < ‘RN+1 c n/2 (VI. 4) 

(we assume 8 RO < ?r/2 which then forces 6 RN to be less than n/2: see the proof 

of Theorem 11). So BRN 
1 I 

is an increasing and bounded sequence. Therefore it 

has a limit for N-03. The limit must be n/2. The reason is that since 

’ eRN = f( 6RN+1) the limit 8 must satisfy 8 = f( 6). Also 6Ro < 0 s n/2, Rut from 

Theorem lOd, the only such 8 is 0 = n/2. Therefore, when N is sufficiently large, 

em is approximately n/2. Write 

When $N is small the inequality (VI. 3) is approximately 

-1 
l 4g ($N+,) < $N - l -’ < 52 ($N+l? W.6) 

e.g. 

To be more precise, consider the formula BRN = f(6RN+1) and expand in powers 

Of $N+l: 

n/2- cpN= f(ni2 - #$J+,) = f(n/2) - $N+l f’(n/2) + o&+1) (VI. 8) 

Since f(n/2) is ?r/2, one gets 

4N= f’tTi2) $N+l + ‘t&+1) 

and Eq. (VI. 7) shows that f1(n/2) is approximately 2. 

(VI. 9) 
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Let 

p = .( ff(fl/z)]-l * .5 

One can rewrite Eq. (VI.9) to read 

(VI. 10) 

An analysis of this equation shows that 

where a is a constant (a will depend on BRO) . 

Now look at JRN, gRN, and PRN. From Eq. (V. 105), assuming N is large, 

one has 

JRN = AN (COB oRNyl CT AN 4;’ z ANaB pBN (VI* 13) 
To compute PRN one must study the curve R(t). One has 

Let 

WORN) ,N Wn/2) - #N R’(n/2) 

pC 
= R( n/2) 

Pd = - R’@/2) 

(VI. 14) 

(VI. 15) 

(VI. 16) 

Then 

‘RN * PC,+ a aN Pd (VI. 17) 

Finally, from Theorem llc one has 

N 
t” RN=- n=l JRn c c T ‘Rn [ 1 (VI. 18) 

(using the definition 6 RO = 0). The dominant terms in this sum are for large n 

since JRn N An and Tc N 1 (Eq. (V. 30)). For large n, P 
Rn 

= PC. Let 

(VI. 19) 
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Then for large N (using Eq. (VI. 13)), 

8 RN = 
- p 9-l p-N A (A - pj-,-l (VI. 20) 

A more careful calculation gives the first correction to Eq. (VI.20) to be 

8 
RN 

r _ nN ,fN p-l A(& @-’ + ANrl A(A - 1)-l (VI. 21) 

where 7I is a constant; also 

JRN= a -’ @-N AN + ,t2 AN (VI. 22) 

where r2 is a constant. 

With the above approximations for PRN, JRN, and gRN one can write 

HRN=a -1 AN P-N N 
%N+ A zdN 

(VI. 23) 

where XcN is a Hamiltonian with the decomposition (J, 8, N, P) = (1, - yA(A- @-l, N, PC), 

and XdN is a Hamiltonian with the decomposition ( l,yl A(A -1)-l, N, y2Pc + Pd). The 

only N dependence of <“XcN and XdN is in terms of how many degrees of freedom 

are kept in Eq. (V. 2), since neither the J, 8, nor P components of XcN or SdN 

depend on N. 

Now compare 5% N with HRN+l. The difference between gCcN and ,yecN+l is 

only in terms containing aN+l, bN+l, etc. , and such terms are of order 
.-N-l A or less. 

So the energy levels of Xc, are appFoximately the same as the energy levels of LY$~+~ 

only each level of XcN corresponds to four of “YflcN+l due to the extra degrees of 

. freedom m GYZ’~+~. In ?Et N, the ‘recN term dominates the '7CdN term by a factor 

BN; neglecting the 9FdN term, the energy levels of pBIAHRN and HRN+l are 

approximately equal. This establishes the basic claim of this section. The energy 

levels of ?R Nand % N+l are both subsets of the energy levels of HR. So the 

energy levels of “p-l~, are approximately equal to the energy levels of HR. In 

scaling the Hamiltonian an extra factor p has appeared. 
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Let us consider the errors in approximate scale invariance. One is comparing 

Ap-’ HRN with HRN+l. The basic energy scale for these Hamiltonians is A N+lp-N-l . 

Neglecting the .XdN and .X’dN+l terms in 
53 N and % N+l 

means one has an error 

of order A N . This is small by a factor p N+l from the basic energy scale but huge 

on an absolute scale (remember N must be large for all our approximations to hold). 

There is also an error which is of order A-N-1 in e7ecN+l when one neglects the 

aN+l terms; this becomes ‘an error of order /?-N-1 in ~~~~ which is negligible 

compared to AN (p N l/2 while A > 4 x 106). Due to the error of order AN the 

matching between 
Ek N+l and @-‘A HRN is close only for energy levels with 

energies large compared to N A , i.e., only highly excited states, 

One can now get a scaling law for the leading correction to scale invariance. 

Namely one can take XdN into account but still neglect the difference between 
_: 

*ON and recN+l and the difference between c%? dN and 3edN+1* Inthis case one can write 

HRN = ‘cN + HdN 

with HcN = a -’ AN#3-N xc,, HdN = AN&dN; then 

(VI. 24) 

H RN+1 -N Ap’l HcN + AH,, (VI. 25) 

Since HdN is small compared to HcN, the energies of H 
cN + HdN consist, to a first 

approximation, of energies of HcN plus expectation values of H dN1 The 

correction therefore scales by a factor A when N - N+ 1 while the dominant term 

in the energy scales by A@-‘. 

The unrenormalized Hamiltonian had two parts, the free meson energy term 

and the interaction term, but both parts scaled by A when N- N+ 1. The re- 

normalized Hamiltonian also has two parts to a first approximation but the two 

parts scale differently, the dominant term scaling by A/3-’ while the leading 

correction scales by A. 
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It was crucial for the proof of scale invariance that the constants BRN 

approach a limit (n/2) for N -00, As long as 0 RN changes with N the energy level 

structure of HR on the scale AN will differ by more than a scale factor from the 

structure on the scale AN+l. This is due to the nontrivial dependence of the energy 

levels of HRN on eRN. In particular, in perturbation theory, when BRN is small, 

the change from BRN to BRN+l is nonnegligible in order 8 3 
RO (see Section VII 

for details). Hence in third order or higher in BRO, HR does not show scale in- 

variance. It is only when N is so large that BRN = 7r/2 that scale invariance 

becomes apparent; but for these values of N an expansion in OR0 is silly even if 

e RO is small: the true expansion parameter turns out to be JN OR0 which is 

huge, instead of BRO. 

. 
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VII. RENORMALIZATION AND THE ROLE OF THE TRANSFORMATION T 

The renormalization program carried out in this paper followed the conven- 

tional pattern,’ in that a renormalized coupling constant was defined and held 

fixed in the limit of infinite cutoff. The transformations T and TA were introduced 

as part of the technique of solving the cutoff Hamiltonians; their properties were 

useful in proving the existence of the renormalized Hamiltonian. An analysis of 

the renormalization program of Section V shows that the transformations T and 

TA play a more fundamental role in the renormalization than one might think. In 

part A of this section it is shown that the renormalized Hamiltonian is determined 

more by the properties of the transformation TA than by properties of the original 

unrenormalized Hamiltonian of Section II. In part B, the problem of “why 

renormalization?” is considered; it is shown that three features of the model 

Hamiltonian cause the renormalization program to be nontrivial. These three ’ 

features are: first, the model has an infinite number of degrees of freedom; 

second,the mth degree of freedom with m large dominates the degrees of freedom 

with m small; third, scale invariance makes the behavior of the degrees of free- 

dom for large m similar for different m. In part C, the renormalization theory 

of this paper is compared with the theory of Gell-Mann and Low for quantum 

electrodynamics. 8 

A. Renormalization and the Transformation TA 

The analysis of the renormalization program to be given here concerns very 

basic questions; to set the stage for these questions it is worth reviewing the role 

of the Hamiltonian in ordinary quantum mechanics. In nonrelativistic quantum 

mechanics, a system is well defined once the Hamiltonian is specified. Any 

hermitian (self-adjoint) Hamiltonian defines a unique and acceptable quantum 
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*mechanics. To specify the Hamiltonian, one must first define the basic observ- 

ables of the system (e.g., position, momentum, or spin operators). Then one 

specifies the Hamiltonian as a function of these observables. In principle one 

could define the Hamiltonian in a different way, by giving a list of its eigenvalues 

and eigenvectors. This is rarely done in practice because the eigenvalues and 

eigenvectors are generally very complicated expressions, often not expressible 

in closed form. In contrast, the Hamiltonian is often a simple function of the 

observables (for example, compare the Coulomb Hamiltonian of the helium atom 

with its eigenvalues and eigenvectors) D 

In Section II of this paper we defined a model quantum theory in an entirely 

conventional manner. The ‘fobservables” an, a:, bn, bz, and r* were defined, 

and the Hamiltonian written as a simple function of these observables, with one 

free parameter go. Then in Sections IV and V the techniques for solving the 
. 

model were defined, and it was shown that after renormalization the theory had 

finite eigenvalues. The finite theory again depended on one free parameter, 

which however was the renormalized constant 0 RO instead of go. 

The construction of the renormalized Hamiltonian in Section V was ‘a corn- . 

plicated process. In summary, one chose a renormalized coupling constant BRO, 

One constructed a sequence of Hamiltonians HRN by starting with the point 

PRO = R(BRo) and constructing the sequence PRN through the relation PRN = TA(PRN++ . 

The full renormalized Hamiltonian consisted of a limit of HRN for N---a suitably 

defined. This construction leaves unclarified some fundamental questions. Does 

the renormalized theory solve the unrenormalized Hamiltonian of Section II? If 

not, what problem does it solve? Is the renormalized coupling constant a funda- 

mental parameter in the theory? If not, can it be replaced by one that is? Is the 

unrenormalized Hamiltonian the simple expression which underlies and defines 
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the rather complicated spectrum of renormalized energy levels; if not, where 

do we look for simplicity? 

It is difficult to answer these questions conclusively because there are prob- 

lems of interpretation. For example, one must decide what is a “fundamental” 

parameter, and what is “simple. It However, in trying to answer the questions 
I - 

of the previous paragraph, two results become clear. The first is that the rela- 

tion of the unrenormalized, uncutoff Hamiltonian to the renormalized energy 

levels is fundamentally different than the relation of a simple Coulomb Hamiltonian 

to its eigenvalues. How to characterize the new relationship can be debated, but 

certainly it is not the old and comfortable relationship of elementary quantum 

mechanics. The second result is this: there is a key fact which must figure in 

any discussion of the new relationship of Hamiltonian to energy levels, a key idea 

which must be used to obtain any fundamental understanding of why we must intro- . 
duce an essentially phenomenological parameter (the renormalized coupling 

constant) in defining the renormalized theory. The crucial fact is the existence 

of a fixed point of the transformation TA, namely, the point PC = R(n/2). The 

point PC has already been encountered in Section VI: it is the limit of the points 

‘RN (involved in the definition of HRN) as N - 00 . The role of the fixed point 

cannot be summarized in a few words; a detailed analysis of its function will be 

given later in this section. 

. 

The relation of the unrenormtilized uncutoff Hamiltonian to the renormalized 

theory can be summarized in terms of the following two results which will be 

proven later in this section. 

1. If gOM I I 
is a sequence of coupling constants which approach a finite 

limit go as M-co, then the energy levels of the unrenormalized cutoff Hamiltonians 

HM(goM) approach the energy levels of the uncutoff free Hamiltonian (Eq. (II. 1) 

with go =O)asMdm, except for an additive constant. 
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2. If goM is a sequence of coupling constants which approach 00 as M-w 
I I 

the energy levels of HM(goM) may or may not approach a limit as M --a, For 

my ‘RO with 0 < 13 
RO 

c 7r/2, there exists a sequence with goM-m as 

M -00, such that the energy levels of HM(goM) approach the energy levels of the 

renormalized Hamiltonian HR (OR,) as M--a (apart from an additive constant). 

The first result means that if the uncutoff unrenormalized Hamiltonian with 

finite go is defined as a limit of cutoff Hamiltonians, then its solution is the same 

as the solution of the free uncutoff Hamiltonian, and in particular is not related to 

any of the renormalized theories with interaction. The second result means that 

a single uncutoff unrenormalized Hamiltonian, the one with go = 00 , has an infinite 

number of possible solutions depending on what sequence goM is used in the 
I I 

cutoff Hamiltonians . So instead of each renormalized Hamiltonian corresponding 

to a separate unrenormalized Hamiltonian, one finds that all the renormalized 
. 

Hamiltonians solve a single unrenormalized Hamiltonian. The nonuniqueness of 

the solution of the unrenormalized Hamiltonian with go = ob is discussed further 

below. 

Now the results quoted above will be proven. It is helpful to prove the 

following. If 8 < e1 and both lie between 0 and n/2, then 

f,W < fLV1) (for’ 8 < e,) (VII. 1) 

The proof is based on Theorem 5. From 5b, fL(el) - fL(0) is positive for e1 > 0. 

From 5d (Eq, (V.54)) 

IfLtel) - f,(e)1 > 3% lel - 81 (VII. 2) 

From 5b, FL( 0) is continuous in 6. Hence fL(el) - fL(0) cannot change sign 

anywhere in the range 0 s 0 < 81. Hence Eq. (VII. 1) holds. To prove the first 

result, consider a sequence with a finite limit go as M-a e Consider the 
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unrenormalized Hamiltonians H (g ). M OM Using the transformation T one can 

generate effective Hamiltonians Hi with coupling constants ON(M) having the 

same energy levels as HM(goM). The constants eN(M) satisfy Eqs. (V. 92) and 

(V.93) and 

tan e,cM, = di gOM (VII. 3) 

Let 0 be an upper bound to e,(M); since goM has a finite limit, one can choose 

8 to be less than 7r/2. Define a sequence BL to be: e. = 8 , BL = fL( 6L-,) o Due 
I I 

to E% wn* I), eM-N is an upper bound for ON(M). The sequence BL is a de- 
I I 

creasing sequence with limit 0 as L-03, l this follows from the inequality (Ye 31) D 

Hence ON(M) - 0 as M-W for fixed N. Hence in the limit M-CO* HN(M) be- 

comes a free Hamiltonian, which is result 1. To prove the second result, con- 

sider the sequence goM 
I I 

defined in Section V following Eq. (V. 93) corresponding 
4 

to a given nonzero renormalized constant eRo. Again one has constants ON(M). 

satisfying Eqs. (V. 92)) (V. 93), and (VII, 3)) but now Be(M) is fixed to be eRoe 

. From Eq. (V.31), el(M+l) > eo(M+l) = Be(M); using Eq. (VII. 1) repeatedly one 

gets eN,1(M+l) > eN(M) for all N, and hence goM+l > goMo So goM is an in- 
I I 

creasing sequence. It cannot have a finite upper bound, for if so then OR0 would 

have to be zero. Hence goM -a~ as M -*, By the analysis of Section V the 

Hamiltonians HN(M) have well defined limits as M -co. (In Section V the un- 

renormalized Hamiltonians HM have a ground state energy subtraction; if this 

subtraction is not made then only the energy differences of levels of HN(M) have 

a limit as M-a .) Such a sequence goM exists for any OBo, so result 2 is I I 

. . 

proved. 

The fact that the’uncutoff Hamiltonian with go = 33 has an infinite number of 

solutions can be blamed on the fixed point PC of TA. This result can be seen by 

studying the behavior of the double sequence PN(M) of points in SA defined in 
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Section V as part of the renormalization analysis. The points PN(M) have the 

following properties : 

a. PM(M) has the decomposition ( BM(M), 0, 0) S i.e., the components Ak 

and Ck are all zero, The point PM(M) corresponds to the unrenormalized 

Hamiltonian HM(goM) with finite cutoff M and goM given by Eq. (VII. 3). 

b. PO(M) has 8 coordinate OR,, by definition. 

C. +-l(M) = TA pNtM) [ 1 
When M-a, eM(nq -n/2, so PM(M) has a limit (n/2, ,Q, 0) when M 7% 

Denote this point by Pu. The point Pu corresponds to the unrenormalized, 

uncutoff Hamiltonian with go = m. 

The pint PC = R(n/2) (the fixed point of TA) also has 0 coordinate 7r/2, but 

it is easily seen that the components N% and Ck of PC cannot vanish. Hence PC 

is distinct from PU. 

One can think of the points PN(M), for fixed M, as defining a trajectory 

, C(M). If one takes the limit of the trajectories C(M) for M- a , one gets a 

double trajectory CA 0 CBe The trajectory CA goes from Pu to PC, Le., it 

connects the point Pu representing the unrenormalized Hamiltonian to the fixed ’ 

point PC* The trajectory CB connects the renormalized point PRO to the fixed 

point Pee The first trajectory is an infinite sequence of points (Pu, Pul, Pu2, a o *) 

all with 8 = 7r/2, satisfying PUN = TA (PuNW1) and with the limit PC as N -00, 

The trajectory CB consists of the renormalized points PRN lying on the curve 

R, again with limit PC as N -03. The trajectories C(M) with M large lie close 

to the limiting trajectories:the first few points on C(M) (e.g., PM(M), PM-~(M), 

etc.), lie close to the first few points on CA’ The last few points on C(M) 

(e.g., P1(M), P2(M), etc.) lie close to the first few points on CBe The points 

near the middle of the trajectory C(M) (e.g., PM,2(M)) all lie close to PC e 
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The trajectories C(M), CA , and CB are illustrated in Fig. 1, Figure 1 is 

an artist’s conception of what these trajectories might look like if the space SA 

was a two-dimensional space instead of an infinite dimensional space. The two 

dimensions are 0 and a coordinate x replacing the infinite dimensional space 

defined by the sequences A [m-k} and kk]* One can see explicitly in Fig. 1 that the 

points PN(M) - PRN as M-W and PMgN(IvQ - PUN as M -03, One can also 

see the clustering of points about PC’ 

Now return to the problem of the infinite number of solutions of the unre- 

normalized Hamiltonian, The nonuniqueness is connected with the fixed point PC, 

because the limiting trajectory CA GB CB is nonunique only on the section C Be 

The trajectory CA connecting Pu to PC is uniquely determined by Pu and the 

recursion formula PUN = TA(PrrrJW1 )* The trajectory CB connecting PC to PRO 

is nonunique; it is a different trajectory for each different value of BRO. So the . 

nonuniqueness arises at the point PC’ 

The next question is, how is the nonuniqueness related to the properties of 

the fixed point PC? In order to discuss this question it is necessary to know the 

behavior of the transformation TA in the neighborhood of PC; this behavior will ’ 

now be investigated. 

Assume that the transformation TA is differentiable in the vicinity of PC, 

so that if P is any point near PC, one can write 

T*(P) = PC + UA(P-PC) + order (P - P,,” (VII* 4) 

where UA is a linear transformation. Now consider a trajectory of points PN, 

namely a sequence of points satisfying _ 

P N-i-1 = TA(PN) (VII. 5) 
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and suppose that the trajectory lies in the vicinity of PC. Then approximately 

pN+l- PC ’ UA(PN - PC) (VII. 6) 

Consider therefore the trajectories defined by UA, that is, sequences of points 

QN satisfying 

QN+l = UAtQ& 

Since this is a linear equation, an arbitrary solution can be written as a linear 

combination of a set of linearly independent “basic” solutions QNa (ar = 1,2,3.. . 

labels different linearly independent trajectories). The simplest type of solution 

is of the form 

where Qoa! is a point (determined up to a scale factor) and ra! is a constant. Qoa! 

is an eigenvector of the transformation UA: . 

?YQOO! = UAtQocu) (VII. 9) 

and rcu is an eigenvalue. Since UA does not have to be a self-adjomt transformation, 

the eigenvalues ra! need not be real; also there may be trajectories Q,, behaving . 

as N(rJN, N2(rJN. etc., under special circumstances. Since UA is a transfor- 

mation on a space with an infinite number of dimensions, there will be an infinite 

set of basic solutions QNcz. These solutions divide into three possible categories. 

Those with Ir,l > 1 are called “unstable” trajectories; these trajectories move 

away from PC as one keeps applying the transformation TA. Those with lrcvl < 1 

are stable trajectories; the stable trajectories approach PC as one keeps applying 

TA. For example, the trajectory CA connecting Pu with PC is a stable trajectory; 

the trajectory CB is an unstable trajectory. There can also be ‘*neutra.l’r trajectories 
> , 

with Ircwl = 1, in special cases. 
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A crucial question is:bow many linearly independent unstable trajectories does 

UA have? The answer is one; the proof is as follows. There must be at least one 

basic unstable trajectory, for if all ‘the basic trajectories were stable then all 

linear combinations of the basic trajectories would also be stable, i.e., all solutions 

of Eq. (VII.6) would be Stable. But we know there are unstable solutions, namely, 

the trajectories CB for any 8BO (to be precise, the parts of these trajectories lying 

n8m PC). On the other hand, there cannot be more than one basic unstable tra- 

jectory. For if there were two linearly independent unstable trajectories, say QNl 

and QN2a then one could form a linear combination of these, say /31QNl + P2QN2, 

such that the 8 coordinate of /3,&i, + @2Q,, is 0. This means the 0 coordinate of 

(PC + PIQ,, + P,Q,,) is n/2. But now the 8 coordinate of PC +./$QNi + p2QN2 will 

be 7r/2 for all N because TA does not change 8 if 8 = n/2, But then the sequence 

of points PC + 8,QN1 + /3,QN2 must approach Pc as N - 00 using Theorems 8 - 10 of 

Section V. This means @iQN1 + @,Q,, is a stable trajectory. Then we could use 

BIQNl + P2QN2 as a basic trajectory instead of QN2 say, which leaves only one 

unstable trajectory. The trajectories CB for different 6B0 must all be multiples 

’ of the single unstable trajectory. This result has already been demonstrated in 

Section VI; cf D , Eqs. (VI. 12) and (VI,, 17) 0 

It will now be shown that the number of linearly ‘independent unstable trajec- 

tories of UA determines the number of free parameters in the renormalized 

Hamiltonian. In other words, the degree of nonuniqueness of the solution of the 

unrenormalized Hamiltonian is determined by the number of unstable solutions of 

the linearized transformation UA. 

To show this we must discuss what would have happened if UA had two or more 

linearly independent unstable trajectories * It will be shown that in this case the 

nonuniqueness of the solution of the unrenormalized Hamiltonian involves two or 
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more free parameters. To be precise, we show that one can construct sequences 

PN(M) such that 

1. Lim PM(M) = Pu 
M-co 

2. 

3. 

where the point PHN depends on k phenomenological parameters al.. . ak, k being 

the number of linearly independent unstable solutions of UAm Having shown that 

such sequences exist for any choice of the parameters ale. m ak it is clear that 

there is a k-parameter family of renormalized Hamiltonians, defined by the points 

pRN(al’ O. “k, for all N, all of which can be considered solutions of the single un- 

renormalized Hamiltonian P U’ . 
To prove the existence of the sequences PN(M), it is sufficient to consider the 

part of the sequence lying near PC9 say the points PN(M) with 

L<N<M-L 

where L is large but held fixed as M - 0 . So long as 

la. 

2a. 

Lim P 
M-cm 

M-L(M) = ‘UL (‘UL is the Ltb point on the trajectory CA) 

one can reconstruct the remainders of the sequences using TA or T;;’ and satisfy 

the original requirements. If L is large enough, PuL and PRL will be near PC 

and we can assume that 



Since PN(M) - PC satisfies the linearized equation, it must be a linear combination 

of the basic solutions for each M: 

(VII. 10) 

(Q depends on M-N rather than N, so that the index of Q increases as one applies 

UA.) The sequence PUN must also be a linear combination of the basic solutions: 

p~ = c 7, QN@ + PC (VII* 11) 
a 

Furthermore, since PUN - P. as N-w the coefficients’ r, must be zero for all 

unstable trajectories. Suppose, to be specific, that the unstable trajectories cor- 

respond to 1 5 a! 5 k and that the trajectories for cy 3 k are stable. Then r, = 0 

for Q! 5 k. The requirement that PMML(M)- PuL as M-W means that poL(M) must 

satisfy . 

(VII. 82) 

The requirement that PL(M) have a limit as M-a means that co P,(M) QMBLa! 

must have a limit for M-a. For the stable trajectories Q M-La! -0 as M-01) 

and since pa(M) - ya! which is finite, the stable trajectories drop out in this limit. 

Assume that the unstable trajectories have pure exponential form (Eq. (V&8); the 

author has not examined alternative forms in detail): Then the limit is 

ck cu=lPatM) tr,)“-L QOa’ For this to have a limit it is sufficient to have 

-M 
s,(M) = a&J (1 I a Sk) (VII.. 13) 

where the constants aar are arbitrary. Since Ir,l > 1 for a! 5 k, the constants 

P,(M) for a! <, k have the limit 0 as M- ~0 as required by Eq, (VU. 12). To complete 

the specification of a,(M), put 

(a ’ k) . (VII a 14) 



With this specification of a,(M), the points PN(M) satisfy the requirements la to 

3a. The limit PRL has the form 

k 
PRL=Pc+ c a Q (r )? 

a=l a OfJ! 01 
(VII. 15) 

which has k arbitrary constants, as was stated at the beginning. In fact the re- 

normalized points PHL (for sufficiently large L) are just a linear combination of the 

k unstable trajectories of UA, with the coefficients representing free parameters 

in the renormalized Hamiltonian. 

In fact the transformation UA has only one unstable trajectory, the renormalized 

Hamiltonian has only one free parameter and Eq. (VII. 15) reduces to Eq. (VI. 17) 

where the free parameter is a (which depends on 6Ho). It was also shown in Section 

VI that the eigenvalue of UA (rl in Eq. (VII. 15) or p-l in Eq. (VI. 17)) determines 

the scaling properties of the renormalized Hamiltonian at small distances. . 

AS a final comment one notes that the unrenormalized Hamiltonian could be 

chosen to be any point P with 8 = 7r/2; the renormalized Hamiltonians are independent 

of the choice of the unrenormalized Hamiltonian since the sequences P,(M) will in 

the limit of large M go from the unrenormalized point to PC and then along the un- 

stable trajectory to a renormalized point PRO. 

In summary, the renormalized Hamiltonian is determined by properties of the 

fixed point PC rather than of a particular unrenormalized Hamiltonian. The sequence 

of renormalized Hamiltonians PHN approaches P, as N--m ; for large N, PHN - PC 

must be a linear combination of the unstable trajectories leaving PC, and the different 

renormalized theories can be labelled by the coefficients aor relating P’ RN-pcto 
unstable trajectories. I think it is this relation of the renormalized theory to un- 

stable trajectories leaving a fixed point which is simple, to answer the question 

raised earlier. The coefficients acu are, I think, as close as one can get to being 

fundamental parameters in the theory. 
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B. Why Renormalization? 

In this part we shall try to understand what features of the model Hamiltonian 
i 

make renormalization necessary. The first step in the analysis will be to show 

that the transformation T is divergence free. Then the reason for the appearance 

of divergences in perturbation theory will be examined. 

The statement that the transformation T is divergence free means the following. 

Let H be a Hamiltonian in S. Let H* be T(H). Let H have a decomposition (J, &‘, 

N, 6 ,A+ Ck) and H’ have a decomposition (J’, &“,N-1, B’,#‘, CL). Then as discussed 

in Section V, if J, &‘, 8, & and Ck are held fixed while N varies, the quantities J’ , 

$ ‘, 8’, f& and CL are independent of N and cannot diverge for N--cm . Furthermore 

the transformation is continuous, that is if H and H” are two Hamiltonisns with 

transforms H’ and H”‘, then H’- HI” when H -H”. This continuity is uniform in N. 

To understand the significance of T being divergence-free, one can study the 

divergences that appear in ordinary perturbation theory and see that they arise 

despite the finiteness of T. Consider the unrenormalized cutoff Hamiltonian HM 

with a small bare coupling constant go and large cutoff M. Consider also the 

effective Hamiltonian HO(M) which describes the ground state and first few excited 

states of HMO That go is small means the angle BM(M) (also called BOM,as in 

Eq. (V. 87)) is small, and an expansion in go can easily be converted into an ex- 

pansion in BM(M). The effective Hamiltonian HO(M) is known if one knows three 

parameters Jo(M), .Y?~(M), and 8o(M) and the curve Q,(t) in SA. The curve &,(t) 

is well behaved for large M: as M -C.J it approaches the limit curve R(t). From 4 

Eq. (V. 104), Jo(M) is a simple function of Be(M). So any divergences in the low 

lying energy levels of HM as M -W must be due to divergences in &‘o(M) or eo(NI) 

as M-00. A divergence in go(M) affects only the ground state energy but not \ 

energy differences between the ground state and excited states. A divergence in 
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6,(M) means a divergence in differences of energy levels at least through the scale 

factor Jo(M). The divergence in (IO(M) can be identified as a coupling constant 

divergence while a divergence in cZ~(M) is a ground state energy divergence. 

To study the divergences in c$‘~(M) and Be(M) one uses Eqs. (V.91) and (V.92) 

of Section V. Let OM(M) be denoted BM; &‘M(M) is zero (we do not make an 

energy subtraction in HM). From the inequality (V. 31) one finds that for 8 
. 

small 

fL(8) = 8 - qLe3 (VII. 16) 

with qL N l/2. For L&m, vL approaches a limit q since f,(e) has a limit. To 

a first approximation one neglects the 8 3 term in Eq. (VII. 16); then one gets 

‘O(M) * e,. To a second approximation one replaces O3 by 6:; then Eq. (V.92) 

becomes: 

eNtw = ‘N+ltN1) - vM-Nek (VII. 17) 

which gives 

e,<Rii, = ‘M (VII. 18) 

For large M this becomes 

Be(M) z eM - Mq e; (VII. 19) 

and one has a divergence linear in M. This corresponds to a logarithmic divergence 

in the cutoff momentum (since the cutoff momentum is A M, . The energy cZ’~(M) is 

dominated by a contribution from JM(M): 

N AM (COS eMjl Tc' 'M(M) [ 1 (VII. 20) 

’ Since TCY -1 for any argument, go(M) is linearly divergent in the cutoff momentum. 

These are the divergences one expects. . 
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The divergence in go(M) is easy to understand, The ground state energy of 

HM gets contributions from each meson degree of freedom represented in HMO 
, 

The degree of freedom m contributes an energy of order Am for that is the energy 

scale for mesons in state em. The dominant energy is AM associated with mesons 

having the cutoff momentum. So cF~(M) is of order M A . In any case the divergence 

in so(M) as M-a arises because the scale factor JM(M) -00 as M -DC). This 

type of divergence occurs also in relativistic theories as mass renormalization. 

In some field theories the mass is linearly divergent. The cause of this is that 

when the cutoff is large the natural energy scale for self mass effects is the cutoff. 

Then one must let the bare mass in the Lagrangian be of order the cutoff and chosen 

very carefully so that all cutoff-dependent self masses cancel and the physical mass 

is much smaller than the cutoff. 

The coupling constant divergence in O,(M) is more subtle. There is no question 

of a cutoff dependent scale here; 6 is a dimensionless variable. The divergence is 

proportional to the number of degrees of freedom. It arises because the transfor- 

mation T must be iterated M times to give HO(M) starting from HMO These iterations 

define a sequence of constants eN(M). The difference between ON(M) a&l t)N+l(M) 

is finite for all N and small in perturbation theory. However, these differences 

add in going from BM to e,(M), hence the divergence. 

One sees from the above discussion that the divergences of perturbation theory 

derive from two causes. The linear divergence is due to the energy scale of the 

cutoff Hamiltonian HM being AM instead of the pion mass. The logarithmic 

divergence is due to the transformation T being iterated M times in going from BM 

to 6o(M.). The cause of the logarithmic divergence must be pursued further. Why 

was it necessary to compute Be(M) by an iterative process? Will an iterative 

method in which Oo(M) is calculated in M steps always make O,(M) divergent when 

M-00 ? 
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TO set up the discussion pretend that the details of the analysis of the model 

had been different from what was reported in Section V. Suppose that the cutoff 

energy AM had not, been crucial for the discussion of the model, but that still 

one defined a sequence of constants ON(M) in going from OM to Be(M). What might 

one expect in this case? Then when M and N are large one would expect that there 

could be no appreciable difference between e,(M) and 6N+l(M) for in both cases 

u-k the effective cutoff (AN or A 3 is large compared to the only important length. 

Most of the difference between 8 o(M) and 6 M would be due to the difference 

eo(hq - el(hq or e,pq - e2(aq; the differences e,(M) - eN++w for large N 

would go to zero and could not accumulate to make 6o(M) diverge for M-CQ . 

So the essential question is why the difference GIN(M) - 6N+l(M.) does not go to 

zero for large N, at least in perturbation theory. The answer lies in two features 

of the cutoff Hamiltonian HM and the effective Hamiltonians HN(M). The first iS 

that meson degrees of freedom of order N dominate the Hamiltonian HN(M) rather 

than meson degrees of freedom of order 1. As a result, the change from HN(M) 

to HN-l(M), which means eliminating the Nth degree of freedom, is a nontrivial 

change. Thus one can hardly expect eN-, (M) to be the same as ON(M) no matter 

bow large N is. If by contrast the meson degrees of freedom of order 1 had been 

the dominant degrees of freedom in HN(M) for large N, then dropping the Nth degree 

of freedom would have been a negligible change and 6N,l(M) would probably have 

been equal to @N(M). The second important feature is scale invariance. Scale 

invariance means that if the degrees of freedom of order 1 can be neglected (which 

is true for large N) then the process of going from HN(M) to HNB1(M) is indis- 

tinguishable from the process of going from HN,l(M) to HN,2(M.). In particular 

ifH N-1(M) differs from HN(M) only by a scale factor and an additive constant 
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then HNm2(M) differs from HNBl (M) only by the same scale factor and another 

additive constant. Now if ON(M) is small, N is large and M >>N, HNwl(M) does 

differ from HN(M) by little more than a scale factor and an additive constant. This 

is because HN(M) is defined by the constants JN(M), &N(M), BN(M) and the point 

QM-N(‘p$W) while HN,ltM) is defined by JN-lPQ 9 !N-l(M), 6N,l(M), ad 
QM-N+lt~~-lW)o If eNtw is small then eN-l(w e eNtw; since Q,(t) M R(t) 
when L is large, Q M&@)) * Q M-N+l(6N-l(M)) so only the scale factor JN(M) 

and constant gN(M) can differ appreciably from JNml(M) and bDN,,(M) . But under 

these circumstances the effect of the transformation T on HN(M) and HNM1(M) is 

essentially the same, except for the effect on the scale factors J and the constants 

&’ . This is scale invariance, and it means in particular that the difference 

eNm2(w - e,_,(Iq is the same as the difference e,_,(ivq - BN(M) when e,(M) is 

small; hence the divergence in Be(M) in perturbation theory is proportional to M 

rather than some other function of M. 

In conclusion, the fact that meson degrees of freedom of order the cutoff 

dominate the cutoff Hamiltonians makes renormalization inevitable. The divergence 

problem is not just an artifact of perturbation theory. Since the dominance of the 

degrees of freedom of order the cutoff is due to the energy of a meson increasing 

as its momentum increases, which is also true in relativistic theories, one expects 

that renormalization will be inevitable for strongly coupled relativistic theories too. 

We note also that not only does the transformation T determine basic properties of 

the renormalized theory, as shown in part A; it is also divergence free. Clearly 

one will want to try to define an analogous transformation for relativistic theories. 

C. Analogy to the Renormalization Theory of Gell-Mann and Low 

Gell-Mann and Low, in 1954, presented an analysis of the renormalization of 

Quantum Electrodynamics, and predicted that there would be an “eigenvalue 
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condition” for the bare coupling constant. 8 That is, the bare coupling constant e. 

would have to have a fixed value independent of the value of the renormalized 

coupling constant. To be precise, they predicted that there would be a function 

q(x) with the property that if e. is finite then e. is a root of the equation @(e> = 0. 

To show, this, Gell-Mann and Low of necessity bad to obtain ideas from perturbation 

theory and then extrapolate to the region of strong bare coupling constant. This 

involves several speculations, some of which will be criticized below. Nevertheless, 

the analysis of Ge&Matm and Low remains after 16 years the most sensible dis- 

cussion in the literature of nonperturbative renormalization theory for relativistic 

field theory. 

Here is a brief review of the C&11-Mann-Low theory: Let e be the physical 

(renormalized) electron charge and let m be the physical electron mass. Let 

dc(k2/m2, “2, be the renormalized photon propagator apart from a factor k 
-2 

. 

The customary normalization requirement for dc is assumed: 

dJO,e? = 1 (VII. 21) 

Gell-Mann and Low define a generalization of the usual renormalization procedure 

for electrodynamics, with a different definition of the renormalized charge. In the 

Gell-Mann-L& progra& the renormalized charge is a quantity eA depending on a 

subtraction point A. The photon propagator is (apart from the factor kW2) a function 

d(k2/h2, m2/h2, e$ with the normalization condition 

d(1, m2/h2, e2J = 1 

The propagator d is related to the usual propagator dc through the relation 

e2dctk2/m2,e5 = ei d(k2/h2, m2/x2, e$ 
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III particular, putting k2 = h2 gives 

8: = e2 d,Q2/m2, e 3 (VII. 24) 

which gives the definition of eA in terms of e. In the Gell-Man&Low program, all 
\ 

other amplitudes (electron propagator,vertex function, etc.) are functions of e A’ 
and all depend on the reference momentum A as well as m and various momenta. 

The subtraction procedure of Gell-Mann and Low is defined so that the bare coupling 

constant e. is the limit of e1 as A- 00. 

Gell-Mann and Low then argue that the function d(k2/h2, m2/h2, es has a 

finite limit when m--; 0 holding k2, h2, and ef fixed. This should also be true of 

other amplitudes. They give an example of this from fourth order perturbation 

theory, and then argue that it is true in general because the momentum k provides 

an infrared cutoff. Whether the finiteness assumption is true is still an open 

question; the author knows of no reason to doubt it, and it will be assumed to be 

correct in the following. 

If dJk2/m2, e2) is. expanded in powers of e2 for k2 large, the coefficients 

involve logarithms of k2/m2, so that the effective expansion parameter is e2Jn(k2/m2) 

not e2; this means that radiative corrections become important when ln(k2/m2) is 

sufficiently large, no matter bow small e is. In contrast, as Gell-Mann and Low 

make clear, the fact that d is independent of m2/h2 when m2/h2 is small mea.tw 

that the expansion of d(k2/h2, m2/A2, ef) in powers of ez involves no large loga- 

rithms if k and A are simultaneously large so that k2/h2 is of order 1. In fact, in 

this case the coefficients of eA, eA, 2 4 etc. are of order 1 no matter bow large k and 

h are. 

To compute e. from Eq. (VII. 24) directly would be difficult since for any 

e the radiative corrections to dc(A2/m2, e2) are infinite in the limit x-00 ,, So . 
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Gell-Mann and Low develop an indirect procedure which requires knowing only 

d(k2/A2, 0, es for k2 near A~. The radiative corrections to d will be important 

because, as will be seen, one will have to consider coupling constants eA of order 

1. But unless one must consider the limit eA-a, the radiative corrections will 

be finite. The trick of Gell-Mann and Low is to observe that one can use the 

function d to set up an equation for deA/dA. From Eq. (VU.23) one finds that, for 

anyh@W 

ef d(k2/h2, m2/h2, 83 = e!$ d(k2/h12, m2/ht2, ef,) (VH. 25) 

Putting k=A’ gives 

If h and A’ are both much larger than m one can neglect the m dependence. Differ- 

entiating with respect to A* and then putting A’=A and approximating m/A by 0 gives 

where 

W) =;yx 
Bd(y,O,x] 

.dY I 
(VII. 28) 

y=l 

The function $J(x) has a power series expansion in x for small x with finite coef- 

ficients; Gell-Mann and Low assume it has a well-defined extrapolation to values 

of x of order 1. To compute the limit of eA for A -00 one must solve the differ- 

ential equation (VII. 27). zf de /dx does not go to zero for finite e 
h 

A, then necessarily 

an infinite increase in A will give an infinite increase in e h. So the only way eA can 

stay finite as A --cm is for (Cl(e2) to have a zero. 
A 

If t&x) has a zero at x=x0 and is 

positive for x < x0 (q is positive for small x from perturbation theory) then the 

solution ef of Eq. (VII. 27) will be an increasing function of A with the limit x0 as 
. 

A-= (assuming et < x0 when A is of order m, as it will be if e is small). 
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If $(xX) has a zero at x0 then the function ei will have the limit x0 as A- oo 

for any value of e sufficiently small. This demonstrates the main result of 

Gell-Mann andLow: the bare coupling constant e. is independent of the physical 

coupling constant e, at least over some finite range for e. Even if G(x) does not 

have a zero, the solution eh will have the limit 00 for h - 00 independently of the 

value of e: the bare coupling constant is again independent of the physical coupling 

constant. 
w 

(This is true only for certain forms of the function q(x). If the integral 

1 dx/+(x) is finite then eA-m for some finite value of I, and the theory becomes 

nonsense for larger values of A. This leads to contradictions discussed below.) 

Thus Gell-Mann and Low predicted for electrodynamics the result that one 

unrenormalized Ugrangian would have an infinite number of solutions. This is 

exactly the result that was proved for the model in part A of this section. 

The differential equation (VII. 27) can be regarded as analogous to the trans- 

formation equations 

pRN = TA(PRN& (VH.29) 

which is involved in the definition of the renormalized Hamiltonian of the model. 

Equation (VII.27) tells how a coupling constant eA changes as A changes, while 

Eq. (VII. 29) tells how an infinite set of coupling constants change as N changes p 

One can think of the function JI as defining an infinitesimal transformation on a 

one dimensional coupling constant space S In the limit A-W, eh goes to a fixed 

point of the transformation defined by $I (if e(ei) = 0, then for eh = eoS deA/dh = 0: 

thus e. is a fixed point). This is analogous to the result that the limit of PRN 

as N-a is a fixed point of TA. Thus Gell-Mann and Low discovered the idea 

that a fixed point of a transformation is important in renormalization. There are 

differences between Gell-Mann and Low’s fixed point eO and the fixed point PC’ 
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these differences will be emphasized below e These differences do not alter the 

fact that Gell-Mann and Low discovered the essential idea of a fixed point, Since 

they discovered the idea in the context of relativistic field theory, this is encourage- 

ment to believe that the analysis of the fixed point in the model is relevant to rela- 

tivistic field theory and not just a consequence of the many simplifications which 

were made in defining the model. 

There are two basic differences between the transformation TA defined for the 

model and the transformation +!J of electrodynamics. First, the function e can 

only be computed after electrodynamics has been solved, whether by a perturbation 

expansion or whatever. This is because $J is defined in terms of the renormalized 

propagator which is itself part of the solution of electrodynamic-s. In particular if 

electrodynamics does not have a solution except as a perturbation expansion then 

the $J function will not exist for strong coupling. In contrast the transformation 

TA is defined before one knows whether the model has a solution. In the model of 

this paper the renormalized theory exists; but there are other models for which 

there is no renormalized theory (except one with no coupling) o A particular example 

is a derivative of the Lee model constructed by analogy with the model of this paper. 

An earlier version of such a model was described in a previous paper7 and from the 

analysis given there it is easy to see what happens in the truncated Lee model. One 

defines a transformation analogous to TA, and uses it to construct curves analogous 

to Q,(t). However these curves do not exist over the full range 0 5 t I 7r/2 but 

rather over a range 0 r t I tL where the constants t L form a decreasing sequence 

with the limit 0 as L -00. The reason for this is that if a Hamiltonian has com- 

ponent 0, the Lee model transformation takes 8 into 0 ’ where 6 9 4: 6 for any 

0 2 0 including 6 = 7r/2. This means also that the Lee model TA has no fixed point 

analogous to P c. This analysis assumes that one does not permit complex coupling 
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constants, as would be necessary if one wants to obtain nontrivial renormalized 

solutions, Since every time one considers a new theory the existence of a fixed 

point of the corresponding transformation TA is in doubt, and since renormaliz- 

ability depends on there being such a fixed point (at least for the two examples 

considered; a general analysis of renormalization theory indicates renormalization 

could be possible for some types of transformations without fixed points) it is 

important that TA be defined without reference to the renormalized theory. 

The second difference between $ and TA is that $ acts on a one-dimensional 

space, while T A acts on an infinite dimensional space. In order to formulate the 

transformation $ as a transformation on one variable one has to know that the 

renormalized theory depends on only one phenomenological parameter. For 

example, in pseudoscalar meson theory &here there are two phenomenological 

parameters, one must replace J/ by a transformation on a two-dimensional space. 

But the lesson of the model of this paper is that the number of phenomenological 

parameters is not known until one has found the fixed point of TA and determined 

the number of unstable solutions of TA near the fixed point. The fact that TA is 

a transformation on an infinite set of coupling constants means one is not committed 

in advance to a particular number of phenomenological constants D Furthermore 

one is not restricted to theories with interactions which are renormalizable. As 

long as TA is a transformation on the space of all possible couplings, renormaliz- 

able or not, the customary reason for considering only renormalizable interactions 

becomes irrelevant. The customary reason is that nonrenormalizable interactions 

require an infinite set of counter terms to be renormalized; but now these counter 

terms are all present anyways in the phenomenological Hamiltonians (or Ugrangians, 

perhaps). So if the renormalization theory of the model can be generalized to 

relativistic field theory there is hope to study pure quark models or the Fermi 
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interaction, although there is no guarantee that the corresponding transformations 

will have fixed points, 
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APPENDIX A 

It is proven here that an iterative solution to Eq. (IV. 9) exists and that 

l+ R’ - R has an inverse provided that 

II II HI < .2kLE (A* 1) 

where AE is the energy difference between the ground states and first excited state 

of Ho. Define a sequence of operators 

R. = 0 (A* 2) 

Then 

Rn = (1-P) (E. -Ho j1 (1 -P -Rnml) HI(P + RnWl) (n ’ 0) (A4 

R= Lim Rn (A.3 
n-m 

To prove the existence of the limit the following equation is useful 

R n-k1 - % = (1-p) (E. -Ho,-l (V-P-R,) HI <R,-R,,1) - (Bn-Rnwl) HI (pfRnwl)} 

Now it is shown that 

llRnll < O4 
Proof: This is true for n=O. Suppose it is true for n-l. Now 

(A4 

II(l-P) (Eo-HOjl (1-P)]l= AR-l (A. 7) 

II l-PI1 = 1 (A* 8) 

IlPll = 1 (A. 9) 
and R n-1 = (1-P) Rn-1 from Eq. (A. 3). So 

(1.4) (.2 AE) (1.4) < .4 (A. 10) 
Q.E.D. 
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Likewise one can show that 

Hence from the Cauchy criterion, R exists. It is easily shown that R satisfies 

Eq. (IV. 9). The bound (A. 6) implies that 

lb’ -Rll X.8 

which means the inverse of 1 -k R” - R exists as a power series in R’ - R. 

(A. 11) 

(A. 12) 
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APPENDIX B 

In this appendix the transformation T will be defined in detail. It will be shown 

that T has the form of Eqs. (V, 16) - (V. 19). Then Theorems l-4 of Section V will 

be proven. The only assumption made in this appendix is that A > 4 x P06* 

The first problem is to define T. Let B be a Mamiltonian in S. Let H have 

the decomposition (J, 8, N, PA) where PA E SAW Let PA have the decomposition 

(8 , &$ Ck). Let H = Ho + HI with Ho given by Eq. (V. 14). Define Heff using 

Eq. (IV. 29). To define T we must specify the decomposition of Reti. The de- 

composition of Heff must be defined because it is not unique, as was pointed out in 

Section V. This nonuniqueness means that one must often prove properties for 

the decomposition of an operator which are obvious or already established for the 

operator itself. To define this decomposition we will write out in detail the steps 

leading to Heff, and specify the decomposition of each of the operators arising in 

the calculation. The operator HI. has the form HI 7 JtiI with 

where 

=,Ak (k ’ Q) (B. 31 

and m = cos 0, g = (l/ d2) sin 8, The equations which define H 
eff are as follows 

(including the iterative definitions of R and (l+ R+Rj112) : 

R* = 0 (B.4) . 

Rn = PO -Hojl (l-P-Rn-lf HI@‘+Rn-l) (B. 5) 
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R= Lim Rn 
n-m 

Q, = 0 
, 

Qn = l/2 (R+R - Qz_,) 

Q = Lim Qn 
n-m 

ijo = 0 (B. 10) 

Qn = -Q - Qa,-, (B. 11) 

Q = Lim & (B. 12) 
n-a n 

H eff = W-Q) IfI.(P+R) (P+Q) + PEO (B. 13) 

In these formulae P is the projection operator onto the two ground states of Ho, 

(P+Q) is (1+R+R)l’2 P and17 (P+@ is P(l+R+R) -l/2 ) and E. is the ground state 

energy of Ho. 

(B* 6) 

A particular form for xx has been given in Eq. (B. 1). The operators 13k and 

Ck will be called the decomposition of JiIO Analogous decompositions will now be 

defined for Rn, etc. The equations (B. 4) - (B. 13) involve three basic operations: 

multiplication of HI, Rn, etc. with themselves, multiplication with P or with 

fEO - Ho)-? So it is sufficient to define the decomposition of any of these products. 

Let X be an operator with decomposition Q k, Fk) say. Then PX has the obvious 

decomposition (Pgk, PFk), and analogously for (E. - Ho)-1 X. This is a legitimate 

decomposition since the only requirement on a decomposition (D,,, Fk) is that &)k 

and Fk do not involve meson operators numbered above k (no upper bounds on 

gk and Fk will be imposed now). Since P and (E. - Ho) -1 act in the space of A 

nucleons and O-mesons (meson operators numbered 0), this restriction is satisfied 
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by PIIk and PF k , or (E 0 - HO)-1 I.Jk and (E. - Ho)-1 Fk. Now let Y be another 

operator with decomposition (hk, Ck). One must define a decomposition (C&, Lk) 

for the product XY. The decomposition is as follows: 

$0 = F*h() + i!iz*co 

For k 2 1: 

Lo = F6C0 

+ 

(B. 14) 

(B. 15) 

(B. 16) 

(B. 17) 

‘En is defined by Eqs. (V. 4) - (V. 6). It is clear from these formulae that (Sk and 

Lk do not involve meson operators numbered above k. With some straightforward 

algebra one can verify that the operator product XY is given by 

N N 
xy= c &$k-l+C Lk 

k=l k=O 
(B. 18) 
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It can be shown that the decomposition is associative, i.e., a triple product 

(XY)% has the same decomposition as X(UZ). 

With the rules specified above &d Eqs. (B. 1) - (B. 13) s the decomposition of 

(‘e ff - EOP) is uniquely defined. Note that the number of degrees of freedom N 

nowhere enters into the calculation of Sk and Lk. So if the operators Ek and Ck 

in the decomposition of %‘I are defined for all k and are independent of N, then - 

the decompositions of R n , etc. (including Heff) will also be defined for all k and 

independent of N. It will be presumed from now on that decompositions are defined 

and computed for all k. Note also that HI, Ho, and E. are all proportional 

to J. This makes Rn, Q,, etc. independent of J and Heff proportional to J. To 

be specific, Heff has the form 

N 
H + 

where Gk and Lk depend on r* and meson operators numbered 0 to k. 

Since Heff acts within the subspace projected by P, the dependence of H eff 
on the O-meson operators (ao, etc.) and r* can be reduced to a dependence on 

ril the raising and lowering operators for the ground states of Ho. When this 

is done, Gk and Lk depend only on rR and meson operators numbered 1 to k. To 

put Heff in a form in which it can be contained in the space S, one must renumber 

the mesonoperators 1-N to run from 0 to N-l, e.g,, al-sop a2- al, etc. 

Also one replaces ri by T&. -1 Under this renumbering, yk becomes A Ykml; 

H * eff ls 

i 

N-l N 
H eff = EO + J A-l c 

k=O 

(B. 19) 

(B. 20) 

where Sk and Lk depend on T* and meson operators numbered 0 to k-l, PEO is 

replaced by E. because there is no longer any possible reference to states outside 

the subspace projected by P B 
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Now consider 90 and Lo. They involve no meson operators; they can be ex- 

pressed purely in terms of rf. Furthermore Q. and LO satisfy the appropriate 

hermiticity, charge conservation, charge conjugation, and time reversal require- 

ments, because these requirements are preserved by the equations defining the 

decomposition of Heff, These requirements force LO to be a real constant and 

go to have the form 

G = (m”, J2 gtr T+, 42 g” 7-1 -0 (B. 21) 

where m” and g’* are real constants. 

It is now easy to define a decomposition of Heff in the space S. Denote the 

decomposition ( J9, C? 9 , N’ , Pi) with Pi having the decomposition ( 6’) */& CL) e 

Comparison of Eq. (B. 20) with Eqs. (V. 1)) (V. 2), (V. 8)) and (V. 9) leads to the 

following formulae 

J9 = 1i-l J (,tf2 + 2g"2)1/2 (B. 22) 

,f.f9 = EO + JLo (B. 23) 

N’ = N-l (B. 24) 

0 9 = tan-l ( J2 gr’/mtt) (B.25) 

$ = (mtt2 + 2gtt2j1’2 gk+l 

CL = A(m1’2 2 -l/2 + 2g” ) Lk+l 

The quantities m”, g”, Lo, Gk, and Lk depend only on P Ap not on J, &‘, or N. 

Hence, Eq. (B. 22) has the form of Eq. (V. 17) with TB(PA) = (mrr2 f 2g” 2 l/2 
) . 

Also Eqs. (B. 25) - (B. 2’7) define the transformation TA(PA) of Eq. (V. 19). 

Finally, the ground state energy of Ho (defined by Eq. (V. 14)) is 

EO= 8-J 
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(of Table I). Hence 8”’ has the form of Eq. (V. 18) with 

(33.29) 

The next problem is to prove Theorems 1 - 4 of Section V. The proofs involve 

a very large number of upper bounds, and are quite complex. To guard against 

subtle errors, all bounds have been obtained as explicit numbers multiplying 

powers of A. In principle’, it would have been sufficient to know that bounds 

existed in the form of unknown sufficiently large numbers multiplying known powers 

of A. In addition the use of numbers saves symbols. In the following < means 

only lb (the equality need not be realized). These proofs are crucial to the re- 

normalization of the model of this paper; they are condemned to an appendix 

because they are special to the model whereas the analysis of Section V is of more 

general interest. 

To start with, one needs an upper bound for the decomposition of the product 

XY given bounds on X and Y. Let X and Y have decompositions (I),$ Fk) and 

(fik, Ck) as before. It is convenient to define an abstract bound for X. This 

bound will consist of three numbers (d, e, f) . By definition, X has a bound (d, e, f) 

if 

@ 2 1) 

(k 1. 1) 
(B. 30) 

where IlQ,ll is a vector with components {[Doll\ , {IDo21i, IIDo311, llDoll[ being 

the ordinary operator bound. Also fn, is the vector (m, $2 g, 42 g), and m and 

g are as defined before. 

- 94 - 



Suppose X has a bound (d, e, f) and Y has a bound (a, b, c). Then it can be 

shown that XY has a bound (g, h, Q ,18 with 

g = A-l (af + dc) (B. 31) 

h=5ad+AW’(bf+ec+&6(ae+bd))+ A-“(14be) (B. 32) 

B = cf A.-l (B. 33) 

(These bounds were computed assuming only that A > 21.) A brief summary of 

the proof of these bounds is as follows. The operators Tki have bounds 

(B. 34) 

(This is proved by a str~ghtforw~d calculation.) Next one puts bounds on the 

sums c”,=, lITnIl ’ xT=() ll9nll’ etc. (which are also bounds for finite sums such 

as Ci=, II&J 1. me gets 

ll~nll =; i+ (I- A- -l 51.05 A-l L 

where A is the vector ( 1, 1, 1). Also 

IlknIl ’ 2’ + SJb ‘-’ (I- A-')-'_< z(a+ 1.05 A-lb) 

using the definition of the bound (a, b, c). Similar formulae can be obtained for 

sums Of llCnll’ IIE,II ’ and ilF~ll * Now one constructs upper bounds for all the 

terms in Eqs; (B. 14) - (B. 17) for C+,, Lo, G+ and Lk. For example, one term 

inG is *k 

!I II 

00 

!?k x,‘b’m 5 II&II 

(B. 35) 

5 se Awk (1.05 11-l) &* 2 (a+ 1.05 Aylb) (B. 37) * 
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Now 2 l 2 = m + 2 J2g. An upper bound on m + 2 J2g results from 

(m+ 2 J2g)2 - 5 (m2 + 2g 2, =-(2m4gf< 0 

Because m2 + 2g2 = 1 (normalization condition), one gets the bound’ 

(B. 38) 

Hence 

&s&5 (B. 39) 

II 
S $ AwkB1 (1.05 (5) (ae + 1.05 11-l be) (B.40) 

Similarly one finds bounds for all terms in Eqs. (B. 14) - (B. 1’7); the result is 

that (g, h, p) given by Eqs. (B. 31) - (B. 33) is an upper bound for the product XY. 

It is convenient to introduce a shorthand for Eqs. (B. 31) - (B. 33) : we define the 

“product” (a, b, c) (d, e, f) to be the quantities (g, h, 1) given by Eqs. (B.31) - 

(B. 33). This product can be shown to be associative and commutative so algebraic 

expressions involving these products can be manipulated using ordinary aIgebra. 

This simplifies the calculations. 

Using the bound quoted above for products, one can construct a set of upper 

bounds for the operators Rn, Q,, etc, These bounds are listed in Table IV. They 

are not least upper bounds. The operator a in Table IV is defined in terms of 

H eff=PEO+JPIv$xlP+Jii (B.41) 

where Heff is the effective Hamiltonian as of Eqs. (B. 13) and (B. 19) before re- 

numbering the meson operators, and M is yr) 

f$ = (m, J2g T+, J2 g r-) (B. 42) 

. 
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The operator .YfJ in Table IV is defined by 

so that 

(B.43) 

(B. 44) 

The proofs of the bounds of Table IV are mostly straightforward and only examples 

of the proofs will be given here. In some cases the bounds of Table IV are gross 

overestimates of the bounds one calculates in the proofs quoted below. 

The bounds on $tJ and JZ’I are simple consequences of the definition of the 

space S, in particular the bounds (V. 10) - (V. 13). In computing the bound on 

XI one also uses the inequality g2 < l/2 which follows from the definition (V. 9) 

of g (also,one uses A > 200). 

. In proving the bound on R n, it is convenient to eliminate the factor J by 

defining 

HO =Eo+ JXo, (B. 45) 

Now write the equation for R- as 
11 

Rn = (-qojl (1 -P) $$ l y1 P 

+ (-=/eoi-l (1 -P) NJP - Rn-1 &?IP + c?iiIRn-l - RnmlXI Rnol 

The proof of the bound on Rn is by induction. It is true of R9. Assume it is true 

of Rn 1. To bound the first term of Eq. (B. 46) one needs the following bounds: 

II(-=/eojl (i-p)11 = i 

(B. 46) 

tB.47) 

H<l-P) 7+ PII = ll(l-P) 7- PII = g (B. 48) 
. 
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These bounds can be obtained by explicit calculation using Table I. With this 

information one finds that (- g(O)-’ (1 - P) &I l x1 P has a bound (g, 0, 0). The 
lH 

second term in Eq. (B.46) can be bounded using the bound liPl( = 1, Eq. (B.47), 

and the bounds of Table IV for Ye,, Rn-I, and =/e,. Schematically *one has 

IRnI s (g, 0, ‘0) +IgtJf + 2IRn-,II~8Il+I<~l IR, .Il2 (B.49) 

where Ix’,~ means 200 g2 (n-l, A--l, 1)) etc. After calculating the products 

explicitly using Eqs. (B. 31) - (B. 33)) one finds that this expression is less than 

the bound of Table IV for lRi.1. Hence the bound of Table IV for Rn holds for all 

n, by induction. The same bound holds for R because R is the limit of Rn 

for n-00. 

The bound on Rn - Rnml is also proven by induction. The bound on R 1-Ro 
is true because it is larger than the bound of Table IV for Rle Then one computes 

a bound on Rn+l - Rni given the bound for Rn - Rnml and using Eq. (A. 5) of 

Appendix A. Since the bound for /Rn -Rn-Il goes to zero as n-00, the decomposi- 

tion of Rn approaches a limit for n-a0 ; the limit defines a decomposition for R. 

To get a bound for E, one writes I 

(B. 50) 

and sums the bounds of each term; 

Now one can get bounds on rn’l and g”. Let E have a decomposition (D wk’ Fk)* 
Comparing Eq. (B. 41) with Eq. (B. 19)) one gets 

0 w~=pP+90 (B.51) 

G Mk =& tk ’ 0) (B. 52) 
. 

% = Fk (all k) (B. 53) 
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Explicit calculation using Table I gives 

P3.P = ( m, J2 g(l-g2) ~;t,, 42 g(l-g2) T; 

From Table IV, Q. has the bound (remember A > 4 x 106) 

(B. 54) 

IllJo 11 <, 5 g2 x 25000 -1 A I .01gg2 (B. 55) 

The bound on go is a bound on the difference go - Pl$P. so can be expressed in 

terms of mrt and gll (Eq. (B.21); for T* in Eq. (B.21) read rg since in the present 

analysis we have not yet substituted 7* for 7;). Using Eqs. (B.21), (B.54), (B.51), 

and (B.55), one gets the bounds 

lm” -ml I .01mg2 (Be 56) 

I,” - g (l-&l S .Ol g3 (B* 57) 

From these bounds one gets bounds on tan 8’ (Eq. (B. 25)) 
. - 

:(&g/m) (l-1.01g2) (l+.01g2)W1 5 tan 8’ 5 (JZg/m) (l-.9982) (1-.01g2)-l (B. 58) 

Using the bound g2 <, l/2, one can simplify these bounds; inserting xk? g = sin 6, 

and m = cos &J, one gets 

tan 6 (l- ,51 sin’ 6) L tan 9’ 5 tan 8 (l-.48 sin’ 0) 

To complete the proof of Theorem 2, one notes that (cf.Eq, (B. 29)) 

(B. 59) 

Tc (PA>, = -1 + Lo = -1-k F. (B. 60) 

From the bound on B, F. is less than 210 g2 A -1 which is less than .Ol. Hence 

one obtains Eq. (V. 30). 



To prove Theorem 1, one must have bounds for 11 &i, 11 and Cfs in terms of m’ and 

g’. One has bounds for l/Qkll and [ILkI in terms of m and g (from Table IV and 

Eqs. (B. 52) and (B. 53)): 

II&II 1. $ g2 x 4o 
-k 

A (k ,r 1) (B. 61) 

I}Lkll < g2 x 40 
-2k 

A (k 1 1) (B. 62) 

From Eq. (B. 59) one has 6’ < 6 , and therefore m < m’ . To get a bound on g in 

terms of g’, one uses Eq. (B. 59). Let 

(1 - .51 sina ej2 =1-p 

Then 

2 2 
g id = sin2 e/sin2 9’ = sina e i + (tan2 it+ I 

5 sin2 e 1 + ~0s’ 8 (l-@-l (sin2 
1’ 6)-l I 

(B. 63) 

(B. 64) 

= 1-k (i-sin2 e) p(i-pjl 

The maximum value of 6 occurs for sin 6 = 1 and is less than .8. Except for 

very small 6, 1 -B is larger than 1 - sin2 8 making g2/gt2 less than l+ p. Hence 

g21 1.8 gt2 (B. 65) 

Hence 

s S (1.8) 112 
2’ (B. 66) 

(the inequality is true for each component of’the two vectors). A.lso, from Eqs. 

(B.56) and (B.57) and m2 -t 2 g2 = 1 one gets a minimum value for mtr2 + 2 gft2, 
9 which in turn gives a bound 

(mtf2 + 2 g” 2 -l/2 ) < 2.03 , (B. 67) 
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The bounds (B. 61)) (B. 62)) (B. 66)) and (B. 67)) substituted in Eqs. (B. 26) and 

(B. 27)) lead to the bounds 

I&l I 200 I$ gr2 irk-l 

lC&l 5 200 gf2 A-2k-1 

To complete the proof of Theorem 1, one must ,show that &k and Ci satisfy 

hermiticity requirements and symmetry requirements with respect to charge 

(B. 68) 

(B. 69) 

conservation, charge conjugation and time reversal. The symmetry requirements 

are easily established since all the intermediate operators Rn, etc., have the 

same symmetries as H. One easily verifies that if X and Y are operators whose 

decompositions obey the symmetry requirements then the product XY has a de- 

composition obeying the symmetry requirements. The rest of the proof of 

symmetry is omitted. Hermiticity is more complicated because Rn and R are not 

hermitian, and one must use Eq. (IV.‘3) instead of Eq. (IV. 19) to show that Heff 

is hermitian. However a proof can still be constructed that A& and Ck satisfy the 

hermiticity requirements of SAe The basic result needed for the proof is that if 

XY has a decomposition (ek, LQ then Y+X+ has the hermitian conjugate de- 

composition (Gkl+ GL1, Gk2- G+k3, Gk3 - G12, Lk- Li) a The proof is omitted. 

Now Theorem 3 will be proven. If an operator X has a decomposition (gk, Ck), 

we will call the Akl the “l-components” of X. 

Note the following. Let operators X and Y have the decompositions (I),, Fk) 

and (&k, Ck) respectively. Let Akl vanish for all k and Dkl vanish for k P 0, and 

let Do1 be a c-number. Let the product XY have decomposition (Sk, Lk). Then 

from Eqs. (B. 14) and (B. 16), 

G01 = D01 co 

C k m=O wk l Am +f T 
I (k ’ 0) 

(B. 70) 

(B. 71)’ 
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Exactly the same formulae for Go1 and Gkl result from decomposing the com- 

muted product YX. This means that the commutator [X, Y] has no l-components 

in its decomposition. 

I 

If Do1 is zero also then XY has no l-components. Now consider Theorem 3. 

Let the l-components of HJ vanish. We prove by induction that Rn has no l- 

components. This is obviously true of Ro. Assume it is true of Rnml. Consider 

Eq. (B. 5). The operator (1-P) HIP has no l-components because 

(1-P) HIP=(l-P)l$&P+(l-P)HJP ; (B. 72) 

HJ has no l-components by assumption and (1 - P) MIP = (1 - P) mP 

vanishes. The product Rnwl HIRn 1 can be written Rnsl PI-II (1 - P) Rn 1 

‘So iS a product of terms none of which contain l-component. So this 

product has no l-components. The remaining term in Rn can be written 

(E. -Ho)-’ (1 -P) [III8 ~~-1) P. The operators i = HI, Y = Rnel satisfy the con- 

ditions noted above so the commutator H 
[ I’ 

R 
n-l] has no l-components. Hence 

Rn has no l-components. It follows that R has no l-components, nor do Q and 

G. Now consider Heff (Eq. (B. 13)). Using the fact that Q = QP, q = P.&, 

R = (1 - P) R, and that PHI (1 - P) has no l-components, one sees that the l- 

components of Heff are contained in (PI-Q) PHI (P-t G). This can be written 

PH++@ + PI-$& W-a) + [Q, P5-j @‘+a) 

The commutator has no l-components by the argument noted above. The other 

terms can be written 

PHI (P-tQ) (P+&) = PHI P (B. 73) 

since (P + Q) (P + q) is P. This means that the orily l-component in Heff comes 

from P$ l V1 P. This means that in Eq. (B. 20), Go1 is m and Gkl vanishes for ’ 

k ,> 1. This means that mrr = m and AL1 = 0, which is Theorem 3. 
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Finally Theorem 4 will be proven. This requires that two Hamiltonians, say 

H and HA, be compared. Let H and HA both be elements of S. Then for each of 

the operators ,^/e, gflJ, Rn , etc., associated with H, there is a corresponding 

operator (%‘U, xJA, RAn, etc.) associated with HA. The decomposition of 

sJ is t&k, Ck); the decomposition of l WJA is (&, CkA). One has 

where 

. aeI = g . p1 + 3eJ (B. 74) 

(B. 75) 

$$ = (m, $2 g T+, -42 g T-) (B. 76) 

M *A = tmAs J2 gA T+, $2 gA Tj (B. 77) 

m2 + 2g2 =mi+2gi=l 

The assumptions of Theorem 4 are that 

lk& - iJkII <, d2 u, Kk-’ 

Ilc, - c,ll <, d2 A-2k-1 

(all k) 

(all k) 

(B. 78) 

(B. 79) 

(B. 80) 

(B. 81) 

where u, is the vector (l/ (2) (1, 1, 1). The objective is to obtain bounds on 

mA-rn’, g’ A-g’s W$A-& and CL-C&, all in terms of dl and d2. The bounds 

will be computed by the same techniques as in the proofs of Theorems 1 and 2. 

One change is that in defining the bound (a, b , c) of an operator X the vector &is 

substituted in Eq. (B. 30) for 3. From Eq. (B. 78) it follows that s s d2 LI, 
. 

m +A I 42 9, which means a bound (a, b, c) from Table IV (which.implies the use 
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of the vector 9) can be changed into a bound using the vector u, simply by the 

replacement a - 42 a, b - 42 b, C-C. The bounds for XI, etc., expressed in 

terms of y , also bound Xti, etc. 

A problem arises in comparing Ah with Ak. As part of the definition of 

h ’ one took (Jk+l and replaced T+ R by T+. The operator 7+R is an operator in the 

full Hilbert space of mesons labelled 0 -k and the nucleons, although it is non-zero 

only in the subspace of the.ground states (P) and IN) of Ho plus mesons labelled 

1 to k. The operator r+ acts in a separate space isomorphic to this subspace. 

Now when the operators bkA are calculated one starts from $k+lA expressed in 

terms of operators 7; which are different from T i. This is because TL are 

raising and lowering operators for a different pair of states IPA) and INA) 

namely the ground states of HOA. However in Ak and A;I,A the same operators 

T* appear. Thus it will simplify matters to make a unitary transformation on 

gk+lA which takes T 
iA into T G; after this has been done one can make compari- 

sons in the full space of 0 - N mesons plus nucleons instead of the separate space 

involving T’ plus 1 - N mesons. Let the unitary transformation be UA. One wants 

UA to take eigenstates of HOA into eigenstates of HA. In particular if PA projects 

the ground states of HOA, one wants 

. (B. 82) 
Then one replaces C&A by UA C& UA before comparing with Sk, and likewise 

for LkA. 

One can take Eqs. (B. 4) to (B. 13), replace Rn by RAn, etc. , and. then trans- 

form them all by UAa l UA. Note that reoA and X0 (cf. Eq. (B.45) have the same 

eigenvalues (0, 1, and 2) (cf. Table I) so UAVY80A UA = gee. From now on let RAn 

stand for what’was UA Ran UA, and likewise for RA, QAn,’ Q,, B,, &,, BA 
. 
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(cf. Eq. (B. 41)) and HAeff. However, l Yea and S’JA will still be the untransformed 

operators; denote Ul XT UA by=YCz and Ui J’A UA by.YPiA . The equations for 

RAny Q,, etc. are now obtained from Eqs. (B. 4) - (B. 13) by replacing HI by 

S?‘z and by inserting an overall scale factor JA intheformula for HAeti. 

Now define the following differences 

tiJa 
= &‘l 

JA - %J 

M -a =I&‘-IVJ 

Ran = RAn - Rn , etc. (B. 83) 

where 

One can write equations for the differences R,, etc. , as follows; . 

R =0 a0 (B. 85) 

Q, = (l/2) { Ri Ra + Ri R - QAn-l Qan-l - Q m-1 Qn-,) (n ' 0) 

8, = - &a - QA Qan-1 - Qa Qn-1 . 

(B* 87) 

(B. 88) 
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‘a = I? 3iJa P + &A y$Ia (P+ RA) (P+ aA) + Qa .Yz’I (P+ RA) (P+ aA) 

(B.89) ’ 

Knowing upper bounds for FaI one easily obtains upper bounds for Ui C& UA -gk 
I 

and K%A~A%)* 

The first step in deriving upper bounds is to get upper bounds for geJa and 

IvJa. One has 

-ms ‘h2 gA ‘1 ‘+vA- hT+, $+-uA- d&T-) (&go) 

Write UA = 1 + VA; then 

(B. 91) 

So one needs a bound for VA. The operator UA is 

uA = n=l In>A +’ 2 (B, 92) 

where 1 n> (1 I n <, 8) are the eigenstates of Ho and In>A are the eigenstates of 

HOA, These are known explicitly from Table I. An upper bound for l/vAj12 is 

obtained by computing the trace of VAVA. The trace is 

Tr ViVA 2- <dnA> - <nAt n> 
I 

(B, 93) 

In fact one can compute the trace separately for states of a given charge; the 

maximum of these traces is still greater than llvAll 2. The traces are 

charge = 2 or -1: TrVAVA=O (B. 94). 

charge = 0 or 1: TrVAVA=2((m-mA)2+2(g-gA)2] 
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The latter result was obtained using Table I and Eq. (B. 78). From this it follows 

that 

Also Im-mA/ and &(g-gAI are less than dl (from Eq. (B. 79)); J2 g and 42 gA 

are less than 1; and /lU,l) = 1. Using these resu,lts in Eq. (B. 90) gives 

II gall < 5.5d u 1 *I, U-7) 

A similar calculation for XJa, using the bound of Table IV for XJ and ZJA, plus 

the bounds z < 42 2, gA < 42 2, gives the bound shown in Table V. One can 

now obtain bounds on R,, Ra, etc. , using Eqs. (B.85) - (B.89). One uses 

Eqs. (B. 31) - (B. 33) to obtain bounds on products (with g replacing g in the 

definition of the bound (a, b, c)). The results are shown in Table V. 
, 

Write the decomposition of li, as 

N 
' i?, 

l Dak-l+ F. Fak (B.98) . 
= 

The bound of Table V for ga gives the following bounds: 

ll~aoII 5 (7200 A-l dl + 16 A-’ d2 s > 

-ll3&J 5 (230 dl + 27000 A-l d2); A-k 

IIFakll S(230 dl + 27000 A-l d2)A-2k 

(k > 0) 

(k ’ 0) 

Consider the significance of lJao. It is a difference IJAo - 90. From Eqs, 

(B.51), (B.54), and (B,2l)(one must substitute ~g for ~‘in Eq. (B.21)), lJo 

itself is 

D -0 - m, 42[g”-g (I-g2)] rR, 42[g”-g (I-g2)] 7,) 

(B. 99) 

(B. 100) 
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Correspondingly 

D = 
-A0 q2[gx-gA (l-g;)] T+R, h[gk - f$A (l-g;)lT;) tBelol) 

So BaO involves differences such as (ml - mA) 7 (mtr - m). 

We can use the bound on D m. to prove the inequalities of Eq. (V. 37) (the first 

inequality of Theorem 4). In the notation of this appendix the quantity d; is defined 

as 

(di)2 = (mA - mf)2 + 2 (gA - go2 (B. 102) 

where 

ml,= cos 81 = mrr/(mrr2 + 2gr, ) 2 l/2 
(B.103) . 

4x l=she’ = 42 grr/(mrr2 + 2gt1$1/2 (B. 104) 

and analogous formulae hold for mA and gA; 8 l is the angle in the decomposition of 

T(H) (cf. Eq. (B.25)). 

To get bounds on di requires some further manipulations which are most 

conveniently done with another set of vectors. Define the following two-dimensional 

vectors : 

x=(m, J2g[l-g2]) 

z$’ = (mrr, J2 grr) 

x1 = (m’ , J2 gl) w*. 

and analogously (tfA, si, and x1 HA. Define 

(B. 105) 

(B. 1W 

(B. 107) 

$= Ifl-lz=c, etc. (B. 108) 

Then 

(B. 109) 
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Now one has 

The bound di will be computed in two parts, first relating 2; - $” to kA - fi and 

then bounding iA - k. Write 

Then 

To compute 9, it is convenient to let 

4 = (cos 0, sin 0) 

ftA = (co6 WA, sin uA) 

andm=cos 6, J2g=sin 8, mA=cos BA, J2g=sm eA. Thenl’ 

W =tan 
-1 

[ 
ti3n 8 (1 - i/2 sin2 q 1 = f(0) 

and wA is f(e,). The derivative C( 6) has the form 

f’(e) = W&‘D(YI 

where 

y = sin2 8 

N(Y) = (1 - 112 Y - Y (1 -Y)) 

D(y) = (1 - y2 + l/4 y3) 

Analyzing the form for f’(e) one sees that the numerator N decreases for 

0 C y < 3/4 and increases for 3/4 x y, the denominator D decreases over the 

whole range 0 < y < 1. So one has the following bounds: 

N(. 75)/D(o) < f’(e) < MU (N(~)/D(. 75)) ~(lj/~(ij) 
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(B. 111) 

(B. 112) 

(B. 113) 

(B. 114) 

(B.115) ’ 

(B. 118) 

(BJ17) 

(B. 118) 

(B. 119) 

(B. 120; 



Evaluated, this gives Evaluated, this gives 

.4375 < f’(e) < 2 .4375 < f’(e) < 2 
. . 

Hence by the mean value theorem Hence by the mean value theorem . - 

,436 leA - f3I 5 IwA - 01 5 2 leA - 01 

Now the definitions of dl and #J are equivalent to 

One can show that 

dl = (2 sin i/2 (eA - e)I 

3r =12sinl/2(wA-w)J 

,436 leA - el 5 pA - 01 5 2 loA - 81 

Now the definitions of dl and #J are equivalent to 

dl = (2 sin i/2 (eA - e)I 

3r =12sinl/2(wA-w)J 

One can show that 

(shaz)> asinz (shaz)> asinz 

when 0 < z C n/2 and 0 < a < 1. The result of Eqs. (B.124), (B.122), 

and then (B. 123), is 

$2 12 sin ,218 (eA - 6)i L .436dl (z = g5 teA- e)) 

.$ <, 12 Sin (eA - e)I s 2 dl (a~ = .5 (eA- e)) 

The next step is to bound 9. It is convenient to define 

when 0 < z < n/2 and 0 < a < 1. The result of Eqs. (B.124), (B.122), 

and then (B. 123), is 

$2 12 sin ,218 (eA - 6)i L .436dl 

.$ <, 12 Sin (eA - e)I s 2 dl 

(z = g5 teA- e)) 

(= = .5 (eA- e)) 

The next step is to bound 9. It is convenient to define 

Then 
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(B. 121) 

(B.122) ’ 

(B. 123) 

(B. 124) 

(B. 125) 

(B. 125) 

(B. 126) 

(B-7) 

(B. 128) 

(B. 129) 

(B. 130) 

(B:131) 

(B. 132) 

. 



NOW by the mean value theorem 

where 

and by a second order mean value theorem 

(B. 

Ea =zA-2& (B. 

(and Sz,V acts on& not onhe V). From Eqs. (B.56), (B.57), (B.78), (B.105) 

and (B. 106), 

Is&cl s.005 (B. 

and from Eq. (B.99) 

Isllx,l 5 (7200 A-l dl + 16 A-l d2) 

Furthermore 

lzaj2 = (mA - mf + 2(gA - g? (l - gi - gAg - g2j2 
and since gA and g are less than l/ d2 one has 

-l/2 < ( 
log; - g&g2 Cl ) (B. 

so 

l&l2 ’ df 
Now let y be an arbitrary vector; one can most easily compute &xa, Vg(y) and 

(s~*v~~~*v~ $2 usW 

c 
a coordinate system with the first axis parallel to y. e 

If 6x11 and 8x1 are the components of 85 parallel and perpendicular to y (and 

likewise for xa,, , etc.), one has 

(B. 

133) 

134) 

135) 

136) 

137) 

138) 

140) 

141) 

(B.142) 



and 

(B. 143) 

In absolute value 

l t ) i&II 5 Is&l l# 
i 

k& (B. 144) 

(B. 145) 

The second inequality is proved using the relation 

2 xali xal fjx,6x, < (413) @x,, xa,, I2 + (113) 
[ 
(6x,, xaJ2 + @x1x,,,? -I- (6x1 xaj2 1 

(B. 146) 

To use the bound (B. 144) to obtain a bound for e1 (cf. Eq. (B. 133)), one puts 

y=& 
rr 

- h 6%; hence 

I& I {I J$Al - l’&l)-1 (B. 147) 

Now (from Eq. (B. 137) and the analogous bound for 131~ - gAl 

and 13.1 > .49 from Eq. (B. 67) (which holds for 13x1 as well as I$I ). Thus 

(remember that A > 4 x 106) 

c#r,( 2.1 (72OOi\-1 dl + 16A-1 d2 <, ,004 dl + 1O-5 d 
2 (B. 149) 

To get a bound for $,, one uses Eq. (B. 145) with y being (1 -cl) z+ ~“3~ + A6x. 
J 

Since 2. zA 1 0 and since p and 1 -p are non-negative, 

l(1-60~+~~Al L (1 -p)2 lIC12 + P2/ZA12 (B. 150) 

But 1~~1 and IzAI , and (1 -/.J)~ + p2,are all larger than or equal to l/2. So / 

It1 -cl)2 + psA( ? l/J8 (B. 151) 

Hence 

IY’I 2 (1/v% - .005 > l/3 (B. 152) 
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Hence from Eqs. (B. 135), (B. 145), (B. 152), (B. 13?), and (B. 141), 

+, I6hlS~~j ,za, I .052 dl 

From Ew (B. 113), (B. 126), (B. 129, (B. 129), (B.149), and (B. 153), 

(B. 153) 

.38dl -low5 d2< di< 20dl+10a5 d2 (B.154) 

which is the first inequality of Theorem 4. 

To obtain the second inequality of Theorem 4, one starts from Eqs. (B. 26), 

(B.27), (B.52), (B.53), (B. 106), and the corresponding equations for Ah, etc., 

from which one can obtain 

Ah -s = ,z&- D&+1+ &rI-lD&+l (B.155) 

CL - CL =^I ,$I -’ - ,$, -“) FAk+l - Al$‘j -’ Fak+l 

Now, from Eqs. (B.67), (B.134), (B.136), (B.138), and (~.141) 

(B. 156) 

l&l -l - 1$1-1 5 l& - $1 I&l -l l$l -l I 4.07 plc, I- &I 

<4.07(dl+ 7200fi-1dl+16 A-la,) (B.157) 

From Table V, I&+1 and FAk+l have hounds 

,,j&k+ll, s 4o u, A-k-1 

IP&+Jl 5 4o A -2k -2 

(B. 158) 

(B.159) 

From Eqs. (B. 155) - (B. 159)) (B. 67) ) and (B. 99) one gets 

llCk - Ck,, 5 ~100d1+.06d2}~-2k-1 

which proves the second inequality of Theorem 4, 

(B. 160) 

(B. 161) 

. 
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TABLE I 

Eigenstates of the Hamiltonian m(a+a + b’b - 1) + g(a+ b+) T+ + g(a++ b)T -, 

where a+ creates t, b+ creates r-, 1 p> and In> are nucleon states, and 

P=m(m2+2g ) 2 -l/2 
, y=g(m2+2g) . 

2 -l/2 The other four eigenstates are 

obtained by charge conjugation (p-n, n+-n-). 

Eigenvalue E&en&ate 

-(m2 + 2g 2, 
m 

0 

l/2 (W) 1 p > - y I nr+ > + l/2( 1-p) I pn+n- > 

I pn+> 

YIP> +j.6 Inn+> -y 1 p?r+*- > 

l/2 (1-p) i p > + Y I n%* > + l/2 (l+p) 1 pn+d > 
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TABLE II 

Breakdown of Heff by type of operator for each order in A. The symbols 

X s T m R’ and (x~)~ are explained in the text. Any operator listed for a 

power Am can occur for lower powers of A also. 

Order in A Types of Operators 

AM constant 

*M-l 

,\M-2 
*M-3 

AM-4 

xM-l ‘R 

2 
‘M-2 ‘R’ (x&l) ‘R 

xM-3 ‘R’ k-2 k-1 ‘R 

2 2 
xM-4 ‘R’ Q-3 ‘M-1 ‘R’ (‘M-2) ‘R’ k-2(‘M-1) ‘R 
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TABLE III 

Breakdown of H& by type of operator for each order in A. Cf. Table II. 

Order in A Types of Operators 

AM, AM-l constant 

*M-2 
Q-2 Tk 

AM-3 2 
xM-3 ‘A9 lxM-2) ‘i 

AM-4 
xM-4 ‘As xMM-3 ‘M-2 ‘A 
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TABLE IV 

Operator bounds obtained in the proofs of Theorems 

1 and 2, assuming A>4 X lo6 

Operator Bound Operator Bound 

5 (1.5, .5, 100) 
Qn-Q n-l i3 g2 xlo4’n(n”1, 1, A?) 

5 200 $ (P, Al, 1) if&Q 14 g2 X103(fc1, 1, A-l) 

RnsR g (2, 65, 160) qnws-l 14 g2 xlo4-n(A-1, 1, A-l) 

‘n-%-l 16 gx102-n(l,A, 1) ii’ g2 (25 x103A-l, 40, 210) 

QnQ a 13 g2 X103(Kl, l,A?) 

. 
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TABLE V 

Bounds on operators needed in the proof of Theorem 4. The bound (d, e , f) is defined , 

by Eq. (B. 30) except that the vector 5 = l/a (1, 1, 1) replaces the vector g. 

Operator 

%a’ Xl 

vA 

5a 

R an sRa 

&an”a 

GanSGa 

Ha. 

i-i, EA 

Bound 

d,(5.59 0s 0) 

$2 dl 
dl (450A1, 450 A-‘, 300)+d2 (A?, A?, 1) 

dl(8, 800, 1600) +d2 (3OA-‘, 2200 A-‘, 1.3) 

dl(3.25 x lo5A-l, 245, 3.25 X lo’.A-‘)+d2 (7. $A-‘, 1100 A’, 2200 A-l), 
dl(3.3 x 105A-l, 250, 3.3 x lo5A-‘)+d2 (8A-‘, 1200 h-l, 2400 A-‘) 

dl(7200 A-‘, 230, 310)ed2 (16 A’, 27OOOA-$ 1.1) 

(20oooA-~, 40,. 120) 
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FIGURE CAPTION 

1. Artist’s conception of the trajectories C(3), C(7), CA, and CB pro jetted on 

a two-dimensional space. The renormalized coupling constant is n/4. The 

curve R is also shown. The first few points on CA, CBS C(3) and C(7) are 

labelled explicitly: Pu is the first point on CA, PRO the first point on CB. 
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