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ABSTRACT

The charged scalar theory of pi-mesons interacting with a fixed nucleon
source is truncated as follows: m-mesons are permitted to _exiét only in a set of
discrete states ¥ (k) such that k is of order A™ in the state Vlm(k); Ais an
arbitrary constant above 4 x 106. Also two mesons of the same charge cannot
occupy the same state. The resulting Hamiltonian can be solved by a perturbation
expansion in A"1 pro?ided there are only a finite number M of stateé lllm. When
M — the renormalized coupling constant and ground state energy diverge in
perturbation theory (in the coupling constaﬁt) . If the unfenormalized coupling
constant is allowed to go to infinity as M—« it is proven that the renormalized
theory exists (without ghost states) for any value of the. renormalized coupling
constant. The proof uses the perturbation analysis in A-l carried to all orders.
This analysis leads to the definition of a transformation T which eliminates oné
meson degree of freedom from ahy given Hamiltonian, replacing it by an effective
Hamiltonian with one less degree of freedom. The effective Hamiltonian gives
exactly all energy levels of the original Hamiltonian except those v'vith mesons in
the removed degree of freedo‘m. The renormalizability of the theory is proven
using topological properties of T. In pérticular the;‘e is a sub-transformation T A
with a nontrivial fixed point Pc whose properties détermine the principal features
of the renormalized theory. The idea of the fixed point is a generalization of the

Gell-Mann-Low eigenvalue condition for the bare coupling constant of quantum

electrodynamics.




I. INTRODUCTION

The problem of renormalization has been remarkably unimportant in the
study of pﬁre strong interactions (i.e., strong interactions without radiative or
weak corrections), The ideas developed since 1954 — dispersion relations,
Regge poles, current algebra, and f)ole dominance — all can be formulated and
applied without encounteringv any of the divergences that occur in unrenormalized
perturbation theory. As a result one gets the impression that renormalization
is no more than a technical modification which one makes on ‘closed loop Feynman
graphs when very accurate perturbation formulae are needed, as for the electron
magnetic moment. This impression has encouraged the idea that Lagrangian
models of current algebra, such as field algebra and the Quark model, can be
analyzed for their equal time commutators as if renormalization were unnecessary. 1

An entirely opposite picture results from exactly soluble models of field
theories with interaction. There are two lmoWn model theories which require
wave function or charge renormalization, namely, the Lee model2 and the
Thirring model. 3 It is well khown that the renormalized Lee model has a ghost
state. The Thirring model involves the Fermi interaction for a zero mass spinor
field in one space and one time dimension. The model has a solution after re-
normalization, but the solution has radically differént behavior at short distances
than one would expect from a canonical Lagrangian picture. The renormalized
spinor field does not satisfy canonical commutation relations‘. 3 More generally,
the renormaiized theory is scale invariant, as one would have predicted from
the Lagrangian (there are no dimensional parameters in the Thirring model,
the only parameter being a dimensionless coupling constaht). However the re-

normalized fields (but not the conserved currents) have different scaling properties




from those one predicts from the canonical commutation rules. The dimension
of the spinor field (which determines its scaling properties) depends on the
coupling constant and can vary from 1/2 to = A

The only known relativistic theories where renormalization does not affect
the short distance behavior appreciably are the "v_'superrenormalizable" theories
which may require mass renormalization but do not require infinite coupling
constant or waive function renormalization in perturbation theory. 5 In these -
theories the short distance behavior is close to the free field behavior. Un-
fortunétely there are no acceptable four-dimensional .superrenormalizable
theories.

In a recent paper, it was proposed that there would be nontrivial renormali-
zation effects in strong interactions. 6 It was postul'ated that these effects would
have the same form as in the Thirring model, namely scale invariance would be
valid at short distances but the dimensions of local fields would be different from
any free field model (except for the currents of current algebra whose dimensions
are fixed by the algebra). It was shown that renormalization effects could account
for a universal Al = 1/2 rule in weak interactions and could determine the con-
vergence or divergence of some of the Weinberg sum rules.

The fact that the Al = 1/2 rule might be explained by renormalization effects
means that renormalization can be of great practical importance. | One would like
to understand renormalization better. The Lee model and the Thirring model
fall far short of providing the depth of understanding required. The reason is
that both models have very special features and the renormalization of these
models may Simply reflect these special features. The Lee model is special
because of the decoupling of the N-6 channel from the many-parﬁcle channels.

This decoupling i.s the simplification that makes solution of the Lee model
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possible., The Thirring model is special for many reasons, but in particular the
electromagnetic current of the Thirring model satisfies a free field equation
which is the starting point for solving the model, Also there is no coupling con-
stant renormalization in the Thirring model. | If there had been coubling constant
renormalization in the Thirring model it might have ~8‘hown the same diseases as
the Lee model which does involve coupling constant renormalization.

The purpdse of this pépér is to define and solve a new model of coupling
. constant renormalization. The new model is a cousin of the Lee model but its
| renormalization is very different from that of the Lee inodel. The new model is
a derivative of the charged scalar theory of pions coupled to a fixed nucleon source.
The model Hamiltonian is obtained essentially by projecting the Hamiltonian of the
charged scalar theory onto a- spebially constructed subspace of the original
Hilbert space. The result of rendrmalizing the model is that the renormalized
theory exists without ghosts, the renormalized coupling constant is arbitrary but
the unrenormalized coupling constant is infinite,

The model of this paper cahnot be solved in closed form. To make it soluble
by series expansions .a large parameter A is introduced artificially into the model;
the model is then solved by an expansion in A", The way A is introduced is by
restricting the pi mesons of the model o be in one of a discrete set of wave >
functions ¢m(k), where the mean momentum of !Ilm(k) is A™ (in dnits of the pion
mass). Thus instead of the pion energy being continuously variable from 1 to =,
it is restricted to the discrete values 1, A, Az, ete. This means the Hamiltonian
has some terms of order 1, some terms of order A, etc., so one can do pertur-
bation theory when A is large. This idea was explained in an earlier paper7

where a more complicated version of the model was proposed.




Because the model cannot be solved in closed form the renormalization
analysis is much more complex than for either the Lee model or the Thirring
model. The analysis is further complicated because one cannot simply study
the lowest order term in the A™> expansion. To prove the renormaliz ability
of the theory one must show that the expansion in ‘A“1 of the renormalized
- theory is finite to all ox;ders and that the sum of the series converges. To prove
this a rigorous analysis of the model is given using formal techniques of analysis
in Hilbert space plus some topological methods. The formal analysis is possible
because the model is specially constructed to involve only bounded operators. To
ensure that no unbounded operators occur, the number of 7 mesons per state

:pm is limited to one of each charge, _and the total number of states Illm is cut
off at m=M. One investigates the limit for M—«, but for any finite M one has
bounded operators.

The author recommends that the papers of Lee2 (on the Lee model) and
Johnson3 (on the Thirring model) be read before attacking the present paper.
They provide some background on exact solutions of renormalizable theories
and are very much simpler to read.

There are three interesting features in the model of this paper. The first
is simply that a finite renormalized theory exists. Actually, all that is proved
is that the renormalized energy levels exists. Because there are 1o continuum
(momentum) states open to pions there is no scattering in the model; all energy
levels are discrete and hence calculating the energy levels is the most important
problem in the model. The theory is found to be free of ghosts. No matrix
elements of operators other than the Hamiltonian are discussed. In particular
the nucleon isospin operators are not examined, which means we cannot compute

the renormalized coupling constant as conventionally defined. The reason these
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operators are not considered is that the analysis that would be required exceeds
the author's patience. |

The second feature of the model is that scale. invariance is preserved in the
renormalized theory for energies large compared to the pion mass. The un-
renormalized Hamiltonian of the full charged scalar theory is scale invariant
in the limit of zero pioﬁ mass. This invariance is preserved in the unrenormalized
Hamiltonian at the model except that it is a discrete invariance: only scale trans-
formations which take wave functions tltm(k) into wave ﬁmctions l[lm + i(k) occur
in the model, | The renormalized energy levels exhibit. scale invariance when the
energies are large, but the scaling law is different from what one predicts from
the unrenormalized Hamiltonian. To be precise the ﬁnrenormalized Hamiltonian

HO goes into A_IHO when lllm - ’ apért from terms of order 1, but the re~

m+l
normalized Hamiltonian HR goes into A—lﬁ HR where 8 is a constant (about 1/2).
So the model of this paper supports the hypothesis that renormalization can
preserve scale invariénce at large energies but will change the scaling laws of
operators.

The third feature of the model, and probably the most important, is that in
order to prove the renormalizability of the model it is necessary to define and
study a topological transformation T actiﬁg on a space S of cutoff Hamiltonians.
The space S contains the unrenormalized cutoff Hamiltonians for any cutoff M.
However, it also contains cutoff Hamiltonians involving arbitrarily complicated
interactions involving products of arbitrarily many meson creation énd destruction
operators. In other words the space S includes nonrenormalizable interactions
of arbitrarily complicated structure. The transformation T takes a Hamiltonian

with cutoff M into a Hamiltonian with cutoff M-1 without changing the physics of

these Hamiltonians. To be precise, the original Hamiltonian and the transformed
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Hamiltonian have exactly the same energy levels except for those energy levels
with mesons explicitly present in the state VIM; such levels are not present in
the transformed Hamiltonian. The transformation defines how the coupling con-
stants of all possible interactions must change as the ‘cutoff M changes in order
to keep the energy levels of the theory fixed. Having very many coupling constants
all changing as the cutoff changes is analogous to having an infinite number of
counter terms in a renormalization analysis in ordinary perturbation theory.
- One has an infinite number of counter terms when one tries to renormalize a non-
renormalizable theory. This is customarily regardéd as a disaster, for one
presumes that for every infinite counter term there is an arbitrary finite counter
term, leading to an infinite number of parameters, This disaster does not occur
in the model. The reason is that strict bouﬁds on the coupling constants will be
included in the definition of S, and one cannot introduce extra free parémeters
without violating these bounds, What actually happens is that the possible re-
normalizable theories of the model are described by effective cutoff Hamiltonians
obtained by applying T an infinite number of times to the original unrenormalized
uncutoff Hamiltonian. This means that the renormalized Hamiltonians -must‘ lie
in a subspace RS of S, where RS is the limit of the subspaces Tm(S) for m~—~w ,
The space RS is found to be a three-dimensional space for given cutoff M.. Hence
there are only three adjustable parameters in the renormalized Hamiltonian
they are a scale factor, an additive constant, and the renormalized éoupling con-
stant (suitably defined).

If one is interested only in the first two features of the model one can probably
skim thg hard parts (Section V and Appendix B). One Would read these sections in
detail only to check for m‘istakes. However to understand the transformation T

one must study the whole paper in detail; it is hard to have a clear understanding
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of the role of the transform‘ation T with;)ut studying the spaces Tm(‘S); one must
see how these spaces shrink with m to the }limiting space RS’ and one must
understand in practice the relevance of these spaces to the renormalization
problem.' At present the only way to get the necessary practide is to work
through the model of this paper. |

Gell-Mann and Low have given a general discussion of nonperturbative re-
normalization theory, using quantum electrodynamics as an exa\mple.8 The
relation of their work to the type of model considered here is discussed in
Section VII, The idea of a transformation T in which an infinite set of coupling
constants are transformed as the c_utbff M is reduced is a generalization of
Gell-Mann and Low's idea of a cutoff-dependent electrémagnetic coupling e(A).

In the author's previous paper on model »Hamiltonians, 7 a more complicated
model was discussed, in which = mesons were allowed to have any momentum
in the intervals q<k< kO’ A/2<k< A, A2/2 <kc< Az, etc., where k0 was a -
constant. This meant the meson creation and destruction operators were con-
tinuum creation and destruction operators, which are hardly suitable for rigorous
analyses. The A-l éxpansion was proposed but only carried out in lowest order.
Even the lowest order calculation was-combﬁcated by the fact that the unperturbed
Hamiltonians were themselves insoluble field theoretic Hamiltonians. One‘had '
to guess the qualitative structure of their solution. Furthermore as the cutoff
M went to infinity the coupling constant in the unperturbed Hamiltonién had to
become large resulting in closely spaced isobar states, which interfered Wifh the
perturbation calculation in A'l. None of these difficulties are present in the .
model of this paper. The meson creation and destruction operators of this paper
are defined to be discrete and bounded. The unperturbed Hamiltonians are finite

dimensional and diagonalizable in closed form (cf. Table I). The energy level
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spacing of the unperturbed Hamiltonian does not become sngall for large coupling —
the isobars in the previous theory involved many mesons in a single quantum state
and this is forbidden in the present model. This means the present model lacks
much of the physics of the full charged scalar theory; but itv still illﬁstrates the
renormalization problem, which is its only purpose.

- This paper divides into three stages. The first stage consists of Sections II,
I, and IV. In Section II, .the Hamiltonian of the model is defined. In Section III
the perturbation expansion in A-1 is formulé.’ced for the cutoff Hamiltonian and
some properties of the expansion are worked out in low orders. In Section IV a
perturbation formula is defined which allows the Al expansion to be defined to
vall orders in a convenient form, The second stage consists of Sections V and
VI. In Section V the transformation T is defined. Ifs principal properties are
stated (Theorems 1-4, the proofs of these theorems are in Appendix B). Then
the topological analysis required to prove renormalizability is carfied through.
Finally, the renormalized Hamiltonian is defined for any given renormalized
coupling constant, | In Section VI scale transformations are defined, and the
’ scaling properties of fhe renormalized energy levels are computed. The third
stage consists of Section VII, where it is shown that the transformation T is more
than a technical device to prove the existence of the renormalized theory.
Specifically it is shown that the renormalized theories are not the. unique solution
of any uncutoff Hamiltonian; instead the transformation T is involved in the defi-
nition of the renormalized theory, and this definition is most simply stated in
terms of one of the fixed points of the transformation. We also relate the re-
normalization program of this paper to conventional .renormaliz ation theory and

especially to the Gell-Mann-Low analysis.




II. THE MODEL HAMILTONIAN

The unrenormalized Hamiltonian of the model is as follows:
. mjf + + +\ + +. -

H= ;——0 A {(amam +bib_- 1)+gQ (am+bm)7' +g, (am+bm) U@L
where g and A are constants, 77 and 77 are the isospin raising and lowering
operators for the nucleon, and the operators a:n and b:;l are o and ™ creation
operators respectively for the state !#m. The subtraction -1 is included for
irrelevant reasons. The constant A must be large (> 4X 106'111 the rigorous
analysis). To preveht two r or two 7 from occupying the same state, the
operators 2. a;, bm’ and b; are assigned the commutation relations of a

set of Pauli spin operators:

{am, a;} = {bm, b;} -1 @2
ail = (a;)z = blzn = (b':n)2 = 0 ' (L. 3)
a bm] = [am, b'l:l] =[2y’ 2,] =0 (ete.) (m # n) (I.4)

where [ ] is a commutator, { } is an anticommutatof. The Hilbert space on which
H acts is a product space. The compénents of the product are, first, the two-
dimensional nucleon space with the bare proton s;téte |p> and bare neutron state
In) as a basis. Secondly, for each wave function l/lm there is a component space
of four dimensions. A basis for each such component consists of a vacuum state,
arm state, a T state, and a A state, each meson being in the state t/lm.

The hmodel Hamiltonian can be arrived at starting from the full Hamiltonian

of the charged scalar fixed source ’cheory9 if one replaces the fixed momentum
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creation operators a; and b; ‘of the mesons by

e voer

ai: - Zm a; tl’m(l"'g) _ (11. 5)
bi—3 bl ¥ & . | (IL. 6)
l& — 111 Il m »

After these substitutions are inserted in the full Hamilfonian, one must drop any
off diagonal products such as a:;am (n# m) and replace integrals such as
f K “K |lllm(l§)|2 or fB(Zwk)-l/ 2 t}/m(l_g) (where w,_is (1,"‘1.::,2)1/ 2) by order of mag-
ni:ud; estimates, assum-i'ng the functions ¥ m(lg)"are normalized to one and vanish
unless k ~ A™. There is no need for the model Hamiltonian to have any con-
nection with the fixed source theory, because the model will be studied on its own
merits. The connection with the fixed source theory is used only to provide a
language to describe the operators a . etc. ‘Likewise, the wave functions t,/m(lﬂ
play no role in the analysis of the model; their only ﬁurpose is to give an intuitive
meaning to the operators . etc. |

One can cut off the Hamiltonian by restricting the sum over m to a finite
range, say 0 =m SIM. Then the Hamiltonian beches a finite bounded matrix;
in this case it is diagonalizable without renormalization. The problem of re-
normalization arises when one tries to let M—«=, Then one has an infinite
number of degrees of freedom, Which is well known to be a sourcé of difficulties. 10
To compound the situation the scale of energy associated with the mth degree of
freedom increases as Am, so that the most important degrees of freedom are
those with m~§M instead of small m. Clearly one has difficulties in the limit
M—« regardless of what happens in perturbation theory; but it is’ still worth
showing that in perturbation theory one has a problem specifically with coupling

constant renormalization. Let |P)> and IND be the normalized physical proton and

-11 -




neutron states, i.e., the ground states of H. The renormalized coupling constant

is

gg =8y <P 77 IND | (I 7)

using the definition analogous to that used in the full charged scalar theory. The
matrix element <P |7*| N) can be computed to second order in g, by straight-

forward perturbation theory. If the cutoff M is finite then

r

Bp =8y~ € (M+1) + ofgg) « @)

(=3

The cutoff momenﬁm kM is of order AM so M is proporﬁonal to log kM;b hence
gr is logarithmically divergent as in the full ché:rged scalar theory. The diver-
gence for M—« is directly due to there being an infinife number of degrees of
freedom in the no-cutoff limit.

The structure of the energy level spectrum of the cutoff Hamiltonian can be
set;n by a qualitative analysis. It is convenient to call a meson in a state"tﬁm(k)

an ""m-meson'. Let the cutoff Hamiltonian be denoted HM. It has the structure

M
H,=2, A%o0 : (IL. 9)
M m=0 m
where Om is independent of A and involves only m-meson operators and the

nucleon operators 'r_+ and 'r.-. The smallest part 6f HM is O,. This is the only

0
part of HM involving 0-mesons, and for A large 00 is a perturbation on the rest
of the Hamiltonian. The remainder of the Hamiltonian has energies of order A

or larger so should have energy level spacings of order A; each level is four-fold
degenerate (af least) because each level is independent of the presenct-;, or absence
of 0-mesons. Adding 00 splits these levels, with the splitting being of order 1,
Next one can discuss the effect of the term A 01; clgarly this should lead to a

gross spacing of order A, neglecting fine structure due to O,. But AO1 can

0.
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itself be regarded as a perturbation; there exist (neglecting AO1 and 00) a
spacing of order A2, then a spacing of order As, ete.

The problem of renormalization is the problem of computing the ground state
and those excited states which have a finite energy above the ground state in the
limit M—. This means calculating states with an energy of order A™ above
the ground state, for any m, but with m held fixed when M—« . In practice one
calculates only energy differences between the ground state and various excited
states. The ground state energy itself diverges for M-— . An energy difference
of order A™ is much smaller than the basic energy scale AM, when M is large,
so a very precise calculation is required to give these energy differences accur-
ately. This fact plus the fact that the model cannot be solved e_xactly, and must
" be solved as a perturbation expansion in A-l, is the reason this paper is so long.
The model Hamiltonian is invariant to three symmetries: charge conservation,

charge conjugation, and time reversal. The charge Q is
Q:Z (a_""a, —b+b )+ 1/2 (T, +]_) (II.10)
m\i'mm mm 'z

where 1/2 7 z is the z component of the nucleon isospin; Q@ commutes with H,
The charge conjugation transformation interchanges T with T, pwithn, Let

U c be the unitary transformation giving these interchanges; then

vha U =0b (I.11)
c m ¢C . m

U'b U =a (I.12)
cC m ¢ m *

+ 4 -

vl = (I1. 13)
vHu ==H | 0. 14
c c ° ( . )
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The time reversal transformation is an anti-linear unitary transformation UT

with the properties

to Uy = *
Ur2nlt = %m

+ . %
UTmeT = bm

+ + +*
UT'r UT = (7))

+H *
UT UT-H
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OI. PRELIMINARY ANALYSIS OF THE MODEL HAMILTONIAN

In order to solve the renormalization problem,‘ one must first be able to
solve the cutoff Hamiltonian for arbitrarily laige cutoff M. In thisfpart, we give
a preliminary discussion of the solution of the cutoff Hamiltonian for large M. 11
The constant A is also la.fge, but ﬁeld fixed and M can be arbitrarily large even
compared to A, The cutoff Hamiltonian naturally separates into an unperturbed

Hamiltonian and a perturbation:

Hy = Hope * Hpy (II. 1)

wherg
HbM = Mo, | @
5
Hpo = 2.0 A0 : (1. 3)
and .
0, = a';lam + b:'nbm -1+ g9 (am+b:n) 4 g9 (a;+bm) T ‘ (II1. 4)

The operator OM is easily diagonalized. One can ignore the mesons in states

other than ‘I’M, then O, , acts on the eight-dimensional Hilbert space involving

M
the nucleon and mesons in the state !IIM. Due to charge conservation the matrix
for O, separates into submatrices of size 3$< 3 at most. The eigenstafes of O
are given in Table I [the variables l(m,g) of Table I must be replaced by (1,g0)].
It has two degenerate ground states: a state |P) of charge 1 and a state |ND of
charge 0. The ground state becomes highly degenerate when mesons in other
states tllm are consideredﬂ, since one can add such mesons to the states |P) and

IND> without changing the eigenvalue of Opr
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The Hamiltonian HOM has an _ener\gy‘level spacing of order AM (go AM if
g, 18 large) while Hy,  is at most of order AM1 (& AML gor g, large). Hence
one is allowed to treat HIM as a perturbation when A is large, for any value of
go.' However one must carry the perturbation expansion out to order M at least
because one ultimately is interested in energy level spacings which may be of
order 1. In the lowest order of degenerate perturbation theory, the ground state
of H and excited states at energy AM"1 or less above the ground state are given

by an effective Hamiltonian
Hoee = Eqp + PH, P (I1. 5)

whero E OM is the ground state energy of HOM and P is a projection operator on
the ground states of HOM' H off acts on a product space whose components are
the two-dimensional space with basis |P) and |[N) and the meson space for the
states ‘l'm’ 0=m =M~ 1. One can introduce isospin raising and lowering
operators 'r; for IP) and IN) ; then H off InVolves a set of operators [1';, a

(0=m=M-1), etc .] which are equivalent to the operators of H ." The only

M-1

way P affects the operator H_,  is through the nucleon operators 'r+ and 7 ; the

IM
meson operators in HIM are unaffected. To express Heff in terms of 'r; one
must express P1'+P and P7 P in terms of 'r; and the meson operators. The
operator Pr P affects only the stotes IP> and IND not the meson states, and be-
cause it increases the charge by one unit, P1-+P must be proportional to TI'; .
The proportionality constant Z is found from Table I to be (usi.hg the constants

of Table I)

z = (Pt IND = m?+g?) (m?+ 2637 (L. 6)
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With m=1 and 878 this is
Z(gg =(1+ gg) (1+ 2g2)“1 X (0. 7)

Likewise Pt P is Z(go) TR" Hence PHIMP has the same form as HM itself
& &
except that M is replaced by M-1 and g7 is replaced (in Eq. III. 4) by gp-1"R’

with
Bn-1 = 2{8y) (II1. 8)

he) =g(1+g)) (1+2¢H7t @)

When degenerate perturbation theory is carried to higher orders, one still
computes an effective Hamiltonian H off which acts on the space of ground states
of HOM' The effective Hamiltonian is no longer just PHIMP but contains higher
order terms in HIM’ for exémple, the second order term is :
PHIM(I—P)(EOM - HOM)-I HIMP’ The term of nth order involves products of n
interaction Hamiltonians and n-1 energy denominators. It is useful to discuss in
a schematic way the types of terms generated in the higher order calculation.
Let X étand for an operator of the form a‘:nam + b';lbm -1, a,+ b:;l, or
a;l + bm. Let 7 stand for any nucleon operator, TR for any operator acting on
IP> and IND. Let xﬁl stand for operators made of any product of operators of .
type X One can easily make-a table of the type of operators that can occur in

Ho g for a given order in A , remembering that He involves HIM times products

ff
- -1 . 1
of (E oM HOM) HIM’ the whole product bemg projected with P. The results
are shown in Table II.
The formulae for the higher order terms of the degenerate perturbation cal-

culation are too complicated to quote explicitly. Fortunately they are not needed;

it is sufficient to have upper bounds for each type of term and these can be
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obtained. Table II gives the order in A of each term and all that remains is
to obtain numerical upper bounds. This will be done in Section V.

The Hamiltonian H off has a basic energy scale 'vAM—1 which is still much
larger (for large M) than the energy scales of interest. Heff can again be analyzed

by perturbation theory. One writes

Heff = HOeff + HIeff | (II. 10)

My -

Ey ﬁflp‘"‘—_fbe d Hamiltonian is

‘ M-1

H =A (I, 11)

Oeff Opp-1 (Bp-9)

. _ . , .
where OM 1(gM 1) isthe sameas OM 1 except that g is replaced by gM-1 and 7

by TR All other terms in H off

The eigenstates of 0M 1 (gM 1) canbe determmed from Table I like OM it has two

degenerate ground states |P') and IN ' ) 1f mesons in states other than ¢

form the perturbation HI £ whlch is at mostof order AM-2 .

are ignored. One can use degenerate perturbation theory starting from the states
|IP'> and IN') to determine the eigenstates of H off Of energy A2 o less above
the ground state. Again one must calculate the perturbation analysis to many
orders, in order to keep terms with enérgies of order 1 bor larger. The result

is a second effective Hamiltonian Héff involving meson operators a etc. -for

m <M - 2 and isospin operators 'ri'

‘R
One can determine the type of operators that occur in Héﬁ for each order in

connecting the states IP') and IN' ) .

A. The basic operators are operators acting on IP' > and IN ' >, denoted T'R
and meson operators of type X for m = M - 2. The results are shown in Table
Io. In constructing Table III, one uses the fact that operators of the form

1nH

. 2 . .
(xp-7 TR and (XM-l) TR Ib Hp . are reduced to the form r Further-

R eff *

more, the symmetries of the theory ensure that an operator of the form Th in

Heff not multiplied by a meson operator can only be a constant. The important
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result illustrated by Table III is the following. To compute Héff , one must
compute many qrders ina perturbation’treatment of HIeff’ Hleff itself divides
into two parts. The simple part of Hleff are the terms coming from PHIMP;
these terms have the structure X2 TR *M-3 TR’ etc., and depend only on the
single constant Ep-1° The complex part of H[eﬂ; comes from the higher order
terms in HIM’ and includes all terms of type (xM__z)2 TR’ (xM_z) (XM—S) TR
etc. In computing H' off? e*ren the simple part of H,‘M generates all types of
terms in H' off’ through terms of order (HIeff) s (H.I ff) , etc. The important
fact is for a given term in H' efp? S2Y (xM 2) ‘TR, its coefficient comes predom-
inately from the simple part of H off? and hence the coefficient is primarily
determined by the constant g)\- 1. Hy ¢ also has an (x,, 2)2 T4 term but this
affects the coefficient of (xM 2) 1- only in order A whereas the dominant

AM3

part of the coefficient is of order . Because of this result one can give

. 2 —
bounds on the complex terms like (xM-Z) 'ri{ in Heff

and do not involve the size of the corresponding term in He £ These bounds are

which depend on g3-1 only

of crucial importance for the rigorous analysis; they ensure that the complex
interactions cannot increase without bound as one repeats the perturbatibn analysis
many times. Furthermore, it means that Table III has the same form it would
have had if one had started with the cutoff M~1, and obtained H' .. by solving

eff

H The only exception is the constant in Table II of order AM.

M-1°
One can repeat the perturbatien analysis many times generating a sequence
of Hamiltonians which will be denoted HN(M). The Hamiltonian HM_l(M) is
Hygeo Hyy o(M) is H. . . In general Hy(M) is the effective Hamiltonian after
M-N perturbation calculations; HN(M) involves the meson operators a m’ ete.
for m =< N, and isospin operators analogous to T; or r;' .
gives the energy levels of H with energies of order AN or less above the ground

The operator HN(M)
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state.v For each operator HN(M) one can give a classification table analogous to
Tables II and III; the result is Table II with M replaced by N, except for constant
terms. The unperturbed part of HN(M) would appear to be just ANON(gN) where
gy = b (Eyyy) B (1. 12)

This is what one gets if the unperturbed Hamiltonian is defined as the term of
order AN in HN(M). Howgver, to ensure that the perturbation is small even
when M~N is much larger than A, tixe unperturbed part of HN(M) will be defined
to include other terms of the form (aN + b§)r+, or (a'-ltl + bN) r , regardless of
their order in A. The unperturbed Hamiltonian still has the form ANON (gN),
but &N differs from h(gy, ) in order A™L, since onezhas to compute a whole
| sequence of constants gN (N=M-1, M-2, etc.) the small differences between
gN and h(gN +1) for each N can build ﬁp to a macroscopic effect when M-N is
large. \

To compute an eigenstate of 'energy A™ above the é'round state of HM’ one
must take the effective Hamiltonian H (M) and solve for states corresponding to
excited states of the unperturbed part of Hm(M). One could set up a perturbation
method for computing these states. It will not be necessary for the pufposes of
this paper to discuss these states in detail, so the perturbation method will not

be developed here.
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IV. A PERTURBATION FORMULA

There are various standard formulae for the effective Hamiltonian that re-
sults when a perturbation H, is treated to all orders. They gll have drawbacks,
so a suitable formula will be derived here. The formula obtained below has two
properties: The effective Haxﬁiltbnian is hermitian’, and involves only unperturbed
energies in energy denominators, The second property is useful because the un-
perturbed energies are known explicitly. The first propei'ty is obviously useful,
and is not true of many standard formulae.

Let H = H0 + HI and let P be the projection operatof on the ground states of
Hye Let 1¥) be any eigenstate of H with an energy E close to the g-roun'd state
‘energy E 0 of HO' It is convenient to have an operator R which gives the part of
|¥> outside the space projected by P in terms of the part of 1Y) inside the space.
That is |

(1-P)lY> =RPIY) | i (Iv.1)

Such an operator can be defined as follows. The eigenvalue equation has two parts:
E(I-P)[¢D> = (1-P) H(1-P)ly> + (1-P) HPIY) | (IV.2)
EPWY) = PH; (1-P)¢> + PHPIYD (IV.3)

If an operator R exists satisfying Eq. (IV.1) one can multiply the second equation
(Eq. (IV.3)) by R and subtract from the first, giving '

0= {(1-p) HR + (1-P) H, - RPH

IR-RPH}PHII) C(IV.4)

Equation (IV.4) will certainly be satisfied if we demand that

(1~P)HR + (1~P)HP - RPH.R ~ RPHP = 0 (IV.5)

I
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This équation can be cast in a form suitable for iteration in Hy. From the
original definition of R, it should take states within the sub,spacé projected by
P into states orthogonal to this subspace; we can also require that R gives zero

acting on states outside the subspace. This means that

R =RP - IV, §)

R=(1-P) R | {Iv.7
Assuming this, and using the fact that PHOP = EOP, one cén rewrite Eq. (IV.5)
as ‘ |
(EO-HO)R = (1-P) HIP + (1-P) HIR - RHIP - R.H.IR (IV.8)
or _
R = (E,~Hp) " (1-P-R) H(P+R) : (IV.9)

This equation can be solved iteratively to give R as a power series in HI' It is
easily seen that the expansion satisfies the assumptions of Egs, (IV.6) and (IV. 7).

The argument so far does not prove that any operator R satisfying Eq. (IV.9)
will also satisfy Eq. (IV.1), but this will be established later if H_I is sufficiently
small, '

One can now write Eq. (IV.3) as

EPIY) ={PHO'P + PHP + PHR }P > (IV.10)

One could therefore define H off to be H0 + PHIP + PHIR except that PHIR is not
hermitian. The reason for this is that although two eigenstates Illl1> and

I!!l2> with distinct eigenvalues are orthogonal, the corresponding pro;ected states
P| tll > and PI'II > will probably not be orthogonal, and therefore cannot be
distinct eigenstates of a hermitian operator. To remedy the situation, one notes

that
Pyl = Y IPI> + U IR'RIV> av.11
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This suggests replacing the projected states P | !l/1> and Pllll2> by the states

1/2

(L+R'R)“ P|¢,> and 1+R'RY2 p| W, s which are still states in the sub-

space projected by P but have the same scalar product as lllil) and | */’2>- The

1/2

+ .
operator (1+R+R) -is well defined as a power series in R R when HI is small,

To obtain H off’ write the eigenvalue equation as .

(E-H) (P+R) Pl¢D> =0 (Iv.12)
and multiply by (P+R"): |
E(P+R) (P+R) PIYD = (P+R) H(P+R) PIY> (Iv.13)
Now |
(P+R")(P+R) =P+R'R=(1+RR) P (IV. 14)

using Egs. (IV.6) and (IV.7), Hence, multiplying Eq. (IV.13) by (1+R+R)—1/ 2

gives
Elo) = H g L o> (IV.15)

where
> =(1+R+R)1/2 Ply> (IV.16)
H oo = (1+R Ry Y2 (P+R') H(P+R) 1+R'RyY/2 | (IV.17)

The formula for H off is evidently bermitian.
The above argument is not rigorous, so it must now be proven that the

eigenvalues of Heff are the eigenvalues of H near E_, and that eigenstates |¢)

0’
of H, ., become eigenstates of 14 of H through the formula

1D = (P+R) (1+R+R)-1/ 2 [d> | (IV.18)

Assume that R is defined by Eq. (IV.9) solved by iteration assurhing HI is

small. It is shown in Appendix A that the iteration converges if HI is sufficiently
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small, The solution satisfies Eqs. (IV.6) and (IV.7). From these and Eq. (IV.9)

one obtains
(1-P-R) H(P+R) = 0 ' (IV.19)

which is essentially Eq, (IV.5). Also

(1-P-R) (P+R) =0 (IV. 20)
This is because
(1-P-R) (P+R) = (1-P)(L-R)(1+R)P = (1-P)R%p av. 21
and | |
RZ=RP(1-P)R=0 | (IV. 22)

Let |¢) be an eigenstate of Heff in the subspace projected by P, and let E be
its eigenvalue. Define 1¥) by Eq. (IV.18).

One can write
a+rRY2 & ~H_g) P|¢) =0 (IV. 23)
Using Egs. (IV.17), (IV.18) and (IV.14), Eq. (IV.23) may be rewritten
@P+RHYE-H)IY) =0 | | (IV.24)

This equation cannot be used to infer that (E-H)|YD =0 because p+R* pr‘ojects
onto a subspace and does not have an inverse. However, from Eqs. (IV.19) and

(IV.20) one can obtain

(1-P-R)(E-H)[¢> =(1-P-R)(E-H) (p+R){(1+R+R)'1/2|¢>} =0 (IV. 25)

Adding Egs. (IV.24) and (IV.25) gives

(1+R*-R) E-H) YD =0 (IV. 26)
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It is shown in Appendix A that (1+R+- R) has an inverse (for sufficiently small
HI) so this equation does imply that 1) is an eigenstate of H with eigonvalue E.
The Hamiltonian Heff has matrix elements equal to .zero except within the sub-
space projected by P. Within this subspace He £ has d‘orthogonal eigenstates,
where d is the dimension of the subspace. These eigenstates define (through -
Eq. (IV.18)) d orthogonal eigenstates of H (orthogonality is easily verified). The
energies of these eigenstates are close to E 0 because Heff is approximately

PHP when HI is small so that R is small.

An alternative form of Heff is obtained as follows. Write

1/2

_ +_-1/2 + o
Heff—E0P+(1+R R) (P+R)(HI+H0-E0) (P+R)(1+R R) (Iv.2m
Using (H0 -EO) P =0 and Eq. (IV.9), one can rewrite this as
He g = E0P+(1+R+R)_1/ 2 (p+R {HI(P+R) - (1-P-R) HI(P+R)} (1+R*R)"Y2
- (IV.28)
Using Eq. (IV.14), this simplifies to
H g = EoP +P(1+R+R)1/ 2 H, (P+R) (1+R+R)’1/ z (IV.29)

This formula is not manifestly hermitian, but H g 1s still hermitian since it is

still defined by Eq. (IV.17).
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V. EXACT PERTURBATION ANALYSIS OF THE MODEL

The outline of a method of solving the cutoff model Hamiltonian HM has been
given in Section III. One uses the definition of He £t given in Section IV in each

degenerate perturbation calculation. The result is that starting from H, , for

M’
ahy M, one defines a sequence of effective Hamiltoriians denoted HN(M) involving

+
meson operators a a
p m’ %m’

bm, b:n for 0 £ m < N and isospin operators which
will be denoted ‘ri regardless of what states they act on (jp>, InD, or IP), NV,
or |P'), IN'), etc.). The effective Hamiltonians involve very complicated
interactions, not just the Om terms of the original model. From the analysis

of Section ITI, one can expect to get upper bounds on these terms such that a

AN ON term is the dominant term in HN(M) provided an appropriate coupling
constant replaces 8o in ON. 7 The Hamiltonians HN(M), give the energies of the
ground state of HM and the excited states of HM in which only the first N degrees
of freedom are excited. If the energy levels are counted from the lowest level
up, the ground state being number one, then HN(M) describes the first 22N+3

levels of HM. |

The limit of no cutoff, that is the M —= limit, can be studied by studying
the limits of HN.(M) for fixed N, as M—<. This means one is studying a fixed
number of energy levels as M increases. It w111 bé. proven in this section that
the limit of HN(M) for M— = exists provided one makes the renormalizations
one expects from ordinary perturbation theory. This means that before letting
M — = one must first subtract a constant EM from Hy (M) and allow tﬁe bare
coupling constant goM to vary with M. The variation will be such that g oM %

as M —®, i.e., the interaction term in H,, swamps the free meson energy in

M
the limit M —o. The proof requires that A be larger than 4 X 1()6° The limit
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may e#ist for smaller A but in this case the upper bounds used in the proof no
longer apply.

The Hamiltonians of this paper involve only bounded operators: the 0peratorsv
an? a:-n’ 1'+, T, etc.  All have operator bounds of order 1. Anybne with ex-
perience in rigorous quantum mechanics knows the joys of having only bounded
operators. This enéureé that terms that look sinall by a power of A will indeed
be small if A is large enough; for finite M the perturbation expansions in A'l
will be easily proven to converge and one can concentrate on the problems of the
M—o limit,

The analysis of the limit for M — « ié still very complex; it will be pfe—
sented here in a formal and not well-motivated manner, Before presenting the
i)rocession of theorems and definitions, the basic problem invoived will be
sketched briefly. The essential problem is to have a bound on the difference
| Hy(M. 8o - Epp - H(L, g, ) + E || where || || is the ordinary operator
bound, and the dependence of HN(M)' On g1 has been noted explicitly. One
must be able to show that this bound goes tQ zero as M and L go to «, provided
the sequences {g OM} and {E M} have been chosen appropriately. The crucial step
in establishing such a bound will be to show that the difference HN(M) - HN(L) -E
is arbitrarily small when M and L are large provided E is properly chosen and
provided the terms of order ANON which dominate HN(M) and HN.(L) have identi-
cal effective coupling constants (see Theorem 10). This condition will force one
to have different bare coupling constants; goM # 801, As a preliminary to
proving this theorem it will be proved (Theorem 1) that HN(M) is dominated by
a term of the 'structure ANON with an approﬁriate effective coupling constant in

ON. This proof is necessary because otherwise one might worry that terms nomi-

AN- 1

‘nally of order or less would be multiplied by powers of M, which would

dominate the AN term when M>A.
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In order to clarify the calculation of bounds some topological laing'uage -will
be used. A space S of Hamiltonians will be defined which includes the effective
Hamiltonians HN(M) as special cases. The perturbation analysis which defines |
HN_l(M) given HN(M) defines a transformation T on the Spacé S. The space S
will be defined so that T(S) is contained in S. A metric will be defined on S, and -
convergence questions discussed in terms of this metric. The Hamiltonians
HN(M), considered for all possible values of 8y define "eurves" in S.

The exact and rigorous analysis of the renormalization problem begins here.
The first step is to define the space S of Hamiltonians. It is convenient to adopt
a specific way of representing the Hamiltonians that will be included in S. Let
H be any Hamiltonian involving the meson degrees of freedom 0-N p‘lus nucleon
operators, for example HN(M) for some M. It will be convenient to renumber

the meson operators, making the switches 24 b,~— b b,+~—a b

0 & On A1 P17 %N-1 ON-1
etc. In the new numbering a:;l creates a meson in the state le-m' ' This is to
be true for all N, so the state associated with a:;l is different for different N. It
is also convenient to separate an additive and a multiplicative factor from H,
writing | |

H=J#+ & (V.1)

where J and & are constants. A normalization condition will be imposed on J,
determining J, but the separation 6f & from Jo will be left indeterminate.
(The transformation T will be defiﬁed to determine J, # and & separately.)
One now lets o have the following structure:
+ _ N | N
Lt w/'2gV027 +w/2gV03'r + g_:__ly’k.ék—l.'- 20 Cpo (V.2)

= mVO
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where V, is a vector (V, ;» V} 5, V} o) and

T =A™ (a:;l a_+bt b -1) (V.4
T, o= (1/V2) A (am + b;‘n) | (V.5)
T o= (1/v2) A™ (a;‘n + bm) | | (V.6

. ' *
and Akl’ Ak2’ Ak3’ and Ck are operators which depend only on 7 and the meson
operators numbered from 0 to k. The vector notation ék’ §k’ etc. is used purely
for convenience. The constants m and g will be required to satisfy a normalization
condition:

m2+2g2=1 V.7

To ensure this normalization condition, m and g will be represented as
m =cos 0 (V.8)

g =(1/V2) sin 6 | (V.9)

The set of parameters J, &, N, and 6, and the operators ék and Ck

called the "decomposition" of H. The representation is highly redundant; for

will be

example, CN is by itself totally arbitra.ry. The reason for using this redundant
representation is the following: One can see from Table II that the operators °
s bk for large k (new numbering) appear in any effective Hamiltonian HN(M)

predominantly in terms such as V.-Ajor ¥V, A.. Terms which must go into

1 =0 2 ~1
Ck (the xﬁ terms of Table IT) have much smaller coefficients. Hence by making
the separation one can put stringent upper bounds on the operators Ck‘,
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The space S will be defined in two steps, the first step being to define a

subsidiary space S A

Definition. A point P A€ S A consists of an angle 6 and an infinite set of

operators Ak and Ck (0 £ k< w). The angle 0 is restricted to the range

0 < 0 <7/2, The operators A and C_can depend, only on the nucleon isospin

k k
+ + +

; <m<k.

operators 7~ and the meson operators am, am, bm’ and bm for0<m=<k

The dependence on these operators is arbitrary except as follows. The operators

~A~k and C, must satisfy the following operator bounds:

ANl < 200 mg? AL (v.10)
Al < 200 V2 g® AT (V.11)
Al < 200 v2 g3 AL (V.12)
IC, Il < 200g% A2 (V.13)

- where m =cos 0, g = (1/V2) sin 6. Secondly, the operators 'ék and Ck must

, and Ck must carry charge 0 while Ak2

k1
destroys a unit of charge. Under charge

satisfy symmetry requirements: A

creates one unit of charge and Ak3

conjugation A, = A 1, A, A g, and C, = C,. Under time reversal A — A¥

+
—_ (% cs s =
and Ck Ck . Also Akl and Ck must be hermitian, while Ak3 Ak2' These

requirements ensure that ¢ (defined by Eq. (V.2)) is hermitian and invariant
to the symmetries. The parameter ¢ and the operators 'ék and Ck will be called
the decomposition of P, .

A
The powers of A in these bounds are what one would expect from Table II;
the coefficients are hindsight bounds. It is convenient for the following analysis‘
to insist that an infinite set of ék and Ck be specified even if a particular

Hamiltonian involves only a finite subset of them. The superfluous ék and-Ck

can be chosen arbitrarily subject to the restrictions of the definition of S A
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The space S is defined as follows:
Definition. A point P € S consists of three constants J, ¢, and N, and a point
P A € S Al The four objects J, & , N, and P A will be called the decomposition
of P. N must be an integer, J must be positive, but & is arbitrary. There are
no upper bounds on J, |&|, or N. |

Next the transformaﬁon T acting on S will be defined. Many details of the
definition are handled in Appendix B, only an outline is given here. Any
Hamiltonian H in S has a dominant term of the form

Hoy = ‘5°+J{m (5 20 * B g 1) * g(‘?‘o*b;)ﬁ.*g(a;*bo)*_} - (V.19

" The remaining terms in H form a perturbation HI: :

(V.15)

From the definitions (V.1) and (V.2) and the bounds (V.10) - (V.13), I-II is of order
J A-'1 or less and therefore can be treated as a perturbation relative to Ho. In
particular, one can use the formulae of Section IV to define a new Hamiltonian

He £ whose eigenvalues are the eigenvalues of H near the ground state energy

of H.. | |

0

Suppose H has a decomposition (J, &, N, P A) (with P A inS A)’ The
Hamiltonian H_,, can also be decomposed in the form (3, &', N, Pk) with Pk
in§,, that is Heff can be written in the form defined in Eqs. (V.1) - (V'.9) .
(The resulting operators A{{, etc. satisfy the bounds of Egs. (V.10) - (V.13);
see Theorem 1.) Specific formulae for J', &', N', and Pk (i.e., g',m', A},

and Cl'() are obtained in Appendix B. (Cf., Eqs. (B.20) - (B.24).) The general

form of these formulae is as follows:

N' = N-1 (V.16)

r=AtaT Py - V.17’
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and

&'=8+ITy(P,) (V.18)
Pl =T, (P,) ’ _. (V,' 19)

where TB (P A) and TC (P A) are functions depending on P, but nb’c N, J, or &,

A
and T A is a transformation on the space S A’ independent of N, J, or &. Itis

clear that J and & will be multiplicative and additive factors in Heff so do not

effect T A’ TB’ or TC' It is less obvipus that T A’ TB’ and TC can be defined

to be independent of N; this result is proven in Appendix B. Equations (V. 16) -
| (V.19) define the transformation T.

The reason for defining the subsidiary space S 18 that the transformation

T A acts on this space, and it is convenient to do much of the topological analysis

on the transformation T A rather than on T itself. The space S A is a continuous

closed space; in particular, it does not involve the discrete variable N.

The unrenormalized cutoff Hamiltonians HM are all in S. The decomposition

of H,, can be defined to be

M
3= MNM(1+2 gg)l/ 2 | (V.20)
&=0 | | (V.21)
o=tan™ (V2g) - (V.22)
-1/2 -1/2
m=(1-+2gg) X g=g0(1+2g(2)) (V.23)
A =Cp =0 - (all k) (V.24

g, must be positive so that ¢ lies between 0 and 7/2. Note that m < 1 and
g < (1/ v 2), this is required by the normalization condition (V. 7).
In Appendix B several theorems about the trahsformation T  are provén.

These theorems will be quoted below and are the basis for the analysis in this

section.
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Theorem 1. If PA € SA then TA(PA) is also in SA’ i.e.,
T A(S A) cSs A
Theorem 2. Let P A € S A have a decomposition (@, ék’ Ck), and let T A(P A)

(V. 25)

have the decomposition 6', A, and C] . Let:m = cos 6 and g = (1/v2) sin 6.

Ak
Then
tan 6' = V2 g'/m"
TyP,) = @ + 2 g7%H /2
where
|m" - m| < .01 mg?
lg" - g(1-g%] < .01 ¢°
Also

[To(Py) +1] < .01

(1-.51 sin® 6) tan 0 < tan 6" < (1-.48 sin? 0) tan 0

Theorem 3. Let P A and T A(P A) have the decompositions defined in Theorem 2.

Let the component Akl of "A'k vanish for all k. Then
Ai{l =0 (all k)
m" =m

where m" is the constant in Theorem 2.

The significance of these theorems is essentially as follows. Theorem 1

(V.26)

(V.27)

(V.28)
(V.29)

(V.30)

(V.31)

(V.32)

(V.33)

ensures that if the decomposition of P, satisfies the bounds (V.10) - (V.13), then

A
so does the decomposition of T A(P A)’ A consequence of Theorem 1 is that the

effective Hamiltonians HN(M) are in S for any N, any M, and any value of o

Theorem 2 gives limits on the values of TB(P A)’ T C(P A)’ and 6' which depend
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only on m and g, not on ’}.\'k and Ck‘ The constants m' and g" appear in an inter-
mediate stage in the calculation of H off* To lowest order in A_l, g" is equal to
g (1 —gz); this follows from Eq. (III. 6) using Eq. (V.7). The bounds in
Eqgs. (V.28) - (V.30) were originally of order A-l, but were replaced by
numerical bounds (valid for A >4 x 106) for convenience. Theorem 3 shows
that Akl will vanish for the effective Hamiltonians HN(M). It was not obvious
(to the author, at least) that this would be so.
Before presenting Theorem 4, a metric must be defined in the space S A"
= t /9 1 t : : . "
Let PA e, Ak’ Ck) and PA e, ék’ Ck) be two points in SA’ It is convenient
to define two distances in SA’ one being adistance between 6 and 6', the othe’r adistance
L] ? $ -
between the operators {ék’ Ck} and the operators {é‘k’ Ck} . It is also con
venient to use the notation |P AT Pkl for the pair of distances (dl’ dz).
Definition. Let PA =(0, 'ék’ Ck) and Pk = (9!, é{{, Cl'{) be in SA' Then
|PA - PA] = (dl' dz) with ‘
d, =2[sin 1/2 (6 - 6Y)] (V.34)

_ k+1 2k+1
d, = Max {\fz AT 1A - AL A

G - Ci{" } _ (V.35)
where the maximum is over all possible values of»k and i.
The distance d1 is more transparent if written in terms of m, g, m', and
g':
a, ={(m—m')2 +2 (g—g')2}1/2 (V.36)
No a priori rationale for these definitions of d, and d2 will be given. A certain

amount of experimentation was required to determine how to define these dis-.

tances; the above formulae turned out to be useful. It is clear from Eqgs. (V. 35)
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and (V.36) that the metric satisfies the triangle inequality and that |P A Pkl = (0, 0)

. - 1
only if PA PA .
, . .
Theorem 4. Let P, and P beinS,. Let |P, - P}|=(d,, d;) and
IT, (By) - T, (PY)] = (), db.
Then ‘
-5 \ -5
.38d, -107°d,<d} <20d,+107°d, (V.37)
1 <
d2 < 1100 dl + .06 d2 _ (V.38)

The coefficients 10"5 and .06 are numerical upper bounds to terms behaving
as A-l. These bounds are valid for A>4x 106. The first set of bounds force d'1
to be of order d1 unless dz > dl; d'1 gannot be much less or much greater than dlunless
d2 > d1' The second bound is a straight upper bound on d'2. In particular if

d1 = 0 then d'2 is smaller than d2. Hence as long as 6 = 6!, the transformation

T, brings the points P A and P', closer together.

A
The four theorems stated above are proved in Appendix B. The only

assumption is A > 4 X 106. The remainder of the analysis of this section is self-

A

contained. The next stage is a set of topological theorems and definitions. First
one defines a set of curves QL in the space S A They are generated by the effective
Hamiltonians HN(M) as a function of the coupling constant 8¢ The curves turn

out to depend only on the difference L =M - N, not M or N separately. Itisconvenientto

parameterize these curves by their 6 coordinate rather than by the unrenormalized coupling

constant. The parameter inthese curves will bedenoted t. Letthe deéomposition of QL(t)

be written
Definition. AQO(t) is the curve

6t =t : - (V.39)

At =Cgd = 0 (V.40)
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Definition. The curve QL is defined iteratively for L > 0 by the relation

Qp =T, (Q_y (V.41)
If one were parameterizing using the unrenormalized coupling constant, one
would have had QL(t) =T A (QL_-_l(t)). With the alternative para.metérization,

Qq(t) must still be the transform of some point on Qp,_;- This point can be
denoted Q; _,(Fy (H)

@yt =Ty (9 4 [F0]) (V.42

Definition. The parameterization QL(t) of QL is to be chosen so that

b ()=t (all L) (V.43)
In practice this definition defines the function FL(t).
We shall also be interested in the inverse function fL(t) to FL(t). This function
satisfies
QU () =T, @ ;) (V.44)
Since the @ coordinate of QL (fL(t)) is fL(t), one has
fL(t) = § coordinate of T A (QL_l(t)) _ (V.45)

The next theorem gives several préperties of QL(t), fL(t), and FL(t). - These
properties will be established simultaneously in a pfoof by induction.
Theorem 5.

a. QL(t) is a single-valued function of t defined for 0 < t < #/2.

b. fL(t) is a continuous single-valued function of t defined for 0 £ t < n/2

satisfying
£(0) =0 (V.48
£, (n/2) = /2 (V.47
0<f(t)~t for 0<t<m/2 ' . (V.48)
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c. FL(t) is a continuous single-valued function of t defined for 0 £ t < 7/2
satisfying
= V.49
F (0)=0 (V.49)
F (n/2) = 7/2 - (V.50)
t<Fp(ty<w/2 for0<t<m/2 (V.51)

d. Consider any pair of numbers t and t' in the range 0 to 7/2. Let

Q) - Q (Y] = d;, d,) . Then

d, < 4000d, . (V.52)
£, - £, ("] £ 40 It -t (V.53)
|F () - Foh| < 40|t - t* ' (V.54)

Part a is the Qrucial part of the theorem. It states that the curve QL’ pro-
jected on the # axis, covers the full range 0 < 6 < 7/2 once and only once. If,
for example, the curve QL covered only part of this range, the theory would not
be renormalizable. This point will be discussed later. 12

Proof of Theorem 5. The property a and Eq. (V.52) hold for L = 0. That is,

Qo(t) satisfies a from its definition, and |Q0(t) - QO(t')| = (dl’ 0) for all t and t'
so satisfies (V.52). Suppose property a and Eq. (V.52) are true of QL-l(t)" We

prove a - d for QL’ F_, and fL. Equations (V.46) - (V.48) are consequences of

L’
the inequalities (V.31) (remember that the § coordinate of QL-I(t) is t). Now
let t" and t'"" be two parameters in the range 0 to 7/2. Let |QL_1(t") - QL_l(t"')|
= 1t - 110 - ] t s

(dl, d2), and let |TA(QL_1(t )] TA(QL—I(t N =@, dz). These distances

must satisfy the inequalities of Theorem 4, and d, satisfies Eq. (V.52) by as-

2

sumption. These equations can be combined to give inequalities not involving d2:

1<
.34d < d} <21d) | (V.55)
dl, £1340d, (V.56)

-37 =




d, =2 |sin 1/2 (t" - £yl (V.57
dy =2 |sin 1/2 [fL(t") - fL(t"')]| (V.58)

Because t", t'", £ (t"),and £ (t'"") all lie between 0 and 7/2, the é.rguments of
4 L Lt

the sines lie between -7/4 and /4. For angles ¢ in this range

(2V2/m 1 ¢1 < |sin ¢| = |l (V.59)
One deduces from Egs. (V.55) and (V.57 - (V.59) that
£ (8" = £ ("] < (21 7/2v) |t - t] (V. 60)

This proves that fL(t) is continuous; it also proves Eq. (V.53). Since fL(t) is

continuous and satisfies Egs. (V.46) and (V.47), there must be at least one root

t' to the equation t = fL(t') for any t between 0 and /2. This equation cannot have
two roots t" and t''* for if t = £(") = £ (¢'"") then d} = 0; by Eq. (V.55), d, must

also be zero which means that t" =t'""', Finally ift=£f_(t") thent < t" < n/2

L6
(using Eq. (V.48)). Hence FL(t) (the inverse function to fL(t)) satisfies ¢c. Now
let t and t' be arbitrary parameters in the range 0 to 7/2. Lett' = FL(t) and

t'"' =F;(t"). Thent=£ ("), t' =f (t'""). Using Egs. (V.55) and (V.57) - (V.59),

one gets
|FL () - F )] < (. 68v2) L |t - ] (V. 61)

which proves Eq. (V.54). Furthermore, the inequalities (V.55) and (V.56) give
d'2 < 4000 d'1 which proves Eq. (V.52). Finally, a is a consequence of ¢, using
Eq. (V.42) and the continuity of T A (Theorem 4).

The next problem is to discuss the limit of the curve QL for L =, Deter-
mining the limit of QL(t) for L —« with t held fixed is equivalent to determining

the limit of the Hamiltonians HN(M) for M — holding the effective coupling
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constant in HN(M) fixed. It is convenient to introduce subsets SL of S A which

contain QL. The set S0 is the set S A itself, the definition of SL is

Definition. SL for L > 0 is the set’

SL = TA _(SL—I) (V.62)
SL consists of all points in S A which can be obtained by applying the trans-
formation T A L times to some point in S A Evidently all points in SL also are
in8; 4:
Theorem 6.
_ S |
S, ©8 , for L21 (V. 63)

The following thedr_em gives an upper bound on the "cross-sectional size"
of SL for given angle 6:

. » 1 s s -P'] =
Theorem 7. Let PA and PA be any pair of points in S Let |PA PA‘ (dl’ d2).

L *
Then

d, < 4000d, + 300 % (.2)" (V. 64)

The cross section is the maximum value of d2 for d1 = 0. Theorem 7 gtates

that the cross section goes to zero as L — ; the spaces S, shrink to a single

L
curve as L~ (see below).

Proof of Theorem 7. The proof is by induction. For L = 0 the theorem is'true'

simply because the bounds (V.10) - (V.13) force d,, to be less than 300 for any

2

» > - '
pair of points in 8 < Suppose the theorem is true f?r SL-l‘ Let P A and P A be

two points in S, . Let |P, - P}J be (d'l, d'z). There must exist (by definition of

L.

: ' L i = ' = !
SL) two points PB and PB in SL-—l with PA TA(PB), PA TA(PB). Let

|PB - P;BI be (dl’ d2). Then the distances dl’ dz, d', and d;z satisfy Eqs. (V.37)

and (V.38). Also d2 satisfies the inequality (V. 64) with L-1 substituted for L.
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Combining these inequalities gives

.34d, - 003 x (2t 1< ar

d} <1340d, + 18 x ("]

These inequalities can be combined to give 13

dj, < 4000 4! + 300 x (. )"

Q.E.D.

The next three theorems will be used to show that the curves QL(t) have a
limit curve R(t) for L—«, The curve R is the limit of the subsets SL for
L—w, Thé curve R has the property T A(R) = R: it is an invariant subspace of

the transformation T A

}be a sequence of points with PL € SL. Denote the 0

Theorem 8. Let {PL

coordinate of PL by GL' Assume that OL approaches a limit 6 for

L —=, Define P! to be P' =TA(P

L L Denote the ¢ coordinate of P!

L) * L
. _
by GL. Then

a. Lim P. exists: call this limit R
Lo L

b. Lim 6! = 8! exists

L—ow
¢. Lim P! =T,(R)
Proof of Theorem 8. Let L be large and K be even larger. Because SKC SL’

both PL and PK are in SL‘ Let 'PK - PL| = (dl’ d2). Then

d, =2|sin 1/2 (6 - 6)]

and by Theorem 7

d, < 4000 d, +300 x (.2
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One can make both d1 and d2 arbitrarily small by choosing L and K large enough.

This is true of d1 by the assumption that 6. approaches a limit for L —«. It is

L

true of d2 from Eq. (V.69). Hence by the Cauchy criterion the sequence PL has

L has a decomposition GL’ éLk’ CLk’ then GL, ALk’ and

all have limits for I,—, and the limits @, é and C, define the point R.

a limit R. That is, if P

f

Crx K’ k
To prove b and ¢ consider the distances lPL - R|=(@", d’:,a) and
P} - T,(R)| =(d}, ). Since Eqs. (V.68) and (V.69) hold for any K, they hold

for the limit K—, giving

dy =2 |sin 1/2 (eL - 9)| ' (V. 70)
a} < 4000 d! + 300 x (.2 (V. 71)

One can make d'1 and d'2 arbitrarily small by making L large enough. Therefore,
due to inequalities of Theorem 4, one can also make d‘l' and dg small enough by
making L large enough. Hence c is true, and b is a corollary of c.

Theorem 9. Let {PL}and {P'I',} be any two sequences satisfying Py €S, and

" ; - 1" 1" :
PL € SL' Let the 6 coordinates of PL_ and PL be 6_ and BL respectively.

Assume that the sequences 0

L

L and GI': approach the same limit § as L— .

Then

Lim P, = Lim P} (V. 72)
L— L —®™

The proof is simple. Let |PL - P'Il,l = ,(dl’ dz). Then since PL and P}: are in

St

d, =2|sin 1/2 (6; - 61" |‘ (V. 73)

d, $4000d, +300x (7" (V. 74)

As L —w, d1 — 0 and hence d2 — 0 also. QED
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Theorem 10.

a. Lim Q (t) = R(t) exists for all t in the range 0 < t < /2.

L —e

b. Lim £ (t) = () exists (0 ¢t <n/2.

L—w®
c. T, (R(t) =R (£(t) (V. 175)
d. f(0)=0 | | (V. 76)
f(n/2) = n/2 | _ . ' (V.77
0<ft)<t (0<t<n/2) (V.78)

e. Lim FL(t) = F(t) where F is the inverse function to f; also both A

L —

F(t) and f(t) are continuous single-valued functions of t defined for

0<t<m/2.

f. F0) =0 | | (V. 79)
F(n/2) = 1/2 « | (V.80)
t < F(t) < 7/2 (0 <t<w/2) : | © (V.81

Proof of Theorem 10. Part a is a consequence of Theorem 8a. Now let PL=QL(t)

be a sequence as in Theorem 8; define P'L =T A(PL) as in Theorem 8. Then e£

is

| -
oL =L ®

(V.82)
By Theorem 8b, GI'J has a limit; this is true for any t so the function f, (t) has a

limit f(t) for L e, This proves'b. To prove ¢, compare the sequence {P'L}
with the sequence P’I: = QL (f(t)). These two séquences satisfy the assumptions
of Theorem 9. Hence they have the same limit point. By Theorem 8c, P'L has
thg limit T A (ﬁ(t)). By Theorem 10a P']L has the limit R(f(t)). This proves c.
To prove d one uses c and the inequality (V.31) (h’ote that the @ coordinate of

R(t) is t since the 0 coordinate of Qi‘(t) is t for all L).
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To prove e let t be arbitrary in the range 0 < t < 7/2 and define the sequence

t, =Fp(t). LetLandK (K >L)be large. Thent=f () =f.(t ). Therefore
0 =1, (t) - fy(t) = [fL(t.L) - fK(tL)] + [fK(tL) - fK(tK)] (V.83)
Therefore | | | |
Tt - S| = £ (8) ) fK(tL)| (V.84)
Now use Theorem 5d: |
Ity = tel = |FK(fK(tL>V) - Pl (b < 40 [f(ty) - Bettl =
=40|f (b)) < ft)] | (V.85)

The function £, (t) approaches f(t) for L —o on the closed interval 0 < t < 7/2.
Hence this limit is uniform in t. Hence, ]fL(tL) -fK(tL)| is arbitrarily small

for sufficiently large L and K irregardless of the value of t This means

L.
'tL - tK' — 0 as L and K approach « : hence the sequence tL has a limit for

L—. This is true for any t so FL(t) has a limit F(t). Since F_(t) is the in-

. verse to fL(t), and since both F_ and fL are continuous uniformly in L by

L

Theorem 5d, F(t) is the inverse to f(t) and both are continuous. Also since FL

and fL are single-valued, so are F and f. Finally f is a consequence of d and e.
Armed with Theorems 1 - 10, one can now attéck the renormalization problem.

One starts with a sequence of unrenoi'malized cutoff Hamiltonians HM. The bare

coupling constant g is permitted to vary with M and is denoted goM* In addition

H, is permitted to have an additive constant o

renormalization problem is to choose the sequences g, and ng so that H

also varying with M. The

M
has a finite limit for M — ». Since the number of degrees of freedom changes as

M —= one has to specify what one means by the limit. | To be precise we demand

that each energy level, counting in order of increasing energy, has a finite limit.
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This is equivalent to demanding that the energy levels of the effective Hamiltonians
HN(M) have limits as M‘-wo keeping N fixed, since the effective Hamiltonians

H, (M) describe the first 22N+3 o ergy levels of H,,. The limit of H (M) for N

M.
fixed is a simpler limit since now the number of degrees of freedom is fixed.
It will be found that HN(M) has a limit as an operator for M—« (the limit will be

denoted H which ensures that the eigenvalues of HN(M) have limits. There

RN
are other parts to the renorrﬁalization problem, namely computing matrix elements
of the operators ‘r+'r-, a s etc. between eigenstates of the renormalized Hamil-
tdnian. These other problems will not be discussed.

The effective Hamiltonians Hy (M) (with Hy (M) defined to be H,) are all in
the space S.- Denote the decompdsition of HN(M) by (JN(M), £N(M), N, PN(M))
where, in turn, PN(M) is a point in S A with the decomposition (GN(M), AkN(M),

CkN(M)). Denote the decomposition of the original cutoff Hamiltonians H

M;
by (J oM? é’OM, M, Pons the decomposition of Pom is (GOM’ 0, 0) and J oM
and GOM a.re
_ AM 2 \1/2
Jop = A (1 +2 gOM) (V.86)
6. =tan ! (V2 V.87
oM~ tan. ( gOM) (V.87
Since HN(M) is defined as the transform by T of HN +1(M) one has
P(M) =T, (P, (M) (V.88)
Since PN(N) lies on the curve QO’ this means PN(M) is on QM—N:
Py(M) = Quy_y (Oy(MD) (V.89)
Also one has
-1 , ‘
I = A7 g Ty [PN(M)] (V.90)
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and

B2 = 3D + 10 T [py0n] (v.91)

from Egs. (V.17) and (V.18)., Finally, one has from Egs. (V.89), (V.45), and
(V.42)

oy =y ¢ [Pii00] | (v.92
001 = Fyr_y [g00) .9y

The condition HM(M) = H.M means JM(M) = JM gnd GM(M) = 00

M.

One wants to choose the sequences 6, . and é’M so that ’ghe Hamiltonians

oM

HN(M) have a limit for M—« , Customarily one would fix 8 ___and gM by

oM
requiring that the renormalized coupling constant and the ground state energy
be fixed independent of M. We cannot calculate the renormalized coupling con-
stant since this requires knowing the ground state matrix element of 'r*, and -
these matrix elements are not discussed in this paper. So a more ad hoc
procedure will be used. Clearly if HN(M) is to approach a limit for M— «, the
sequences ;S’N(M) and BN(M) must approach limits as M— «, The simplést
way to ensure this is for é’N(M) and GN(M) to be independent of M. Thié cannot
be true for all N, but it can be arranged for one value of N, say N = 0. So let
6,(M) be a constant 6, (between 0 and 7/2) and let "é”O(M) be 0.

Given GO(M) =0 and é”O(M) =0, for all M, one can reconstruct the complete

R
double sequence HN(M). First one computes GN(M), forallMand 1S N<M
using Eq. (V.93). Secondly one computes Bom = 1/ v 2) tan OM(M) and J oM
from Eq. (V.86). Third, one computes all the JN(M) (0SSN <M from

Iy (M) = I, and Eq. (V.90). Finally one computes &M (1€ N <M from

Eq. (V.91). The pbints PN(M) are given by Eq. (V.89).
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Now one can consider the limit for M—  of HN(M). The results are stated
in Theorem 11.
Theorem 11. Assume 6, # 1/2. Then

a. Lim H (M) =H
M N RN

Let HRN have the decomposition (JRN’ &

exists for all N

RN’ N’. PRN) and let the ¢

coordinate of P be 0 Then

RN RN*

b, Ppy=R(6p\)

c. Hoo =T [HRN+1], i.e.

RN

0. = £(

rN = H0pNy1)

Al
IaN = A Irne1 TBPRye?)

®an = ®rve1 * TRt T [P RN+1]

Prn =Ty [P RN+1]

Proof of Theorem 11. The first step uses induction in N. .For N=0, GO(M) has

a limit OR for M— « by definition. Hence the sequence PO(M) satisfies the
assumptiohs of Theorém 8. Hence PO(M) has a limit for M— «; from Theorem

10, this limit is R(GR). Now suppose that GN(M) and PN(M) have limits GRN and

PRN = R( GRN) respectively. Consider the sequence 6 M) as a function of

N+1(

M. It is given by Eq. (V.93). Since GN(M) has a limit BR

_N(e) is continuous in 8 uniformly in

N’ since the function

FM_N(B) has a limit ¥(6), and since FM

M (see Theorem 5d), the sequence 6. .(M) must have a limit 6 Also

N+1 RN+1°
OrNe1 = F(GRN). Hence GRN satisfies c. Since ON +1(M) has a limit, P (M

has a limit (Theorem 8); the limit is R( P (Theorems 9 and 10). Because

lL]RN+
eRN is f(eRN+1)’ one has

R(Opy) = Tg [ROg)]

- 46 -

(V.94)

(V. 95)
(V.96)
(V.97
(V.98)

(V.99)

(V. 100)




(Theorem 10c). By inducﬁon one has established limits for GN(M) and PN(M)
for all N, as M— «, The limit PRN satiksfies b and ¢ and ORN satisfies ¢. The
next step is to look at the scale factors JN(M) . We .use Theorem 3. The points
of the curve QO satisfy the prerequisites of Theorem 3§ hence all the curves Q L ’
have the property that Akl vanishes for all k at arfxy point on the curve. In
particular Ay, (M) vanishes for all k. Look at T [PN(M)] . Let Py (M) be the

point P A of Theorem 2. Using the notation of Theorém 2 and the result of

Theorem 3,
TLP (M) = @ + 2 g7/ (V.101)
tan 6' = V2 g"/m | (V.102)
Note that 8! is GN__l(M), 6 (notation of Theorem 2) is BN(M), and m =cos 0.
One can eliminate g'" to obtain
TR(Py(M) = cos 6 (M)/cos 6. (M) (V.103)
Using Eqgs. (V.86), (V.87), and (V.90), one obtains14
_ AN -1
I (M) =A [cos 0 (M)] (V.104)
N N ,
Since BN(M) has a limit GNR for M-*°f » 80 does JN(M), provided GNR is not 7/2.
But from ¢ and Theorem 10f, one sees that GNR < n/2if GR < /2. So JN(M) has
a limit JRN'
= AN -1 '
Ty = A [cos oNR] (V. 105)

Using Eq. (V.91), one can now show that é"N(M) has a limit (g’RN for M — .
It is easily seen that JRN and (S’RN satisfy ¢. This completes the proof of
Theorem 11. |

The existence of the renormalized energies has now been proved. The

renormalized theory is defined by the sequence of renormalized cutoff Hamiltonians
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HRN‘ Because of Theorem 1lc, this sequence has a common set of eigenvalues:

2N+

H_ ., describes the first 2 8 of these., The complete set of eigenvalues defines

RN

the complete renormalized Hamiltonian H Unliké the renormalized Lee model,

R
the present renormalized theory has no ghost states: the bare coupling constants
gop 2re real for all M and all the Hamiltonians H'M’(and HN(M) and HRN) are
hermitian. The limit of goM for M —c is «; this is proven in Section VII.

To conclude this section, in will be shown that the set of renormalized
Hamiltonians HRN is independent of the choice of the unreno;malized cutoff
Hamiltonians Hyp in the following sense.

Theorem 12. Suppose that the cutoff Hamiltonians H,, have the decomposition

M
_ . -
(J oM’ éaOM’ M, POM) where POM lies on a one parameteg curve Qo(t).

=Q! :
POM QO (OOM) (V.106)
Suppose that the curveQb(t) is any curve in the space S A defined for
0 <t <w/2, such that t is the 6 coordinate of Qb(t) and the bound (V.52)
of Theorem 5d is satisfied by Qb.
Construct the sequence of effective Hamiltonians'HN(M) starting from
Hyp and let Hi(M) have the decomposition (J (M), &,((M), N, Py(M).
The points PN(M) lie on curves Q‘M_N(t) defined by analogy with QL(’c),
Let 6 (M) be the 6 coordinate of P\ (M). |
Let JN(M), gN(M), and BN(M) be determined by the boundary conditions
6o(M) = 6 (V.107)
E(M) = 0 ‘ ' (V.108)
I, (M) = (cos eR)‘ (V.109)

Then Theorem 11 holds for these HN(M) and the limiting Hamiltonians

HRN are independent of the choice of the curve QZ)'
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To prove Theorem 12 one first rederives Theorems 5 - 11 with Q'L replacing
QL; the arguments are unchanged except in Theorem 11 where the scale factors
J N(M) are computed using a different boundary condition. To show that JN(M)
has a limit as M—o one must show that TB(P) is a continuous function of P.
This is true; the proof will be omitted.

To show that the limiting Hamiltonians H., .. are independent of the starting

RN

curve Qb, we show that the limiting Hamiltonians H_ .. are uniquely determined

RN
by their properties, as specified in Theorem 11, plus the boundary conditions,

Using Theorem 1llc, one finds

bpne1 = FORN (V.110)

So one can compute eRN for all N given GRO = GR. Then by 11b, PRN is deter-

mined. Then one can use 1lc to determine JRN and gRN starting from the
boundary conditions (V.108) and (V. 109).
The scale factors J O(M) were specified in this discussion instead of JM(M)

simply to ensure that'HRN would be independent of the choice of curve Q:) .
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VI. APPROXIMATE SCALE INVARIANCE IN THE RENORMALIZED THEORY

When a quantum theory is invariant to the oriéntation of the coordinate sys-
tem, it must be rotationally symmetric — that is, there must exist unitary
operators R which generate rotations and which commute with the Hamiltonian.
One can then diagonalize‘ the generatofs of inﬁnitesimai rotaﬁons simultaneously
with the Hamiltonian; one can classify the resulting eigenstates by angular mo-
mentum eigenvalues, etc.

Likewise, when a quantum theory contains no parameters with the dimensions
of energy, it must be invariant to a choice of energy scale. This immediately
implies that the theory is invq.riaht to a set of unitary operators U(s) which change
all energies by a scale factor s, The Hamiltonian H is not invériant to U(s), since

H is itself an energy; instead, one has
. ,
U (s) H U(s) = sH (VI.1)

There will be an infinitesimal generator D which generates infinitesimal scale
transformations (a transformation with s = 1 + € where ¢ is infinitesimal).
However, D does not commute with H and cannot be simultaneously diagonalized
with H. Instead, scale invafiance is used to generate a set of energy levels with
any energy sE given a level with energy E.

In field theoretic problems thére are usually mass parameters in the theory,
but sometimes these parameters bécome negligible at high energies or short
distances. For example the propagator of a free scalar or spinor field at
short distances is independent of the free fiéld mass and is equal'to the propagator
of the zero mass theory. The free zero mass scalar and spinor field theories are
scale invariant. 15 The standard interacting field theories (quantum electro- |

dynamics or pseudoscalar meson theory) have only masses as dimensional
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parameters, but when solved in perturbation theory they do not become scale
invariant at short distances (large momenta). The propagators of the interacting
theories involve logarithms of (qz/mz) where m is a renorﬁlalized mass and ¢ the
 argument of the propagator. However, if one holds the renormalized coupling
constant e fixed then at very large q2 the logarithmid terms become so large that

2k logk (qz/mz) in the perturbation expansion are much larger

the terms of order e
than the Born approximation. To determine the propagator for this range of q2,
in particular in the limit q2 —=o one must sum the complete perturbation expansion.
There are pfesently no methods for doing this (see eépecially the remarks of
Bogoliuboy and Shirkovls) . There is then a question of whether the mass depen-~
dence will disappear at values of q2 so large that the complete perturbation ex-
pa.nsion has to be summed. Thé best analysis of this problem. 1n relativistic
theory is that of Gell-Mann and Low'.8

In the model, what happens is this. The energy levels of order AR expanded in
powers of the reqormalized coupling constant 8r have terms of order nkgl;{ which
prevent any scaling laws from holding. But when n is so large that g > 1 the
complete series in gR'must be summed,. and then the theory becomes scale in-
variant, in a manner to be explained below. If gn itself is of order 1 rather than
small, then scale invariance sets in for much smaller n; the only requirement is
n>1,

There is a feature of scale transformations which distinguishes them in a
very fundamental way from all other syminetries of the theory. The other sym-
metries (charge symmetries, etc.) are well defined in the presence of the cutoff
M of the model. The scale transformations are not. Th_e scale transformations
of the model are transformations U!l which take the creation and destruction
operators a;, a s b:n’ and bm’ for anj m, into the operators a’ b .

m+° am+,(£’ m+

~ 5] =




and bm vy (Because the momentum cox'ltinuum has been replaced by a discrete
index m the scale transformations are labeled by a discrete variablg 1 instead of

a continuous variable s.) Since the creation and destruction operators satisfy the
same commutation relations for any m, the transformation should exist and be
unitary, exceﬁt for endp_oint effects. Nameiy in the .cutoff theory there are no
operators a etc.,with m > M, or m < 0. So the operators anp etc. cannot be
transformed. To have scale transformations well defined one must have operators
a s etc. defined for -« < m <~ . But this raises a new problem: if fhere are

an infinite number of a then they act in an infinite prddﬁct Hilbert space, which
is inseparable and therefore hard to work with.lo This problem has not been
mentioned up to now since it was evident once the unrénormalized Hamiltonian

ﬁras defined that one could only solve it by introducing a cutoff M. Furthermore,
when the limit M— < was defined in Section V, it was defined only for the effective
Hamiltonians HN(M) for fixed N, which act on Hilbert spaces with a fixed and finite
number of meson degrees of freedom.

“The natural way to show that a theory has an approximate symmetry is to show
that it dépérts only a émall amount from a theory with the exact symmetry. In the
present example of scale invariance, this would require constructing a version of
the model which is exactly scale invariant. But this is very difficult preciéely
‘because of the problems of the infinite number of degrees of freedom. The problem
is not the problem of keeping the pions with arbitrary‘ large m. It was shown at
the end of Section V that one could define a renormalized Hamiltonian HR which
includes all the renormalized energy levels including those involving m-mesons
with arbitrarily large m. The set of such energy levels can be ordered by their

energy and therefore form a countable set of states, which one can think of as

defining a separable subspace of the original inseparable space. The problem is
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that the exactly scale invariant theory would have to include degrees of freedom

m with m — ~c, With such terms present there would be on every gross energy
level an infinite sequence of fine structure, hyperfine structure, hyper-hyperfine
structure, etc., with the net result that in a finite energy interval there would be
an uncountable number of distinct energy levels. These would not form a continuum
because each energy must be the sum of terms of order A'_l, A_z, A_3, etc. with
coefficients of order 1.

Rather than try to develop a formalism for handling the difficulties of the
inseparable space of energy leve}s of a sc'ale. invariant theory, we will define
approximate scale invariance to mean simply that for each energy level of HR of
sufficiently large energy, there is anotﬁer energy level which is approximately a
factor EN larger in energy. The factor 8o will be determined below; it will be of
order A. The correspondence will not be one to one; for an energy level of
energy E, there will be four energy levels of approximately energy 8,F due to the
fact that the energy levels of energy s OE involve one more meson degree of free-
dom.

One can try to prédict the value of s 0 by considering the unrenormalized

Hamiltonians H If one applies the scaling operator U, to H, .  one gets

M’ 1 M

+ _a-1 -1
Uy HM(gO)Ul = A" Hy (89 - A0, (VL. 2)
where U1 is the operator that takes_ a, intq RSP and 00 is the term of order 1

in Hy .. Since the eigenvalues of (A‘lHM +1(8g) - A'loo) differ in order

-1 . ~1 . -1
A ” from the eigenvalues of A Hpr,1(8)» it follows that Hy, (g0 vand A H

have the same eigenvalues except for fine structure of order A—l.

m+1(80)

Suppose that HM(gO) had a well-defined limit as M — for fixed 8q Then in
particular the energy levels of HM(gO) and HM +1(g0) would be the same for suf-

ficiently large M (excluding energies of order the cutoff, that is energies of order
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AM). But then a given energy level of HM would be A'1 times the energy of a
level of HM +1° from Eq. (VI.2). For sufficiently large M this level of HM +1 is

“also a level of H Hence for every energy level of HM of energy E, there would

M
be another level with energy AE. So the factor 8, Would be A

The prediction is wrong; s 0 isnot A. The reason for the failure is that the
renormalized energy levels are obtained by soiving Hamiltonians HM(gOM) where
Bom changes with M It wiyll be shown later that gOM—’oo as M — so even for
large M, goM is not constant.

The idea that operators do not scale as pr_edictéd from an unrenormalized
theory was used in a recent discussion of approximate scale invariance in strong
interactions. 6 However, the analogy to the model of this paper is inexact since
in the strong interaction problem, the scaling law for the Hamiltonian is fixed by
general arguments; it is the other fields in the theory, such as the pion field, whose
scaling laws (dimensions) were permitted to be arbitrary.

The remainder of this section is devoted to the technical problem of éomputing
the nature of the energy levels with energies of order A" with n large, and ex-~
tracting the scale factbr So° It will be shown not only that these energies scale
by a factor AB'I, where B is approximately 1/2; it will also be shown that the error
to this scaling law itself scaleslike A, as if the Hamiltonian consisted of two' terms, one
scaling as AB'I, the other as A under a scale transformation (cf., Eqs. (VI.24)
and (VI.25)).

In the following it is assumed that the function f(t) and the "curve" R(t) defined

in Section V are differentiable. I have not proved this.

The renormalized theory is defined by a sequence of Hamiltonians HRN'

These Hamiltonians are determined by three parameters JRN’ éaRN’ and eRN'
We must study HRN when N is large. This requires knowledge of JRN_’ gRN’

and eRN for large N.
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N}' Since GRN is the 6 coordinate of PRN’
and since PRN is the transform T A of PRN 41’ ong can apply the inequality

(V.31) to obtain

~ First look at the sequence [GR

}tane < tan 0 S{l—.4881n29 ]tane

. 2
{1 -.51sin” @ RN+1 S RN RN+1

RN+1 RN+1

(VI. 3)
First of all this implies that

9N < RN+1

0 < n/2 v (VI.4)
(we assume 8 0 < 7/2 which then forces 0 o to be less than 1/2: see the proof

of Theorem 11). So {GRN} is an increasing and bounded sequence. Therefore it

has a limit for N—, The limit must be 7/2. The reason is that since

GRN = f(aRN+1) the limit 6 must satisfy 6 =£(6). Also 8__ < 6 < n/2. But from

RO
Theorem 10d, the only such 9 is 6 = m/2. Therefore, when N is sufficiently large,
BRN is approximately n/2. Write

Opx = /2~ ¢y (VI.5)

When ¢>N is small the inequality (VI. 3) is approximately

-1 -1 -1 |

.49 (¢N+1) < ¢N < .52 (¢N+1) B (VI1.6)
e.g.
To be more precise, consider the formula GRN = f(eRN +1) and expand in powers
of ¢N+1:

' 2
7"/2 = ¢N= f(Tl'/Z - ¢N+1) = f("/z) - ¢N+1 f'('ll'/2) + O(¢N+1) | (VI' 8)
Since f(7/2) is 7/2, one gets
' 2
i = £01/2) Gy g + Old, ) (VL.9)

and Eq. (VI.7) shows that {'(7/2) is approximately 2.
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Let

g = { f’(vr/2)}-1 ~ .5 C (VL10)
One can rewrite Eq. (VI.9) to read |
Byag = BOx + 093, ) - (VI.11)
An \analysis of this equation shows that
by =28 +0(63) - (VL. 12

where a is a constant (a will depend on GRO).
Now look at JRN’ éDRN’ and PRN' | From Eq. (V.105), assuming N is large,

one has

IpN

N a1 N .- 1 .-N
= AN (cos 69 mANq;Nl'mANa 1N (VL. 13)

To compute PRN one must study the curve R(t). One has

R(6p) ~ R(1/2) - ¢; RY(7/2) (V1. 14)
Let
Pc = R(7/2) (VI. 15)
Py =-R'(1/2) ' (V1. 16)
Then
Pay = Potaf By (VL.17)
Finally, from Theorem 1llc oné has
N
LA -nz:l Tgn T [PRn] - (L)
(using the definition é’RO = 0). The dominant terms in this sum are for large n
. n
since Jp  ~ A" and T, ~ 1 (Eq. (V.30)). For large n, -PRn o Pc. Let
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Then for large N (using Eq. (VI.13)),

-1 = -1 .
Ean ™ AN a1 g N a-p (VI. 20)

A more careful calculation gives the first correction to Eq. (VI.20) to be

&~ ~ Mg Nt AA- ot ANy A-yy (VL. 21)

where Y1 is a constant; also

J

=1 ,~N N N |
RNT2 8 A +yzA (V1. 22)

where v, 18 a constant.

With the above approximations for PRN’ JRN’ and éoRN one can write

_.~1,N -N N
Hon=2 AT B Hnt AN Hgy (VI.23)

where "%’cN is a Hamiltonian with the decomposition (J, &,N,P) = (1, - yAA- ﬁ)-l,N P c),

. s . ips ~1
and deN is a Hamiltonian with the decomposition (1,')/1 A(A-1) ,N, 'szc +P d). The

only N dependence of chN and & AN is in terms of how many degrees of freedom

are kept in Eq. (V.2), since neither the J, &, nor P components of ch or ‘%’dN

N
depend on N.

Now compare HRN with H The difference between er and J("c

N N+1 is
1’ etc., and such terms are of order A'-N‘1 or less.

RN+1°

only in terms containing A1’ bN +

So the energy levels of ch are approximately the same as the energy levels of chN +1

only each level of ch corresponds to four of ch 1 due to the extra degrees of

N N+

freedom in He1e I HRN’ the chN term dominates the '%)dN term by a factor

N . 5 -1
B '; neglecting the o2 AN term, the energy levels of 8 AHRN and H’RN 1 are'

approximately equal. This establishes the basic claim of this section. The energy

levels of H’RN and HRN +1 2T€ both subsets of the energy levels of H So the

Rl
energy levels of AB"IHR are approximately equal to the energy levels of HR' In

scaling the Hamiltonian an extra factor g has appeared.
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Let us consider the errors in approximate scale invariance. One is comparing

N+1 -N-1

X "'l 13 . o N . INT L

AB HRN with H‘RN 10 The basic energy scale for these Hamiltonians is A~ 8 .
Neglecting the .# AN and JJ’dN +1 terms in H‘RN and HRN 1 Means one has an error

of order AN. This is small by a factor BN+1 from the basic energy scale but huge

on an absolute scale (remember N must be large for all our approximations to hold).

ATt
There is also an error which is of order A" " in I, when one neglects the

N+1
a)41 terms; this becomes an error of order B-N-l in H’RN +1 which is negligible
compared to AN (B ~1/2 while A >4 x 106). Due to the error of order Al the
=1 . ) .

matching between HRN+1 and 8 "A HRN is close oply for energy levels with
energies large compared to AN, i.e., only highly excited states.

One can now get a scaling law for the leading correction to scale invariance.
Namely one can take :/de into account but still neglect the difference between

ch and JIJ’CN +1 and the difference between ‘%,dN and deN +1° In this case one can write

N
Hp = Ho+ Hyo (V1. 24)
with H =2~  ANg™N I By = ANy 5 then
Hppy ™ Agt H_ +kAHdN (V1. 25)

Since H AN is small compared to H

approximation, of energies of Hc

‘the energies of Hc + H, _consist, to a first

¢N’ N dN

plus expectation values of H The

N dN*
correction therefore scales by a factor A when N — N+ 1 while the dominant term
in the energy scales by AB_l.

The unrenormalized Hamiltonian had two parts, the free meson energy term
and the interaction term, but both parts sc‘aled by A when N— N+1. The re-
normalized Hamiltonian also has two parts to a first approximation but the two
parts scale differently, the dominant term scaling by A B_l while the leading

correction scales by A,
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It was crucial for the proof of scale invariance that the constants GRN

changes with N the energy level

RN
structure of Hp on the scale A will differ by more than a scale factor from the

approach a limit (7/2) for N—c. As long as 0

structure on the scale AN+1. This is due to the nontrivial dependerice of the energy

levels of HRN on GRN' In particular, in perturbation theory, when ¢ is small,

RN

the change from 6 to 0 is nonnegligible in order 93 (see Section VII

RN RN+1 RO

for details). Hence in third order or higher in 9R0’ HR does not show scale in-
variance. - It is only when N is so large that RN =~ 7/2 that scale invariance

becomes apparent; but for these values of N an expansion in 6_, . is silly even if

RO

GRO is small: the true expansion parameter turns out to he VN 6 RO which is

huge, instead of eRO‘
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VII. RENORMALIZATION AND THE ROLE OF THE TRANSFORMATION T

The renormalization program carried out in this paper followed the conven-
tio;lal pattern, in that a renormalized coupling constant was defix_led anq held
fixed in the limit of infinite cutoff. The transformations T and T A were introduced
as part of the technique of solving the cutoff Hamiltonians; their properties were
useful in proving the existence of the renormalized Hamiltonian. An analysis of
the renormalization program of Section V shows that the transformations T and
Ty play a ﬁore fundamental role in the renormalization than one might thmk In
part A of this section it is shown that the renormalized Hamiltonian is determined
more by the properties of the transformation T A’than by properties of the original
unrenormalized Hamiltonian of Section I. In part B, the probiem of "why
renormalization?" is considered; it is shown that three features of the model
Hamiltonian cause the renormalization program to be nontrivial. These three’
features are: first, the model has an infinite number of degrees of freedom;
second,the mth degree of freedom with m large dominates the degrees of freedom
with m small; third, scale invariance makes the behavior of the degrees of free-
dom for large m similar for different m. In part C, the renormalization theory
of this paper is compared with the theory of Gell-Mann and Low for quantum

electrodynamics. 8

A. Renormalization and the Transformation TA

The analysis of the renormalization program to be given here concerns very
basic questions; to set the stage for these questions it is worth reviewing the role
of the Hamiltonian in ordinary quantum mechanics. In nonrelativistic quantum

mechanics, a system is well defined once the Hamiltonian is specified. Any

hermitian (self-adjoint) Hamiltonian defines a unique and acceptable quantum
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mechanics. To specify the Hamiltonian, one must first define the basic observ-
ables of the system (e.g., position, momentum, or spin operators). Then one
specifies the Hamiltonian aé a function of these observables. In principle one
could define the Hamiltonian in a different way, by giving a list of its eigenvalues
and eigenvectors. This is rarely done in practice because the eigenvalues and
eigenvectors are generally very cpmplicat_ed expressions, often not expressible
in closed form. In contrast, the Hamiltonian is oftén a simple function of the
observables (for example, compare the Cdulomb Hamiltonian of the helium atom
with its eigenvalues and eigenvectors). |

In Section II of this paper we defined a model quantum theory in an entirely
conventional manner. The "observables" a s a;, bn’ b;, and fri were defined,
and the Hamiltonian written as a simple function of these observables, with one
free parameter g Then ih Sections IV and V the techniques for solving the
model were defined, and it was shown that after renormalization the theory haci
finite eigenvalues. vThe finite theory again depended on one free parameter,

which however was the renormalized constant 6, instead of g 0"

RO
The construction of the renormalizedb Hamiltonian in Section V was a com-

plicated process. In summary, one chose a renormalized coupling constant GRO‘

One constructed a sequence of Hamiltonians HRN by starting with the point
PRO = R(GRO) and constructing the sequence PRN through the relation PRN=T A(PRN +1).

The full renormalized Hamiltonian consisted of a limit of HRN for N—~oo suitably
defined. This construction leaves unclarified some fundamental questions. Does
the renormalized theory solve the unrenormalized Hamiltonian of Section II? If

not, what problem does it solve? Is the renormalized coupling constant a funda-

mental parameter in the theory? If not, can it be replaced by one that is? Is the

unrenormalized Hamiltonian the simple expression which underlies and defines
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the rather complicated spectrum of renormalized energy levels; if not, where
do we look for simplicity ?

It is difficult to answer these questions conclusively because there are prob-

" lems of interpretation. For example, one must decide what is a "fundamental"
parameter,’ and what is ''simple.' However, in trying to answer the questions

of the previous paragraph, two results become clear.r The first is that the rela~
tion of the uﬁrenormalized, uncutoff Hamiltonian to the renormalized energy
levels is fundamentally different than the relation of a simple Couldmb Hamiltonian
to its eigenvalues. How to characterize the new relationship can be debated, but
certainly it is not the old and comfortable relationship of elementary quantum
mechanics. The second result is this: there is a key fact which must figure in
.any discussion of the new relationship of Hamiltonian to energy levels, a key idea
which must be used to obtain any fundamental understanding of why we must in‘gro—
duce an essentially phenomenological parameter (the renormalized coupling
constant) in defining the renormalized theor&. The crucial fact is the existence
of a fixed point of the transformatiqn Ty namely, the point Pc =R(7/2). The
point Pc has already been encountered in Section VI: it is the limit of the points
PRN (involved in the definition of HRN) as N -, The role of the fixed point
cannot be summarized in a few words; a detailed analysis of its function will be
given later m this section.

The relation of the unrenormalized uncutoff Hamiltonian to the renormalized
theory can be summarized in terms of the following two results which will be
proven later in this sectibn.

1. I {gOM} is a sequence of coupling constants which approach a finite
limit gy 38 M—eo, then the energy levels of the unrenormalized cutoff Hamiltonians
HM(gOM) approach the energy levels of the uncutoff free Hamiltonian (Eq. (II‘., 1)

with 8o = 0) as M-« , except for an additive constant.
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2. I {gOM} is a sequence of coupling constants which approach « as M-~

the energy levels of H_-‘ OM) y or may not approach a limit as M —c, For
any eRO with 0 < oRO < m/2, there exists a sequence {gOM} with Bop > 28

M —, such that the energy levels of H. (gOM) approach the energy levels of the

renormalized Hamiltoni_an H (6 § Moo (apart from an additive constant).

ormalized Hamiltonian with

Aa

o 2
The first result means that if the uncutoff unren

'3

finite go is defined as a limit of cutoff Hamiltonians, then its solution is the same
as the solution of the free uncutoff Hamiltonian, and in particular is not related to
any of the renormalized theories with interaction. The second result means that

348 S Watal & - LA Gtk

a single uncutoff unrenormalized Hamiltohian, the one with By = > has an infinite

Som
cutoff Hamiltonians. So instead of each renormalized Hamiltonian corresponding

number of possible solutioné depending on what sequehce{ }is used in the
to a separate unrenormalized Hamiltonian; one finds that all the renormalized
Hamiltonians solve a single unrenormalized Hamiltonian. The nonuniqueness of
the solution of the unrenormalized Hamiltonian with gy =« is discussed further
below.

Now the results Quoted above will be proven. It is helpful to prove the

following, If 6 < 6, and both lie between 0 and /2, then

fL(G) < fL(Ol) (for 6 < 01) (VI. 1)
The proof is based on Theorem 5. From 5b, fL(Gl) - fL(O) is positive for 61 > 0.
From 5d (Eq. (V.54))

lfL(Bl) - fL(B)[ > .025 ]91 - 0] ' ' (VIL. 2)

From 5b, FL(O) is continuous in 6., Hence fL(Gl) - fL(O) cannot change sign
anywhere in the range 0 < 4 < 01. Hence Eq. (VI.1) holds. To prove the first

result, consider a sequence {gOM} with a finite limit g as M—«. Consider the
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unrenormalized Hamiltonians H Using the transformation T one can

Mo
generate effective Hamiltonians HN(M) with coupling constants ON(M) having the
same energy levels as HM(gOM)‘ The constants ON(M) satisfy Eqs. (V.92) and
(V.93) and

tan 6 (M) = V2 Som . (VIL. 3)

Let 6 be an upper bound to OM(M); since gOM has a finite limit, one can choose’

0 to be less than /2. Define a sequence {GL}to be: 90 =0, 9L = fL(()L_l)° Due

to Eq. (VIL. 1), GM-N is an upper bound for ON(M). The sgquenc»e {GL} is a de-~
creasing sequence with limit 0 as L—=; this follows from the inequality (V.31).
Hence GN(M) — 0 as M—-loo for fixed N. Hence in the limit M —, HN(M) be-
comes a free Hamiltonian, which is result 1. To prove the second result, con-

sider the sequence {gOM

to a given nonzero renormalized constant OR 0 Again one has constants =9N(M) .

satisfying Eqs. (V.92), (V.93), and (VIL. 3), but now GO(M) is fixed to be 9R0°

From Eq. (V.31), 6,(M+1) > éo(M+1) = 0,(M); using Eq. (VIL.1) repeatedly one

}defined in Section V following Eq. (V.93) corresponding

gets BN +1(M+1) > GN(M) for all N, and hence 8op+1 > gom* So {gOM} is an in~
creasing sequence. It cannot have a finite upper bound, for if so then GRO would
have to be zero. Hence By —® 28 M —, By the analysis of Section V the
Hamiltonians HN(M) have well defined limits as M ~—», (In Section V the un-
renormalized Hamiltonians HM have a ground state energy subtraction; if this
subtraction is not made then only fhe energy differences of levels of HN(M) have

a limit as M—=,) Such a sequence {-g OM} exists for any BRO’ so result 2 is

proved.
The fact that the uncutoff Hamiltonian with gg =" has an infinite number of
solutions can be blamed on the fixed point Pc of T A This result can be seen by

studying the behavior of the double sequence PN(M) of points in S A defined in
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Section V as part of the renormalization analysis. The points PN(M) have the
following properties:

a. PM(M) has the decomposition (OM(M), 0, 0), i.e., the components &k
and Ck are all zero. The point PM(M) corresponds to the unrenormalized
Hamiltonian HM(gOM) with finite cutoff M and 8opp Elven by Eq. (VII.3).

b. PO(M) has 6 coordinate GRO’ by definition.

c. Py (M)=T, [PN(M)]

When M—, 6, (M) —n/2, so Py (M) has a limit (v/2, 0, 0) when M — <,
Denote this point by P

The point P_. corresponds to the unrenormalized,

U.
uncutoff Hamiltonian with gg = -

U

The point P e = R(7/2) (the fixed point of T A)’ also has 6 coordinate 7/2, but

it is easily seen that the components .;A,k and Ck

of Pé cannot vanish, Hence Pc

is distinct from PU.

One can think of the points PN(M), for fixed M, as defining a trajectory
.C(M). I one takes the limit of the trajectories C(M) for M—=, one gets a

double trajectory C A @®C The trajectory C A Boes from P__ to Pc’ i.e., it

B’ U
connects the point PU representing the unrenormalized Hamiltonian to the fixed

point Pc° The trajectory C_, connects the renormalized point P_ . to the fixed

B RO
point Pc’ The first trajectory is an infinite sequence of points (PU, P

all with 6 = /2, satisfying P T (PyN-p) and with the limit P as N —~,

UN
The trajectory CB consists of the renormalized points PRN lying on the curve

R, again with limit Pc as N -, The trajectories C(M) with M large lie close
to the limiting trajectories:the first few points on C(M) (e.g., Py(M), PM_i(I\/I).
etc.), lie close to the first few points on C A The last few points on C(M)

(€8s P,(M), Py(M), etc.) lie close to the firsf few points on Cye
near the middle of the trajectory C(M) (e.g., PM /Z(M)) all lie close to Pc .

The points
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The trajectories C(M), C A’ and C p &re illustrated in Fig. 1. Figure 1is
an artist's conception of what these trajectories might look like if the space S A
was a two-dimensional space instead of an infinite dimenéional space. The two
dimensions are 8 and a coordinate x replacing the infinite dimensional space

defined by the sequences {Ak} and {Ck}' One can see eXplicitly in Fig. 1 that the

L

points PN(M) — P, .. a8 M—o and PM_N(M) - PU as M —, One can also

RN
see the clustering of points about Pc.

N

Now return to the problem of the infinite number of solutions of the unre-
normalized Hamiltonian. The nonuniqueness is connected with the fixed point Pc’

because the limiting trajectory C A ®eC B is nonunique only on the section CB.
The trajectory C A connecting PU to Pc is uniquely determined by PU and the

recursion formula PUN =T A(PUN- 1). B connecting Pc to PRO

is nonunique; it is a different trajectory for each different value of GR 0" So the

The trajectory C

nonuniqueness arises at the point P,.

The next question is, how is the ﬁonuniqueness related to the properties of
the fixed point Pc ? In order to discuss this quéstion it is necessary to knbw the
béhavior of the transformation T A in the neighbo‘rhood of Pc; this behavior will
now be investigated.

Assume that the transformation T A is differentiable in the vicinity of Pc,

so that if P is any point near P one can write

_ e L2
T A(P) = Pc +U A(P Pc) + order (P Pc) (VIL. 4)
where U A is a linear transformation. Now consider a trajectory of points PN’
namely a sequence of points satisfying
PN 1= T A(PN) | (VIL.5)
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ey

and suppose that the trajectory lies in the vicinity of Pc. Then approximately

P -P =U

N+1 "~ Fo = UpP

N~ P (VIL. 6)

Consider therefore the trajectories defined by U,, that is, sequences of points

‘ QN satisfying

Qa1 = UAQY (VIL.7)

Since this is a linear equation, an arbitrary solution can be written as a linear
combination of a set of linearly independent "'basic'’ solutions QNa (¢ =1,2,38...
labels different linearly independent trajectories). The simplest type of solution

is of the form

Qg = Qg T) | (VIL8)
where QOa is a point (determined up to a scale factor) and r, is a constant. QO o
is an eigenvector of the transformation U Al

raQOOz =U A(QOa) (VIL.9)

and r, is an eigenvalue, Since U A does not have to be a self-adjoint transformation,
the eigenvalues r, need not be real; also there may be trajectories QNa behaving

as N(ra)N, Nz(ra)N, etc., under special circumstances. Since U A is a transfor-
mation on a space with an infinite number of dimeqsions, there will be an infinite

set of basic solutions QNa' These solutions divide into three possible categories.
Those with |ré| >1 are called "unstable" trajectories; these trajectories move |
away from Pc as one keeps applying the transformation T A Those with 1ol <1

are stable trajectories; the stable trajectories approach Pc as one keeps applying

T A For example, the trajectory C A connecting PU with Pc is a stable trajectory;
the trajectory C B is an unstable trajectory. There can also be "neutral" trajectories

with |ra| = 1, in special cases.
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A crucial question is:how many linearly independent unstable trajectories does
U A have? The answer is one; the proof is as follows. There must be at least one
basic unstable tra]ectory, for if all the basic trajectories were stable then a.ll
linear combinations of the basic trajectories would also be stable, i.e., all solutions
- of Eq. (VIL.6) would be stable. But we know there are unstable solutions, namely,

the trajectories CB for any BRO (to be precise, the parts of these trajectories lying

near Pc). On the other hand, there cannot be more than one basic unstable tra-
jectory. For if there were two linearly independent unstable trajectories, say QNI
and QNZ’ then one could form a linear combinati?n of these, say BIQNl + ﬁzQNZ’
such that the ¢ coordinate of BlQll + ,32Q21 is 0. This means the 6 coordinate of
(P, + BlQll + 32Q21) is m/2. But now the 6 coordinate of Pc +. BIQNl + ﬁZQNZ will
be 7/2 for all N because T A does not change 6 if § = n/2. But then the sequence

of points P ot BlQNl + BZQNZ must approach Pc as N — » using Theorems 8 - 10 of |

Section V. This means BlQ is a stable trajectory. Then we could use

N1+ P22
BlQNl + BzQNZ as a basic trajectory instead of QNZ say, which leaves only one
unstable»trgjectory. The trajectories CB for different BRO must all be multiples
of the single unstable trajectory. This result has already been demonstrated in
Section VI; cf., Egs. (VI.12) and (VI. 17).

It will now be shown that the number of linearly independent unstable trajec~
tories of U, determines the number of free parameters in the renormalized
Hamiltonian. In other words, the degree of nonuniqueness of the solution of the
unrenormalized Hamiltonian is determined by the number of unstable solutions of
the linearized transformatjon U A
To show this we must discuss what would have happened if U A had two or more

linearly independent unstable trajectories. It will be shown that in this case the

nonuniqueness of the solution of the unrenormalized Hamiltonian involves two or
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more free parameters. To be precise, we show that one can construct sequences

Py (M) such that

1. Lim P, (M)=P

M— oo M U
2. MLirfxw PN(M) = PRN(al. . .ak)
3. Py (M = T, (P (M)

where the point PRN- depends on k phenomenological parameter_s Byesedys k bging
the number of linearly independent unstable solutions of U A Having shown that
such sequences exist for any choice of the parameters al... .-ak, it is clegr that
there is a k-parameter family of renormalized Hamiltonians, defined by the points
PRN(al' . ak) for all N, all of which can be considered solutions of the single un-
renormalized Hamiltonian PU'

To prove the existence of the sequences PN(M)’. it is sufficient to consider the

part of the sequence lying near Pc’ say the points PN(M) with
L<N<M-L

where L is large but held fixed as M—« , So long as

. _ ' : th . .
1a, ML-I-!.noo PM_L(M) = PUL (PUL is the L point on the trajectory C A)
2a. Lim P (M) =P, (2js0
Moo L RL1 %)
one can reconstruct the remainders of the sequences using T A OF T;} and satisfy
the original requirements, If L is large enough, PUL and PRL will be near Pc

and we can assume that

3a. Py =P_+U, (P (M) - P)
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Since PN(M) - Pc satisfies the linearized equation, it must be a linear combination

of the basic solutions for each M:

Py - P = 5&2 B, Qo : (VIL 10)

(Q depends on M~N rather than N, so that the index of Q increases as one applies

U A.) The sequence PUN must also be a linear combination of the basic solutions:
Pyy = %: Yy U * Ps (VI. 11)

Furthermore, since Pyny —F, a8 N — the coefficients Y, Must be zero for all
unstable trajectories. Suppose, to be specific, fhat the unsfable trajectories cor-
respond to 1 £ a < k and that the trajectories for a > k are stable. Then Yy = ]

: < P 3 e —
for @ £ k. The requirement that PM_L(M) PUL as M—« means that Ba(M) must

satisfy

Lim g, 0 = Yy | (VIL 12)

The requirement that P} (M) have a limit as M—« means that > o By ™D Q1
must have a limit for M—«, For the stable trajéc.tories gera 0 as_'M =0
and since Ba(M) Y, which is finite, the stable trajectories drop out in this limit.
Assume that the unstable trajectories have pure exponential form (Eq. (VIL.8); the
author has not examined alternative forms m det’ail)... Then the limit is

M-L . e ee e s .
El;=1 Ba (M) (ra) QOa' For this to have a limit it is sufficient to have

8, (M) = aa(ra)'M l<e<k (VIL 13)

where the constants a, are arbitrary. Since .lra| > 1for a X k, the constants
pa(M) for @ < k have the limit 0 as M—« as required by Eq. (VII.12). To complete

thek specification of ﬁa(M), put

B, =y, (@>k. (VIL. 14)
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With this specification of Ba(M), the points PN(M) satisfy the requirements la to

3a. The limit PRL has the form

k .
- . v L '
Ppy =P, + aZ=1 a, Quy(r,) (VIL 15)

which has k arbitrary constants, as was stated at the beginning. In fact the re-
normali_zed points PRL (for sufficiently large L) are just a linear combination of the
k unstable trajectories of U A with the coefficients representing free parameters

in the renormalized Hamiltonian, _

In fact the transformation U A has only one unstable trajectory, the renormalized
Hamiltonian has only one free parameter and Eq.” (VII. 15) reduces to Eq. (VI.17)
where the free parameter is a (which depends on BR 0) -1t was also shown in Section
VI that the eigenvalue of Uy (r, in Eq. (VI[. 15) or ,8-1 in Eq. (Vi.17)) determines
the scaling properties of the renormalizéd Hamiltonian at small distances.

As a final cérnment one notes that the‘unrenormalized Hamiltonian could be
chosen to be any point P with 6 = 7/2; the renormalized Hamiltonians are independent
of the choice of the unrenormalized Hamiltonian since the sequences PN(M) will in
the limit of large M goi from thé unrenormaliied point to Pc and then along the un-
stable trajectory to a renormalized point PRO’ | |

In summary, the renormalized Hamiltonian is determined by properties of the
fixed point Pc rather than of a particular unrenormalized Hamiltonian. The sequence
of renormalized Hamiltonians PRN' approaches P o 28 N—; for large N, PRN - Pc
must be a linear combination of the unstable trajectories leaving P, and the different
renormalized theories can be labelled by the coefficients a, relating P-'RN - Pc to
unstable trajectories. I think it is this relation of the renormalized théory to un~
stable trajectories leaving a fixed point which is simple, to answer the question

raised earlier. The coefficients a,, are, I think, as close as one can get to béing

fundamental parameters in the theory.
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B. Why Renormalization?

In this part we shall try to understand what features of the model Hamiltonian
make renormalization necessary. The first step in the analysis will be to show
that the transformation T is divergence free. Then the reason for thé appearénce
of divergences in perturbation theory will be examined.

The statement that the transformation T is divergence free means the following.
Let H be a Hamiltonian in S. Let H' be T(H). Let H have a decomposition (J, &,
N, 9v,v Ak’ Ck) and H' have a decomposition (J' ,‘ &',N-1,0", A{(,Ci{). Then as discussed

in Section V, if J, &, 0 ’ék and C, are held fixed while N varies, the quantities J,

k
&', o, ,’A.]'{, and Cl'; are independént of N and cannot diverge for N—c, Furthermore
the transformation is continuous, that is if H and H'" are two Hamiltonians with
transforms H' and H™, then H'— H'"* when H —’H';. This continuity is uniform in N.
To understand the significance of T being divergence-free, one can study the
divergences that appear in ordinary perturbation theory and see that they arise
despite the finiteness of T. Consider the unrenormalized cutoff Hamiltonian HM
with a small bare coupling constant o and large éutoff M. Consider also the
effective Hamiltonian HO(M) whichkdescribes the ground state and first few excited
states of HM. That g is small means the angle BM(M) (also called GOM,as in
Eq. (V.87)) is small, and an expansion in g, can easily be converted into an ex-
pansion in OM(M). The effective Hamiltonian HO(M) is known if oné knows three
parameters J O(M), é"O(M) » and OO(M) and the curve QM(t) inS A" The curve Qm(t)

is well behaved for large M: as M- it approaches the limit curve R(f). From

Eq. (V.104), J,(M) is a simple function of 6 (M). So any divergences in the low

of
as M —« must be due to divergences in &(M) or 6,(M)

M
as M —«», A divergence in cS’O(M) affects only the ground state energy but not

lying energy levels of H

energy differences between the ground state and excited states. A divergence in
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GO(M) means a divergence in differences of energy levels at least through the scale
factor JO(M). The divergence in OO(M) can be identified as a coupling constant
divergence while a divergence in é"o(M) is a ground state energy divergence.

To study the divergences in é“o(M) and 6O(M) one uses Egs. (V.él) and (V.92)

of Section V. Let 0 (M) be denoted 9 é"M(M) is zero (we do not make an

M;

energy subtraction in H From the inequality (V.31) one finds that for 6

M*
small -

!

3

£.(6)=60-n_0  (VIL16)

with 7, =~ 1/2. For L—x, 7, approaches a limit 5 since £, (0) has a limit. To
a first approximation one neglects the 63 term in Eq. (VI. 16)5, then one gets

OO(M) o GM. To a second approximation one replaces 63 by 03 then Eq. (V.92)

M;
becomes: v
_ _ 3

B (M) = B (M) = 7y O (VIL. 17)
which gives

oM =60,,- n 0 ' (VII. 18)

'O M n=l n M .
For large M this becomes

3
By(M) = 6y, - Mn 0, | (VIL. 19)

and one has a divergence linear in M. This corresponds to a logarithmic divergence
in the cutoff momentum (since the cutoff momentum is AM). The energy é”o(M) is

dominated by a contribution from

JM(M): |

_é'o(M) o AM'(cos OM) 1 Tc '[PM(M)] ‘ (VIL. 20)

Since Tc-“—’ ~1 for any argument, & 0(M) is linearly divergent in the cutoff momentum.

These are the divergences one expects.

-73 -




The divergence in &.(M) is easy to ._nderSta.nd- The ground state energy of
0\ {4 o - o OJ
HM gets contributions from each meson degree of freedom represented in HM.

The degree of freedom m contributes an energy of order A™ for that is the energy

scale for mesons in state lllm. The dominant energy is M associated with mesons

AM, moany ase the divergence

i3 . i Cary W ~ waass

Sa £ I\ ig of arder
L i g . 0 L'J.’ Rl L R 4 ‘
in é‘o(M) as M— arises because the scale factor JM(M)——~oo as M —w, This

type of divergence occurs also in relativistic theories as mass renormalization.

when the cutoff is large the natui:al energy scale for self mass effects is the cutoff,
Then one must let the bare mass in the La.granéian be of order the cutoff and chosen
very carefully so that all cutoff—dependént self masses cancel and the physical mass
is much smaller than the cutoff.

The coupling constant divergence in GO(M) is more subtle, There is no question
of a cutoff dependent scale here; 0 is a dimensionless variable., The divergence is
proportional to the number of degrees of freedom. It arises because the transfor-
These iterations

mation T must be iterated M times to give H (M) starting from H

of M
define a sequence of constants ON(M). The difference between ON(M) and_ 0N+1(M)

is finite for all N and small in perturbation theory. However, these differences

add in going from GM to OO(M), hence the divergence.
One sees from the above discﬁssion that the divergences of perturbation theory
derive from two causes. The linear divergence is due to the energy scale of the

cutoff Hamiltonian HM being M instead of the pion mass. The logarithmic

divergence is due to the transformation T being iterated M times in going from GM

to BO(M). The cause of the logarithmic divergence must be pursued further. Why
was it necessary to compute GO(M) by an iterative process? Will an iterative

method in which OO(M) is calculated in M steps always make 6 (M) divergent when

of
M— ?
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had been different from what was reported in Section V. Suppose that the cutoff
energy AM had not been crucial for the discussion Qf the model, but that still

one defined a sequence of constants GN(M) in going from GM to OO(M). What might

could be no appreciable difference between GN(M) and 9N +1(M) for in both cases

the effective cutoff (AN or ANH) is large compared to the only important length.

n 6 O(M) and eM would be due to the difference

0,(M) - 6,(\) or 6,(M) - OZ(M); the differences 6, (M) - 'BN +1{M) for large N
would go to zero and could not accumulate to make OO(M) diverge for M~ ,

So the essential question is why the difference ON(M) - GN +.1(
zero for large N, at least in perturbation theory. The answer lies in two features

M) does not go to

- of the cutoff Hamiltonian H. . and the effective Hamiltonians HN(M). The first is

M
that meson degrees of freedom of order N dominate the Hamiltonian HN(M) rather
than meson degrees of freedom of order 1. As a result, the chapge from HN(M)

to HN—l(M)’ which megns eliminating the Nth degree of freedom, is a nontriﬁal
change. Thus one can hardly expect GN_I(M) to be the same as ON(M) no matter
how large N is. If by contrast the meson degrees of freedom of ordef 1 had been
the dominant degrees of fréedom in HN(M) for large N, then dropping the Nth degree
of freedom would have been a negligible change and _ON_I(M) would f)robably have |
been equal to GN(M). The second important feature is scale invariance. Scale
invariance means that if the degrees of freedom of order 1 can be neglected (which
is true for large N) then the process of going from HN(M) to HN_i(l\'I) is indis~-
tinguishable from the process of going from HN—I(M) to \Hﬁ_z(M) . In particular

if Hy (M) differs from H\ (M) only by a scale factor and an additive constant
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then HN-Z(M) differs from HN_l('M) only by the same scale factor and another
additive constant. Now if ON(M) is small, N is large and M >N, HN_l(M) does
differ from HN(M) by little more than a scale factor and an additive constant. This
is because HN(M) is defined by the constants JN(M), é”N(M), GN(M) é.nd the point
QM_N(GN(M)) while Hy () is defined by JN_l(M), ,_£’N__1(M), eN—l(N_[)’ and
QM—N +1(9N_1(M)). It GN(M) is small then BN_l(M) = BN(M); since QL(t) ~ R(t)

when L is large, QM_N(GN(M)) ~Q _1(M)) so only the scale factor J.,(M)

M-N+1{0x N

and constant <3°N(M) can differ appreciably from JN_l(M) and é”N_l(M) . But under
these circumstances the effect of the transformation T on ’HN(M) and HN__l(M) is
essentially the same, except for the effect on the scale factors J and the constants
& . This is scale invariance, and it means in particular that the difference
GN_Z(M) - BN_l(l\ll) is the same as the difference GN_l(M) - BN(M) when GN(M) is
small; hence the divergence in 60(
rather than some other function of M.

M) in perturbation theory is proportional to M

In conclusion, the fact that meson degrees of freedom of order the cutoff
dominate the cutoff Hamiltonians makes renormalization inevitable, The divergence
problem is not just an értifact of perturbation theory. Since the dominance of the
degrees of freedom of order the cutoff is due to the energy of a meson increasing
as its momentum increases, which is also true in relativistic theories, one expects
that renormalization will be inevité.blé for strongly coupled relativistic theories too.
We note also that not only does the transformation T determine basic propgrties of
the renormalized theory, as shown in part A; it is also divergence free. Clearly

one will want to try to define an analogous transformation for relativistic theories.

C. Analogy to the Renormalization Theory of Gell-Mann and Low
Gell~-Mann and Low, in 1954, presented an analysis of the renormalization of

Quantum Electrodynamics, and predicted that there would be an "eigenvalue
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condition" for the bare coupling cons’c::m‘c.8 That is, the bare coupling constant €
would have to have a fixed value independent of the value of the renormalized
coupling constant. To be precise, they predicted that there would be a function ;

Y(x) with the property that if e, is finite then e is a root of the equation t/l(eg) =0,

0
To show this, Gell-Mann and Low of necessity had to obtain ideas from perturbation
theory and then extrapolate to the region of strong bare coupling constént. This
involves several speculatioﬁs, some of which will be criticized below, Nevértheless,
~ the analysis of Gell-Mann and Low remains after 16 years the most sensible dis~
cussion in the literature of nonperturbative renormalization theory for relativistic
field theory.

Here is a brief review of the Gell-Mann-Low theory: Let e be the physical
| (renormalized) electron charge and let m be the physical electron mass. Let

dc(kz/mz, e2) be the renormalized photon propagator apart from a factor k—z.

The customary normalization requirement for dc is assumed:
a (0,3 =1 (VIL.21)

Gell-Mann and Low define a generalization of the usual renormalization procedure
for electrodynamics, with a different definition of the renormalized charge. In the
Gell-Mann-Low progra.l\n, the renormalized charge is a quantity ey depending on a
subtraction point A. The photon propagator is (apart from the factor k-z) a function
d(k2/ 7\2,' m2/ Az, ei) with the‘ normalization condition |

(1, m2/2%, eb =1 - (VIL 22)

The propagator d is related to the usual propagator dc through the relation

e 0/’ ef = &2 ae?/a%, wPna% & (VIL. 23)
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In particular, putting K2 = }\2 gives
ei = 2 dc(Az/mz, e | (VIL. 24)

which gives the definition of e, in terms of e. Inthe G,ell-Mann-’-Low program, all

. A
other amplitudes (electron propagator, vertex function, etc.) are functions of €,
and all depend on the reference momentum ) as well as m and various momenta.
The subtraction procedure of Gell-Mann and Low is defined so that the bare coupling

0 is the limit of eA as \—«,

Gell-Mann and Low then argue that the function d(k“/2°, m“/A%, e;) has a

constant e

finite limit when m—> 0 holding k2, A2, and éi fixed, This should also be true of
other amplitudes. They give an example of this from foﬁrth order perturbation
theory, and then argue that it is true in general because the momentum k provides
an infrared cutoff. Whether the finiteness assumption is true is still an open:
question; the author knows of no reason to doubt it, and it will be assumed to be
correct in the following,

If dc(kz/mz, ez) is expanded in powers of e? for k2 large, the coefficients
involve logarithms of kz/ mz, so that the éffective expansion parameter ié ezfn(kz/ mz)
not e2; this means that radiative corrections become important when !In(kz/mz) is
sufficiently large, no matter how small e is. In contrast, as Gell-Mann and Low
make clear, the fact that d is independent of mz/ Az when m2/ )\2 is small means
that the expansion of d(kz/ 7\2, m2/7\2, ei) in powers of ei involves no large loga-
rithms if'k and A are simultaneously large so that kz/ 7\2 is of order 1. In fact, in
this case the coefficients of ei, e;t, etc. are of order 1 no matter ﬁow lérge k and
A are. |

To compute e, from Eq. (VII.24) directly would be difficult since for any

e the radiative corrections to dc(Az/ m2, e?) are infinite in the limit A —~. So
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Gell-Mann and Low‘ develop an indirect procedure which requires knowing only
d(kz/ )\2, 0, ei) for k2 near 7\2. The radiative corrections to d will be important
because, as will be seen, one will have to consider coupling constant's e, of ordér
1. But unless one must consider the limit e)\-——oo , the radiative corrections will
be finite. The trick of Gell-Mann and Low is to observe that one can use the

function d to set up an equation for dey\/di\. From Eq. (VIIL.23) one finds that, for

any A and '

2 = 2, da?/n?, m¥/n?, ok (VIL. 25)

2
e, dk?/22, m?/22, e
Putting k=)' gives

o2 =e2dn?/%, m?n? & | (VIL29)

If A and A' are both much larger than m one can neglect the m dependence. Differ-

entiating with respect to A\’ and then putting A'=\ and approximating m/A by 0 gives

26, (de, /dn) = 2 bleD/a (VIL. 27)
where |
Y(x) = yx 224a0:% ayo’xl (VL. 28)
. y=1

The function Y(x) has a power series expansion in x for small x with finite coef-
ficients; Gell-Mann and Low assume it has a well-defined extrapolation to values

of x of order 1. To compute the limit of eR for A — one must solve the differ-

ential equation (VII.27). I dea/dx does not go to zero for finite e, then necessarily

}\’

% So the only way e;\ can

stay finite as A —» is for tll(ei) to have a zero. If Yy(x) has a zero at X=X and is

positive for x < Xy (¥ is positive for small x from perturbation theory) then the

i of Eq. (VII.27) will be an increasing function of A with the limit x
2

A— o (assuming eA < X, when A is of order m, as it will be if e is small),

an infinite increase in A will give an infinite increase in e

solution e as

0
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If Y(x) has a zero at X then the function ei will have the limit Xy aS A=
for any value of e sufficiently small. This demonstrates the main result of
Gell-Mann and Low: the bare coupling constant ey is independent of thg physical
coupling constant e, at least over some finite range for e. Even if (x) does not
have a zero, the solution eA will have the limit « for )\ — e independently of the
value of e: the bare coupling constant is again independent of the physical coupling
cogstant. (This is true only. for certain forms of the function Y(x). If the integral
fl dx/Y(x) is finite then eA—wo for some finite value of )\ and the theory becomes
nonsense for larger values of A. This leads to contradictvions discussed below.)

Thus Gell-Mann and Low predicted for electrodynamics the result that one
unrenormalized Lagrangian would have an infinite number of solutions. This is
exactly the result that was proved for the model in part A of this section.

The differential equation (VII.27) can be regarded as analogous to the trans-

formation equations

P =T

ax = TaPryet) (VIL. 29)

which is involved in the definition of the renormalized Hamiltonian of the model.

Equation (VII. 27) tells how a coupling constant e_ changes as ) changes, while

A
Eq. (VI.29) tells how an infinite set of coupling constants change as N changes.

One can think of the function ¢ as defining an infinitesimal transformation on a
one dimensional coupling constant space. In the limit \—+x, ex goes to a fixed

point of the transformation defined by ¢ (if !}l(eﬁ) =0, thenfor e, =e 0’ dex/dx = 0:

A

thus e 0 is a fixed point). This is analogous to the result that the limit of P

as N—« is a fixed point of T

RN
Al Thus Gell-Mann and Low discovered the idea
that a fixed point of a transformation is important in renormalization. There are

differences between Gell-Mann and Low's fixed point e 0 and the fixed point Pc,
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these differences will be emphasized below., These differences do not alter the

fact that Gell-Mann and Low discovered the essential idea of a fixed point. Since
they discovered the idea in the context of relativistic field theory, this is encourage-
ment to believe that the analysis of the fixed point in the model is re_lévant to rela-
tivistic field theory and not just a consequence of the many simplifications which
were made in defining the model.

There are two basic differences between the transformation T A defined for the
model and the transformation ¢ of electrodynamics. First, the function ¥ can
only be computed after electrodynamics has been solved, whether by a perturbation
expansion or whatever. This is because ¥ is defined in terms of the renormalized
propagator which is itself part of the solution of electrodynamics. In particular if
electrodynamics does not have a solution except as a perturbation expansion then
the ¥ function will not exist for strong coupling. In contrast the transformation
T A is defined before one knows whether the model has a solution. In the model of
this paper the renormalized theéry exists; but there are other models for which
there is no renormalized theory (except one with no coupling). A particular example
is a derivative of the Lee model constructed by analogy with the model Qf this paper.
An earlier version of such a model was described in a previous paper7 and from the
analysis given there it is easy to see what happens in the trundated I1ee model. One
defines a transformation analogous 4to T A and uses it to construct éurves analogous

to QL(t). However these curves do not exist over the full range 0 <t < 7/2 but

rather over a range 0 <t < tL where the constants t. form a decreasing sequence

L
with the limit 0 as L —w, The reason for this is that if a Hamilto'nian has com~
ponent 8, the Lee model transformation takes 6 into 6' where ' < 6 for any

6 > 0 including 6 = 7/2. This means also that the Lee model T A has no fixed point

analogous to Pc. This analysis assumes that one does not permit complex coupling
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constants, as would be necessary if one wants to obtain nontrivial renormalized
solutions. Since every time one considers a new theory the existence of a fixed
point of the corresponding transformation T A
ability depends on there being such a fixed point (at least for the two examples

is in doubt, and since renormaliz-

considered; a general analysis of renormalization theory indicates renormalization
could be possible for some types of transformations without fixed points) it is
important that T A be defined without reference to the renormalized theory.

The second difference between ¥ and T A is that ¢ acts on a one-dimensional
space, while T A acts on an infinite dimensional space. In order to formulate the
transformation ¥ as a transformation on one variable one has to know that the
renormalized theory depends on only one phenomenological parameter. For
example, in pseudoscalar meson theory where there are two phenomenological
parameters, one must replace ¥ by a transformation on a two-dimensional space.
But the lesson of the model of this paper is that the number of phenomenological
parameters is not known until one has found the fixed point of T A and determined
the number of unstable solutions of T 5 Dear the fixed point. The fact that T A is
a transformation on an infinite set of coupling constants means one is nof committed
in advance to a particular number of phénomenological constants. Furthermore
one is not restricted to theories with interactions which are renormalizable, As
longas T A is a transformation on the space of all possible couplings, renormaliz-
able or not, the customary reason for considering only renormalizable interactions
becomes irrelevant. The customary reason is that nonrenormalizable interactions
require an infinite set of counter terms to be renormalized; but nbw these counter
terms are all present anyways in the phenomenological Hamiltonians (or Lagrangians,
perhaps). So if the renormalization theory of the model can be generalized to

relativistic field theory there is hope to study pure quark models or the Fermi
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interaction, although there is no guarantee that the corresponding transformations

will have fixed points.
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APPENDIX A
It is proven here that an iterative solution to Eq. (IV.9) exists and that
1+ R+ - R has an inverse provided that
NE|| < .2 AE ' (A.1)

where AE is the energy difference between the ground states and first excited state

of Hy. Define a sequence of operators {Rn} by

R0=O (A.2)
R = (1- P)(E H) (1 -P- R 1)H(P+R 1) (n>0) (A.3)

Then
R= Lim R (A.4)

n -+

To prove the existence of the limit the following equation is useful

ne1 ™ By = (1) (Bg-Ho) ™ {(1-P-R) B[ (R -R ) - (R, “Ry_y) Hy (B4R

R
(A.5)
Now it is shown that
B < -4 (A.6)
Proof: This is true for n=0. Suppose it is true for n-1. Now
Il (1-P) (E,-Hy) " (1-P)ll= B~} A
H1-pPll =1 (A.8)
NP =1 | (A.9)
and Rn-l = (1-P) Rn~1 from Eq. (A.3). So
IR S AE™! (1.4) (.2 AF) (1.4) < .4 (A.10)

Q.E.D.
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Likewise one can show that

Rpey = Byl S -4 (.56)" | (A.11)

Hence from the Cauchy criterion, R exists. It is easily shown that R satisfies
Eq. (IV.9). The bound (A.6) implies that

IR - rll <.8 ' (A.12)

; . -+ . A,
which means the inverse of 1+ R' - R exists as a power series in R' - R.

- 88 -



APPENDIX B

In this appendix the transformation T will be defined in detail. It will be shown
that T has the form of Eqs. (V.16) - (V.19). Then Theorems 1-4 of Section V will
be proven. The only assumption made in this appendix is that A >4 x 106.

The first problem is to define T. Let H be a Hamiltonian in S. Let H have
the decomposition (J, &, N, P A) where P A€ S,. LetP A have the decomposition

(6, ”f}k, Ck). Let H = H0 + HI with H, given by Eq. (V.14). Define Heff using
Eq. (IV.29). To define T we must specify the decomposition of H - The de-
composition of Heff must be defined becaﬁse it is not unique, as was pointed out in
Section V. This nonuniqueness means that one must often prove properties for
the decomposition of an operator which are obvious or already' established for the
operator itself. To define this deqomposition we will write out in detail the steps

leading to Heff’ and specify the decomposition of each of the operators arising in

the calculation.  The operator H. has the form H_= JJ/KI with

I I
N N
#H, = E;l Vi 'Boq* EO C, - | (B.1)
where
By=(m, V2g 77, V2g )+ A, (B.2)
&Bk = -ék k >0 (B.3)

and m =cos 0, g = (1/V. 2) sin 6. The equations which define Heff are as follows

(including the iterative definitions of R and -(1+R+R)i1/2):

R, =0 (B. 4)

_ -1
R, =(Eg-Hy) " (1-P-R ;) H(P+R_ ) (B.5)
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R= Lim Rn (B. 6)

B — o
Q, =0 ! : (B.7)
Q= 1/2(R'R- Q%) D (B.8)
Q= Lim Q_ " (B.9)
n — e
QO =0 | | (B.10)
q,=-Q-Q§, , - (B.11)
Q= nLim Qn | (B.12)

H ¢ = (P+Q) H (P+R) (P+Q) + PE (B.13)

0

In these formulae P is the projection operator onto the two ground states of H

(P+Q) is (1+R'RY

0’
2 P and17 (P+Q) is P(1+ R+R)—1/2, and EO is the ground state
energy of HO'

A particular form for ‘%I has been given in Eq. (B.1). The operators -ka and

Ck will be called the decomposition of JKI. Analogous decoxﬁpositions will now be
defined for R, etc. The equations (B.4) - (B.13) involve three basic operations:

multiplication of HI’ Rn’ etc, with themselves, multiplication with P or with
-1

0) : ‘

Let X be an operator with decomposition @k’ Fk) say. Then PX has the obvious

decomposition (PD; , PF), and analogously for (E - HO)'1 X. This is a legitimate

(E,-H So it is sufficient to define the decomposition of any of these products.
0

decomposition since the only requirement on a2 decomposition (gk, Fk) is that Qk

and Fk do not involve meson operators numbered above k (no upper bounds on

Qk and Fk will be imposed now). Since P and (E 0 —-Ho) ! act in the space of

nucleons and 0-mesons (meson operators numbered 0), this restriction is satisfied
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-1 -1
o D and (E,-H

operator with decomposition (-ék’ C

by PD, and PF,, or (EO -H F, . Now let Y be another

o Fx

i)+ One must define a decomposition (G Ly

for the product XY. The decomposition is as follows:
90 = FOAO + EOCO (B.14)
(B. 15)

For k = 1:

k
v('}-'k =;0 {Fmék * chm} * ;z

Z—: 2;1(1, (BT 8 * "B &4

k-1 k-1

"B g (Balfic b B 20l A (219

-1 k-1
Lkio 2o T B T &)

n-1

+ (@0 D) O+ By Ty 8]
n=1 ;0 m
k-1 '
+ i chm+ Z chk (B.17)
m=0 - m=0

In is defined by Egs. (V.4) ~ (V.6). It is clear from these formulae that gk and

L, do not involve meson operators numbered above k. With some straightforward

k

algebra one can verify that the operator product XY is given by

N N
XY=2, V,"G, .+2. L (B. 18)
P Bl R el
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It can be shown that the decomposition is associative, i.e., a triple product
(XY)Z has the same decomposition as X(YZ).

With the rules specified above and Egs. (B. 1)v - {B.13), the decomposition of
(Heff_ E 0P) is uniquely defined. Note that the number of degrees of freedom N
nowhere enters into the calculation of Gy and Ly . Sd if the operators B, and C
in the decomposition of J’fI are defined for all k and are independent of N, then
the decompositions of R , etc. (including H,gp) Will also be defined for all k and
independent of N. It will be presumed from now on that decompositions are defined
and computed for all k. Note also that HI’ HO' and E o are all proportional
to J. This makes ‘Rn’ Q 0’ etc. independent of J and H off proportional to J. To

be specific, Heff has the form

N N
H g = PE+J %{_“;1 Vi Gyt ;[;0 L, (B.19)

where gk and Lk depend on 7 and meson operators numbered 0 to k.
Since Heff acts within the subspace projected by P, the dependence of Heff
on the 0-meson operators (ao, etc.) and 'r:E can be reduced to a dependence on

'r;, the raising and lowering operators for the ground states of H.. When this

O'
is done, gk and Lk depend only on 'T:; and meson operators numbered 1 to k. To

put He £ in a form in which it can be contained in the space S, one must renumber

—aao, a — al, etc.,

the meson operators 1-N to run from 0 to N - 1, e.g., 2 9

1

Also one replaces *r; by 75, Under this renumbering, Y, becomes At Vi 1
H off is
[ N -
Hye =Eg+ T A g_io Vo G tA 12;::0 L, (B. 20)

where gk and Lk depend on 'r:b and meson operators numbered 0 to k-1. PE 0 is
replaced by E 0 because there is no longer any poésible reference to states outside

the subspace projected by P.
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Now consider 90 and LO‘ They involve no meson operators; they can be ex-

pressed purely in terms of 'ri. Furthermore 90 and L0 satisfy the appropriate
hermiticity, charge conservation, charge conjugation, and time rey’ersal require-
ments, because these requirements are preserved by the equations defining the
decomposition of Heff' These requirements force L, to be a real constant and

0

G, to have the form
w()

Gy =(m", V2g'rh, vagt s (B.21)

where m'" and g" are real constants.

It is now easy to define a decomposition of H off in the space S. Denote the
decomposition (J', &', N, P:A) with Ph
Comparison of Eq. (B.20) with Egs. (V.1), (V.2), (V.8), and (V.9) leads to the

2 [y ) ' ' '
having the decomposition ( ¢', ék’ Ck) .

following formulae

g =AYy s zg"z)l/ 2 (B.22)
! =
&' =E,+ JL, (B.23)
N' = N-1 (B.24)
8" = tan™1( V2 g"/m") (B. 25)
Al - m"? + zgu2)-1/2 Giat | | (B.26)
- e w2-1/2
Cj. = A(m"" + 2¢% Lyt (B.27)
The quantities m", g", LO’ -G"k’ and Lk depend only on PA’ not on J, &, or N.
Hence, Eq. (B.22) has the form of Eq. (V.17) with TB(P A) = (m"‘2 + Zg"?‘)l/ 2.
Also Egs. (B.25) - (B.27) define the transformation TA(PA) of Eq. (V.19).
Finally, the ground state energy of HO (defined by Eq. (V.14)) is
Eg= €-J (B. 28)-
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(of Table I). Hence &' has the form of Eq. (V. 18) with

T (P,) =-1+L (B.29)

0

The next problem is to prove Theorems 1~4 of Section V. The broofs involve
a very large number of upper bounds, and are quite complex. To guard against
subtle errors, all bounds have been obtained as explicit numbers multiplying
powers of A, In principle', it would have been sufficient to know that bounds
existed in the form of unknown sufficiently large numbers multiplying known powers
of A. In addition the use of numbers saves symbols. In the following < means
only » (the equality need not be realized). These proofs are crucial to the re-
‘normalization of the model of this paper; they are condemned to an appendix
because they are special to the model whereas the analysis of Section V is of more
general interest.

To start with, one needs an upper bound for the decomposition of the product
XY given bounds on X and Y. Let X and Y have decompositions (Qk, Fk) and
(ék’ Ck) as before. It is convenient to define an abstract bound for X. This

bound will consist of three numbers (d, e, f). By definition, X has a bound (d, e, f)

if
12!l < md 120l S me A™ (21
- ' B. 30)
-1 -9k ( »
IFll < £A IF Nl e A k21

where ugou is a vector with components “DOIN , “Dozu, ||D03|| , “D01" being
the ordinary operator bound. Also m is the vector (m, V2 g, V2 g), and m and

g are as defined before.
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Suppose X has a bound (d, e, f) and Y has a bound (a, b, ¢). Then it can be

shown that XY has a bound (g, h, 1),18 with

g= At (af + dc) o (B. 31)

s e e, A=l e, -2 o

h=5%ad+ A "~ (bf+ec+Vv70 (ae + bd)) + A (14be) (B. 32)
— -1

£=cfA (B.33)

(These bounds were computed assuming only that A > 21.) A brief summary of

the proof of these bounds is as follows. The operators Tki have bounds

- Ak
Tyl = A (B.34)

(This is proved by a straightforward calculation.) Next one puts bounds on the
o o0
sums Zn=1 T, » Zk=0 I én“ , etc. (which are also bounds for finite sums such

as Z‘;:O l&,11)- One gets

0

Zl NT =18 a- A P cnosat (B. 35)
n'.:

where }' is the vector (1, 1, 1). Also

o0

2olA s matmb AT 1oAY < ma+ 1,05 A7l (B. 36
n=0

using the definition of the bound (a, b, ¢). Similar formulae can be obtained for

sums of ||C n” R ”in| , and I Fn“ .. Now one constructs upper bounds for all the

terms in Eqs: (B.14) - (B.17) for 90’ LO’ g«k and Lk. For example, one term
in G_is , '
k n-1 x ©
D Todmll <R Nl AL
;1 ;-o Pic A Sm || = 12l g;l =n ;o m
-k -1 -1
<me AT (L05AT) 1 m(at1.05 AT b (B.37).
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Now 1 m=m+ 2 vV2g. Anupper bound on m + 2 V2g results from

(m+2\f2g)2—5(m2+2g%=-‘(2m—\/'2_g)2< 0 _ (B. 38)
Because m‘2 + 2g2 = 1 (normalization condition), one gets the bound

-m < V5 | (B. 39)
Hence

<m A% (1,05 V5) (ae+ 1.05A7 be)  (B.40)

Similarly one finds bounds for all terms in Egs. (B.14) - (B.17); the result is
that (g, h, f) given by Eqs. (B.31) - (B.33) is an upper bound for the product XY.
It is convenient to introduce a shorthand for Eqs. (B.31) - (B.33): we define the
"‘product" (a, b, c) (d, e, f) to be the quantities (g, h, £) given by Egs. (B.31) -
(B.33). This product can be shown to be associative and commutative so algebraic
expressions involving these products can be manipulated using ordinary algebra.
This simpiifies the calculations. |

Using the bound quoted above for products, one can construct a set of upper
bounds for the operatdrs R, Q,, etc. These bounds are listed in Table IV. They
are not least upper bounds. The operator H in Table IV‘ is defined in terms of

Heff by

JP M-V, P+ IR ’ (B.41)

Hegp = PE 1

o
where Ho e is the effective Hamiltonian as of Eqs. (B.13) and (B.19) before re-

numbering the meson operators, and M is
Wt

M=(m, V2g 77, V2g 1) (B. 42)
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The operator .“/f’J in Table 1V is defined by
Sy = V-4a L+ C (B.43)
J wk wk-~1 o k | _
so that
.%’I =M-V,+ .'MJ v | | (B. 44)

The proofs of the bounds of Table IV are mostiy straightforward and only examples
of the proofs will be given here. In some cases the bounds of Table IV are gross
ovefestimates of the bounds one calculates in the proofs. quoted below.

" The bounds on Jt’J and JZI are simple consequences of the definition of the
space S, in particular the bounds (V.10) - (V.13). In computing the bound on
Jfl one also uses the inequality g2 < 1/2 which follows from tile definition (V.9)
of g (also.one uses A > 200).

In proving the bound on R 0’ it is convenient to eliminate the factor J by

defining

H, =E,+ I, (B. 45)

Now write the equation for Rn as

R =(-o)" (1-P) M- v, P
+ ("C/fo)—l (1-P) {J{:IP :- R 1 HGP+IOR 4 - Rn-l'y'fl Rn-—l} (B. 4‘6)
The proof of the bound on Rn is by induction. It is true of Ro. Assume it is true
of R ;. To bound the first term of Eq. (B.46) one needs the following bounds:
leog ta-mll=1 (B.47)

-2 7 el =lla-pr Pl=¢ (B. 48)
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These bounds can be obtained by explicit calculation using Table I. With this

information one finds that (- Jfo)-l (1-P) M -V, P has a bound (g, 0, 0). The

1
second term in Eq. (B.46) can be bounded using the bound |P|l = 1, Eq. (B.47),

and the bounds of Table IV for JZJ, Rn-l’ and ’WI" Schematically one has

’ w2 st 2
IR 1< (85 0, 0) +logy]+ 2IR _|lo€ ]+ log] IR (B.49)

where || means 200 g2 (A'l, A'l, ‘1), etc. After calculating the products
explicitly using Eqs. (B.31) - (B. 33), one finds that this expression is less than
the bound of Table IV for |R,|. Hence the bound of Table IV for R_ holds for all
n, by induction. The same bound holds for R because R is the limit of R,
forn—o,

The bound on Rn -Rn_l is also proven by induction. The bound on Rl - RO
is true because it is larger than the bound of Table IV for Rl. Then one com;;utes
a bound on Rn 41" Rn-~, given the bound for Rn - Rn-l and using Eq. (A.5) of
Appendix A. Since the bound for | Rn-Rn_ll goes to zero as n— o, the decomposi-

tion of Rn approaches a limit for n—o; the limit defines a decomposition for R.

To get a bound for ﬁ, one writes

H=PM" Y, (1-P) R+ PJ# (P+R) + Qo (P+R) (P+Q) + Po#,(P+R) Q
(B.50)
and sums the bounds of each term.

Now one can get bounds on m" and g". Let H have a decomposition (Qk, Fk).

Comparing Eq. (B.41) with Eq. (B.19), one gets

Gy =PMP + D, (B.51)

S =Dy k >0 o (B5y

L _=F, (all k) (B.53)
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Explicit calculation using Table I gives
PMP = (m, V2g(1-g?) 7], V2 g(l-g) T;{) (B.54)

From Table IV, D, has the bound (remember A >4 x 108)

0

1Rl < m g% x 25000 A’lzs .01 g” (B.55)

The bound on D is a bounq on the difference G, - PMP. G can be expressed in

0 0 0

terms of m" and g" (Eq. (B.21); for 7" in Eq. (B.21) read 73

Using Egs. (B.21), (B.54), (B.51),

since in the present

analysis we have not yet substituted ‘r* for 1?;) .

and (B.55), one gets the bounds
|m" -~ m] £ .01 m g2 (B.56)

lg" - g (1-gA| < .01 g° (B.57)

From these bounds one gets bounds on tan 6' (Eq. (B.25))

(V2g/m) (1-1.01g) (1+.01gH7! < tan ' < (V2g/m) (1-.99gD) (1-.01g%1 (B.58)

Using the bound g2 < 1/2, one can simplify these bounds; inserting V2 g = sin 6,

and m = cos 6, one gets
tan 0 (1-.51 sin® 6) < tan 0' < tan 6 (1-.48 sin® 0)  (B.59)
To complete the proof of Theorem 2, one notes that (cf.Eq. (B.29))

=-1+F (B. 60)

T (Py)=-1+1L, 0

From the bound on H, F, is less than 210 g2 A™! which is less than .01. Hence

one obtains Eq. (V. 30).
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To prove Theorem 1, one must have bounds for || éi{ || and Cl'«: in terms of m' and
g'. One has bounds for I gk“ and "Lk" in terms of m and g (from Table IV and
Eqs. (B.52) and (B.53)):

Gl < m g2x 40 ATE k21 (B. 61)

. ) -2 ’
ILll < g2 x 40 4726 k21 (B. 62)

From Eq. (B.59) one has 9' < ¢ , and therefore m < m'. To get a bound on g in

terms of g', one uses Eq. (B.59). Let
-.51sim®6f=1-8 (B. 63)

Then

2

g%/g'% = sin® 0/sin® o' = sin” 0 {1 + (tan’ -9,)—1}

< sin? 6 {1 +cos? 6 (1-p T (sin? 9)‘1} (B. 64)

=1+ (1-sin® 0) B(1-B*

The maximum value of 8 occurs for sin § =1 and is less than .8. Except for

very small 6, 1-8 is larger than 1~ sin2 6 making gz/g'z less than 1+ 5. Hence

g'<1.8¢ : (B. 65)
Hence

m < (1.8 °m' (B. 66)

(the inequality is true for each component of the two vectors). Also, from Egs.

(B.56) and (B.57) and m? + 2 g% = 1 one gets a minimum value for m"? + 2 g2,

which in turn gives a bound

2, g gy V2

(m" + 2 <208 (B. 67
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The bounds (B.61), (B.62), (B.66), and (B.67), substituted in Eqs. (B.26) and

(B.27), lead to the bounds
2 A"k"].

lAL] < 200’ g (B. 68)
oy | < 200 g% AR (B. 69)

To complete the proof of Theorem 1, one must show that éi{ and Ci{ satisfy
hermiticity requirements and symmetry requirements with respect to charge
conservation, charge conjugation and time reversal. The symmetry requirements
are easiiy established since all the intermediate operators Rn, etc., have the
same symmetries as H. One easily verifies that if X and Y are operators whose
decompositions obey the symmetry requirements then the product XY has a de-
composition obeying the symmetry requirements. The rest of the proof of
symmetry is omitted. Hermiticity is more complicated because Rn and R are not
hermitian, and one must use Eq. (IV.3) instead of Eq. (IV.19) to show that H g
! and C!

k k

hermiticity requirements of S Al The basic result needed for the proof is that if

XY has a decomposition (gk, Lk) then Y+X+ has the hermitian conjugate de-

+ + + + . .
le le, sz—* Gk3’ Gk3--> sz, Lk~—+ Lk). The proof is omitted.

Now Theorem 3 will be proven. If an operator X has a decomposition (ék’ Ck) R

is hermitian. However a proof can still be constructed that A satisfy the

composition (
we will call the Akl the "1-components" of X.

Note the following. Let operators X and Y have the decompositions (P-k’ Fk)
and (ék’ Ck) respectively. Let Akl vanish for all k and Dkl vanish for k > 0, and
let Dy, be a c-number. Let the product XY have decomposition _(gk, _Lk) . Then

from Egs. (B.14) and (B. 16),

Go1=Do1 Co (B. 70)
k-1
1~ Dos Ck*on;O T &m (k>0) | (B.T1)
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Exactly the same formulae for G o1 and le

muted product YX. This means that the commutator [X, Y] has no 1-components

result from decomposing the com-

in its decomposition,
If 001 is zero also then XY has no l-components. Now consider Theorem 3,

Let the 1-components of H., vanish. We prove by induction that Rn has no 1-

J
components. This is obviously true of RO' Assume it is true of Rn-l' Consider

Eq. (B.5). The operator (i—P) HIP has no 1-components because
(1-P) HIP =(1-P) M- leP +(1-P) HJP ; (B.72)

HJ has no l-components by assumption and (1 -~ P) MIP =(1~-P) mP

vanishes. The product R 1 I_{IRn—l can be written R PHI (1-P)R

‘80 is a product of terms none of which contain l-component. So this

n-1

product has no 1-components. The remaining term in Rn can be written

(E -H ) (1 p) [HI R ]P. The operators X = HI’ Y= Rn-l satisfy the con~

I’
Rn has no 1-components. It follows that R has no 1-components, nor do Q@ and

ditions noted above so the commutator [H R ] has no 1-components. Hence

Q. Now consider H off (EQ. (B.13)). Using the fact that Q = QP, Q =PQ,
R=(1-P) R, and that PH,I (1-P) has no l—cdmponents, one sees that the 1-

components of Hy, are contained in (P+Q) PH, (P+Q). Thjs can be written
PH,(P+Q) + PHQ (P+Q) + [Q, PHI] P+Q)
The commutator haé no l-components by the argument noted above. The other
terms can be written
PHI (P+Q)(P+Q) = PH P : (B.73)

since (P+Q) (P+§) is P. This means that the only 1-component in Heff comes

from PM - V1 P. This means that in Eq. (B. 20), G01 is m and le

k 21, This means that m" = m and Al'd = 0, which is Theorem 3.

vanishes for
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Finally Theorem 4 will be proven. This requires that two Hamiltonians, say

Hand H A’ be compared. Let H and H A both be elements of S. Then for each of

the operators &, JF. R n’ etc R associated with H, there is a corresponding

r—s
operator (J(IA, Hypr R An’ etc.) associated with H A’ The decomposmon of
One has

JKJ is (ék’ C,); the decomposition of ¢, is (A

3A ' s’ Cra)

-J£I=M. ¥1+J6’J

me M V1 + ‘lfJA

where

M = (m, Vg, Vagr)
| , )
M, =(my, V2g, 77, V2g, )
2 2 2

= 2 _
m” + 2g —mA+2gA 1

The assumptions of Theorem 4 are that

2, 2_ 2
(m-m,)"+2(g-g,) < d;

Icn - &l < dyu AT (all

IC, - Cpll < dy A2 (all K)

where y is the vector (1/ v 2) (1, 1, 1). The objective is to obtain bounds on

mk-m', g;&-g', é{{A-Ai{ and C{{A-Cl'{, all in terms of d1 and d-2. The bounds
will be computed by the séme techniques as in the proofs of Theorems 1 and 2. |
One change is that in defining the bound (a, b, c) of an operator X the vector u is
substituted in Eq. (B.30) for ;. From Eq.‘ (B.78) it follows that m < V2 u,

m, < V2 u, which means a bound (a, b, c) from Table IV (which,implies the use
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of the vector m) can be changed info a bound using the vector u simply by the

replacement 2 — V2 a, b—+v2b, c—c. The bounds for <#,

20 etc., expressed in

terms of u , also bound JKIA, ete.

A problem arises in comparing AI{A with Al'c' As part of the definition of

At ~ . . .+ + ) +
ne took .
& © G 2nd replaced TR by T The opergtor TR

full Hilbert space of mesons labelled 0 -k and the nucleons, although it is non-zero

is an operator in the

only in the subspace of the ground states |[P)> and IND of H, plus mesons labelled

0
. , + . - .
1 to k. The operator r acts in a separate space isomorphic to this subspace.

Now when the operators &5 ave calculated one starts from Gii14 €Xpressed in

terms of operators T;A which are different from 7;. This is because T;A are

raising and lowering operators for a different pair of states IPA) and INA)

namely the ground states of H | However in Al'{ and A]"A the same operators

0A°
™ appear. Thus it will simplify matters to make a unitary transformation on

. *
qu +1A which takes TRA into T after this has been done one can make compari-

R ’
sons in the full space of 0 - N mesons plus nucleons instead of the separate space

involving 1"h plus 1-N mesons. Let the unitary transformation be U Al One wants
UZ to take eigenstates of H 0A into eigenstates of H A In particular if P A projects

the ground states of H0 A2 One wants -

U+

APAUL=P ‘ (B.82)

Then one replaces gkA by U A Gra Ua before comparing with Gy s and likewise

for LkA

One can take Eqs. (B.4) to (B.13), replace Rn by RAn’ etc., and then trans- |
form them all by UZ- * Uy Note that Jfo A and Jt’ (cf. Eq. (B.45) have the same

eigenvalues (0, 1, and 2) (cf. Table I) so vt A /t’o A U A" Jf From now on let R An

| stand for what was U R » and likewise for R

ARan Us A" Qn Qe U Qps Hy
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(cf. Eq. (B.41)) and However, ./ , and .‘/(’J A will still be the untransformed

Hp et IA

operators; denote UR JJ’IA U A by e‘(’I’X and UR /{:I A U A by-.%"J‘A . The equations for
Ry Q Ap® Stc. are now obtained from Egs. (B.4) - (B.13) by replacmg H, by
ac’m and by inserting an overall scale factor J A in the formula for H Aeff*

Now define the following differences

~ = P! -
- e = Hp ~HG

,. = gt _
Ky =Hgp ~ Ky

= NI -
wy MA M
where
4
"

One can write equations for the differences R an’ etc., as follows; e

Rao = © | (B.85)
Ry, = 3y " (1-P) {(1 “Ran-1 G P+Rpp )
"Ry 1 #; (P+R, )+ (L-R__) o, Ran_l} @ > 0) (B.86)
+ +
Qan =1/ {RA Ra * Ra R- QAn-l Qan-i - Qan—l Qn—l} (n >0) (B.87)
Qun =" "9 Q1 -9 9, : (B.88)
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H, =P Hi, P+Q, Hp, (P+R,) (P+Q,) +Q, # (P+R,) (P+Q,)

+QH R, (P+G—2A) + Q ,yfl‘(P-»R) Qa+ P Iy, (RA+§A.+RAQA)
+ P, (Ra.+Qa +R,Q,+RQ) (B. 89)

- +
Knowing upper bounds for Ha’ one easily obtains upper bounds for {U G .U, - Ek}

A=kA "A
+
and {0} L, UA-Lk} :
The first step in deriving upper bounds is to get upper bounds for JfJa and

yla._ One has
+  + - + + - -
Ma=(mA-m, fng UAT UA-\/-ng ,‘\fZgAUAT UA-‘fZg'r) (B.90)

Write UA= 1+VA; t_hen

+ + + + 4 + 4+ 4
ga UAT UA-g'r =(gA-g) UA'r UA+gVAT UA+g-r VA (B.91)
So one needs a bound for V Al The operator U A is
U, =2:1 Ind, <al | (B.92)
where In) (1 < n < 8) are the eigenstates of Hj and [n), are the eigenstates of
Hy,- These are known explicitly from Table I. An upper bound for ||V Allz is
obtained by computing the trace of V; v Al The trace is
+ b__ + &1 ' - :
Tr V, V, = Tr{2 -U, - UA} = ;1 2- Calng) - <yl n)} (B.93)
In fact one can compute the trace separately for states of a given charge; the
maximum of these traces is still greater than ||V A“ 2. The traces are
charge =2or -1: Tr VjV, =0 (B.94)
charge=0or1: TrVv v =2{(m-—m 2+2(g- )2} (B.95)
g ' AYA A E-8p y
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The latter result was obtained using Table I and Eq. (B.78). From this it follows
that

IV Il <V2d; | o (B.96)

Also {m-m, | and _w/2|g-gA| are less than d, (from Eq. (B.79)); V2 g and V2 gy

are less than 1; and | UA" =1, Using these results in Eq. (B.90) gives
1Ml < 5.5d w ' (B.97)

A similar calculation for xJa’ using the bound‘of Table IV for J(;I and JKJ A’ plus
the bounds m < V2 4 m, < V2 U, gives the bound shown in Table V. One can
now obtain bounds on Ran’ Ra’ ‘etc. , using Egs. (B.85) - (B.89). One uses

Egs. (B.31) - (B.33) to obtain bounds on products (with u replacing m in the
definition of the bound (a, b, ¢)). The results are shown in Table V.

Write the decomposition of H, as

N N
"H =) y_°D +Y F (B.98)
a 4 ak-1 =0 ak

The bound of Table V for H, gives the following bounds:

IR0l < (1200 A”2 d, + 16 At dz)g

1Dl < (230 d, +27000 A7 dz)g Ak & > 0) (B.99)
-1 -2k
I Nl <(230 d, + 27000 A a,) A & > 0)
Consider the §ignificance of gao' It_ is a difference D A0 " QO' From Eqs.
(B.51), (B.54), and (B.21)(one must substitute r3, for 7 in Eq. (B.21)), D,
itself is
2= (m" - m, \f2[g" -g (1-g2)] 7;, V2 [g" -g (l—gz)] 7;{) (B.100)
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Correspondingly

Ppo= (m}i -my, V2 [gfi'gA (x -gi)] TR V2 [EX -8, (-2} )]"11) (B.101)

So an involves differences such as (mz -m,) - (m" - m).
We can use the bound on an to prove the inequalities of Eq, (V_. 37) (the first

inequality of Theorem 4). In the notation of this appendix the quantity d'1 is defined

as
(d'1 2. (mk - m')2 + 2 (gk - g')2 (B.102)
where
m' = cos 0' = m"/(m"> + 2"} 1/2 (B.103)
g' = sin ' = V2 g"/(m"? + 23 1/2 (B.104)

and analogous formulae hold for m! A and g' W 6! is the angle in the decomposition of
T(H) (cf. Eq. (B.25)).
To get bounds on d'1 requires some further manipulations which are most

conveniently done with another set of vectors. Define the following two-dimensional

vectors: _
x= (m, V2 g[l - gz]) (B.105)
x"=(m", V2 g" ‘ | (B.106)
x'=(m', Y2g (B.107)

and analogously x, , 353" and 5;& Define

(B. 108)
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Now one has
= 1%y - 51=15; - &

The bound d'1 will be computed in two parts, first relating ﬁx - 9;" to & A" % and

then bounding % A" %. Write

]
—

N> ">
> -

¢
Y

Then

y-p<dy < g

To compute ¥, it is convenient to let

A .
X = (cos w, sin w)

QA = (cos Wps sin wA)

19

and m =cos 0, f2g=sin 6, m . Then

A=cos GA’ f2g=sin0

A
-1 .2
w =tan '[tan 6 (1-1/2 sin 6)] = f(6)
and w A 18 ({7 NE The derivative f'(6) has the form
£1(6) = N(¥)/D(y)

where
y= xsin2 0
Ny =(1-1/2y-y(1-y)

2 3
Diy)=(1-y" +1/4y")
Analyzing the form for f'(8) one sees that the numerator N decreases for

0 < y < 3/4 and increases for 3/4 < y, the denominator D decreases over the

~whole range 0 < y < 1, So one has the following bounds:

N(.75)/D(0) < f(6) < Max {N(O)/D(. 75), N(l)/D(l)}
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(B.111)

(B.112)

(B.113)

(B.114)

(B.115)

(B.116).

~ (B.117)

(B.118)
(B.119)

(B.120)



Evaluated, this gives

.4375 < f1(6) < 2 | (B.121)
Hence by the mean value theorexﬁ .
4366, - 0] < |0, -w[<2]0, - 0] | (B.122)
Now the definitions of dl1 and s are equivalent to |

' d, =|2sin 1/2 (9, - 0)] (B.123)

Y =|2 sin 1/2 (@, = o) | (B.124)
One can show that
(sin az) > a sin z _ (B.125)

when 0 < z < 7/2 and 0 < a < 1. The result of Eqs. (B.124), (B.122), (B.125)
and then (B.123), is

Y 2|2 sin . 218 (GA-O)l 2 .436d1 (z=.5(0,-9)) (B.126)

!IISIZSin(GA-—G)I < 2d (az = .5 (6, - 9)) (B.127)

1
The next step is to bound ¢. It is convenient to define

— A )
gx) =X (B.128)
Then
¢ < ¢i + ¢y : (B.129)
where :
¢, =18XA) - g5y + 8N | (B.130)
92 =18EA+ 00 - g(x¥ D) - g(xy) +E@ (B.131)
and
2=x'-2 (B.132)
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Now by the mean value theorem

) S Max (0 <A <1)|3x, - Vg (x) - 20x))] (B.133)
where ‘ |
8%, =Ep X' ~X,*% v (B.134)

and by a second order mean value theorem

¢y < Max (osxs;, 0Sp<1)|(8x V) (x, V) g(x+Adx+ ugsa)l (B.135)
where
X =XA - X o ' (B.136)

(and 8% -V acts ong, notonx + V). From Egs. (B.56), (B.57), (B.78), (B.105)

“and (B.106), |
[8x] <.005 | (B.137
and from Eq. (B.99)
18%,] < (7200 AL d, +16 Al d2) |  (B.138)
Furthermore
| I.’.Eal2 =(m, - m_)2 +2(g, - g’ (1 - gi - B8 - gz)zl (B.139)

and since g, and g are less than 1/ V2 one has
-1/2 <(1- 2 _g g-g2)<1 - (B. 140)
Ba " Bp | :
So ' _ ' |
%, 17 < a2 | (B. 141)
Now let y be an arbitrary vector; one can most easily compute 8§a . Vg('y.) and
(0x-V) (x - V) g(y) using a coordinate system with the first axié parallel to y.
If 6x, and dx, are the components of 635 parallel and perpendicular to y (and

likewise for x_, , etc.), one has

|
5%,V gy) =(0, 8x |y|'1) B (B.142)
~a = ’ Al Y i *
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and

-9 .
Fx-V)(x, V)g(x)‘ ( 5x, xall I (ﬁx" X, + 8%, xa“)lyl ) (B.143)
In absolute value | .
oz, * v) gl < I8x,) Igl™ | (B. 144)
I+ ¥) (x, - V) gl < 2/ V3 [8x]lz, 3172 (B.145)

The second inequality is proved using the relation

2 X0 %ol 6xu le < (4/3) (qu X0 )2 +(1/3) [(qu xa.)2 + (le Xa!!)2 + ('o‘xl xaf]

(B. 146)
To use the bound (B. 144) to obtain a bound for ¢1 (cf. Eq. (B.133)), one puts
= ! - . '
Y=2) Aagga, hence
g™ < {1 - 185, 1) ~ (B.147)
- = '*A -3 *
Now (from Eq. (B.137) and the analogous bound for | ggx- X A|
|0%,] < |8%] + 1%, —xA|< .01 (B. 148)
and |x"| > .49 from Eq. (B.67) (which holds for |x"| as well as |x"|). Thus
(remember that A>4 x 10 5 |
$. < 2.1 (7200A'1 d +16A714a )< 004d, +107° 4 (B. 149)
1= 1 2/~ " 1 2 .
To get a bound for ¢2, one uses Eq. (B.145) Withz being (1 -p) Etug, + ASX.
Since X X\ 2 0 and since p and 1-pu are non-negative,
2 2,.,2,.2_ .2
|A-mx+px,]” 2 Q-p)" [+ 87|25, (B.150)
But |x|and |Zal » and (1-[.1)2 + yz,are all larger than or equal to >1/2. | So
|@-mx+pux,|21/V8 (B.151)
- Hence
lyl2 (1/V8) - .005 > 1/3 : (B.152)
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Hence from Eqs. (B.135), (B.145), (B.152), (B.137), and (B.141),

g < 63 5x] |Ba] < -0524d; (B.153)
From Egs. (B.113), (B.126), (B.127), (B.129), (B.149), and (B.153),
-5 t "5 ‘
.38 d1 - 10 d2 < dl < 2{0d1 +10 d2 (B.154)
which is the first inequality of Theorem 4.
To obtain the second iﬁequality of Theorem 4, one starts from Egs. (B.26),
(B.27), (B.52), (B.53), (B.106), and the corresponding equations for Ai{A, ete.,
from which one can obtain
A' - { x" |X"|-1 } D +;lx"'-1 D (B. 155)
A =UEal -1z Aks1 1B Dagyy
c!. -C! = { xn"'l |x"| 1} -A|X"|—1 F (B.156)
ka ~ S AU Faker ~AIET " Fopeyy
Now, from Eqs. (B.617), (B.134), (B.136), (B.138), and (B.141)
|3$Kl 'l_lzsnl lxn _an ‘xn| lx"l- < 4,07 lsxa _a
-1 -1
<4.07(d, +7200A " d, +16 A" d (B.157)
1 1 2 ,
From Table V, D DAk+1 and F Ak+l havg bounds
12arsll <403 Akl o (B.158)
: -2k -2 '
IF ppeqqll S 40A (B.159)
From Eqs. (B.155) - (B.159), (B.67), and (B.99) one gets
[] “k"l
AL, - ALll < {11004, +.06d,tu A (B. 160)
NCia - Cill < {1100 d; +.06 dz}A‘Zk"1 (B.161)

which proves the second inequality of Theorem 4.
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TABLE 1

Eigenstates of the Hamiltonian m(a.+a + b+b -1)+ g(a+b+) 'r+ + g(a++b)-r 5,

+ + .+ -
where a’ creates 7', b’ creates 7, !p) and In) are nucleon states, and

B= m(m2+ 2g2)'1/ 2, y= g(mz-l- 2g2)'1/ 2, The other four eigenstates are

obtained by charge donjugation (p=~-n, 1r+-——1r");

Eigenvalue Eigenstate

~(m®+ 253"/ 12 (p) - ylartd + 1210 | prte
0 Ip7"> |

0 vipd  aulnr > y|prta>
(m?+ 2g41/2 1/2(1-4) [P +ylur> +1/2 (14 | prta™>
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TABLE II

Breakdown of Heff by type of operator for each order in A. The symbols
Xn' TR’ and (xm)2 are explained in the text. Any operator listed for a

m
power A can occur for lower powers of A also.

Order in A Types of Operators
M constant
M-1
A XM-1 "R
M-2 2 -
A XM_Z TR, (XM-].) TR

M-3
A *M-3 "R’ *M-2 *M-1 "R
M-4 2 2
A XM-4 TR’ *M-3 *M-1 "R’ FM-2 TR’ *M-2®Mm-17 TR
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TABLE I

Breakdown of Héff by type of operator for each order in A. Cf. Table Il

Order in A Types of Operators
AM, ML | ~ constant

AN *M-2 71'1»

A *yos T Cyeg) Th
AM-4

1 \ 1
*M-4 "R’ *M-3 *M-2 TR
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TABLE IV

Operator bounds obtained in the proofs of Theorems

1 and 2, assuming A>4 X 106

Operator Bound Operator Bound

A (1.5, . 5, 100) QQ, 13 g?x10* (a1, 1, £
o, 200 g% (A7L, AL, 1y Q.9 14 g?x103(47L, 1, A°7Y

R ,R g (2, 65, 160) a.q,_, 14 g?x108 (7L, 1, A7Y
R-R 16 gx10° (1, A, 1) " g® (256x103A71, 40, 210)
Q,.Q 13 g2x1o3(A"1, 1,A‘1) |
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TABLE V

Bounds on operators needed in the proof of Theorem4, The bound (d, e, f) is defined

by Eq. (B. 30) except that the vector u= 1/ N7 (1, 1, 1) replaces the vector m,

Operator

M-V

' Bound
d, (5.5, 0, 0)
24 |
d, (460K, 450 7, 300)+d, (A%, A, 1)
d, (8, 800, 1600)+d, (30A™", 2200472, 1.3)
d, (3.25x10°A™1, 245, 3,25 x 10°A™+d, (.94°72, 1100 A2, 2200A7Y
d (3.3 105A"1, 250, 3.3 x 105A_1)+d2 (8A‘1, 1200 A‘l, 2400 A’l)
d, (7200 A, 230, 310)+d, (16 K1, 27000472, 1.1y
20000 A1, 40, 120)
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FIGURE CAPTION

1. Artist's conception of the trajectories C(3), C(7), C A and Cs projected on
a two-dimensional space. The renormalized coupling constant is /4. The
curve R is also shown. The first few points on C,, C,,, C(3) and C(7) are

labelled explicitly: Py is the first point on C A, Pp the first point on C

B.
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