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DIFFRACTION DISSOCIATION AND THE REACTION yp - n’r- p 

Jon Pumplin 

I. INTRODUCTION 

I wish to consider diffractive processes in which a high energy photon dis- 

sociates into hadrons, .as a consequence of its coupling to them, and the resulting 

virtual hadronic system is brought onto, mass shell by elastic scattering on a 

target particle, which provides the necessary slight change in longitudinal mo- 
! . 

mentum, In particular, I will discuss’the. 11Drell-S6ding mechanism’ for 

w-$r-p, illustrated in Fig. 1, and some corrections to it, Similar consider- 

ations apply to w- K+K-p, yp--F pp, etc., and &so to reactions like rp-Ai n-p 

which involve strongly unstable particles in the final state. Diffractive processes 

in which the photon dissociates into more than two particles, or in which the target 

particle also dissociates will not be discussed here. 

The work is motivated by the experimental accessability of reactions like 

rp-1~+ n-p, together with the belief that diffractive processes will dominate them 

at high energy. In addition, I hope to clarify some general aspects of ,diffractive 

two particle -three particle processes, which are applicable as well to hadron- 

induced reactions like n*p-r*p”p or pp-n+np. The reaction rp-lr+?rp is 

partic’ularly suited for testing the basic idea of diffraction dissociation, because 

of the simplicity which results from the pion having spin zero, because of the 

smallness of the pion mass, which allows the propagator pole to approach very 

close to the physical region, and because good data can be obtained for this reaction 

- including data with polarized photons. 2 

Much of the current interest in “/p, &n-p centers on the copiously produced 

p” resonance, and on the so-far fruitless search for new resonances in the n+?r- . 
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system: in particular’ the Jp = 3- recurrence of o” predicted by Regge pole 

theory, 3andthe J ’ = l’- daughter of f” predicted by simple forms of the 

Veneziano model. 4 The model diagrammed in Fig. 1 can be applied directly 

only to mass regions, or partial waves, of the diffractively-produced system in . . 

which resonances are unimportant. Where resonances are important, the model 

can be looked upon as generating’a “background” term, which is to be added to 

the resonance production amplitude, along with an appropriate correction for 

“double-counting, *’ as discussed in Section V. Alternatively, it may be possible 

to incorporate resonance production into the model, using the theory of final 

state interactions. 5 

The possibility of diffractive production of hadrons was first set forth by 

Feinberg and Pomeranchuk, 6 * m analogy with coherent bremmstrahlung. The 

‘7 idea was further developed by Good and Walker. Diagrams like Fig. 1 were 

proposed by Drell’ as promising contributors to secondary beams at SLAC, and 

were later calculated by Sading ’ for yp-~‘~-p as a background to diffractive 

p” production, in an attempt to understand the observed asymmetry of the rho 

mass spectrum. Soding’s calculation’ and a refined version of it by Krass, * 

ignores the question of double-counting, which is discussed in Section V. 

The Drell-Soding mechanism can be looked upon as a diffraction dissocia- 

tion process, similar to those possible in ?rp --~~pp, 9 Kp --rK*p, 10 -I- 11 and pp -pmr , 

It can also be considered as a special case of the multi-Regge model, l2 which has 

come to be interpreted as applying even when not all of the final subenergies are 

large. For w-- r’r’p, the effect of multi-Reggeism would be to introduce a 

factor s@(~‘) and a signature factor into the amplitude, where s’ = rn& and 

t’ = squared four-momentum of the virtual pion. Because the pion has spin zero 

and very small mass, this has little consequence at small t’. Another effect of the 
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multi-Regge model is to introduce form factors (residue functions) which depend 

on tf, but that is not unique to the Regge model: bare Feynman propagators in 

general must be reduced, when the propagating particle is far off mass shell, and 

only low-order diagrams are being kept on the basis of **nearby singularitieP 

arguments rather than on the basis of perturbation theory (see Section V). 

II. KINEMATICS IN THE JACKSON FRAME 

For the reaction 3/p--‘r-p, denote the four-momentum of the photon by k; 

of the initial and final protons by p, p’; and of the pions by q+, q-. The Jackson 

frame is defined as the r.est frame of the pion pair, with z-axis in the direction 

of the photon: 

k= (0, 0, k; k) 

P = cPx, 0, P,; E) 

q+=(qsin0cos$, qsin0sin#, qcos8;w) (1) 

q- = (-q sin 9 cos #, -q sin 8 sin @, -q cos 8; 0) 

P’ = $,, 0, P;; E’) 

where w = (q2 + rni ) ‘12, E= (pE+pz,+m 
3 

112, p’ z=k+p,, andenergyconser- 

vation implies p, =E-2w+2w(w-E)/k, E’=k+E-20. 

A convenient choice for the five Lorentz-invariant kinematic variables are 

s = (k + P)~, the total center-of-mass energy squared; t = (p - ~1)~~ the four- 

momentum transfer to the proton squared; m2 = (q+ + q-) 2 , the invariant mass 

of the nn system squared; and 8, rp, the decay angles of the two-pion system in 

the Jackson frame. The Jackson frame variables are related to the invariants by 

0= m/2 

k= w-t/4 

E= (s -mi+t)/llw 
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pz =E+(m2 
P 

- s)%/k. 

(2) 

In order to obtain qualitative understanding, it will be useful to consider 

the limit of high energy: s = rni + 2mpE y (lab)_, rir3 , In that limit, to leading 

order in s, 

*z Sp’ 1 (s/4hj l (t + 4&J2)/(t - 4u2) (3) 

p, 1s J--h -t 402 - t) 
. .,. 

The momenta of the initial and final target protons become infinite and equal, 

while the momentum of the photon and its angle with respect to the proton 

direction remain finite. . 
. 

III, THE DRELL-S6DING AMPLII’UDE 

The diagrams of Fig. 1 correspond to a matrix element for 313 --?n-p of 

E*q- 

T- (k - q,., P--Q-s. P’) - E T+(k - q-, P--a,.P’) + 1 e l V 

(4) 
where E is the photon polarization vector, and T,, T- are pion-nucleon elastic 

scattering amplitudes for initial-state pions which are slightly off mass shell. 

Throughout this paper, the target proton will be treated as spinless; this ap- 

proximation is not necessary, but should be acceptable, since we are only 

interested in small momentum transfer elastic scattering from it. Corrections 

to Eq. (4) due to off mass shell effects, and other effects, are discussed in 

Section V. 
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A term of the form c.0 V, where V is some four-vector satisfying 

T _ - T, + k l V = 0 is required in Eq. (4), in order to make the expression 

invariant under gauge transformations, C-C + ti. At first look, V could con- 

tain terms proportional to each of the available four-vectors k, p, ql, q2, pt. 

However, we have’already let the photon couple to the pion charge’ in the way 

we want it to physically, and 6 l k = 0, so V must be some combination of p and pt. 

The combination p - p’ is also unacceptable since p - p* = q+ + q- - 1~. In this 

paper,1 use Voc p + p*, i.e., let the additional photon coupling be to the current 

of the scalar **nucleon. I* Adjusting the magnitude of V to provide gauge in- 

var ianc e , 

4z l WP’) 
“=” E T-- E T++k.(p+p’) &-T_) 1 (5) 

Krass’ chooses the transverse gauge for the photon in the center of momentum 

frame, which is equivalent to Vat p. I know of no strong argument to choose 

between this and p + p’ , but the difference is not very important, since the Drell- 

S&ding process is confined to the diffractive region, where (p - P*)~ is small; 

and the two prescriptions are equal in the high energy limit* 

The pion-nucleon elastic amplitudes can be obtained from measured dif- 

ferential cross sections, by ignoring spin and making assumptions about the 

phase and off-mass-shell dependence. The effective energy and momentum 

transfer values can be taken from the final particles, which are on mass shell. 

For simplicity of calculation, I use the forms 

T+(k-qf p-q+, P*) = 2i Ok 
[ (q& l P’)2 

2 2 1’2 
- mnmp 1 exp @d/2) (6) 
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which are pure imaginary in phase, and correspond on the mass shell to constant 

diffraction peaks, do@ cc exp (B&t), and constant total $p cross sections, air , 

When the invariant mass of one of the np systems is low, as happens when the 

angle 6 is near 0 or 7~ even at fairly high photon laboratory energies, resonances 

can be important, and Eq. (6) is not such a good approximation. In comparing 

with errperiment, it Gould probably be best to make a cut on the data to require 

that both TN invariant masses be reasonably large - at least to eliminate the 

region of A(1236). One could separately ask whether diagrams like Fig. 1, 

calculated with detailed n-N amplitudes obtained from phase-shift analysis, 

would be capable of e&aining nondiffractive processes such as “/p - -TA ++, but 

the theoretical basis would then be somewhat different. 

Since gauge invariance has been enforced, the polarization tensors can be 

chosen in any convenient manner. using c x = (1, 0, 0; O),which corresponds to 

photons with electric vector lying in the scattering plane of the Jackson frame, 

and $ = (0, 1, 0; 0), with electric vector perpendicular to it, the spin averaged 

cross section is 

do 
dt dm dL? 

where 
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and in terms of the Jackson frame variables, 

(9) 

112 
T& = 2i % exp(B& t/2) (E:wT p; q cos 0 T pxq sin 0 cos Cp)2 - rnirn; 1 ’ 

Since the pion-nucleon invariant masses are assumed to be reasonably 

large, it is a good approximation to drop,the mass terms which appear in the 

square roots in T &: this corresponds to assuming the pions .are extremely 

relativistic in the lab frame. Making this approximation, and noticing that q, 

o, k, ET, p,, pz, are related to s, t, and m but not to 0 or $, the only $- 

dependence of the matrix element is sin r$ and sin + cos 9 in M and 1, cos $, 
Y’ 

cos2 C#I in Mx. This implies that the z-component of angular momentum in the 

Jackson frame for the final 7r7r system can be only 0, 1, or 2 for unpolarized photons, 

and only 1 or 2 for photons with electric vector perpendicular to the production plane. 

This simple result would not be affected by including form factors, since they would 

be functions of (k-q& 2 - mi= 2k(w7qcos6). The origin of the J, = 0, 1,2 rule is as 

follows: at a fixed value of momentum transfer, the diffraction scattering ampli- 

tude depends linearly on SL) just as if it resulted from exchange of an elementary 

spin 1 particle - since that would also correspond to a constant cross section, 

The effective spin 1 particle can carry only Jz = 0, f 1, since it meets 

the photon “head on, ** and therefore carries no orbital contribution to Jz. 
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Now consider the limit of infinite energy, in order to obtain qualitative 

understanding of the cross section at finite energy, When s-00, the cross 

section 
s 

approaches a finite limit, as expected for a dif- 

fractive process. Equations (9) become simplified by 

(10) 
2pX z AL- -t 

+ E’ - p, - 20 

At t = 0, the amplitudes Tf are proportional to sin 8 cos + and sin 0 sin Cp, 

so the ?r - r state has the same spin and helicity as the incident photon: J=l, 

JZ = & 1. Its having the same helicity is required by angular momentum con- 

servation. Its having the same spin results from the assumption that only one 

of the pions actually interacts with the target, so the amplitude for the 7~ system 

to scatter. is independent of its angular orientation. (If the pions are replaced by 

particles with spin, this argument fails - e.g. , in np -app, ?rp systems with both 

J=O, J=l are obtained in the s +o, t -0 limit.) When form factors are included 

to reduce the amplitude when the virtual pion is far off mass shell, additional 

angular dependence is introduced at high 71~ masses, since forward-backward 

configurations of the BUY system are favored, with the backward 7~ doing the 

scattering; and higher angular momentum states come in. At finite momentum 

transfer, states with J#l can be produced even when form factors are unim- 

portant, but only to the extent that -t is sizeable compared to O= m/2. The 

magnitude of -t is effectively limited by the width of the diffraction peak, so 

systems of moderately high mass should be produced mainly with J=l. When 

. 
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systems of very high mass are produced, form factor effects are certain to be / 

strong, and high angular momenta will be produced. In a numerical calculation 

containing a r’reasonable** form factor (see SectionV, VI), the production of J=3 and 

J=l were found to be of comparable magnitude by m = 1640 MeV, so the suppression 

of angular momentum change cannot account for the failure to observe g-meson t 

photoproduction, if one assumes that the same suppression would occur in 

resonance production as occurs in the Drell-Soding process. (In accord with 
+ 

this, the N*(1688) with J ‘= g does seem to be produced in pp+ pN*. 13) States 

with J=5 and higher significantly suppressed at this mass. States with even 

values of J are not produced at all by the Drell-Sijding mechanism, if one makes 

the approximation that n+p and n-p scattering are equal, since in that case, the 

TT system must ha’ve odd charge conjugation. 

Now consider the dependence on momentum transfer in the s dlimit, making 

the rather good approximation B + S B- = B. If m is large, so that 1 t 1 /w is 

small, the cross section is proportional to e Bt , i. e, , it has the same t-dependence 

as the np elastic scattering, in the absence of form factor effects, which make the 

t-dependence flatter. At low r-71 masses, dt Edfl falls faster than eBt* This 

steepening of the diffraction peak at ,low masses results from the pion propagator. 

It can be understood using the uncertainty principle by thinking in terms of “old- 

fashioned perturbation theory 1’:. when the photon dissociates into a state of low 

invariant mass, the violation of energy conservation involved is small, so the 

time allowed for the dissociation is long,. and the virtual state is spread out 

over a relatively wide range of impact parameters (in this case, spread out by 

=%/mnc:; the effective size of the interaction region is therefore larger than 

that corresponding to the np elastic scattering alone, so the diffraction peak is 

steeper. This steepening effect has been seen in w-+ $r-p at masses below 

02 the p , and in pp -+ pN* for low mass N**s. 13 
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Now consider the dependence of the cross section on the OTT invariant mass 

for 6-a. The matrix element contains a factor 1 /m2 at t=O, which can be 

understood in old-fashioned perturbation theory to result from an energy de- 

nominator: the violation of energy conservation at the dissociation vertex being 

m2/2Elab, as shown in Section IV. This factor of l/m2 was assumed also to be 

present in the amplitude for “yp-+p”p by Ross and Stodolsky, 
14 and has since 

been controversial. The factor arises naturally at t=O in the old-fashioned per- 

turbation theory picture, independently of the two-pion model, although one 

could imagine that other dynamical effects might cancel, it in the production of 

a wide resonance. Furthermore, the form suggested by the old-fashioned per- 

turbation theory argument away from the forward direction is not nearly so 

simple as l/n?: because of the steepening of the t-dependence at low -masses 

mentioned above, it is more like l/i#n2-t) , This will be discussed further in 

Section IV. 

If no form factors are included, 

like q3 = (m2/4 - m33’2, 

s dt dQ dt gctn rises from threshold 

reaches a maximum at ~600 MeV, and falls off for 

high masses like m -1 when S-W. The m-l fall off is unreasonably slow, and 

results from kinematic regions where the virtual pion is far off shell, It would 

imply that the cross section integrated over m rises like log s. Including form 

factors changes the cross section only slightly at low n7r masses, but causes it to 

fall like m-5 at high mass., by limiting the transverse momenta of the outgoing 

pions . The existence of form factors also implies that the Drell- Sciding 

mechanism is less effective in producing pairs of high-mass particles, such as 
- 

K’K-, pc, A* A*, etc. , than is for producing n+?r-. 

IV. IN THE W\B FRAME 

The angular momentum properties of the diffractively produced system are 

most easily analyzed in its rest frame, which I have employed up to now. More 



insight into the diffraction dissociation process can be obtained, however, in a 

frame in which the dissociating particle has an tcinfinitetl momentum, such as 

the laboratory frame. In the high energy limit, the four-momenta in the lab 

can be chosen as 

k = (<, Ey; E 
4 

p= (is, O;md ’ 

q+= (E,- 872, q(Ey-A);q(Ey-A)” 
(F- I$/?‘+ rni 

27 

q,= t-7 - . 3 &‘2 (1 -‘?)(I$, -A); (1 - q)(E,, - 4 + 
(F+&!2)2+mt 

2Ey(l - rl) 

‘p’= ($, A, (mi+ 82+A2)1’2 

where ?and %are two-dimensional vectors of transverse momentum, and the 
_. 

energies are given only to order l/E , 
Y 

The pions have finite fractions of the 

infinite longitudinal momentum E 
f 

givenby 7 and!. -q,,whereOc 7)~ 1, 

since A is of order l/E y. Neglecting the recoil energy, i, e., assuming 

-t <Cm2 
1’ ’ 

m2= (F-$2)2+m~ 
[ I [ 

/-7-j + (Fc s72)2 -t rni] /(l-r)) -X2 

A = (m2 + x2)/2Ey 

t,-g2 a. 

(12) 

Writing the polarization vector as e = (T, 0; 0) by making use of the freedom 

to choose a gauge, and assuming u+ = CJ--, B+ = B- for simplicity, the scattering 

amplitude given by Eq. (5) becomes 

,M = 4icempEy exp(Bt& rl(l-rl) & (F - F/z, E* (F+ 6’/2) 

(T - %/2)2+m2 
lr 

+ I;‘+ FQ2)2*mz 1 (13) 
7. (5 K//2) 7. (FC 32) 

= 4i crempEy 
m2+8 “2 - 27 l @(l-T) 

+ 
m2 f g2 + 2ji: l Z/q 1 
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where the first term inside the brackets corresponds to the r- scattering, the 

second to the r’. 

From the viewpoint of old-fashioned perturbation theory, the virtual pion is 

considered to be on mass shell, with energy not being conserved at the dissoci- . 

ation vertex. For’ the diagram in which the n* scatters, the xx system in the 

intermediate state has an invariant mass squared 

2 mint= 
E 
F”sSz,2+m2,]/1(1-1)=m2+a2-?r* m-w 

: ‘ 

in this view. The violation of energy conservation in dissociation is 

AE = ,mkt/2Ey’ and the energy denominator l/AE is clearly visible in Eq. (13)‘. 

(If the photon were a particle with mass, the corresponding expression would 

beAE=(mLt-rn? /2Ey.) I 

At zero momentum transfer, %= 0 and mint = m, i.e., the photon dissociates 

into a 7rx system of the same mass as the final one. (In coordinate space, the 

dissociation takes place a long distance, s Ey/m2, away from the target particle, 

but the transverse separation of the pions remains I l/m, .) The energy’de- 

nominator then gives&a factor m -2 14 , analogous to the Ross-Stodolsky factor. 

Away from the forward direction, mint can be either smaller or larger than m, 

If i? is small, mint is larger than m, and this results in the diffraction peak being 

steeper for diffractive production of low-mass systems. Equation (13) does not 

contain the pion mass explicitly, so effects such as the Ross-Stodolsky factor, 

and the steepening of the diffraction peak at low mass can probably be believed 

to have very general effects, not depending on the specific model involving dis- 

sociation into two pions. In determining the steepening of the diffraction peak, the 

terms a2 = -t and 2F. g/(1-))), 27 l g/q are to be compared with rn2* As a 

1 .  
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result, in “/P-+K’K-~ there should be very little steepening of the diffraction 

peak even near the K+K- threshold. On the other hand, in pp-pn? at threshold, 

the relevant difference in masses squared is (m, + mJ2 - m2 = 
P 

.3 BeV2, so a 

good deal of steepening is possible. 

V. CORRECTIONS TO THE MODEL 

A. Form Factors 

The theoretical basis for calculating simple diagrams such as those of 

Fig. 1 as an approximation to the true diffraction dissociation amplitude, rests 

in the presumed domination of that amplitude, in the sense of dispersion theory, 

by singularities which lie close to the physical region. In the case of the Drell- 

) Soding process, the nearby singularities are the pion poles, at the zeros of 

o( - q,J2 - mi = 2w2(1 - t/4w2)(1 & (q/o) cos 8 ). These poles are closest 

for ?TT systems produced with small momentum transfer from the target, and 

with decay direction in the Jackson frame near to forward or backward. In the 

lab frame, this corresponds to both pions having small transverse momentum, 

and the one which interacts with the target having the smaller fraction of the 

photon’s longitudinal momentum. At the edge of the physical region, for 

s --co, t-0, cos 6-- $: I, the quantity (k - %)2 - rni approaches as close as 

-mi to 0, if 0 >>m lr’ 

When the pion poles are far from the physical point under consideration, the 

diagrams of Fig. 1 are no longer a good approximation to the amplitude. Think- 

ing in terms of either field theory or dispersion theory, other diagrams become 

important D The pion propagators l/ [Jk - Q)~ - rnt ] therefore need to be 

multiplied by llform factors” F [ (1~ - Q2 - rnt] , where F(0) = 1. The function 

F(x) cannot be specifically associatedwith the dissociation vertex, the elastic 

scattering vertex, or the propagator, so to call it a form factor is somewhat 
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misleading. However, it, is expected to fall off as x becomes negative on a 

scale of roughly 0.5 - 1.0 BeV2, like an electromagnetic form factor, since it 

must correspond to masses of intermediate states like 3n or xc in the dispersion 

relation; or since in coordinate space it must preserve the long-range part of 

the pion exchange amplitude, while removing the part corresponding to dis- 

tances <, ,8 l?ermi. ’ 

As a,qualitative model of the form factor, I have used F(x) = exp (Ax),where 

A= 1.0 - 2.0 BeVe2. It would be interesting to extract the true form factor 

from data, by studying the cross section as a function of (k - qJ2 1 rnf or 

(k - sJ2 - m2, in a region of high 717~ masses, where one of the two diagrams 

dominates because of the form factors, and co production is negligible. A fit 

to the analogous form factor for the reaction pp--yn T? has been made by Colton 

et al l5 --’ 

An alternative way to look at the form factor is as a cutoff on the transverse 

momenta of the pions. For example, F(x) = exp (Ax) corresponds to a transverse 

momentum distribution falling off like exp(-pf. /2pz), where p. = (44 - -lj2, ex 

elusive of a small effect due to the elastic scattering. The value A= 2.0 BeV -2 cor- 

responds to p. = 350 MeV, which is typical of what one observes in most re- 

actions at high energy. ’ 

B. Final State Scattering 

One could include corrections to the diagrams of Fig. 1, in which the out- 

going pions elastic scatter from each other in the final state, as illustrated in 

Fig. 2. Other intermediate channels could also be included; e.g., the photon 

could dissociate into x”wo, which could scatter to form ?r+n after elastic 

scattering on the target particle. However, such inelastic channels should be 
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of little importance for ‘yp- $lr’p, the sometimes large number of them bein.g 

nullified by the smallness of inelastic amplitudes, and by the effect of form 

factors. Corrections of the final state rescattering type may be thought of as 

unitarity corrections, requiring in some sense that the total probability for the 

photon to dissociate into something is no larger than 1. They are distinct from’ 

the form factor corrections discussed above, since they can be significant even 

in the case of the long range (very nearby singularity) part of the pion exchange. 

The effect of rescattering at low 1r71 masses 4s tied up with the question of 

resonance production, and is discussed in Section V.C. At high masses, the 

87~ scattering amplitude is presumably mainly imaginary, so Fig. 2 corresponds 

to final state absorption, which reduces the amplitude due to Fig. 1. Calculating 

Fig. 2 by requiring both of the pions which scatter, in the final state to be on their 
du mass shells, and assuming a pure imaginary TB elastic amplitude with x cc exp(@) , 

yields a correction to Fig. 1 of - ux$87r@ x -20% at low transverse momenta. 

The quantity o--/87@, which equals 2 ~elastic/atotal for R? scattering, 

corresponds to one half of the absorption calculated by Gottfried and Jackson 
16 

for low partial waves in 2 -2 amplitudes, since in their case, absorption in the 

initial state has the same effect as absorption in the final state, The final state 

scattering has only a minor effect on the angular distribution of the pions, since 

elastic scattering is peaked so sharply forward. For example, at high masses 

and high transverse momenta, Fig. 1 gives a transverse momentum distribu- 

tion x exp(-2 A pq), while Fig, 2 gives exp[-2Apf /(l + 2A/@], where 2A/P Z. 4. 

C. Resonances 

Reactions in which one can attempt to study the diffraction dissociation 

process are without exception complicated by the existence of resonances near. , 

threshold in the diffractively produced system: for yp --$7r-p, the p”; for 
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np--n;op, the Al; for Kp-,K*(890) np, the Q; for pp-pnn+or pp-pp n+n-, 

or pp---p(missing+mass),, the nucleon resonances at 1.40 BeV(JP = $“, and 

1.69 BeV (Jp = 4 ). The presence of these resonances close to where the 

simple dissociation models predict peaks in the mass spectrum may or may 

not be understandable by extending the notion of duality to reactions involving 

’ 17 pomeron exchange. The original hope of explaining peaks such as the A1 as 

purely due to “Deck effect, )t analogous to Fig. l,, has largely vanished in the face 

of better data 18 andthe realization that the iDeck effect cannot give peaks narrower .- _- 
than a few hundred MeV; although there remains the puzzling failure to observe a 

narrow A1 in diffractive production on nuclei. 19 The reaction yp--K+Kp is 

especially simple from the standpoint of resonances,because the only known 

diffractively produced resonance is the $, which is very narrow, so resonance 

effects should be negligible over most of the K+lS- mass spectrum. 

Various attempts have been made to incorporate resonance production into 

the Drell-Soding or Deck type of model, using the theory of final state interactions.5 

I prefer not to take this approach. It is complicated in the case of pp-pn?;t‘ by the 

fact that an N*(1400) which decays into n$ could just as well be formed from one of 

the other open channels such as p$n, ppn”. In the case of yp -?7r-p, channels 

like +yp +r”,“p and ‘yp --Epp, should still be able to contribute to yp -pop, even 

though they are closed &t the rho mass, if one thinks of the p” along the lines of 

a bootstrap model. 

I prefer therefore to consider the amplitude for resonance production, yp.--pop,, 

as a separate dynamical object from the Drell-Soding “background” term. For 

the purpose of data-fitting, one must simply parameterize its magnitude, phase, 

helicity dependence, mass dependence (e.g., with or without l/m4,), and t- 

dependent e (e . g. , with or without the steepening at small t characteristic of the 

Szjding mechanism). 
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In adding a background term, such as the Drell-S&ding process, to a 

resonance production amplitude, one stands in danger of ttdouble counting.” 

For example, if one thinks of the p as being formed by repeated p exchange 
20 

between a pair of pions, as in the early bootstrap models,’ then the diagrams 

of Fig. 1 correspond to just one term in the sum of diagrams corresponding to 

yp --pop followed by PO--- $n-. In order to avoid double counting, I recommend 

the following prescription: multiply the background term in a given partial wave 

by e 
ia cos 8 , where 6 is the phase shift in that partial wave. The resonance 

term is proportional to e 16 sin 8 , with a magnitude’which one can only param- 

eterize as discussed above. In terms of a Breit-Wigner form, e ia sin 6 = 

mp l? /(m2 - m2 -impI’)ande it3 
P 

cos6=(m:-m 2, / (mF.-m2- impI’ ), where 

the width I’ is a function of m2, going to zero at threshold, The factor 

eiS cos 6 gives the background amplitude the phase e ia suggested by Watson’s 

theorem, 21 and forces it to go through zero at the peak of the resonance, where 

m =m p , 6 * n/2. Far from the resonance, e is cod 8 goes to 1, so the back- 

ground term is unmodified. Final state interaction theory leads naturally to 
. 

the ed co9 S prescription - see e. g. footnote 18 of Ref. 14. Further arguments 

in favor of it follow. 

In an infinite momentum frame for the dissociating system, such as the 

lab frame, the lifetime of the p is E ,, /mp I’ , which is long compared to the 

time associated with dissociation and scattering, 2 E y irn2 . It is therefore 
P 

natural to treat the p as a stable elementary object, in considering the dynamics 

of its production. Following the ideas of Section V. B, one should therefore add 

to the graphs of Fig. 1, a resonance production term (Fig. 3), and a rescattcring’ 

term (Fig. 4). It is easy to show that adding the absorptive part of this re- 

scattering term (the part corresponding to the pions which form the p being on 

mass shell) to Fig. 1 isequivalent to multiplying Fig. 1 by e 
iS cos 6 . , 

- 18 - 



A final argument for ds cos 6’ comes from considering a model in which 

a nonrelativistic bound state of two particles is diffractively excited into a con- 

tinuum state, as .a result of one of its constituents elastic scattering on a target 

particle. (One could think of the coherent breakup of a deuteron, 6* 22 and then 

imagine that the np system possessed an I = 0 resonance,) The scattering 

.amplitude, in single-scattering impulse approximation, is given by 

where the $(F) Is are nonrelativistic wave functions for the two-body system at 

relative coordinate r” , Telastic (A) is the amplitude for elastic scattering of one 

of the constituents on the target, and a is the three momentum transfer. In the 

case of a repulsive delta-function potential for the two-body system (the lowest 

lying resonance being considered metastable) 7 it is easy to show that the scatter- 

ing amplitude for producing an s-wave state in the continuum is 

T= ei*cos 6 + C eis sin 6 1 l T plane wave, (16) 

where T plane wave is obtained from (15) by replacing $fmal(G) with the plane wave cor- 

responding to no final state scattering. The phase shift 6 depends on the energy 

of the continuum state, which ‘is analogous to the mass of a diffractively. pro- 

duced system. The coefficient C of the resonance term depends on that energy 

and also on the parameters describing the potential, 
\ 

D, Double Scattering 

In the forward direction, one would expect the diffractive production 

amplitude for yp -$r-p to be proportional to the cross section for absorbing 

the n’~- system on the target proton. According to the single-scattering 
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diagrams (Fig. l), that cross section is given by o+ + ,J=- . This needs to be 

corrected by a shadow term, corresponding to the fact that if one of the pions 

has been absorbed, absorption of the other one does not add to the cross section. 

One way to estimate the shadow effect is to consider a sum of absorptive 

gaussian potentials for np scattering, which leads to a total cross section CT, 

and differential cross section * dt oc exp( Bt) in the eikonal approximation. 

Doubling the strength of this potential, i.e., reducing the mean free path at 

every point in coordinate space by a factor of 2, should correspond to scattering 

of the nn system. Keeping only linear and quadratic terms in c, this leads to a 

total cross section 2& - cr2/8nB, and a differential cross section 

g 0~ (expQW2) -6 e 
Bt/4 2 

> . The correction to the total cross section 

(forward amplitude) amounts to about 15%. In going away from t = 0, the 

shadow effect falls more slowly than the single scattering, since it comes more 

from. small impact parameters, and will produce a dip in the differential cross 

section around t = - .8 BeV’ where the two become equal in magnitude. This 

interference mechanism is known to produce dips in scattering on nuclei, 23 

and has been proposed as the source of the dips observed in reactions like 

7f-p -non as well. 24 It would be interesting to look for it in yp &r-p, where 

the TX system may be intermediate between an elementary particle and a nucleus 

in the degree to which it acts as a composite object. 

A somewhat more refined approximation to the shadow effect, which still 

assumes that the target proton interacts with the two pions individually, is 

offered by the double-scattering diagrams of Fig, 5. Computing these diagrams 

in the s-+00, t- 0 limit, by requiring the intermediate particles between the 

elastic scatterings to be on mass shell, ignoring the recoil energy of the 

nucleon via mp-co, and letting m -0, yields a correction of the form 7r 

I - 20 - 
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c+ ~-.8xB, as given by the optical model,’ multiplied by a factor 1 - exp(-Bp: ) 

which reduces the shadow effect for pions with low transverse momenta. This 

factor results from the possibility, which was neglected in the optical model, 

of the two pions having different impact parameters on the proton. 

1 

VI. NUMERICAL RESULTS 

The momentum transfer dependence of the Drell-Sdding process is shown 

in Fig. 6, for various masses and partial waves of the 7~ system. (Of the cor- 

rections discussed in Section V, only the form factor. effects were included in 

calculating this and the succeeding figures; in particular, p” production was 

omitted.) At low masses, the 7~ system is mainly ,p-wave. The diffraction 

peak is significantly steeper than the exp(Bt), with B = 9 BeVs2, assumed for 

np scattering, and is given approximately by exp(Bt) /(m2-t) 2. (See Section IV.) 

At high masses, higher angular momentum states predominate because of the 

form factors, which limit transverse momenta. Also, the diffraction peak be- 

comes flatter. 

The mass dependence of the forward cross section is shown in Fig, 7, for 

various strengths of the form factor. The cross section is concentrated at low 

masses by the form factors, which are already significant at the mass of the 

PO, The true form factors are not known, but must correspond roughly to 

A%1-2BeV’2, The effect of this uncertainty on the cross section can be 

seen. 

The energy dependence of the cross section, exclusive of that due to the 

energy dependence of np scattering, is shown in Fig. 8. At 4.7 BeV, the high 

masses are cut off by the minimum momentum transfer: the cross sections 

have a factor exp(Bt) where B c 9 BeVv2 and t < tminz -(m2/2EY) 2. The cross 
. 

. 
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section in the limit Ey-oo is not very different from that at Ey = 10 BeV, as 

expected for a diffractive process, and this justifies the use of that limit for 

qualitative discussions. 

The mass dependence ‘of the forward cross section for yp -K+K-p is 

shown in Fig. 9. ’ This process is interesting because it could be studied at low 

K’K- masses without interference from resonance production -the Cp, not in- 

cluded in the figure, being very narrow. The form factor effects are strong 

even near threshold because of the relatively large kaon mass, so the cross 

section is rather small. 

At the rho mass, the amplitude for producing a p-wave ~‘71 pair via the 

Drell- Soding process is on the order of 20% of the amplitude for producing it 

through the p in the vector dominance model. 14 The result of adding a non- 

resonant backgrollnd of this magnitude to a Breit-Wigner resonance is shown in 

Fig. 10. (A constant width was used, and no l/m:* factor was included in either 

the p or the Soding term, for simplicity, These terms were taken to be rela- 

tively real, as would be the case in the vector dominance model if np and pp 

scattering were purely imaginary in phase,) The Soding term produces a 

significant asymmetry in the distribution, and shifts the maximum downward 

by z 15 MeV. The result of correcting the Soding term for double counting 

by means of the factor e ia cos 6 = (m2-rn:) /(m2-rni + im,J) is also shown. 

The effect is rather small: it raises the apparent cross section for p production 

VII. COMMENTS ON EXPERIMENT 

The Drell-Soding process has been included as a background term in a 

number of fits to yp --$-r-p in the region of the p . 2,25 It provides a natural 

explanation for the observed skewing of the resonance peak’toward low masses. 

- 22 - 



In a recent experiment, 2 that skewing was found to be consistent with the 

Soding model, and inconsistent with resulting entirely from a (mp/m,rJ4 

Ross-Stodolsky factor (though perhaps consistent with a factor like 

[ mp2/($- 2 t)] ). The same experiment finds evidence for the Drell-Soding 

process occurring outside of the p-wave: the Yt moment of the ETA angular 

distribution is predicted correctly by the Soding model, wherein it results 

mainly from interference of the 3- partial wave ‘of the background term with 

l- due to the resonance, 

At masses above the p” region, it is somewhat difficult to test the Drell- 

Soding model, because both the predicted and the observed cross sections ‘. 

are rather small, 26 One must also avoid the effects of other ‘processes, such 

as nucleon resonance production, by requiring the $p and ~r’-p invariant masses 

to be reasonably large, and the momentum transfer to be small. 

. 

I 
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1. Feynman diagrams for the diffraction dissociation yp -n+np C’Drell-Soding 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

’ 9. 

FIGURE CAPTIGNS 

mechanismll) . A third diagram, tihich contains no pion pole, is required by 

gauge invariance, as discussed in the text. L 
Feynman diagram for final state scattering correction. There are really two 

diagrams, since either n+ or n- can scatter on the proton.. The lines marked 

by X are put on-mass-shell in the calculation. 

Feynman diagram representing photoproduction and decay of P”. 

Final state scattering correction dominated by 3. resonance. 

Double scattering correction. There are really two diagrams, since either 

r+ or n- can. scatter first. The lines marked by X are put on-mass-shell in 

the calculation. 

Momentum transfer dependence of the Drell-Soding process for various angu- 

lar momentum states. The parameters chosen were Ey = 10 BeV,, 0; = o- = 30 mb, 

B+ = B- = 9 BeVe2 , A = 2 BeVB2. Even partial waves are not present because 

2l1 and n-p scattering were assumed identical, The dashed curve in 6(a), 6(b) 

shows the function exp(Bt) /(m2-t) 2,, which fits the p-wave cross section ap- 

proximately. 

Dependence of the Drell-Soding process in the forward direction on the x~ 

system, values of the form factor parameter A. These parameters were 

Ey = 20 BeVW2, U+ = o, = 30 mb, B+ = B,- = 9 BeVW2. 

Dependence of the Drell-Soding process in the forward direction on the mass 

of the ‘ITT system, for various values of the photon energy, (Other parameters 

as in Fig. 6.) 

Mass dependence of the forward Drell-Z&ding cross section for rp-K+K-p, 

assuming E,,= 10 BeV, d+ = c = 20 mb, A = 2 BeVm2. 
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10. - - - - - - curve: pure Breit-Wigner resonance. 

curve: B-W + constant interfering background amplitude. 

------- curve: like- 1 but background term multiplied by 

e@ cos 6, where the B-W is e ia sin 6. 
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