STUDY OF $\gamma \mathrm{p} \rightarrow \mathrm{p} \omega$ WITH LINEARLY POLARIZ ED PHOTONS AT 2.8 AND 4.7 GEV*
J. Ballam, G. B. Chadwick, R. Gearhart, Z.G.T. Guiragossian
M. Menke, J. J. Murray, P. Seyboth, A. Shapira, C. K. Sinclair, I. O. Skillicorn, G. Wolf, R. H. Milburn, H. H. Bingham, W. B. Fretter, K. C. Moffeit, W. J. Podolsky, M. S. Rabin, A. H. Rosenfeld, and R. Windmolders

ERRATUM

1. Vertical scales for the density matrix elements ρ_{00}^{0}, $\operatorname{Re} \rho_{10}^{0}$ and ρ_{1-1}^{0} are incorrectly labeled in Fig. 4. Change 0.4 to 0.2 and -0.4 to -0.2 . Other density matrix elements and P_{σ} are correctly labeled.
2. There are two typographical errors in Table IV: In IV-a $(2.8 \mathrm{GeV}$ Gottfried-Jackson system) for $0.06 \leq|t| \leq 0.15 \mathrm{GeV}^{2}$, the value of $\operatorname{Re} \rho_{10}^{\circ}$ is given as -0.14 ± 0.04; it should be $+0.14 \pm 0.04$. In IV-e (4.7 GeV helicity system) for $0.014 \leq|t| \leq 0.06$ the value of ρ_{1-1}^{1} should be -0.04 ± 0.12; it is shown correctly in Fig. 4 .
[^0]
STUDY OF $\gamma \mathrm{p} \rightarrow \mathrm{p} \omega$ WITH LINEARLY POLARIZED PHOTONS AT 2.8 AND 4.7 GEV*

J. Ballam, G. B. Chadwick, R. Gearhart, Z. G.T.Guiragossián

M. Menke, J. J. Murray, P. Seyboth, ** A. Shapira, ***
C. K. Sinclair, I. O. Skillicorn, \dagger and G. Wolf $\dagger \dagger$

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305
R. H. Milburn

Tufts University, Medford, Massachusetts 02155
H. H. Bingham, W. B. Fretter, K. C. Moffeit, W. J. Podolsky,
M. S. Rabin, A. H. Rosenfeld, and R. Windmolders $\dagger \dagger \dagger$

Department of Physics and Lawrence Radiation Laboratory
University of California, Berkeley, California 94720

Abstract

The reaction $\gamma \mathrm{p} \rightarrow \mathrm{p} \omega$ was studied in a hydrogen bubble chamber using a linearly polarized photon beam. The total cross section was found to be $5.8 \pm 0.5 \mu \mathrm{~b}$ at 2.8 GeV and $3.2 \pm 0.3 \mu \mathrm{~b}$ at 4.7 GeV . From the decay angular distributions these cross sections have been separated into contributions from natural and unnatural parity exchange σ^{N}, σ^{U} in the t channel. For $|\mathrm{t}|<1 \mathrm{GeV}^{2} \sigma^{\mathrm{N}}=2.5 \pm 0.4 \mu \mathrm{~b}, \sigma^{\mathrm{U}}=2.7 \pm 0.4 \mu \mathrm{~b}$ at 2.8 GeV and $\sigma^{\mathrm{N}}=1.8 \pm 0.3 \mu \mathrm{~b}, \sigma^{\mathrm{U}}=1.3 \pm 0.3 \mu \mathrm{~b}$ at 4.7 GeV . The contributions from unnatural parity exchange are consistent with the predictions of the onepion exchange model.

[^1]The energy dependence and the magnitude of the cross section for ω production by unpolarized photons mensured ${ }^{1,2}$ in the reaction

$$
\begin{equation*}
\gamma \mathrm{p} \rightarrow \mathrm{p} \pi^{+} \pi^{-} \pi^{\mathrm{o}} \tag{1}
\end{equation*}
$$

suggests that ω production proceeds partly via one-pion exchange (OPE) and partly via diffraction scattering, with the dominant contribution at low energies ($\sim 2-4 \mathrm{GeV}$) coming from OPE. Using polarized photons, the contributions from natural parity $\left(P=(-1)^{J}\right)$ and unnatural parity $\left(P=-(-1)^{J}\right)$ exchange in the $t-$ channel can be separated, and the above conjecture can be tested.

We have analyzed ω production in reaction (1) at 2.8 and 4.7 GeV exposing the 82-inch hydrogen bubble chamber at SLAC to the linearly polarized Compton backscattered laser beam. Table I summarizes the details of the beam and of the exposure.

In Table I we list the number of events which gave a OC "fit" to reaction (1) (the photon energy E_{γ} not being constrained) and which satisfied the following criteria: the mass assignments are consistent with ionization, and the event has no accepted fit to the hypothesis $\gamma \mathrm{p} \rightarrow \mathrm{p} \pi^{+} \pi^{-}$. Most of the multineutral events are removed by requiring the reconstructed photon energy to lie within the limits specified in Table I.

In Fig. 1 the $\pi^{+} \pi^{-} \pi^{\circ}$ mass distributions show a clear ω signal. In order to determine the cross section for ω production corrections were made for ω events which: (a) were excluded because they fit the 3 C hypothesis $\gamma \mathrm{p} \rightarrow \mathrm{p} \pi^{+} \pi^{-}\left(X^{2}<25\right)$; (b) have a reconstructed photon energy outside the specified energy interval or a $\pi^{+} \pi^{-} \pi^{\circ}$ mass outside the ω region ($0.67-0.90 \mathrm{GeV}$); (c) were lost because of short recoil protons; or (d) have a decay mode other than $\pi^{+} \pi^{-} \pi^{\circ}{ }^{7}$ Corrections (a) and (b) were determined using the track and event simulation program PHONY ${ }^{8}$ and amounted to 1.09 ± 0.02 at 2.8 GeV and 1.22 ± 0.06 at 4.7 GeV . For (c), because events with short recoil protons cannot be measured reliably, we disregarded all events with $|\mathrm{t}|<0.014 \mathrm{GeV}^{2}$ (t is
the square of the four-momentum transfer between incoming and outgoing proton). At 2.8 GeV the minimum value of $|\mathrm{t}|$ is $0.014 \mathrm{GeV}^{2}$ and no correction of type (c) was applied. At 4.7 GcV we estimate the loss to be $6 \pm 2 \%$ by extrapolating the t distribution according to Eq. (4) below. The scanning efficiency for events with $|t|>0.02 \mathrm{GeV}^{2}$ was found to be greater than 99%.

The corrected total ω production cross sections are given in Table II and Fig. 2 together with those of other experiments. 1.2.9-11 The differential cross sections $\mathrm{d} \sigma / \mathrm{dt}$ are shown in Fig. 3 and Table III. A fit of $\mathrm{d} \sigma / \mathrm{dt}$ for $0.02<|t|<0.4 \mathrm{GeV}^{2}$ to the form $C \exp (A t)$ leads to the values for A and C given in Table II.

For the analysis of the ω decay angular distributions we adopt the formalism of Ref. 12. Results will be presented in the helicity system, which was found to be the preferred system for the analysis of ρ^{0} photoproduction. ${ }^{5}$ In this frame the z axis is given by the ω direction of flight in the total c . m. system. The angles θ and ϕ are defined as the polar and azimuthal angles of the normal to the ω-decay plane in the ω-rest system. The photon polarization plane in the total c.m.s. makes an angle Φ with the production plane. ${ }^{13}$ The decay angular distribution of the ω in terms of its spin density matrix is ${ }^{12,14}$:

$$
\begin{align*}
& \mathrm{W}(\cos \theta, \phi, \phi)= \frac{3}{4 \pi}\left\{\frac{1}{2}\left(1-\rho_{00}^{\mathrm{o}}\right)+\frac{1}{2}\left(3 \rho_{00}^{0}-1\right) \cos ^{2} \theta-\sqrt{2} \operatorname{Re} \rho_{10}^{0} \sin 2 \theta \cos \phi\right. \\
&-\rho_{1-1}^{\mathrm{o}} \sin ^{2} \theta \cos 2 \phi \\
&-\mathrm{P}_{\gamma} \cos 2 \Phi\left[\rho_{11}^{1} \sin ^{2} \theta+\rho_{00}^{1} \cos ^{2} \theta-\sqrt{2} \operatorname{Re} \rho_{10}^{1} \sin 2 \theta \cos \phi-\rho_{1-1}^{1} \sin ^{2} \theta \cos 2 \phi\right] \\
&\left.-\mathrm{P}_{\gamma} \sin 2 \Phi\left[\sqrt{2} \operatorname{Im} \rho_{10}^{2} \sin 2 \theta \sin \phi+\operatorname{Im} \rho_{1-1}^{2} \sin ^{2} \theta \sin 2 \phi\right]\right\} \tag{2}
\end{align*}
$$

where P_{γ} is the degree of linear polarization. The nine independent measurable density matrix parameters, which were determined by a moment analysis, are
shown in Fig. 4 as a function of t. In ρ° photoproduction ${ }^{5}$ we foind for $|t|<0.4$ GeV^{2} that by choosing the helicity frame all $\rho_{\mathrm{ik}}^{\alpha}$ in Eq. (2) reduced to zoro exeept for two, $\left(\rho_{1-1}^{1}=-\operatorname{Im} \rho_{1-1}^{2}=0.5\right)$ indicating no helicity flip. In contrast, for ω photoproduction our values for ρ_{00}° show that there is considerable helicity flip.

The density matrix parameters are listed in Table IV. For comparison their values are also given in the Gottfried-Jackson and Adair systems. (For the distribution of these systems, see e.g., Ref. 5.)

From the density matrix parameters one can deduce the parity asymmetry, $\mathbf{P}_{\sigma}, \mathbf{P}_{\sigma}=\left(\sigma^{\mathrm{N}}-\sigma^{\mathrm{U}}\right) /\left(\sigma^{\mathrm{N}}+\sigma^{\mathrm{U}}\right)$, which mcasures the cross section contributions σ^{N}, σ^{U} from natural parity and unnatural parity exchange in the t-channel. In the high energy limit P_{σ} is given by ${ }^{12,15}$

$$
\begin{equation*}
\mathrm{P}_{\sigma}=2 \rho_{1-1}^{1}-\rho_{00}^{1} \tag{3}
\end{equation*}
$$

In Table II the values of $\mathrm{P}_{\sigma}, \sigma_{\omega}^{\mathrm{N}}$ and $\sigma_{\omega}^{\mathrm{U}}$ are given for ω production for $|t|<1.0 \mathrm{GeV}^{2}$ (see also Figs. 2 and 4). Natural and unnatural parity exchanges contribute in approximately equal amounts. The unnatural cross section, $\sigma_{\omega}^{\mathrm{U}}$, decreases from 2.8 to 4.7 GeV whereas $\sigma_{\omega}^{\mathrm{N}}$ does not change significantly. The natural differential cross section, $d \sigma^{N} / \mathrm{dt}$, for $0.02<|\mathrm{t}|<0.4 \mathrm{GeV}^{2}$ is shown in Fig. 3. A fit of $d \sigma / d t$ to the form $C_{N} \exp \left(A_{N} t\right)$ gave the values for A_{N} and C_{N} shown in Table II.

One can compare σ_{ω}^{N} to the corresponding quantity, σ_{ρ}^{N}, for ρ^{o} production in the reaction $\gamma \mathrm{p} \rightarrow \mathrm{p} \rho^{\circ}$. ${ }^{4,5}$ For $|t|<1 \mathrm{GeV}^{2}$, we found the ratio $\sigma_{\rho}^{N} / \sigma_{\omega}^{N}$ to be between 6 and 9 depending on the models used to determine the ρ° cross section. Using the combination of VDM, quark model and SU(6) this ratio has been predicted 16 to be 9. However, there could be a large positive contribution ($\sim 40 \%$) from A_{2} exchange to $\sigma_{\omega}{ }_{\omega}$ which would reduce the value of this ratio ${ }^{17}$ (the A_{2} exchange contribution to σ_{ρ}^{N} is expected to be small).

Next we compare the contributions from unnatural parity exchange with the predictions of one-pion exchange (OPE). A similar analysis has been given by Schilling and Storim ${ }^{18}$ for ω production by unpolarized photons. The OPE model
predicts a decrease of the ω cross section for $|t|<1 \mathrm{GeV}^{2}$ by a factor 2.5 between 2.8 and 4.7 GeV . This ratio is practically independent of whether form factor or absorption corrections are used. Experimentally we found a value of 2.2 ± 0.6 for this ratio in agreement with the OPE prediction. The magnitude of the OPE cross section is proportional to the radiative decay width of the $\omega, \Gamma_{\omega \pi}$; it also depends on the vertex or absorption corrections employed. From the values of $\sigma_{\omega}^{\mathrm{U}}$ at 2.8 and 4.7 GeV in the interval $|\mathrm{t}|<1 \mathrm{GeV}^{2}$ and using the parametrization of Benecke and Dürr ${ }^{19}$ we obtained $\Gamma_{\omega \pi \gamma}=0.98 \pm 0.12 \mathrm{MeV}$. This value is consistent with the value obtained from the ω width and branching ratio, ${ }^{7}$
$\Gamma_{\omega \pi \gamma}=1.19 \pm 0.24 \mathrm{MeV}$. On the other hand the absorption-corrected OPE model 18 with the absorption coefficient $\mathrm{C}=0.9$ led to $\Gamma_{\omega \pi \gamma}=0.58 \pm 0.07 \mathrm{MeV}$ for our data.

Assuming that $\sigma_{\omega}^{\mathrm{U}}$ is accounted for by OPE we fitted the differential cross section for $0.02<|t|<0.4 \mathrm{GeV}^{2}$ to the form

$$
\begin{equation*}
\mathrm{D} \exp (\mathrm{Bt})+\mathrm{d} \sigma^{\mathrm{OPE}} / \mathrm{dt} \tag{4}
\end{equation*}
$$

to obtain more information on the t-dependence of σ_{ω}^{N}. The OPE cross section, was calculated using the Benecke-Dürr parameterization. The fitted variables were $\Gamma_{\omega \pi \gamma}$, D and B and were assumed to be the same at both energies. The result of the fit was $\mathrm{D}=12.1 \pm 2.1 \mu \mathrm{~b} / \mathrm{GeV}^{2}, \mathrm{~B}=5.6 \pm 1.2 \mathrm{GeV}^{-2}$ and $\Gamma_{\omega \pi \gamma}=0.98 \pm 0.10 \mathrm{MeV}$. The value of B is consistent with the slope for ρ^{0} production ${ }^{4}$ in the reaction $\gamma \mathrm{p} \rightarrow \mathrm{p} \rho^{\circ}$.

Finally, we calculate the predictions for the ω density matrix elements assuming that the natural parity exchange contributions conserve helicity in the total c.m. system as in the reaction ${ }^{5} \gamma \mathrm{p} \rightarrow \mathrm{p} \rho^{\circ}$ and that the contributions from unnatural parity exchange are due to OPE. As a function of t the ω density matrix is then
given by

$$
\begin{equation*}
\rho_{i k}=\frac{\mathrm{d} \sigma^{\mathrm{N}} / \mathrm{dt} \rho_{i k}^{(\mathrm{N})}+\mathrm{d} \sigma^{\mathrm{OPE}} / \mathrm{dt} \rho_{\mathrm{ik}}^{(\mathrm{OPE})}}{\mathrm{d} \sigma^{\mathrm{N}} / \mathrm{dt}+\mathrm{d} \sigma^{\mathrm{OPE}} / \mathrm{dt}} \tag{5}
\end{equation*}
$$

In the helicity system $\rho_{1-1}^{1(N)}=-\operatorname{Im} \rho_{1-1}^{2(N)}=1 / 2$, and all other density matrix parameters in Eq. (2) are zero; for $\rho(\mathrm{OPE})$ we use the predictions of elementary OPE, which in the Gottfried-Jackson system ${ }^{12}$ are $\rho_{1-1}^{1(O P E)}=-\operatorname{Im} \rho_{1-1}^{2(O P E)}=-1 / 2$, and all other density matrix parameters in Eq. (2) equal to zero. The absorption corrections for $\rho_{i k}^{(O P E)}$ were neglected. For $d \sigma^{N} / d t$ and $d \sigma^{O P E} / d t$ we used the results of the fit to Eq. (4). The curves in Fig. 4 show the values of the ρ_{ik} predicted by Eq. (5).

Conclusion:

The ω production cross section decreases from $5.8 \pm 0.5 \mu \mathrm{~b}$ at 2.8 GeV to $3.2 \pm 0.3 \mu \mathrm{~b}$ at 4.7 GeV . Both natural and unnatural parity exchanges contribute to ω production. The energy dependence and the magnitude of the unnatural parity exchange cross section agree with the predictions for one-pion exchange. The natural parity exchange cross sections do not change significantly from 2.8 to 4.7 GeV .

Acknowledgements:

We gratefully acknowledge the help of the SLAC accelerator operation group and of R. Watt and the $82^{\prime \prime}$ bubble chamber crew. We wish to thank Mrs. Tartar and A. Wang and the scanners at SLAC and Berkeley for their conscientious work.

References:

1. Aachen-Berlin-Bonn-Hamburg-Heidelberg-München Collaboration, Phys.

Rev. 175, 1669 (1968).
2. Cambridge Bubble Chamber Group, Phys. Rev. 155, 1468 (1967).
3. SLAC-Berkeley-Tufts Collaboration, Phys. Rev. Letters 23, 498 (1968); (I) ibid. 23, 817 (1969).
4. SLAC-Berkeley-Tufts Collaboration, Report No. SLAC-PUB-727, Stanford Linear Accelerator Center (1970), submitted to Phys. Rev. Letters.
5. SLAC-Berkeley-Tufts Collaboration, Report No. SLAC-PUB-728, Stanford Linear Accelerator Center (1970), submitted to Phys. Rev. Letters.
6. J. J. Murray and P. Klein, Report No. SLAC-TN-67-19, Stanford Linear Accelerator Center (1967); C. K. Sinclair, J. J. Murray, P. Klein, and M. Rabin, IEEE Trans. on Nucl. Sci. 16, 1065 (1969).
7. Particle Data Group, Rev. Mod. Phys. 43, 87 (1970). A value of 0.87 was used for the branching ratio $\Gamma\left(\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}\right) / \Gamma(\omega \rightarrow$ all $)$.
8. E. Burns, D. Drijard, PHONY, Trilling-Goldhaber Group Technical Note 143, Lawrence Radiation Laboratory, Berkeley (1968), unpublished.
9. M. Davier et al., Phys. Letters 28B, 619 (1969).
10. Y. Eisenberg et al., Phys. Rev. Letters 22, 669 (1969).
11. J. Ballam et al., Phys. Letters 30B, 421 (1969).
12. K. Schilling, P. Seyboth, and G. Wolf, Nucl. Phys. B15, 397 (1970).
13. The y axis is the normal to the production plane, defined by the cross product $\hat{k} \times \hat{\omega}$ of the directions of the photon and the ω meson. The angle Φ between the electric vector of the photon, ϵ, and the production plane in the total c.m. system is defined by $\cos \phi=\hat{\epsilon} \cdot(\hat{y} \times \hat{k}), \sin \Phi=\hat{y} \cdot \hat{\epsilon}$. The decay angles θ, ϕ are the polar and azimuthal angles of the normal $\mathrm{n}=\pi^{+} \times \pi^{-}$to the ω decay plane in the ω rest system: $\cos \theta=\hat{n} \cdot \hat{z} \quad \cos \phi=\hat{y} \cdot(\hat{z} \times \hat{n}) /|\hat{z} \times \hat{n}| \quad \sin \phi=-\hat{x} \cdot(\hat{z} \times \hat{n}) /|\hat{z} \times \hat{n}|$ The x axis is given by $\hat{x}=\hat{y} \times \hat{z}$.
14. R. L. Thews, Phys. Rev. 175, 1749 (1968).
15. The derivation of Eq. (3) in addition to the hiph energy approximation involves in the case of Regge exchange processes an assmiption on the relative size of the trajectories $\alpha^{\mathrm{N}}, \alpha^{\mathrm{U}}$ of the natural and unnatural parity cxchanges (cf. J. D. Jackson and G. E. Hite, Phys. Rev. 169, 1248 (1968)).
16. F. Bucella and M. Collocei, Phys. Letters 24B, 61 (1907); H. Joos, Phys. Letters 24B, 103 (1967). Modifications due to symmetry breaking lead to ratios between 9:0.65 and 9:1. 2 (see R. J. Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266 (1967); and T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19, 470 (1967)).
17. H. Harari, Proceedings of the 4th International Symposium on Electron and Photon Interactions at High Energies, Liverpool, England (1969), (Ed. by D. W. Braben, p. 107 .
18. K. Schilling and F. Storim, Nucl. Phys. B7, 559 (1968).
19. J. Benecke and H. P. Dürr, Nuovo Cimento 56, 269 (1969); G. Wolf, Phys. Rev. 182, 1538 (1969). A value of $2.31 \mathrm{GeV}^{-1}$ was used for the R parameter describing the $\omega \pi \gamma$ vertex, i.e., the same value obtained for the R parameter of the $\rho \pi \pi$ vertex.

TABLE I: Beam parameters and exposure statistics

Avg. beam energy, Ery (GeV)	$\begin{gathered} \text { FWHM } \\ (\mathrm{GeV}) \end{gathered}$	Avg. Linear Polarization P_{γ}	No. of Pictures	Events $/ \mu \mathrm{b}$	$\begin{aligned} & \text { Events } \\ & \text { fitting } \\ & \gamma \mathrm{p} \rightarrow \mathrm{p} \pi \pi^{\circ}-\pi^{o} \end{aligned}$	Eylimits accepted (GeV)	$\begin{gathered} \text { Fits to } \\ \gamma \mathrm{p} \rightarrow \mathrm{p} \pi^{-} \mathrm{o}^{\mathrm{o}} \\ \text { within } \mathrm{E}_{\gamma} \\ \operatorname{limits} \end{gathered}$	No. of ω events
2.8	0.15	94\%	292,000	90 ± 4	3950	2.4-3.3	2687	411 ± 31
4.7	0.3	92\%	454,000	149 ± 6	7660	4.1-5.3	3083	315 ± 24

TABLE II: Parameters of the reaction $\gamma \mathrm{p} \rightarrow \mathrm{p} \omega$. Cross sections, I_{σ}, and production angular dependence for $0.02<|t|<0.4 \mathrm{GeV}^{2}$ assuming $\mathrm{d} \sigma / \mathrm{dt}=\mathrm{C} \exp (\mathrm{At})$ for all events, and for the contributions from natural parity exchange in the t-channel. Cross section errors include statistical, flux, background and loss correction uncertainties.

	$\mathrm{E}_{\gamma}=2.8 \mathrm{GeV}$	$\mathrm{E}_{\gamma}=4.7 \mathrm{GeV}$
$\sigma_{\text {total }}$	$5.8 \pm 0.5 \mu \mathrm{~b}$	$3.2 \pm 0.3 \mu \mathrm{~b}$
C	$34 \pm 4 \mu \mathrm{~b} / \mathrm{GeV}^{2}$	$25 \pm 3 \mu \mathrm{~b} / \mathrm{GeV}^{2}$
A	$6.2 \pm 0.7 \mathrm{GeV}^{-2}$	$8.0 \pm 0.8 \mathrm{GeV}^{-2}$
$\mathrm{P}_{\sigma}\left(\|\mathrm{t}\|<1 \mathrm{GeV}^{2}\right)$	-0.04 ± 0.13	0.19 ± 0.14
$\sigma^{\mathrm{N}}\left(\|\mathrm{t}\|<1 \mathrm{GeV}^{2}\right)$	$2.50 \pm 0.37 \mu \mathrm{~b}$	$1.84 \pm 0.28 \mu \mathrm{~b}$
$\sigma^{\mathrm{U}}\left(\|\mathrm{t}\|<1 \mathrm{GeV}^{2}\right)$	$2.70 \pm 0.39 \mu \mathrm{~b}$	$1.25 \pm 0.27 \mu \mathrm{~b}$
C_{N}	$13.1 \pm 4.1 \mu \mathrm{~b} / \mathrm{GeV}^{2}$	$15.2 \pm 3.8 \mu \mathrm{~b} / \mathrm{GeV}^{2}$
$\mathrm{~A}_{\mathrm{N}}$	$5.5 \pm 1.6 \mathrm{GeV}^{-2}$	$7.5 \pm 1.5 \mathrm{GeV}^{-2}$.

TABLE III: Differential cross sections $\mathrm{d} \sigma / \mathrm{dt}\left(\mu \mathrm{b} / \mathrm{GeV}^{2}\right)$ for ω production. The errors given are only statistical.

$\|t\|\left(\mathrm{GeV}^{2}\right)$	$\mathrm{E}_{\gamma}=2.8 \mathrm{GeV}$	$\mathrm{E}_{\gamma}=4.7 \mathrm{GeV}$
$0.014-0.06$	27.3 ± 3.1	20.1 ± 2.1
$0.06-0.10$	22.5 ± 3.1	11.7 ± 1.7
$0.10-0.15$	16.6 ± 2.3	9.0 ± 1.3
$0.15-0.20$	8.7 ± 1.8	5.9 ± 1.1
$0.20-0.30$	7.3 ± 1.1	2.9 ± 0.6
$0.30-0.40$	4.1 ± 0.8	2.2 ± 0.5
$0.40-0.50$	2.0 ± 0.6	1.1 ± 0.4
$0.5-1.0$	0.9 ± 0.2	0.27 ± 0.09
$1.0-2.0$	0.28 ± 0.08	0
$2.0-\|t\| \max$	$0.15+0.15$	
$2.0-5.5$		0.08
$5.5-\|t\| \max$		0.05 ± 0.02

TABLE IV: ω density matrix elements for the reaction $\gamma p \rightarrow p \omega$ 。
a) $\mathrm{E}_{\gamma}=2.8 \mathrm{GeV}$, Gottfried-Jackson system.

	$0.014-0.06$	$0.06-0.15$	$0.15-0.4$	$0.4-1.0$
ρ_{00}^{0}	0.15 ± 0.07	0.24 ± 0.06	0.36 ± 0.07	0.36 ± 0.12
$\operatorname{Re} \rho_{10}^{0}$	0.06 ± 0.05	-0.14 ± 0.04	0.04 ± 0.04	-0.25 ± 0.08
ρ_{1-1}^{0}	-0.01 ± 0.08	-0.04 ± 0.06	0.15 ± 0.06	-0.16 ± 0.10
ρ_{00}^{1}	0.10 ± 0.12	-0.03 ± 0.10	-0.05 ± 0.2	-0.41 ± 0.20
ρ_{11}^{1}	0.09 ± 0.08	0.02 ± 0.07	0.07 ± 0.07	0.12 ± 0.13
$\operatorname{Re} \rho_{10}^{1}$	-0.10 ± 0.07	0.03 ± 0.06	0.03 ± 0.06	0.23 ± 0.14
ρ_{1-1}^{1}	-0.03 ± 0.12	-0.10 ± 0.10	-0.07 ± 0.09	0.19 ± 0.16
$\operatorname{Im} \rho_{10}^{2}$	0.01 ± 0.08	0.13 ± 0.06	0.19 ± 0.07	0.03 ± 0.09
$\operatorname{Im} \rho_{1-1}^{2}$	-0.05 ± 0.13	0.09 ± 0.09	0.05 ± 0.10	0.13 ± 0.14

b) $\mathrm{E}_{\gamma}=2.8 \mathrm{GeV}$, helicity system.

ρ_{00}^{0}	0.15 ± 0.07	0.10 ± 0.06	0.17 ± 0.06	0.38 ± 0.11
$\operatorname{Re} \rho_{10}^{0}$	-0.02 ± 0.05	-0.04 ± 0.04	0.03 ± 0.05	0.25 ± 0.08
ρ_{1-1}^{0}	-0.01 ± 0.08	-0.11 ± 0.07	0.05 ± 0.07	-0.15 ± 0.11
ρ_{00}^{1}	0.21 ± 0.13	0.01 ± 0.12	0.08 ± 0.11	0.03 ± 0.20
ρ_{11}^{1}	0.02 ± 0.09	0.00 ± 0.08	0.01 ± 0.09	-0.10 ± 0.13
$\operatorname{Re} \rho_{10}^{1}$	-0.06 ± 0.08	-0.06 ± 0.06	-0.06 ± 0.06	-0.21 ± 0.13
ρ_{1-1}^{1}	0.03 ± 0.12	-0.08 ± 0.10	-0.01 ± 0.10	0.41 ± 0.17
$\operatorname{Im} \rho_{10}^{2}$	-0.01 ± 0.08	0.13 ± 0.05	0.10 ± 0.06	0.09 ± 0.10
$\operatorname{Im} \rho_{1-1}^{2}$	-0.04 ± 0.13	-0.05 ± 0.10	-0.25 ± 0.09	-0.04 ± 0.13

Table IV (cont ${ }^{\prime} \mathrm{d}_{\text {。 }}$)
c) $\mathrm{E}_{\gamma}=2.8 \mathrm{GeV}$, Adair system.

	$0.014-0.06$	$0.06-0.15$	$0.15-0.4$	$0.4-1.0$
ρ_{00}^{0}	0.14 ± 0.07	0.11 ± 0.06	0.24 ± 0.07	0.77 ± 0.14
$\operatorname{Re} \rho_{10}^{0}$	0.01 ± 0.05	0.05 ± 0.04	0.07 ± 0.04	0.01 ± 0.08
ρ_{1-1}^{0}	-0.01 ± 0.08	-0.10 ± 0.07	0.08 ± 0.07	0.05 ± 0.09
ρ_{00}^{1}	0.17 ± 0.11	-0.03 ± 0.10	-0.01 ± 0.11	-0.53 ± 0.29
ρ_{11}^{1}	0.05 ± 0.08	0.01 ± 0.08	0.05 ± 0.08	0.18 ± 0.12
$\operatorname{Re} \rho_{10}^{1}$	-0.09 ± 0.08	-0.03 ± 0.06	-0.06 ± 0.06	-0.17 ± 0.11
ρ_{1-1}^{1}	0.01 ± 0.12	-0.10 ± 0.10	-0.05 ± 0.10	0.13 ± 0.16
$\operatorname{Im} \rho_{10}^{2}$	-0.01 ± 0.08	0.14 ± 0.06	0.17 ± 0.06	0.09 ± 0.11
$\operatorname{Im} \rho_{1-1}^{2}$	-0.05 ± 0.13	-0.00 ± 0.10	-0.14 ± 0.10	0.06 ± 0.12

d) $\mathrm{E}_{\gamma}=4.7 \mathrm{GeV}$, Gottfried-Jackson system.

ρ_{00}^{0}	0.14 ± 0.06	0.16 ± 0.07	0.46 ± 0.09	0.61 ± 0.15
$\operatorname{Re} \rho_{10}^{0}$	0.15 ± 0.04	0.09 ± 0.05	0.07 ± 0.05	-0.21 ± 0.11
ρ_{1-1}^{0}	0.12 ± 0.07	-0.08 ± 0.07	0.14 ± 0.07	-0.09 ± 0.10
ρ_{00}^{1}	-0.23 ± 0.10	-0.24 ± 0.10	-0.42 ± 0.15	0.16 ± 0.32
ρ_{11}^{1}	0.20 ± 0.09	0.11 ± 0.09	0.19 ± 0.08	-0.02 ± 0.15
$\operatorname{Re} \rho_{10}^{1}$	0.02 ± 0.07	-0.06 ± 0.08	0.00 ± 0.07	-0.16 ± 0.20
ρ_{1-1}^{1}	-0.09 ± 0.12	0.08 ± 0.12	-0.09 ± 0.11	-0.04 ± 0.20
$\operatorname{Im} \rho_{10}^{2}$	-0.04 ± 0.06	0.09 ± 0.06	0.13 ± 0.09	-0.22 ± 0.13
$\operatorname{Im} \rho_{1-1}^{2}$	-0.10 ± 0.10	-0.01 ± 0.11	-0.00 ± 0.12	-0.15 ± 0.18

Table IV (cont ${ }^{1} \mathrm{~d}_{0}$)
e) $\mathrm{E}_{\gamma}=4.7 \mathrm{GeV}$, helicity system.
$|t|\left(\mathrm{GeV}^{2}\right)$

	$0.014-0.06$	$0.06-0.15$	$0.15-0.4$	$0.4-1.0$
ρ_{00}^{0}	0.02 ± 0.06	0.18 ± 0.07	0.09 ± 0.07	0.34 ± 0.14
$\operatorname{Re} \rho_{10}^{0}$	0.05 ± 0.04	-0.10 ± 0.05	0.03 ± 0.05	0.24 ± 0.10
ρ_{1-1}^{0}	0.06 ± 0.07	-0.07 ± 0.07	-0.05 ± 0.08	$-0.22 \pm .11$
ρ_{00}^{1}	-0.12 ± 0.12	-0.05 ± 0.13	0.17 ± 0.13	$-0.16 \pm .29$
ρ_{11}^{1}	0.14 ± 0.10	0.01 ± 0.11	-0.11 ± 0.10	$0.14 \pm .18$
$\operatorname{Re} \rho_{10}^{1}$	-0.15 ± 0.06	-0.07 ± 0.07	-0.17 ± 0.07	$0.17 \pm .20$
ρ_{1-1}^{1}	-0.14 ± 0.10	0.18 ± 0.11	0.20 ± 0.11	$-0.20 \pm .18$
$\operatorname{Im} \rho_{10}^{2}$	-0.07 ± 0.06	0.07 ± 0.07	0.05 ± 0.08	$-0.11 \pm .14$
$\operatorname{Im} \rho_{1-1}^{2}$	-0.08 ± 0.10	-0.09 ± 0.10	-0.18 ± 0.13	$0.32 \pm .18$

f) $\mathrm{E}_{\gamma}=4.7 \mathrm{GeV}$, Adair system.

ρ_{00}^{0}	0.04 ± 0.06	0.13 ± 0.07	0.18 ± 0.08	0.66 ± 0.16
$\operatorname{Re} \rho_{10}^{0}$	0.08 ± 0.04	-0.05 ± 0.05	0.12 ± 0.05	0.19 ± 0.09
ρ_{1-1}^{0}	0.07 ± 0.07	-0.09 ± 0.07	-0.01 ± 0.08	-0.06 ± 0.11
ρ_{00}^{1}	-0.18 ± 0.09	-0.10 ± 0.10	-0.06 ± 0.12	0.25 ± 0.36
ρ_{11}^{1}	0.17 ± 0.09	0.04 ± 0.10	0.01 ± 0.09	-0.06 ± 0.15
$\operatorname{Re} \rho_{10}^{1}$	-0.11 ± 0.07	-0.09 ± 0.07	-0.25 ± 0.08	0.17 ± 0.17
ρ_{1-1}^{1}	-0.07 ± 0.12	0.16 ± 0.12	0.09 ± 0.11	0.00 ± 0.20
$\operatorname{Im} \rho_{10}^{2}$	-0.06 ± 0.06	0.08 ± 0.06	0.08 ± 0.08	-0.21 ± 0.15
$\operatorname{Im} \rho_{1-1}^{2}$	-0.09 ± 0.10	-0.08 ± 0.11	-0.14 ± 0.14	0.19 ± 0.16

FIGURE CAPTIONS

1. $\pi^{+} \pi^{-} \pi^{\circ}$ mass distributions for the reaction $\gamma \mathrm{p} \rightarrow \mathrm{p} \pi^{+} \pi^{-} \pi^{\ominus}$ at 2.8 and 4.7 GeV. There are 2687 and 3083 fits from 2678 and 2912 events at 2.8 and 4.7 GeV respectively.
2. Total cross sections for reaction $\gamma p \rightarrow p \omega$, from this experiment together with the values of Ref. $1,2,9-11$. Cross section contributions $\sigma^{N}, \sigma^{\mathrm{U}}$ from natural parity and unnatural parity exchanges in the t-channel for $|\mathrm{t}|<1 \mathrm{GeV}^{2}$.
3. Reaction $\gamma p \rightarrow p \omega$. Total differential cross sections and differential cross sections for contributions from natural parity exchange at 2.8 and 4.7 GeV .
4. Reaction $\gamma \mathrm{p} \rightarrow \mathrm{p} \omega$. The spin density matrix parameters in the helicity system and P_{σ} as a function of t at 2.8 and 4.7 GeV . The curves are calculated according to Eq. (5).

Fig. 1

Fig. 2

Fig. 3

$$
\gamma p \longrightarrow p \omega
$$

HELICITY FRAME

$\operatorname{Re} \rho_{10}^{1} 0_{-0.2}^{02}\left[\frac{1}{4}\right.$

$|t|\left(\mathrm{GeV}^{2}\right)$

Fig. 4

[^0]: Work supported in part by the U. S. Atomic Energy Commission and in part by the National Science Foundation.

[^1]: Work supported in part by the U.S. Atomic Energy Commission and in part by the National Science Foundation.
 ** On leave from Max-Planck Institut für Physik und Astrophysik, Munich, Germany. *** On leave from Weizmann Institute, Rehovoth, Israel.
 \dagger On leave from Brookhaven National Laboratory, Upton, New York 11973
 $\dagger \dagger$ On leave from DESY, Hamburg, Germany.
 $\dagger \dagger \dagger$ Visitor from Laboratoire Interuniversitaire des Hautes Energies, Brussels, Belgium.
 (A condensed version has been submitted to Phys. Rev. Letters.)

