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ABSTRACT ABSTRACT 

and algebraic equations of the type that commonly occur in the transient analysis 

of large networks or in continuous system simulation. The first part of the 

paper is a brief review of existing techniques of handling initial value problems 

for stiff ordinary differential equations written in the standard form y’ = f(y, t). 

This paper discusses a unified method for handling the mixed differential This paper discusses a unified method for handling the mixed differential 

and algebraic equations of the type that commonly occur in the transient analysis 

of large networks or in continuous system simulation. The first part of the 

paper is a brief review of existing techniques of handling initial value problems 

for stiff ordinary differential equations written in the standard form y’ = f(y, t). 

In the second part one of these techniques is applied to the problem F(y, y’, t) = 0. In the second part one of these techniques is applied to the problem F(y, y’, t) = 0. 

This may be either a differential or an algebraic equation as dF/ay* is non- This may be either a differential or an algebraic equation as dF/8y* is non- 

zero or zero. zero or zero. It will represent a m.ixed system when vectors z and x represent It will represent a m.ixed system when vectors z and x represent 

components of a system. components of a system. The method lends itself to the use of sparse matrix The method lends itself to the use of sparse matrix 

techniques when the problem is sparse. techniques when the problem is sparse. 



I. INTRODUCTION 

Many problems in transient network analysis and continuous system simu-, 

lation lead to systems of ordinary differential equations which require the solu- 

tion of a simultaneous set of algebraic equations each time that the derivatives 

are to be evaluated. The “text book” form of a svstem of ordinary differential 

equations is 

g =f@, t) (1) 

where w is a vector of dependent variables, f is a vector of functions of w and 

time t, of the same dimension as 2 andw’ is the time derivative of w. Most methods 

discussed in the literature require the equations to be expressed in this form. ,’ 
The “text book” extension to a simultaneous system of differential and algebraic 

equations (henceforth, D-A E’s) could be 

w’ =f&,_u, t) 

0 = gt&,.!& t) (2) 

where u is a vector of the same dimension as g (but not necessarily the same as 

WI’ 

A simple method for ,initial value problems such as Euler’s method has the 

form 

where h = tn - t n-l is the time increment. Since only ~~ I is known from the 

previous time step or the initial values, the algebraic equations 

must be solved for u -n-l before each time step. 
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The properties of the D-A E’s typically encountered are: 

Differential Equations 

Large 

Sparse 

Stiff 

Algebraic Equations 

Large 

Sparse 

Mildly Nonlinear 

By sparse we mean that only a few of the variables w and 2 appear in any one of 

the functionsf org. Stiff means that there are greatly differing time constants 

present, or in other words that the eigenvalues of aw’/aw with 2 = -w are widely 

spread over the negative half plane. They are mildly nonlinear in that many of the 

algebraic variables only appear linearly and that the nonlinearities cause the 

Jacobians of the system 8(&$/a&,:) to change by only a small amount for small 

changes in the dependent variable. In regions where the dependent variables are 

changing rapidly, it is typically necessary to use small integration time steps to 

follow the solution, so only small changes in the Jacobians occur over each time 

step. 

I A further complication that can occur in some problems is that the derivatives 

1’ occur implicitly in equations of the form F&,w’,~, t) = 0. (This complication 

does not occur in network analysis since techniques have been developed to generate 

equations in which the derivatives are explicit, although the fact that explicitness 

is no longer necessary does raise the question of whether the manipulation neces- 

sary to put them in this form is worth the effort. ) 



In order to portray the characteristics of the general problem, we represent 

it by the set of s equations 

0 = I.&p, t) + Pv (5) 

rather than the set (2). In Eq. (5) the s dependent variables w plus ,u have been 

replaced by the s variables 2 plus 1. .I represents the set of s2 variables that 

only appear linearly without derivatives. P is an s by s2 matrix of constants, 

while J is the remaining set of s1 = s - s2 variables. It is not always convenient 

to solve (5) for x1 to get form (2) for several reasons. Among these are: 

(i) The x1 may appear nonlinearly, and hence a numerical solution may’ 

require considerable computer time at each step, 

(ii) The solution may be ill-conditioned for y1 (indeed,, for stiff equations 

it frequently is), 

(iii) Writing the equations in form (2) may destroy the sparseness and hence 

increase solution time. 

Suppose that we can partition P by row interchanges into an s1 by s2 matrix 

P, and an s, by s, matrix P, which is nonsingular, and that the matching partition 
I Y Y P 

of H is l-I1 and I$2 where - 

1 
(This is possible if the system (5) has a unique solution.) We can then solve for 

v and write the reduced system as 

(6) 

0 = q&Y’, t) -1 - PIP2 Hz&~‘, t) = ,JQ& t) (7) 
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Equation (7) is a smaller system of D-A E’s for x. However Pi1 is a full matrix 

in general, so the system is no longer sparse. Since methods that are effective 

for stiff equations involve the use of the Jacobians of the system, we do not normally 

want to make this transformation unless SI is small. 

Our goal is to develop a method that will handle (5) directly, exploit the 

sparseness, and make use of the linearity of the variables v. 

II. STIFF DIFFERENTIAL EQUATIONS 

A natural desire is that the numerical method should be stable whenever the 

differential system is also stable. Apart from the trapezoidal rule analyzed by 

Dahlquist’ little is known about the application of numerical methods to other than 

the linear system 

w’ = A@ - b(t)) “b’(t) = AK +2(t) (8) 

where A is a constant square matrix andb(t) is a vector function of time. The 

stability of methods for (8) can be shown to be equivalent to studying the test 

equations 

w’ = hiW, i= 1,2,...,n (9) 

where the hi are the eigenvalues of the matrix A. Since the solution of (8) is 

given by 

x(t) = eAt&40) - kg) f&t) 

we are concerned about restricting the growth of spurious components in the 

numerical solution compared to the largest growth rate of either b(t) or any of 
h.t 

the e 1 . Such stability restrictions are dependent on the problem being solved 

and are hence not useful ones for picking methods suitable for large classes of 

problems. Dahlquist’ defined a method to be A-stable if the numerical approximation 
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wn it gave to Eq. (9) converged to 0 as n tended to infinity whenever Re(hi) < 0 

and the time increment h was fixed and strictly positive. He proved that the 
..J maximum order of an A-stable multistep method was 2, and that the A-stable 

method of order 2 with smallest error coefficient was the trapezoidal rule. For 

many problems, second order accuracy is not adequate, so we must relax the 

Dahlquist A-stability criteria if multistep methods are to be used. 

For the remainder of this section we will only discuss w1 = f(w, t). 

All comments are applicable to systems. The nature of the problem that arises 

and the way in which it can be solved is illustrated in Figs. 1 and 2. Figure 1 

shows the application of the Euler method wn = w n-l + h f(wn 1t tnpl) to the - 

equation 

w’ = h(w - F(t))+F’(t) (10) 

where h is a very negative constant and F(t) is a slowly varying function. Some 

of the members of the family of solutions are shown in Fig. 1. The Euler method 

projects the tangent at time tn l to time tn. Because h is so negative, small per- 

turbations from the solutions which tend rapidly to F(t) are amplified rapidly unless 

h is very small. In fact, the error amplification is a factor of (1 + M) at each 

step so that hh must be greater than -2. Figure 2 shows the backward Euler 

method which is given by 

W =w n n-l + h f(Y,’ $J (11) 

In this method the implicit Eq. (11) must be solved for wn at each step. It is 

equivalent to finding the member of the family of solutions for which the tangent 

at tn passes through (wn 1, tn 1 _ ). The error is amplified by l/(1 - M) at each 

step, and so it is stable when hh is in the negative half plane. Any method that 

is to be stable for arbitrarily negative h must be implicit, or equivalently, make 

explicit use of the Jacobian. Methods that are A-stable include the Implicit 

-6- 



Runge Kutta (Ehle) , 2 the methods due to Rosenbrock, 3 Calahan4 and Allen5 which 

are extensions of the Runge-Kutta methods that make direct use of the Jacobian, , 

and the methods of the form 

W =w n n-l + aIh(wk + wLml) + a2h2(w; - wCl) + . . . 
> (12) 

which are of order 2q. The application of these methods is a major computing task 

for large systems and is not generally practical. 

An alternative to requiring A-stability was proposed in Gear. 6 It was sug- 

gested that stability was not necessary for values of M close to the imaginary 

axis but not close to the origin. These correspond to oscillating components that 

will continue to be excited in nonlinear problems. It will therefore be necessary 

to reduce h such that successive values of tn occur at least about 10 times per 

cycle. Methods that were stable for all values of M to the left of Re(M) = -D 

where D was some positive constant, and accurate close to the origin as shown in 

Fig. 3 were said to be stiffly stable. The multistep methods of order k given by 

W n = alwn-l + . . . + akwn-k + q-p:, (13) 

were shown to be stiffly stable for k 5 6 in Ref. 6. The oi and PO are uniquely 

determined by the requirement that the order be k. 

Unfortunately Eq. (13) is an implicit equation for wn since w; = f( wn, tn). In 

the case that af/aw is large the conventional corrector iteration will not converge. 

However a Newton iteration can be used. If the first iterate is obtained from an 

explicit predictor formula, few iterations are needed. Furthermore, the first 

iterate can be made arbitrarily accurate by choosing h small enough. Since Newton’s 

method is locally convergent, we are guaranteed that we will get convergence for 
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In Ref. 7 conventional predictor corrector schemes are re-expressed in a 

matrix notation that will allow us to equate the methods for differential and alge- 

braic equations. We can develop a similar formulation when Newton’s method is 

used as follows: Let the predicted value of wn be sn, and suppose it is obtained 

from the formula 

I 
.iG - n = c!ilwn-l + . . . + ctkWnak +Fp:, 1 _ 

I Subtracting this from (13) we get 

where 

and 

Wn = Gn + PO h f(w,t tn) - (YIWnwl* * l + Ykwn& + 

C 

+$wl 

yi=(” i - ~i)/PO ’ I 

Let us use the symbol hE’n for YiWn 1 -t . . . + ykwn k + Slhw6 ,,: Thus we have 

r -I 

W n = Wzn + /3, 
1 
hf(w,, tn) - hE’ 

.n J 

and, trivially, 

hwh = hFn f 
[ 
h f(w,, tn) ; hWh 

Define the vector gn to be 
[ 
wn, hw:, wn 1, . . . , wn - 1 T k+l where T is the transpose 

operator, and gn to be Gn, h9$, w n-l ‘““wn-k+l - 1 ;r Then we can write 

con=i.I&+c b /’ (15) 
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where 

g= p,, 1, 0, . . . . 
[ 

0 T I. 

B= 

. 
81 - Pl z,...z i z k-l k 

y1 1 y2 ‘*” yk-1. Yk 

1 0 0 . ..o 0 

0 0 1 . ..o 0 

. . * 
\, 

0 -‘...l 0 . 

and b = hf(w,, tn) - hEh 
[ 1 is a scalar such-that (15) satisfies hf(wn, tn) - hw’ = 0. 

(Here hwh is the second component of U+ given by (15). ) We can subject (14) and 

(15) to nonsingnlar linear transformations. In particular, if we note that the com- 

ponents of gn represent a unique polynomial Wn(t) of degree k such that Wn(tnmi) = 

W ., 0 <, i < k, and W;(tn) = wh, we can find the transformation which gives the 

components of a = 
II 
w -n n, hwh, h2w’&‘2,. . . , hkw(nk)/‘k! 1 T representing the same 

polynomial. If this transformation is Q we have 

gn=QC&=QBQ 
-1 

an-1 = A an,1 

a =Qw -n -t-n 
=Qgn+Qcb=zn+Jb (16) 

where A = Q B Q-l * 1s shown to be the Pascal triangle matrix in Ref. 7, and the 

values of 11= Q c are given in Ref. 6 for stiff methods of various orders. 

We can determine b from 

0 = h f(w,, tn) - hwh 

= Fen, tn) (by definition) 

= F(Zin -+ a b, tn) 

-9- 
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If this is solved by .a Newton iteration starting from b 
(0) 

= 0, we get 

b(m+l) = b(m) - w(m)vdb [- 1 -’ F’btrn$ , 

where 

p(b) = F(ZX +a b, tn) 

(18) 

Writing 

we get 
-gn, (0) = A&l 

%t, (m+l) = %, (m) -4 [go q “ij Fen,(m)’ tn) (19) 

where ai is the ith component of a, numbering from 0. We now note that this 

technique is not dependent on,the differential equations being written in the explicit 

form (1). It can be applied directly to F(s, t) = K(w, w’, t) = 0 provided that approxi- 

mations to the Jacobians can be found. Errors in these approximations do not 

affect the error in the numerical’solution, they only effect the rate of convergence 

of (19). 

III. ALGEBRAIC EQUATIONS 

If Eqs. (2) are to be solved by the implicit algorithm (13)) we must solve the 

simultaneous algebraic system 

%I = alwnll -t . . . + akq,.k + h PO ftxn,zn, trill 

0 = gtq&y tnl 

for xn and zn at each step. Calahan’. and Hachtel g 1.) 10 do this by a simultaneous 

Newton iteration, The interesting and useful point to be brought out in this section 

is that it is not necessary to distinguish between the algebraic and differential 

variables, so that system (5) can be handled directly. 

10 - 



For the remainder of this section we discuss the single equation g(u, t) = 0. 

All comments apply to systems. If the values of u(t) are known at a number of 

previous time steps tnmi, 15. i I k + 1 we can approximate 7in = u(tn) by extrapoh- 

tion, that is by evaluating the unique k th degree polynomial that passes through 

these unei. Calling this approximation un we have 

We write 

ii 
n = “l”n-l ’ ’ ’ l + rlk+l unmk+l 

T 

&n= 
E 
un,un 1 . . ..un k+l Tand&= 72 ,..., unk+l T - ’ - 1 C n - 1 

- We then have 

where 

E ‘= 

1 

ii&= E En-1 

11 r72 -* * r)k ?k+l 

1 0 0 0 
0 1 0 0 

. . . . . . . . . 

0 0 1 0 

Let b be such that un, the solution of g(un, tn) = 0, satisfies 

un = Cn + b 

If we define 2 = [l, 0, . . . , o]~, we can write 

L!,=!!&+eb 

(20) 

(21) 

b is such that &n satisfies 

q.g tn) = ~tft$y tn) (by definition) 

=GGn+eb, tn)=O (22) 

We can represent the kth degree polynomial that was used to extrapolate from 

U n i to cn by the values of its derivatives at tn-l, that is by the components of 
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.En-l= n-l,hu;ml,. . .,hkuEl/x]T. When we apply the appropriate linear trans- 

formation S to obtainan 1 = S ~~-1 we have from (20) 

3. -n= Sgn= S E S-‘za+ 

and from (21) 
1 

-% = i& + S e .b 

The matrix S E S-l * is the Pascal triangle matrix A and the vector S 2 is identical 

to the vector1 (see Ref. 11) so these equations are identical to Eq. (16) derived 

for differential equations. Therefore, iteration (19) cau be used to solve Eqs. (22) 

and (23) for b if we identify G with F. (They are both functions of t and the first 

component of 2 only, namely un or wn respectively.) 

IV. MIXED SYSTEMS 

The equation Fe, t) = K(w, WI, t) = 0 is a differential equation if BK/@w’ f 0, 

otherwise it is an algebraic equation. Because the above techniques for differential 

and algebraic equations are identical, it is not necessary to distinguish in the cases. 

The fact that the Jacobian dK/dw’ = haF/dal appears in (19) causes the method 

to adjust appropriately. If the system (7) is to be solved, we handle it as follows. 

Let the ith components of 2 and x1 be carried along with higher order derivatives 

as a”, 1 I i 5s. We write the jth equation from (7) as 

Fj( $1 , t) = 0 

The prediction step is 

a1 = A a’ -n -n- 1 
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and the Newton corrector iteration (19) is 

We know that by choosing sufficiently small h, the predictor can be made arbitrarily 

accurate for both algebraic and differential variables, so, for small enough h, we 

will be within the region of convergence of Newton’s method. 

The linear system (24) must be solved for each correction iteration. If the 

Jacobians are sparse, appropriate techniques can be used (see Hachtel et al., 10 
-- ). 

If, as is common, they are slowly varying, they need not be re-evaluated at each 

iteration, although Calahan’ suggests that it is valuable to evaluate them immediately 

after each prediction step. 

It is possible to avoid the work of predicting the first approximation of the 

linear variables 1 in (5). Initial errors in v 
-n, t 0) 

do not affect the corrector itera- 

tion for the nonlinear algebraic or differential equations. This can be seen by 

considering the partition used to get (6) and (7). Iteration (24) will take the form 

3, %l % 
--%I- 

w- 
‘0 + 6’1’ h 

p I 
10 

p2Qo 1 = 
-pO 

39,~‘, t) + 351 

where Ax, = 1 
n, tm+l) - En, (3 

and Ax is similar. Premultiply this by 

-1 
plp2 

I 
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to get 

I’ 
The first rotis of this iteration are those that would arise if (7) were solved by 

the same technique, and are independent of 1. Therefore the errors inv do not 

affect the iteration, so only the current value x,i need be saved from step n. 

“Prediction” can consist of the step v -n, (0) = In-1 which requires no computation 

for the linear variables. 

V. PROGRAM ORGANIZATION 

In this section we give an outline of the organization of a subroutine which 
. 

generates the values of the vectors 2: from the values of&i. (This subroutine 

is available from the author, although it is currently “experimental, If that is, 

inadequately documented. It is an extension of the subroutine for stiff ordinary 

differential equations given in Ref. 8. ) 

The subroutine calls on a lower level user supplied subroutine which must 

evaluate the components of I3&,1’, t) -i- PI when values of x, x1, 1 and t are given. 

It chooses the order of the method and the step size automatically. Starting is 

accomplished by setting the order of the method to one so that the only components 

of a0 are y. which is given and hyb which is set to zero. The program flow is 

outlined in Fig. 4. The main inner loop is a correction loop which may be tra- 

, 

versed up to three times. If corrections are not small by then the Jacobian is 

re-evaluated. If this has already been tried, the step size is reduced by a factor 

of 4 to try and get into the region of convergence for Newton’s method. When 
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small corrections are obtained, the differences between the predictor and corrector 

are used as estimates of the single step truncation error. If this is larger than a 

user supplied parameter, the step is reduced by an amount dependent on the order, 

and the step is repeated. If the error is acceptable, the step sizes that could be 

used for this order, one order higher, and one order lower are estimated. The 

largest of these is chosen for the next step, and the appropriate order is selected. 

Details of this and many other minor problems that must be handled in a practical 

integration algorithm are similar to those in the package given in Ref. 8 for dif- 

ferential equations, and described in Ref. 12. 

VI. A NUMERICAL EXAMPLE 

The following example is “artificial” in that it is not derived from a network. 

Rather it consists of a set of stiff differential equations coupled to a set of dif- 

ferential and algebraic equations. These have been chosen because enough of the 

solution is known to permit checking of the answers, and because they illustrate 

the features of the method. 

A system of four differential equations has been proposed by Krogh (private 

communication) to test stiff equations. They are given by: 

4 
0 = y’ i - s + (r - yi)2 + c bij yj for i = 1 to 4 (26) 

j=l 

where 

r = (Y, + y2 + y3 + ~~112 

4 
s = C (r - ~~)~/2 

i=l 

- 15 - 



and bij is a symmetric matrix with 

b 11 = bzz = b33 = b44 = 447.50025 

b12 = -b34 = bzl = -b43 = -452.49975 

b13 = -b24 = b31 = -b42 = - 47.49975 

b14 = -b23 = b41 = -b32 = - 52.50025 

Their solution is given by yi = p - zi where 

p = (zl -!- z2 -t z3 -I- z*)/2 

and 

zi = Pi/(1 +!$i’) 

(This is the solution of zi = zf - pizi. ) The starting conditons are yi = -1, so that 

ci = -(l + pi). (The values of pi used are P, = 1000, p2 = 800, p, = -10, and 

p4 = 0.001. ) As t tends to infinity the eigenvalues of the system approach - 1 pi I. 

To this system we add the four equations 

0 = Y; + YlY;; + YiY6 

0 = 2y6 + y; - y1+ v1 
-l-emt=F6 

0 = v1 - v2 + YlY6 = F7 

0 = v1 + v2 + 5yly2 = F8 (27) 

with the initial conditions y5 = y6 = 1, v1 = -2, and v2 = -3. It is not immediately 

evident whether these represent differential equations for y5, y6, or both! In fact 

they were chosen so that the first of these equations can be integrated to give 

0 = Y5 + Y& = F5 (28) 

The system of 8 Eqs. (26) and (27) have been integrated by the technique described. 

The maximum error in yl to y4 and the residuals F5 to F8 are shown in Table I 
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at times t = .Ol and t = 1000, along with the number of steps, evaluations 

of equations, and evaluations of the Jacobian and subsequent matrix inversion. 

The single step error control parameter was varied from 10 
-4 tb lo-! The 

integration was started at t = 0. By t = . 01 the most rapidly changing component 

was down by a factor of about e -10 , by t = 1000, the system was approaching 

equilibrium. (The slowest component was causing changes in the fourth significant 

digit.) A conventional integration scheme would fail because of the stiffness of 

the differential equations. (Adam’s method takes from 3 to 10 million equation 

evaluations for this problem depending on the error control parameter.) 

I 

VII. SUMMARY 

Xf the mathematical model has a unique solution, the numerical method pre- 

sented will compute it, although for badly conditioned problems the step size may 

be small. Even if the algebraic equations permit more than one solution, the 

method will follow the one smoothly connected to the initial values as long as the 

multiple solutions remain distinct to within the error criteria. In some cases 

the method will extrapolate through a multiple root of the algebraic equations 

providing that the solution is sufficiently smooth, but usually, near a multiple 

root, the corrector iteration will fail to converge although the step size will have 

been reduced to the minimum allowed. (This is a user parameter to the program.) , 

A current problem, common to other methods, is that the initial values of 

the variables x!- and v must be provided. This means that a partial solution of 

the algebraic equations is necessary initially. Currently an investigation of 

techniques for solving algebraic equations by means of differential equations is 

underway. It is expected that this will make it possible to use the same program 

to generate those initial conditions not supplied by the user. 
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The method is similar to that used in Refs. 9 and 10, in fact the method for 

differential equations is identical. However this method has the advantage that 

the same technique is applied to both algebraic and differential variables, making 

it unnecessary to distinguish between them. This has important consequences 

for continuous system simulation, and can have consequences for network analysis 

since it will no longer be necessary to manipulate the equations into a “text book” 

form. 

- 18 - 
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