
THE SIMULTANEOUS NUMERICAL SOLUTION OF

DIFFERENTIAL - ALGEBRAIC EQUATIONS*

C. W. Gear**

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

and

Computer Science Department
Stanford University, Stanford, California 94305

(To appear in IEEE Trans. on Circuit Theory.)

*Supported in part by the U. S.
**

On leave from University of
Atomic Energy Commission

Illinois at Urbana, Illinois.

SLAC-PUB-723 (Revised)
August 1970
mw

ABSTRACT ABSTRACT

and algebraic equations of the type that commonly occur in the transient analysis

of large networks or in continuous system simulation. The first part of the

paper is a brief review of existing techniques of handling initial value problems

for stiff ordinary differential equations written in the standard form y’ = f(y, t).

This paper discusses a unified method for handling the mixed differential This paper discusses a unified method for handling the mixed differential

and algebraic equations of the type that commonly occur in the transient analysis

of large networks or in continuous system simulation. The first part of the

paper is a brief review of existing techniques of handling initial value problems

for stiff ordinary differential equations written in the standard form y’ = f(y, t).

In the second part one of these techniques is applied to the problem F(y, y’, t) = 0. In the second part one of these techniques is applied to the problem F(y, y’, t) = 0.

This may be either a differential or an algebraic equation as dF/ay* is non- This may be either a differential or an algebraic equation as dF/8y* is non-

zero or zero. zero or zero. It will represent a m.ixed system when vectors z and x represent It will represent a m.ixed system when vectors z and x represent

components of a system. components of a system. The method lends itself to the use of sparse matrix The method lends itself to the use of sparse matrix

techniques when the problem is sparse. techniques when the problem is sparse.

I. INTRODUCTION

Many problems in transient network analysis and continuous system simu-,

lation lead to systems of ordinary differential equations which require the solu-

tion of a simultaneous set of algebraic equations each time that the derivatives

are to be evaluated. The “text book” form of a svstem of ordinary differential

equations is

g =f@, t) (1)

where w is a vector of dependent variables, f is a vector of functions of w and

time t, of the same dimension as 2 andw’ is the time derivative of w. Most methods

discussed in the literature require the equations to be expressed in this form. ,’
The “text book” extension to a simultaneous system of differential and algebraic

equations (henceforth, D-A E’s) could be

w’ =f&,_u, t)

0 = gt&,.!& t) (2)

where u is a vector of the same dimension as g (but not necessarily the same as

WI’

A simple method for ,initial value problems such as Euler’s method has the

form

where h = tn - t n-l is the time increment. Since only ~~ I is known from the

previous time step or the initial values, the algebraic equations

must be solved for u -n-l before each time step.

-2-

(4)

The properties of the D-A E’s typically encountered are:

Differential Equations

Large

Sparse

Stiff

Algebraic Equations

Large

Sparse

Mildly Nonlinear

By sparse we mean that only a few of the variables w and 2 appear in any one of

the functionsf org. Stiff means that there are greatly differing time constants

present, or in other words that the eigenvalues of aw’/aw with 2 = -w are widely

spread over the negative half plane. They are mildly nonlinear in that many of the

algebraic variables only appear linearly and that the nonlinearities cause the

Jacobians of the system 8(&$/a&,:) to change by only a small amount for small

changes in the dependent variable. In regions where the dependent variables are

changing rapidly, it is typically necessary to use small integration time steps to

follow the solution, so only small changes in the Jacobians occur over each time

step.

I A further complication that can occur in some problems is that the derivatives

1’ occur implicitly in equations of the form F&,w’,~, t) = 0. (This complication

does not occur in network analysis since techniques have been developed to generate

equations in which the derivatives are explicit, although the fact that explicitness

is no longer necessary does raise the question of whether the manipulation neces-

sary to put them in this form is worth the effort.)

In order to portray the characteristics of the general problem, we represent

it by the set of s equations

0 = I.&p, t) + Pv (5)

rather than the set (2). In Eq. (5) the s dependent variables w plus ,u have been

replaced by the s variables 2 plus 1. .I represents the set of s2 variables that

only appear linearly without derivatives. P is an s by s2 matrix of constants,

while J is the remaining set of s1 = s - s2 variables. It is not always convenient

to solve (5) for x1 to get form (2) for several reasons. Among these are:

(i) The x1 may appear nonlinearly, and hence a numerical solution may’

require considerable computer time at each step,

(ii) The solution may be ill-conditioned for y1 (indeed,, for stiff equations

it frequently is),

(iii) Writing the equations in form (2) may destroy the sparseness and hence

increase solution time.

Suppose that we can partition P by row interchanges into an s1 by s2 matrix

P, and an s, by s, matrix P, which is nonsingular, and that the matching partition
I Y Y P

of H is l-I1 and I$2 where -

1
(This is possible if the system (5) has a unique solution.) We can then solve for

v and write the reduced system as

(6)

0 = q&Y’, t) -1 - PIP2 Hz&~‘, t) = ,JQ& t) (7)

-4-

Equation (7) is a smaller system of D-A E’s for x. However Pi1 is a full matrix

in general, so the system is no longer sparse. Since methods that are effective

for stiff equations involve the use of the Jacobians of the system, we do not normally

want to make this transformation unless SI is small.

Our goal is to develop a method that will handle (5) directly, exploit the

sparseness, and make use of the linearity of the variables v.

II. STIFF DIFFERENTIAL EQUATIONS

A natural desire is that the numerical method should be stable whenever the

differential system is also stable. Apart from the trapezoidal rule analyzed by

Dahlquist’ little is known about the application of numerical methods to other than

the linear system

w’ = A@ - b(t)) “b’(t) = AK +2(t) (8)

where A is a constant square matrix andb(t) is a vector function of time. The

stability of methods for (8) can be shown to be equivalent to studying the test

equations

w’ = hiW, i= 1,2,...,n (9)

where the hi are the eigenvalues of the matrix A. Since the solution of (8) is

given by

x(t) = eAt&40) - kg) f&t)

we are concerned about restricting the growth of spurious components in the

numerical solution compared to the largest growth rate of either b(t) or any of
h.t

the e 1 . Such stability restrictions are dependent on the problem being solved

and are hence not useful ones for picking methods suitable for large classes of

problems. Dahlquist’ defined a method to be A-stable if the numerical approximation

-5-

I

wn it gave to Eq. (9) converged to 0 as n tended to infinity whenever Re(hi) < 0

and the time increment h was fixed and strictly positive. He proved that the
..J maximum order of an A-stable multistep method was 2, and that the A-stable

method of order 2 with smallest error coefficient was the trapezoidal rule. For

many problems, second order accuracy is not adequate, so we must relax the

Dahlquist A-stability criteria if multistep methods are to be used.

For the remainder of this section we will only discuss w1 = f(w, t).

All comments are applicable to systems. The nature of the problem that arises

and the way in which it can be solved is illustrated in Figs. 1 and 2. Figure 1

shows the application of the Euler method wn = w n-l + h f(wn 1t tnpl) to the -

equation

w’ = h(w - F(t))+F’(t) (10)

where h is a very negative constant and F(t) is a slowly varying function. Some

of the members of the family of solutions are shown in Fig. 1. The Euler method

projects the tangent at time tn l to time tn. Because h is so negative, small per-

turbations from the solutions which tend rapidly to F(t) are amplified rapidly unless

h is very small. In fact, the error amplification is a factor of (1 + M) at each

step so that hh must be greater than -2. Figure 2 shows the backward Euler

method which is given by

W =w n n-l + h f(Y,’ $J (11)

In this method the implicit Eq. (11) must be solved for wn at each step. It is

equivalent to finding the member of the family of solutions for which the tangent

at tn passes through (wn 1, tn 1 _). The error is amplified by l/(1 - M) at each

step, and so it is stable when hh is in the negative half plane. Any method that

is to be stable for arbitrarily negative h must be implicit, or equivalently, make

explicit use of the Jacobian. Methods that are A-stable include the Implicit

-6-

Runge Kutta (Ehle) , 2 the methods due to Rosenbrock, 3 Calahan4 and Allen5 which

are extensions of the Runge-Kutta methods that make direct use of the Jacobian, ,

and the methods of the form

W =w n n-l + aIh(wk + wLml) + a2h2(w; - wCl) + . . .
> (12)

which are of order 2q. The application of these methods is a major computing task

for large systems and is not generally practical.

An alternative to requiring A-stability was proposed in Gear. 6 It was sug-

gested that stability was not necessary for values of M close to the imaginary

axis but not close to the origin. These correspond to oscillating components that

will continue to be excited in nonlinear problems. It will therefore be necessary

to reduce h such that successive values of tn occur at least about 10 times per

cycle. Methods that were stable for all values of M to the left of Re(M) = -D

where D was some positive constant, and accurate close to the origin as shown in

Fig. 3 were said to be stiffly stable. The multistep methods of order k given by

W n = alwn-l + . . . + akwn-k + q-p:, (13)

were shown to be stiffly stable for k 5 6 in Ref. 6. The oi and PO are uniquely

determined by the requirement that the order be k.

Unfortunately Eq. (13) is an implicit equation for wn since w; = f(wn, tn). In

the case that af/aw is large the conventional corrector iteration will not converge.

However a Newton iteration can be used. If the first iterate is obtained from an

explicit predictor formula, few iterations are needed. Furthermore, the first

iterate can be made arbitrarily accurate by choosing h small enough. Since Newton’s

method is locally convergent, we are guaranteed that we will get convergence for

-7-

In Ref. 7 conventional predictor corrector schemes are re-expressed in a

matrix notation that will allow us to equate the methods for differential and alge-

braic equations. We can develop a similar formulation when Newton’s method is

used as follows: Let the predicted value of wn be sn, and suppose it is obtained

from the formula

I
.iG - n = c!ilwn-l + . . . + ctkWnak +Fp:, 1 _

I Subtracting this from (13) we get

where

and

Wn = Gn + PO h f(w,t tn) - (YIWnwl* * l + Ykwn& +

C

+$wl

yi=(” i - ~i)/PO ’ I

Let us use the symbol hE’n for YiWn 1 -t . . . + ykwn k + Slhw6 ,,: Thus we have

r -I

W n = Wzn + /3,
1
hf(w,, tn) - hE’

.n J

and, trivially,

hwh = hFn f
[
h f(w,, tn) ; hWh

Define the vector gn to be
[
wn, hw:, wn 1, . . . , wn - 1 T k+l where T is the transpose

operator, and gn to be Gn, h9$, w n-l ‘““wn-k+l - 1 ;r Then we can write

con=i.I&+c b /’ (15)

-8-

where

g= p,, 1, 0,
[

0 T I.

B=

.
81 - Pl z,...z i z k-l k

y1 1 y2 ‘*” yk-1. Yk

1 0 0 . ..o 0

0 0 1 . ..o 0

. . *
\,

0 -‘...l 0 .

and b = hf(w,, tn) - hEh
[1 is a scalar such-that (15) satisfies hf(wn, tn) - hw’ = 0.

(Here hwh is the second component of U+ given by (15).) We can subject (14) and

(15) to nonsingnlar linear transformations. In particular, if we note that the com-

ponents of gn represent a unique polynomial Wn(t) of degree k such that Wn(tnmi) =

W ., 0 <, i < k, and W;(tn) = wh, we can find the transformation which gives the

components of a =
II
w -n n, hwh, h2w’&‘2,. . . , hkw(nk)/‘k! 1 T representing the same

polynomial. If this transformation is Q we have

gn=QC&=QBQ
-1

an-1 = A an,1

a =Qw -n -t-n
=Qgn+Qcb=zn+Jb (16)

where A = Q B Q-l * 1s shown to be the Pascal triangle matrix in Ref. 7, and the

values of 11= Q c are given in Ref. 6 for stiff methods of various orders.

We can determine b from

0 = h f(w,, tn) - hwh

= Fen, tn) (by definition)

= F(Zin -+ a b, tn)

-9-

(17)

If this is solved by .a Newton iteration starting from b
(0)

= 0, we get

b(m+l) = b(m) - w(m)vdb [- 1 -’ F’btrn$,

where

p(b) = F(ZX +a b, tn)

(18)

Writing

we get
-gn, (0) = A&l

%t, (m+l) = %, (m) -4 [go q “ij Fen,(m)’ tn) (19)

where ai is the ith component of a, numbering from 0. We now note that this

technique is not dependent on,the differential equations being written in the explicit

form (1). It can be applied directly to F(s, t) = K(w, w’, t) = 0 provided that approxi-

mations to the Jacobians can be found. Errors in these approximations do not

affect the error in the numerical’solution, they only effect the rate of convergence

of (19).

III. ALGEBRAIC EQUATIONS

If Eqs. (2) are to be solved by the implicit algorithm (13)) we must solve the

simultaneous algebraic system

%I = alwnll -t . . . + akq,.k + h PO ftxn,zn, trill

0 = gtq&y tnl

for xn and zn at each step. Calahan’. and Hachtel g 1.) 10 do this by a simultaneous

Newton iteration, The interesting and useful point to be brought out in this section

is that it is not necessary to distinguish between the algebraic and differential

variables, so that system (5) can be handled directly.

10 -

For the remainder of this section we discuss the single equation g(u, t) = 0.

All comments apply to systems. If the values of u(t) are known at a number of

previous time steps tnmi, 15. i I k + 1 we can approximate 7in = u(tn) by extrapoh-

tion, that is by evaluating the unique k th degree polynomial that passes through

these unei. Calling this approximation un we have

We write

ii
n = “l”n-l ’ ’ ’ l + rlk+l unmk+l

T

&n=
E
un,un 1un k+l Tand&= 72 ,..., unk+l T - ’ - 1 C n - 1

- We then have

where

E ‘=

1

ii&= E En-1

11 r72 -* * r)k ?k+l

1 0 0 0
0 1 0 0

.

0 0 1 0

Let b be such that un, the solution of g(un, tn) = 0, satisfies

un = Cn + b

If we define 2 = [l, 0, . . . , o]~, we can write

L!,=!!&+eb

(20)

(21)

b is such that &n satisfies

q.g tn) = ~tft$y tn) (by definition)

=GGn+eb, tn)=O (22)

We can represent the kth degree polynomial that was used to extrapolate from

U n i to cn by the values of its derivatives at tn-l, that is by the components of

- 11 -

.En-l= n-l,hu;ml,. . .,hkuEl/x]T. When we apply the appropriate linear trans-

formation S to obtainan 1 = S ~~-1 we have from (20)

3. -n= Sgn= S E S-‘za+

and from (21)
1

-% = i& + S e .b

The matrix S E S-l * is the Pascal triangle matrix A and the vector S 2 is identical

to the vector1 (see Ref. 11) so these equations are identical to Eq. (16) derived

for differential equations. Therefore, iteration (19) cau be used to solve Eqs. (22)

and (23) for b if we identify G with F. (They are both functions of t and the first

component of 2 only, namely un or wn respectively.)

IV. MIXED SYSTEMS

The equation Fe, t) = K(w, WI, t) = 0 is a differential equation if BK/@w’ f 0,

otherwise it is an algebraic equation. Because the above techniques for differential

and algebraic equations are identical, it is not necessary to distinguish in the cases.

The fact that the Jacobian dK/dw’ = haF/dal appears in (19) causes the method

to adjust appropriately. If the system (7) is to be solved, we handle it as follows.

Let the ith components of 2 and x1 be carried along with higher order derivatives

as a”, 1 I i 5s. We write the jth equation from (7) as

Fj($1 , t) = 0

The prediction step is

a1 = A a’ -n -n- 1

- 12 -

and the Newton corrector iteration (19) is

We know that by choosing sufficiently small h, the predictor can be made arbitrarily

accurate for both algebraic and differential variables, so, for small enough h, we

will be within the region of convergence of Newton’s method.

The linear system (24) must be solved for each correction iteration. If the

Jacobians are sparse, appropriate techniques can be used (see Hachtel et al., 10
--).

If, as is common, they are slowly varying, they need not be re-evaluated at each

iteration, although Calahan’ suggests that it is valuable to evaluate them immediately

after each prediction step.

It is possible to avoid the work of predicting the first approximation of the

linear variables 1 in (5). Initial errors in v
-n, t 0)

do not affect the corrector itera-

tion for the nonlinear algebraic or differential equations. This can be seen by

considering the partition used to get (6) and (7). Iteration (24) will take the form

3, %l %
--%I-

w-
‘0 + 6’1’ h

p I
10

p2Qo 1 =
-pO

39,~‘, t) + 351

where Ax, = 1
n, tm+l) - En, (3

and Ax is similar. Premultiply this by

-1
plp2

I

- 13 -

to get

I’
The first rotis of this iteration are those that would arise if (7) were solved by

the same technique, and are independent of 1. Therefore the errors inv do not

affect the iteration, so only the current value x,i need be saved from step n.

“Prediction” can consist of the step v -n, (0) = In-1 which requires no computation

for the linear variables.

V. PROGRAM ORGANIZATION

In this section we give an outline of the organization of a subroutine which
.

generates the values of the vectors 2: from the values of&i. (This subroutine

is available from the author, although it is currently “experimental, If that is,

inadequately documented. It is an extension of the subroutine for stiff ordinary

differential equations given in Ref. 8.)

The subroutine calls on a lower level user supplied subroutine which must

evaluate the components of I3&,1’, t) -i- PI when values of x, x1, 1 and t are given.

It chooses the order of the method and the step size automatically. Starting is

accomplished by setting the order of the method to one so that the only components

of a0 are y. which is given and hyb which is set to zero. The program flow is

outlined in Fig. 4. The main inner loop is a correction loop which may be tra-

,

versed up to three times. If corrections are not small by then the Jacobian is

re-evaluated. If this has already been tried, the step size is reduced by a factor

of 4 to try and get into the region of convergence for Newton’s method. When

- 14 -

small corrections are obtained, the differences between the predictor and corrector

are used as estimates of the single step truncation error. If this is larger than a

user supplied parameter, the step is reduced by an amount dependent on the order,

and the step is repeated. If the error is acceptable, the step sizes that could be

used for this order, one order higher, and one order lower are estimated. The

largest of these is chosen for the next step, and the appropriate order is selected.

Details of this and many other minor problems that must be handled in a practical

integration algorithm are similar to those in the package given in Ref. 8 for dif-

ferential equations, and described in Ref. 12.

VI. A NUMERICAL EXAMPLE

The following example is “artificial” in that it is not derived from a network.

Rather it consists of a set of stiff differential equations coupled to a set of dif-

ferential and algebraic equations. These have been chosen because enough of the

solution is known to permit checking of the answers, and because they illustrate

the features of the method.

A system of four differential equations has been proposed by Krogh (private

communication) to test stiff equations. They are given by:

4
0 = y’ i - s + (r - yi)2 + c bij yj for i = 1 to 4 (26)

j=l

where

r = (Y, + y2 + y3 + ~~112

4
s = C (r - ~~)~/2

i=l

- 15 -

and bij is a symmetric matrix with

b 11 = bzz = b33 = b44 = 447.50025

b12 = -b34 = bzl = -b43 = -452.49975

b13 = -b24 = b31 = -b42 = - 47.49975

b14 = -b23 = b41 = -b32 = - 52.50025

Their solution is given by yi = p - zi where

p = (zl -!- z2 -t z3 -I- z*)/2

and

zi = Pi/(1 +!$i’)

(This is the solution of zi = zf - pizi.) The starting conditons are yi = -1, so that

ci = -(l + pi). (The values of pi used are P, = 1000, p2 = 800, p, = -10, and

p4 = 0.001.) As t tends to infinity the eigenvalues of the system approach - 1 pi I.

To this system we add the four equations

0 = Y; + YlY;; + YiY6

0 = 2y6 + y; - y1+ v1
-l-emt=F6

0 = v1 - v2 + YlY6 = F7

0 = v1 + v2 + 5yly2 = F8 (27)

with the initial conditions y5 = y6 = 1, v1 = -2, and v2 = -3. It is not immediately

evident whether these represent differential equations for y5, y6, or both! In fact

they were chosen so that the first of these equations can be integrated to give

0 = Y5 + Y& = F5 (28)

The system of 8 Eqs. (26) and (27) have been integrated by the technique described.

The maximum error in yl to y4 and the residuals F5 to F8 are shown in Table I

- 16 -

at times t = .Ol and t = 1000, along with the number of steps, evaluations

of equations, and evaluations of the Jacobian and subsequent matrix inversion.

The single step error control parameter was varied from 10
-4 tb lo-! The

integration was started at t = 0. By t = . 01 the most rapidly changing component

was down by a factor of about e -10 , by t = 1000, the system was approaching

equilibrium. (The slowest component was causing changes in the fourth significant

digit.) A conventional integration scheme would fail because of the stiffness of

the differential equations. (Adam’s method takes from 3 to 10 million equation

evaluations for this problem depending on the error control parameter.)

I

VII. SUMMARY

Xf the mathematical model has a unique solution, the numerical method pre-

sented will compute it, although for badly conditioned problems the step size may

be small. Even if the algebraic equations permit more than one solution, the

method will follow the one smoothly connected to the initial values as long as the

multiple solutions remain distinct to within the error criteria. In some cases

the method will extrapolate through a multiple root of the algebraic equations

providing that the solution is sufficiently smooth, but usually, near a multiple

root, the corrector iteration will fail to converge although the step size will have

been reduced to the minimum allowed. (This is a user parameter to the program.) ,

A current problem, common to other methods, is that the initial values of

the variables x!- and v must be provided. This means that a partial solution of

the algebraic equations is necessary initially. Currently an investigation of

techniques for solving algebraic equations by means of differential equations is

underway. It is expected that this will make it possible to use the same program

to generate those initial conditions not supplied by the user.

- 17 -

The method is similar to that used in Refs. 9 and 10, in fact the method for

differential equations is identical. However this method has the advantage that

the same technique is applied to both algebraic and differential variables, making

it unnecessary to distinguish between them. This has important consequences

for continuous system simulation, and can have consequences for network analysis

since it will no longer be necessary to manipulate the equations into a “text book”

form.

- 18 -

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

REFERENCESANDFOOTNOTES

G. Dahlquist, B. I. T. 3, 27-43 (1967).

B. L. Ehle, B.I.T. S, 276-278 (1968).

H. H. Rosenbrock, Comp. J. 5, 329 (1963).

D. Calahan, *A stable accurate method of numerical integration for nonlinear

systems, ‘* IEEE Proceedings, p. 744 (1968).

R. H. Allen, llNumerically stable explicit integration techniques using a

linearized Runge-Kutta extension, ‘t Boeing Scientific Laboratories Document

dl-82-0929 (1969).

C. W. Gear, “The automatic integration of stiff ordinary differential equations, I1

Information Processing 68. Ed. Morrell, (North Holland Publishing Co. ,

Amsterdam, 1969); p. 187-193.

C. W. Gear, Math. Comp. 21, 146-156 (1967).

C. W. Gear, “An algorithm for the integration of ordinary differential equations, I’

(to appear in C. A. C. M., in the Algorithms section).

D. Calahan, “Numerical considerations in the transient analysis and optimal

design of nonlinear circuits, It Digest Record of Joint Conference on Mathematical

and Computer Aids to Design, ACM/SIAM/IEEE, (1969).

Hachtel, Brayton and Gustavson, “The sparse tableux approach to network

analysis and design, It this issue.

That the matrices Q B Q -1 and S E S -1 are both the Pascal triangle matrix

A follows from the fact that B and E represent the highest possible order (k)

extrapolation process possible in their respective representations, as does A.

They must, therefore, be equivalent.

For small E the differential equation EW’ = f(w, t) is stiff. The limit of this as

f tends to 0 is the algebraic equation 0 = f(w, t) . If we take the limit of the

- 19 -

numerical method (13) as E tends to 0 for this problem we find ourselves

solving hpof(wn, tn) = 0. Thus the limit of iteration (19) as E tends to 0 will

give a technique for solving algebraic equations. Its matrix will be A and

its vector 1. - The error amplification matrix for both problems (the relation

between the errors insn and errors inanel).will have all zero eigenvalues

since the error at tn is independent of earlier errors when the corrector is

iterated to convergence for an algebraic equation. In Ref. 7 it is shown that .

the eigenvalues uniquely determine the vector1 for this problem, hence1

and S e are identical.

12. C. W. Gear, “The automatic integration of ordinary differential equations, II

(to appear in C.A. C. M.)

- 20 -

TA
BL

E1

* Th
is

no

ta
tio

n
m

ea
ns

1.

0
X

lo
-4

.

Zr
ro

r
C

on
tro

l
M

ax
.

Er
ro

r
IF

51

IF
61

IF

71

IF
81

N

o.

St
ep

s
N

o.

Eq
ua

tio
n

r
N

o.

Ja
co

bi
ar

Pa

ra
m

et
er

in

yl

to
 y

4
Ev

al
ua

tio
ns

Ev

al
ua

tio
ns

t=
.0

1

l.O
-

4*

3.
8

-
5

1.
2

-
7

2.
2

-
9

5.
4-

10

3.

2
-

13

41

19
7

12

m
m

1.
0-

5
4.

8-
7

1.
8-

6
7.

5
-

10

4.
4

-
11

2.

5-
-

10

55

23
5

13

1.
0-

6
2.

7
-

7
3.

3
-

7
3.

4
-

11

7.
8

-
12

6.

7
-

15

70

27
0

13

1.
0-

7
6.

2
-

8
2.

7
-

7
7.

3-
13

0

2.
2

-
16

85

37

7
18

1.
0-

8
1.

7
-

9
2.

8-
8

2.
0-

12

5.

0-

13

2.
2

-
16

13

7
60

8
27

1

I
t=

10

00
.

1.
0-

4
1.

0-
5

3.
3

-
3

4.
9

-
10

4.

5
-

12

4.
2

-
11

16

8
93

7
54

1.
0-

5
1.

1-
5

4.
7

-
4

1.
6-

11

2.

1-

12

2.
0-

11

21

4
10

59

53

1.
0-

6
1.

1-
6

2.
0-

5
3.

8
-

13

1.
2

-
13

2.

1-

13

30
5

13
89

61

1.
0-

7
4.

7
-

7
1.

4-
6

3.
6-

15

0
3.

6
-

15

37
9

17
79

75

1.
0-

8
3.

8-
S

5.
3-

5
0

3.
6

-
15

7.

1-

15

53
0

I
28

94

13
8

ti
W

Y

1552A2

Fig. 2

Backward Euler solution of (lo),

W
-

ENTRY Is this first toll 1

t
Set EVAL to- I

I L 1
Compute D=
H(y,y,t) +Pv

No
lnvana of Jocobkm

i

Estimo’e Error by
Pmdictw Cwrector
Difference

l

YSS YSS

fl fl Choose Order Choose Order
ond Step Size ond Step Size
for Next Step for Next Step

*-In proctice we neithw invert the Jocobion
nor multiply by the inverse. Goussion
&minotion is used, with sparse techniques
if oppropriote.

Fig. 4

Program organization.

