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ABSTRACT 

We have investigated the up-down asymmetry in inelastic electron 

scattering from polarized protons. It is shown that the contributions 

from (possible) T violation and a3 effects can be separated experimentally. 

We have demonstrated that the contribution of bremsstrahlung emission 

to the asymmetry is negligible. An expression for the two-photon exchange 

contribution is obtained, assuming a proton intermediate state and*N*(1238) 

final state. The expression has been evaluated nume.rically and found to 

be one order of magnitude smaller than the observed asymmetry. A 

general formalism for calculating the up-down asymmetry is presented 

and its physical significance discussed. The relation between T violation ’ 

and the measurement of the asymmetry given by Christ and Lee is sharpened 

and the experimental results of Berkeley-SLAC collaboration discussed. 
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I. INTRODUCTION 

Inelastic electron scattering from a polarized proton was suggested by Christ 

and Lee’ to test time reversal invariance in electromagnetic interactions involving 

hadrons. The experiment was carried out at CEA by Chen et al., 
2 and more -- 

recently at SLAC by Berkeley-SLAC collaboration3 and the results of the 
/ 

latter show some up-down asymmetry-as shown in Fig. 1. Christ and Lee’ showed 

that in the a2 cross section the up-down asymmetry should be zero if parity con- 

servation and time reversal invariance hold. It is obvious that if the up-down 

asymmetry is due to a violation of time reversal invariance, the asymmetry 

should have the same sign whether the incident particle is an electron or a posi- 

tron, because in the lowest order Born approximation the cross section is pro- 

portional to the square of the charge of the electron. Qn the other hand, the a3 

cross section has two parts4: one which changes sign and one which does not, 

when e- is replaced by eS. In Chapter II we show that only the part which changes 

sign contributes to the up-down asymmetry if T and P invariances hold., Therefore 

if T invariance holds the experimental points for e+p and e-p in Fig. 1 should 

be symmetric (up to cy3 in cross section) with respect to the line representing 

no up-down asymmetry. This simple consideration shows that up to a3 in cross 

section the effects of T violation and a3 cross sections can be separated out 

experimentally and are given respectively by 

A(T violation) = 
“,-.t - & 

l’2c+l 

“,-I + “,-I + 21’ 21 

\ 

(I*11 

and CT - CT- - us + “+ 

A((u3) = e ’ e I et e 

Qe-t + a-i+ 21’31 
e 

(I: 2) 
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Hence in order to test the T invariance it is not necessary to calculate the up-down 

asymmetry due to cr3 cross sections. 

Nevertheless we have investigated the part of the or3 cross sections which 

gives the up-down asymmetry for its own interest.’ ’ From the discussion in 

Chapter II, the most general class of a3 diagrams contributing to the up-down 

/ asymmetry are as shown in Fig. 2a and 2b. Figure 1 shows that no statistically 

significant evidence of T violation was found. ‘The positron and electron data 

were taken at different incident eneriges, hence no meaningful separation of two 

effects is possible from the data. However, if we ignore the possibility of T 

violation, the electron data do show some evidence of a3 effect between one pion 

threshold and two pion threshold. It happens that the nature of the final states in 

this kinematical region is better known than other regions from other experiments. 

Therefore we shall concentrate our discussion in this region. In this kinematical 

region, f’ in Fig. 2a is either p or N + 7r and f in Fig. 2b is N + T. 

The purpose of this paper is the following: 

1. To develop a general formalism for calculating the up-down symmetry; 

2. By assuming some simple intermediate and final states for Fig. 2a and 2b, 

and actually calculating their contributions to the asymmetry to learn not 

only many of the salient features of the problem, but also to obtain a rough 

order of magnitude of the asymmetry; 

3. To investigate what physics one can learn from this kind of experiment in _ 

general. 

In Chapter II, we first generalize the theorem given by Christ and Lee to 

include the higher order electromagnetic effects and show that only the imaginary 

parts of two classes of diagrams shown in Fig. 2a and 2b contribute to the up-down 

asymmetry if T and P invariances hold. From Fig. 2a and 2b, it is obvious that 
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phases of the final states always get canceled out hence one can always use the 

convention that the Feynman diagrams at the left of each figure is real and the 

imaginary part can occur only when all the particles in the intermediate states of 

the right-hand side of each figure are on the mass shell. 

We also show that A(T violation) is proportional to the interference between 

the normal curre& jf and the abnormal current j: where PT j$PT)“’ = jf and 

PT jF(PT)-’ = -jF. This is very similar to the effect of parity nonconservation 

in weak interactions where the observable effects show only in the interference 

terms between the vector and axial vector currents. 

In Chapter III we treat the class of diagrams represented by Fig. 2a. We find 

that these diagrams contribute a negligible amount to the up-down asymmetry com- 

pared with. the experiment. In Chapter IV we treat Fig. 2b assuming that the final 

state is an N*(1238) and the intermediate state is a proton. For these particular 

final and intermediate states the contribution to the up-down asymmetry is found 

to be roughly l/10 of the maximum observed asymmetry. In Chapter V, we 

sharpen Christ-Lee Theorem and show that the measurement of A(T violation) 

gives a lower bound for the ratio of the magnitude of the abnormal current to that 

of the normal current. It is pointed out that unless there are some conspiring 

cancellations among the products of the matrix elements of ji and ji and those of 

ji and jt at all energies and angles, the smallness of the asymmetry found by 

Rock et al 3 * -2 9 mdicates the smallness of ja compared with jn. Hence it is unlikely 

that the apparent CP violation in the decay K2 -22n is due to the T violation in the 

electromagnetic interaction of hadrons. We also give a general formula for 

calculating A(03) for arbitrary final and intermediate states in terms of a product 

of three currents. Possible refinements of our calculation of A(a3) are discussed. 

The relations between the two photon exchange which appears in the calculation of . 
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A(a3) and other observable two photon interaction phenomena are discussed. 

Appendix A gives an alternative derivation of some of the results of Chapter II 

using T and P invariances and unitarity of s-matrix.’ Appendix B gives an 

example of how to use Cutkosky’s rule to obtain the imaginary part of a two 

photon exchange diagram, Appendix C shows why the;infrared divergent parts 

of Fig. 2a and 2b,do not contribute to the up-down asymmetry. In Appendix D 

weshow that due to the current conservation no singularity is induced by 

ignoring the mass of the electron in calculating the up-down asymmetry and 

hence no terms such as &(s/m2) or ti(-t/m2) exist in the up-down asymmetry. 

II. PRELIMINABY CONSIDERATIONS 

In this chapter we summarize all those observations which can be made 

without lengthy calculations. The incident and outgoing electrons are labeled 

p1 and p3 respectively and the target proton is denoted by p2. s is the polarization 

vector of the target proton. 

A. Since we are ~dealing with an experiment which detects only one final 

electron, we have only four independent vectors p p p and s to construct an 1’ 2’ 3 

invariant representing the asymmetry. This invariant must be linear in so Since 

s is a pseudovector, Lorentz invariance and parity conservation demand that the 

asymmetry must be proportional to 

%pY~ PlaP3~p2+% = “DE1 ’ 43) l $kab w 1) 

Thus as long as only one final electron is detected, only the component of the 

polarization vector perpendicular to the scattering plane can enter into the expres- 

sion for the asymmetry. This is true no matter what the final states of other 

. 

-5- 



unobserved particles are and true to all orders in strong and electromagnetic 

interactions. Let us denote the initial proton state by 1 p 2 f > if the spin of p2 is 

parallel to Fl xT3 and Ip21> if it is antiparallel to rl x ‘z3. Let us define a 

coordinate system in the laboratory frame as shown in Fig. 3. In the laboratory 

system s can be written as 

s = (80, sx, Sy’ szT= (0, 0, s, 0) (‘II. 2) 

where7 

S = Number of protons with spin up - Number of protons with spin down 
Number of protons with spin up -t Number of protons with spin down VI. 3) 

Later we shall use the rest frame of the final undetected particle or particles 

(rest frame of N *, hereafter referred to as R frame) to perform the spin sum and 

the center-of-mass system Q1 -k b2 = 9 hereafter referred to as C frame) to 

perform the integration in the two photon exchange diagram. Since both the C 

frame and the R frame are obtained from the laboratory system (hereafter denoted 

as L frame) by Lorentz transformations in the scattering plane (the x-z plane), 

the components of s given by Eq. (II. 2) are unchanged by the Lorentz transformations 

i.e., s has only the y component in L, C and R frames. 

B. We show that if T invariance holds, those terms in the a3 cross sections 

which do not change sign when e- is replaced by e+, will not contribute to the 

asymmetry. These terms can be classified ‘into three categories: 

1. Interference between the lowest order Born term (e2) and the next 

order terms (e4) which still contains only one photon exchange: such 

as vertex corrections, self-energy diagrams, and the vacuum polariza- 

tion diagram. 
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2. Square of bremsstrahlung diagrams all of which contain one real photon 

emission only from electron lines. 

3. Square of bremsstrahlung diagrams all of which contain one real photon 

'4 
emission only from hadron lines. 

The e terms in the category I have the same structure as the e2 term but with 

different form factors, hence from Christ-Lee theorem they should not contribute 

to the asymmetry if T invariance holds. Christ-Lee theorem also applies to 

category 3. Hence we need to consider only the category 2. However, we observe 

that all three categories have properties that: 1) only one virtual photon is exchanged 

between the electron current and the hadron current, and 2) no interference between 

photons emitted by electrons and those emitted by hadrons. We prove in the fol- 

lowing that no asymmetry can be produced under these two assumptions. Our 

proof can be regarded as a generalization of Christ-Lee theorem. With these two 

assumptions, the asymmetry can be written as 

A=cr(t) - cr(+) -PA L” 1 Be 
A4? 

m* 4) 

where A is the four momentum of the photon exchanged between the electron system 

and the hadron system (note that A is not necessarily equal to q = p1 - p3 because 

we are allowing the possibility of bremsstrahlung emission by electrons). B is 
PV 

the second rank tensor representing the product of two hadron sides of the matrix 

elements: 

Bpv =F [<P2~lj&f><fljvlp2t > - < p21&lf><fiyvlp21 >]s4(A+ p2- pf) 

m4 
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I 
where the final state f is allowed to have any number of photons emitted by hadrons 

in addition to the hadrons. LfiV is a similar tensor representing the product of 

two lepton sides of the matrix elements, except the sign between the two terms 

in Eq. (II. 5) should be changed to plus because the incident electron is not polarized. 

Current conservation requires A’B Ltv =AVBFV= ,O, therefore we need to consider 

only the space components Bij of B 
PV 

with i, j = 1,2,3, the fourth component 

being determined by the other three. Hermiticity of the ,electromagnetic current 

ji requires 

On the other hand, taking the complex conjugate of Eq. (II. 5) directly and using 

the antiunitarity of X = PT operator we obtain 

B:j = C[<X~p2t)lXjiX-11Xf><XflXjjX-11X(p21)> 
f 

-<X(P2{)(XjiX-11Xf><XflXjjX-11X(p2i) >]s4(A+p2- pf) (U.7) 

In the laboratory system p2 is at rest and our states lp2t > and lp21 > are 

eigenfunctions of the angular momentum operator Jy with eigenvalues l/2 and -l/2 

respectively. Using Wigner’s convention, we have 

and 

xlP2i > = -IP,f> tn. 8) 

XIP# = +lp,{> V.9) 

If PT invariance holds, the current operator ji satisfies 

XjiXwl = ji 
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Obviously we have 

ccxf ><Xf184(A + p2 - pf) =xlf ><fla4(A +- p2 - Pf) 
f f 

(ri. 11) 

Substituting Eqs. (II. 8) through (U. 11) into Eq. (II. 7) we obtain 

B?. =iB.. 
11 4 

(II. 12) 

Comparing Eq. (II. 6) with Eq. (II. 12) we conclude 

B.:= -B.. 
11 31 

(II. 13) 

. . . . 
Using a similar argument we obtain LIJ = LJ”, hence LPv B = 0. Since all three 

WJ 
categories of terms can be written in the form of Eqs. (II.4) and (II. 5) we have 

proved our assertion. In other words, the terms in the a3 cross section which 

contribute to the up-down asymmetry are: 1) interference between the lowest 

Born approximation and the two photon exchange diagram, 2) interference between 

bremsstrahlung originating with the electron and that originating with the hadron. 

In both of these cases the cross section is proportional to the cube of the charge 

of the electron. Hence when e- is replaced by e+, this asymmetry changes sign. 

c. We show that if the up-down asymmetry is produced by an interference 

between two diagrams T1 and T2 then only the imaginary part of T:T2 

contributes to the asymmetry. By definition the asymmetry produced by the 

interference between T1 and T2 “is proportional to 

A= c 
-l- 

spin of 
+ T2 T1 t 

all particles 

(II. 14) 

where c T:T2 can in general be expressed as a sum of terms each of which is I 
spin 

expressible as a product of y matrices times an invariant function. Let us write 
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therefore 

c T’y5f Tp2 = i xTrY5s KF. 
spm 5'1 

where ri is a product of y matrices and Fi an invariant’ function. The second 

term in Eq. (II. 14) is then 

(II. 15) 

(II. 16) 

Because of parity conservation, y5 in ri should always occur in pairs and hence 

they can be eliminated by commuting through other y matrices. We can write 

therefore ri = a a . . . a 
iid& ;;i2n+l where n 2 1 and a = alOyo - aliyi. Because of 

id 
Eq. (II.2) s has only the y component, hence 

Try s f’= 5~ i 

Using the identities Yi = 1, Yi = YoS Yl= ‘Yi, YoYiYo .= Yp, we obtain 

( + 
y. ~2n-k1’ l * a&q 

1 
Y. = &n+l...a&~. 

Hence 

Try5 i ri I - Tr an+l.. . a&gy5 = - TrY5 3 ri (II. 17) 

From Eqs. (II. 14) through (II. 17), we obtain 

A= zTry5 s fi2i ImFi . (II. 18) 
i 3 

This proves our assertion. It should be noted that Tr y5 ; ri is pure imaginary 

and hence A is real as it should be. When Feynman diagrams are used for the 

calculation, T invariance usually imposes a reality conditions for the coupling 
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constants and Fi in Eq. (II. 18) can have an imaginary part only when the inter- 

mediate states are kinematically possible to be real (due to unitarity). Using this 

fact we can immediately conclude that diagrams shown in Fig. 4a, b, c do not con- 

tribute to the up-down asymmetry, hence the diagrams shown in Fig. 2 contain 

all the diagrams needed to be considered for the up-down asymmetry. We notice 

that in both Fig. 2a and 2b, the phases of the final states always get cancelled 

out, hence the diagram in the left-hand side of Figs. 2a and 2b can be chosen to 

be real. If we choose this phase convention, the imaginary pa\t of the matrix 

element in Fig. 2a can be obtained by replacing the Breit-Wigner formula for the 

resonant intermediate state f with its imaginary part: 

Im 1 

@+P2? - %+irMR ‘= 

-fMR 

where MB is the mass of the resonance and r is the width of the resonance with 

a proper threshold behavior. The imaginary part of the two photon exchange 

diagram Fig. 2b can be obtained from Cutkosky rule (see Appendix B). Indeed if 

we let T1 represent the matrix element of the Born term and T2 represent the two 

photon exchange diagram, then Eq. (II. 18) is equivalent to the statement that 

A = TrY&&t (II. 19) 

where TZcut is obtained from T2 by replacing the denominator of each of the propa- 

gators in the intermediate states by the following rule 

When a set of Feynman diagrams are given, usually there is no ambiguity, 

whatsoever as to how the asymmetry should be computed. The procedure sketched 

above is exactly what happens in the actual calculation. However the reasoning 
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given is not very rigourous. In Appendix A we give a more satisfactory derivation 

of the results of this section using T and P invariance6 and unitarity. 

D. Both the real and imaginary part’ of the two photon exchange diagram 

shown in Fig. 2b have infrared divergence when the hadron intermediate state 

is either a proton or equal to the final state f. However, it is well known that 

the infrared divergent part of the matrix element’& proportional to a product of 

the lowest order Born diagram and a scalar function containing infrared divergence 

factor. 4 Since the lowest order diagram does not produce the\ up-down asymmetry, 

we conclude that the infrared part of the two photon exchange diagram does not 

contribute to the up-down asymmetry. A simple demonstration of this fact is 

given in Appendix C. 

E. It is well known that the real part of the two photon exchange diagram 

shown in Fig. 2b is not by itself gauge invariant, one has to add the criss-cross 
/,.d 

two photon exchange diagram Fig. 4c in order to have gauge invariance. However, 

the imaginary part of the two photon exchange diagram Fig. 2b is gauge invariant. 

This can be seen easily if we remember that the imaginary part of this matrix 

element is obtained by putting both the electron and the hadron intermediate state 

on the mass shell. Since both the top and the bottom part of the diagram is gauge 

invariant if the intermediate state is on the mass shell, the product of them must 

also be gauge invariant. 

* F. Since we are dealing with a very high energy electron, the mass of the 

electron can be ignored. In Appendix D, we show that because of gauge invariance, 

no singularity is induced by ignoring the mass of the electron when integrating 

with respect to the intermediate states in the two photon exchange diagram. 
. 

G. For completeness let us reexpress Christ-Lee theorem’ when the electro- 

magnetic current operator jl( has a component which does not transform according 
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to Eq. (II. 10). Let us decompose the current jp into two parts (normal and 

where 51f: and ji behave differently under X = PT: 
. 

Xjy X-l = jr and Xj$-’ = -jF. 

Equation (II. 7) becomes then 

BTj 75 [< p211jn- Qf><fljp- jj’lP2/ > 

_ On the otherhand Eq. (II. 6) gives 

B:. = B Ji ij = F [<p2t @-j$ kflj;-$p2t> 

(II.20) _ 
. 

Now in Section II. B, we have shown that when ji = jy, there is no asymmetry., It 

is also obvious from the derivation there that if ji = j:, there is also no asymmetry. 

Hence only the interference terms between jy and jy produce asymmetry. Since 
. . 

L1’ is symmetric, only the symmetric part of Bij contributes to the cross section. 

Equation (II. 6) says that the symmetric part of Bij is its real part. Summing 

Eq. (11.20) and Eq. (II.21), dividing the result by 2, and taking the real part, we 

obtain 

(Bij)sym = (Bij + Bji)/’ 

= Rex [<p21(jqlf><f 
f 

I j;l P2f> + < p2t lj:l f ><fljjnlP2f> 

- <p2/l$lf><f’j~~ p2J> - < p211jFlf><fljJ) p2J>] x S4(q+p2- p,) 

inJ (II. 22) 
Applying the symmetry under a rotation operator R = e ’ on the first two terms 

in Eq. (II. 22) and remembering that I p2 I> is quantized along the y axis, 
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RIP2t,> = ‘I+IP~J>, RIp2/> = q,lp2t>, we obtain immediately 

BsYm 
xx 

= BSYrn = BSYrn = BSYrn = o 
YY ZZ XY l 

Hence only BE;” and BSYm 
YZ 

are nonzero. 

When no photons are emitted by the electrons, we have 

2 
LP” = +Tr (Q1sm)yP~+m)yv = 2 + pi pt + gi- 8” 

Hence Lyz = 0, and 

where all quantities are in the laboratory system and Q2 = (gl - J&)~. 

Since Lyz = 0, the asymmetry is proportional to 

N = Lxz( Bxz + Bz,, + Lxo( Bxo + Box> = Lxz(Bxz + Bzx) q2/q; 

(II. 24) 

Using the same normalization for jP and Ip2Stheu.npolarized cross section 

da( 1) + do(l) is proportional to D = LPV,APv where 

= M-2( p2P - ~5’ p2 l qlh2)(p2, - qv( P2 l q,hi2) t-q2Q-2,(Au- g”q2Azz) 

- (8’ - ci&,f2)A, 
The asymmetry A(T violation) defined in Eq. (I. 1) is then equal to 

A(T violation) = N/D (II. 26) 
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Contracting the tensor in Eq. (II.25), we obtain 

D=2ElE3+ p1p3cos813+m ( 2, t-s2Q-?(A, - q2q;;2Azz) 

+4 ElE3 ( - plp3 ~060~~ - 2m 2 
) Axx 

Now Eq. (IL26) can be shown to be completely equivalent to Eq. (40) of Christ 

1s . . . 
and Lee. However writing the asymmetry in the form of Eq. (IL24) has certain 

advantages. 1) It is more covariant looking hence easie,r to apply when one is 

c using Feynman diagrams. 2) It shows explicitly that the asymmetry is due to the 

interference between the matrix element of jt and j; and between those of ji and 

*n J,* 3) It can be more easily compared to the formal expressions of Chapter V 

which relate to the asymmetry “in the absence of T violation (see Chapter V). 

III. BREMSSTRAHLUNG DIAGRAMS 

In’this chapter we show that the class of diagrams represented by Fig. 2a 

contributes negligibly to the up-down asymmetry. To show this we first argue 

that among’all the diagrams which can be represented by Fig. 2a, only the 

mechanism represented by Fig. 5 can possibly have a large contribution to the 

up-down asymmetry in the kinematical region we are interested in. We then 

show that Fig. 5 contributes negligibly to the up-down asymmetry compared with L 

the experiment by an explicit calculation. 

We are interested only in the kinematical region where f’ in Fig. 2a is a 

proton or N + ?r, but the only hadron intermediate state f which can have any 

significant imaginary part in this kinematical region is N*(1238). When the final 

state f’ is N + n, the photon emitted is necessarily soft. The matrix element for 

emission of a soft photon is proportional to the matrix element for no photon 

emission and hence does not produce any up-down asymmetry. Therefore the 
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final state f must be a proton. This shows that only the mechansim shown in 

Fig. 5 can possibly have any significant contribution to the up-down asymmetry 

in the kinematical region of interest. 

In the following we proceed to calculate the up-down asymmetry due to the 

mechanism shown in Fig. 5. We notice that this cross section can be calculated 

exactly in terms of the known experimental form factor for the ypN* vertex. 

However, we have made an order of magnitude estimate of this cross section by 

making several reasonable approximations. We present this rough estimate of - 

the cross section because the result happens to be too small to account for the 

observed asymmetry. We shall assume a pure Ml transition for ypN* vertex 

which can be written as9 

e Gp (p f) C3tq2) Y6~pp(ql u(P 2) 

= e @$(P f)C3(q2) Y5 agpp - 4p Yp + 
[ 

9’ - gppfu u(p,) Mf 
Mf I 

(HI 1) . 

where @ (p ) 
P f 

is the Rarita-Schwinger spin 3/2 wave function, q is the momentum 

of the photon, q t- p 2 = pf, and u( p,) is the spinor representing the initial proton. 

C3 is the form factor for the transition and can be written as9 

c3Mp l 

=2 ,5e-3.15 q F(l -I- 9fl)l’2 

The covariant spin sum for the spin 3/2 wave function is given by 

c t&t Pf’9( Pf) = Gap 
spin . 

(III. 2) 

(III. 3) 
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In the rest frame of the 3-3 resonance, pf = (Mf, 0), G 
w 

= GLYO = 0 and the space 

components of G 
QP 

assume a very simple form 

0 1 Wfl 
0 

W.4) 

Also in the rest frame of the 3-3 resonance (R frame) the energy of the photon 

emitted is independent of the angle as long as the missing mass (p, - p3 -t- P,)~ = 

(k + P)~ is fixed. For these two reasons we shall use the rest frame of the 3-3 - 

resonance in our calculation. 

The Ypp vertex in Fig. 5a can be written as 10 

WP) WYp -WNP+P2)p - [ 1 u(p,) 3 eu(p)rp u(p,> m. 5) 

where 

a(t) E Gm(t) = 2.79 = 2.79 G,(t), 

b(t) = (G,(t) - G,(t))/ . . 
and 

t = (P - P2J2* I 

The matrix element for Fig. 5a is 

Ii f .-+-- Y + Y 
‘[ 

1 

I 

1, 
P& &-mP E P &-&-ms U(Pl) TU(P) r$t) u(P2) (III4 

Since k is small compared with p1 and p3, we approximate Eq. (III. 6) by 

‘i;(P,) Yp u(Pl) + ‘ii(P) r,(q2) u(p,> p 
4 

- [“:::22] tm. 7) 

where 

s2 = (P1- P3j2 
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With this approximati ci n the asymmetry can be written as (for e- + p) 

1 

(q+p2j2 - 43+m33 1 
/ 

3 
d ‘3 d3k d3 

2E3 2k 2E 4(Pl + P2 - k - P - P,) ,‘z ’ Tr tg+mhhppWv 

1 

4Mpll 

c Tr ‘5;(Ez +M) 
photon 

4 

kgaX-k,lYX +k* pfgolAMil 

rol 

g M-l-4 P f pv f M-l p fv f 

. 

1 

The trace involving the electron line is 

Jp s 1 ZTr )yp~3+m)yv = p!pg +p:pt+ (m2-pl. p3)gvp (III.9) 

The trace involving the baryon line is too complicated to be evaluated using the 

standard covariant techniqu 

i 

. We found that the easiest way to evaluate it is to 

go to the rest frame of N* ith coordinate axes defined by Fig. 3, write all y 

matrices, in terms of v mat 

use the representation 

and actually multiply out the matrices. We 

and the radiation gauge for t 
F 

e photon. 

- 18 - 

(In 10) 

L 



We can reduce the most complicated looking part of the matrix in the baryon 

trace into a simple form 

(HI. 11) 

where 

cO =cz=o 

2MfQ 
cx=-s 2%x!9y - i I eytg*&l - kytrf))] I 

c 2MfQ 
y= 3 [ 

2&X&-i E ( xw~~-kxw~)] ’ 

and Q is the space component of q. 

Co and Cz are zero because we have assumed that the transition y -t p-N* 

is caused purely by a transverse photon. C’s can also-be written in a vector form 

g= 
2Mf 

3 $&x[(2-i$x$X$j (III. 12) 

We see that& is proportional to $ x 5, , which is a consequence of our assumption 

that the decay N* -p f y is a pure magnetic dipole transition. 

After all the y matrices are multiplied together and traces taken, we sum the 

photon polarizations and carry out the integration with respect to the solid angle 

of the photon. Everything is straightforward but tedious, It is interesting to note 

however, that the mass of the electron can be set equal to zero without giving any 

trouble in our integrations, and all the integrations can be carried out analytically. 

In fact ignoring the mass of the electron all the integrations with respect to the 
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solid angle of the photon can be reduced into the following four types 11 : lr 71 
r/ a’!’ sinede (cos26, sin28 6in2$) sin36 6in2$co6 #, sinecos’e co6 4) 

0 0 El - p1 sinecos 9 

= $ (1, 1, l/3, l/3) (III. 13) 

where El = (p2, + m2)1’2 - p1 is the energy of the incident electron. 

After all the reductions and integrations, Eq. (III. 8) can be written as 

dQ3dE3 
dc (1, - d;k3 t+) = + :!;‘,* $c3(0)c3(q2)xb 

where 
(HI. 14) 

(‘1R + ‘3R) 
2 

+ 2 
QR 

sin2 %3R- 9 

2 2 
(P1R+P3R) ‘1Rp3Rq 

2 2 
QR ‘OR 

(1 - co6 e13R ) (Q~~kB(P1R-P3R)(1+Cos 

I. 15) 

Where the subscripts 1 and R denote the laboratory frame and the rest frame of 

the N* respectively. In order to compare with the experiment, we approximate 

the cross section from an unpolarized proton target by the e+ p- e+ N* cross 
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section using the parametrization given by Duffner and Tsai, 9 namely 

X d&2)(E2R+M) + (Elp+E3$2 (III. 16) 
,. 

From Eq. (III. 14) and (III. 16) we obtain 

a % c3(o) =-’ 
-2q2 2 C3(92) .V) 

(III. 17) 

where C3(q2) and Xb are given by Eqs. (III.2) and (III. 15) respectively. In terms 

of Eu, E3P and e13i, aII the quantities appearing in Eqs. (III. 15) and (III. 17) can 

be computed (mass of the electron ignored) as follows: 

M = 0.938 GeV, a! = l/137 

q2 = - 4 E E sin2 ’ 
lQ 3Q 

z 131, 33 f = q2 + 2M(EU - E33 + M2 

2 2 
QQ 

,2 - 
= Eld + E3J. - 2 EUEQpcos @13e, 

pU? = EU, - p3e= EQB 

/25,- plR= (mu+ q2+‘Mf . - 

P3R= M? + 2EUM - %$ /2Mf, QR = MQ@Ip 

Sin e13R= MP#~~ sin e13Q/(MfplRp3R) 

qOR= i2Mf, EZR = (I$‘+ Ikl! - q2)/2Mf 
and 

ER= #+&? /2Mf 
( 1 



In order to make an order of magnitude estimate of Ab, we notice that various 

quantities appearing in Eqs. (III. 15) and (HI. 17) can be classified according to 

their magnitudes: 

J$, EBF P,,, PER - 15 GeV 

M, Mf, E2R, ER - 1 GeV 

-s2, Q;, Q”R - 0.5 GeV2 

kR - 0.3 GeV 
I 

qoR = plR - p3R - 0.06 GeV 

Hence we can write approximately, 

k2 a(s2)c,m 

(- 1 

1 W2) Q”R 
Ab z - a! sin 013R 4Mt 

OR C3(q2) a(q2) 2M 
z- CL! sin e13R, 

and thus we have proved that the asymmetry due to the bremsstrahlung emission 

is completely negligible. 

IV. TWO PHOTON EXCHANGE CONTRIBUTION 

In this chapter we consider a class of diagrams represented by Fig. 2b. 

We are interested only in the hadron final states consisting of one pion plus one 

nucleon. The intermediate states can be a proton, various N*‘s and continuum 

states, The only intermediate state one knows how to handle reliably is a proton, 

so we treat this case. In the kinematical region of interest, the final state N + n 

is dominated by the formation of N*(1238) and the nonresonant s wave part. The 

N* excitation is mainly via magnetic dipole transition; the other two multipoles, 

E2 and Q2, contribute less than 12 10% to the cross section. In this paper we ignore 

the nonresonant s wave part as well as E2 and Q2 multipoles of the N* excitation. 

The contribution to the asymmetry from the’ two photon exchange diagram with a 

proton as the intermediate state can be obtained from Eq. (II. 19) with the help of 
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Cutkosky rule. The asymmetry can be written as (for e- + p) 

/ 

3 3 
d p3 d pf d4pt 

TEy5%T 
+ 

f (27q4 
84 

(PI P2 - P3 - Pf) 

(2rg2 &+(pf2 - m2) s+ + p2 - P’ )2 - 2 f Tr@ + m)y’@ + ml+ gt * m)y’ 

The notations are given in Fig, 6. Tn order to simplify the calculation we shall 

ignore the spin of the electron. 13 This approximation is equivklent to modifying 

the trace of the lepton current in Eq. (IV. 1) in the following way: 

ignore electron 
- (2p1 - q)’ (2~3 +&(2pl - k)’ = L”” 

spin 

W.2) , 

Because of the current conservation, qV, qr* and J? can be dropped from L VAP , 

therefore we have LvhCl = 8pip$$. w* 3) 

The trace of the baryon current in Eq. (IV. 1) is almost identical to that of 

Eq. (I&8), hence we use the rest frame of the N* with the coordinate axes defined x 

by Fig. 3 to &lculate the trace, 

- 23 - 



1 

The tensor B 
CrXV 

is nonzero only when v is either x or y due to Eqs. (III. 11) and 

(III. 12). The tensor Lvx’ . 1s zero when v is y. Hence we need to consider only 

V = x for LvA’BpAv. Similarly Bbxy is nonzero only when h is x, y, or z, but 

L”% is zero when A = y, hence we need to consider only X = x and z for L “hc”B 
phv l 

We may thus write 

Lv*‘B = - 6plxR Trygg2-+‘M)p1 /L (in +(k)P+M) c P A QP 
phv A=x z 3h Xa 

W) Y$. Y&p) (N. 5) 
, 

From Eq. (ID. 12), we obtain 

G 
e c 0 

c P3A%&‘) y5 x=x, i y5Tdq) = 0 0 [ I 

where 

2MfQR 
c=-T--- 

x $)yR + iq;,R@3 ’ $R 
I 

(IV. 7) 
. 

The subscript R refers to the rest frame of the N* and the coordinates are defined 

.by Fig. 3. Substituting Eqs. (IV. 6) and (IV. 7) into Eq. (IV. 5) we obtain 

L”‘B /Lb = 

16iaQR 

3 ‘lxRX w* 8) 

where 

6 )-k R P ‘(k P xR 3zRj zR 1xR -k p xR 1zR )+k~~(plzR~R-pLt)] 

t2Pl ’ p2 t k * 

+2Q k P R OR 1xR [plxR(k~R- QR) - kxRP3zR/ w 9) 
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In terms of X, the asymmetry for e-+p scattering, Eq. (IV. 1) can be written as 

duct t) da,-(l) 203 QRPlxR 
qq- ax = = MqC “((P2+a2- 

(Iv. 10) 

where 2 

I = J dOp’ 2 p1ct2 X C3(q f 2, a(k2) 

C. m. kc. q 
(Iv. 11) 

The d4pt integration in Eq. (IV. 1) was reduced into the form Eq. (IV. 1) with the 

help of two 6, functions in Fq. (IV. 1) in the center-of-mass system (p1+p2 = 0). 

The cross section in Eq. (IV. 10) is the laboratory cross section. 

X as given in Eq. (IV.9) is expressed in terms of the rest frame of N* with 

the coordinate axes defined by Fig. 3 whereas dJ$ integrationis carried out in 

/ the center-of-mass system. The subscript a, R and C refer to the laboratory 

system, the rest frame of N* and the center-of-mass System respectively. When 

pt is parallel to 3, kc is zero and when t 
ti2 

P 
is parallel to p 

3 
the absolute value of 

q’ becomes minimum. When (pl+ p2) we have 

Q&Z- ( 1 4 - I? 2m2/W4 (Iv. 12) 

which is zero if the mass of the electron is set equal to zero. These two singular 

points in the integrand of Eq. (IV. 11) are not true singularities, the integrand is 

finite at these two points if we choose the variables of integrations properly. To 

see this let us consider the case when pt is almost parallel to g,. 
*L 

ki is then pro- 

portional to e2 where 8 is the angle between p’ andzl. X is proportional to kc, 
I 

hence it is proportional to 8 and the solid angle d$ is sined da which is linear 

in 8. Hence the integrand in Eq. (IV. 11) is finite when 2t is parallel tog1 if the 

direction of pf is chosen as the z axis. This shows also that the asymmetry does 

not have the infrared divergence as mentioned in the introduction and Appendix C. 
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Next we consider the case when p’ is almost parallel to$’ If we ignore the 
I, 

mass of the electron, qt2 is proportional to ef2, where et is the angle between 

P’ andg3* Because of the relation pt - p = qt, the quantity C in Eq. (IV. 7) is 
P YL ,W’r* 
proportional to sin et and hence X is proportional to sin 8’. The solid angle is 

proportional to sin et if the direction of p3 is chosen as the z axis. Hence the 

integrand in Eq. (IV. 11) is finite when pf is parallel to p1 even if the mass of 

the electron is ignored provided that the direction of p? is chosen as the z axis, 
m- 

This shows also that the mass of the electron can be ignored in our problem, 

and there is no h m2 term in the asymmetry. In the numerical integration 
, 

for Eq. (IV. ll), we divide the region of integration into two parts. In region 

I, we choose the direction of p1 as the z axis, then carry out %he integration 

(IV. ll), setting the integrand to zero whenever the angle between p’ and p3 is 
1 

smaller than ze,,c . In region II, we choose the direction of p3 as the z axis, 

then we integrate et from 0 to 2 le 13C. The sum of these two integrations gives 

I. We approximate again doo+-!X!.L 
d%dE3 ti3dR3 

by Eq. (III.16 ) and obtains 

M? Q f QRPlxR1 =- 
= WElC M2 Q;+(~l~+E3m)2) (EZR+M) C3(q2) 

’ (Iv.13) 

where I is given by Eq. (IV. 11). 

In order to calculate At, we have to perform two Lorentz transformations 

(R-C- L) and two rotations (p 
4 

as the z axis when p’ is almost parallel to 
PI 

$31 otherwise :l as the z axis. In Eq. (IV. 9) the z axis is along Q), in addition 
* 

to the two fold integrations with respect to the solid angle of pt. We have done 

all these by a computer. ‘Since it takes some effort to figure out the best way 
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to handle all these by a computer we present in the following how all these can 

actually be done. The following presentation also serves as a compact summary 

of all the notations and kinematics. We first define constants: M = 0.938, 

m= 0.51 x 10s3, Q! = l/137, .and the laboratory quantities: 

EIB = incident electron energy in GeV, 

E3P = outgoing electron energy in GeV, 

et 5 electron scattering angle in radians. 

We then compute all quantities appearing in Eq. (IV. 12) in terms of EU, ES1 and 

O1 in the following sequence. 

2 2 I/2 
Pu= l$-m ( 1 # P3p= ( E2 2 31-m 1 

m, q2 = 2m2 - 2(ElkE3L - P~~P~Ico~ e,), 

2 2 v= EIP- EQ1, Qt=~lj+~;e- 2p11p3ecos et, 4 = M2 +.2Mv+.q2, 

~~ = S&IRT IV$ .J$ = m2 + M2 + 2EiM, W= SQRT W2, Elc = (m2 + MEm)/Ws 

E3c = tw” 
2 

+ m - M-9 f ) SW, 
2 l/2 

pIc = (I$ T m ) ( 
2 

9 P3c = EQc - m 
2 l/2 

1 ,’ 

cos e13c = ( 
2 

q - 2m2 + ZEI~E~~)/~P~~P~~, sin e13c = SQRT (1 - ~0s~ e13c , 1 

~~~ = (MEU i- (q2/2))/M,, E3R = (w” - m2 - $)/2Mf, E2R = (MV + M2)/Mf* 

Q, = MQphif, qOR = (q2 + vMl/Mf, PlzR = (E&OR - (q2j2))/Q,* 

( 
2 

PIR 
2 112 = EIR-m ) ’ PlxR = ( 

2 2 
‘1R - ‘1zR ) 

m 
’ P3zR= ( E3R qoR + (s2/2))/6,s 

P3R ( 
2 = 2 l/2 EQR- m 

1 ( 
2 2 

g P3xR = ‘3R - ‘3zR ) 
112 , sin 813~ = (plc sin e13c)hlR* 

Integration in region I: 

Variables of integration: 8 and $J. (See Fig. 7a) Quantities containing variables 

of integration: 

x= cos 8 cos e13c + sin @sin e13cc0s + 

kf = 2pyc (1 - CO8 e), kc = SQRT kf 
. 
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(vk’$3)c = PlcP3&~OS 813c - X), koR = wP ) 1 ,3c i”f f 

k - zR (fr . p& /QR, 1 kyR = -Plo sin 0 sin + s 

kxR = 1 

&Rp1Rp3R sin ‘13R I 
‘ORE3R + ($* - $) 

I1 = oifx>cos -& x a(k2)c3(q’2J 

c 

where X is given by Eq. (IV.9), qt2 = q2 - 2qq31c’ a(k2) = 2.79(l+kz/.71)-2 

b(k2) = 1.79(2M)-1 (l+k;/‘4M2)-1 (1 + I?/. 71)-2 

c3(qt2) = MS1 2.05 em3* 15(-q ,2 l/2 ) (1 I- 9(-q,2)1’2)1/2 
. 

Integration in region II: 

Variables of integration: 19’ and $‘. (See Fig. 7b) 

2n 2 

8’ J W’ plC 2 X atk2) c3W2) 
o . kcq’ 

ki = 2& (1 - cos e13cc09’et + sin e 13c sin et cos + ‘) 

kc 

= SQRT kf 

(rk’E3)c = ~~~~~~~~~~ e13c - ~0s et) 

k 
YR 

= -plc sin @sin Cp’ 

All other expressions are identical to the integration in region I. 

Compute I = 11 + I2 and then compute At using Eq. (IV. 13). The result is 

At = . 75 X ld2 for e- + p at El1 = 18 GeV and q2 = -0.6 GeV2 for the missing mass 
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ranging from one pion threshold to the two pion threshold. The reason why At is 

so insensitive to the missing mass is that the threshold behaviors of o-(t) - ~(1) 

and u( 1) I- cr( 1) cancel out upon taking the ratio in Eq. (IV. 3). Our value for At 

has a right sign compared with the experiment but has a wrong shape and is one 

order of magnitude too small. Admittedly we have made three drastic assumptions: 

1) We kept only the proton intermediate state, 2); We ignored the s-wave back- 

ground in the final state, and 3) Our 3-3 resonance excitation contains only Ml and 

we ignored Q2 and E2 multipoles. 

In order to see the effects of ignoring other intermediate states we let the 

form factors appearing in the integration I in Eq. (IV. 3) equal to constants and 

we found that there is no significant change in the value of At thus obtained. This 

suggests (but does not prove) that including more intermediate states will not in 

general make the asymmetry larger. In the radiative corrections to thee-unpolarized 

proton scattering the correction is roughly (2c&)Pa(-q2/m2) h(E/AE). In the 

asymmetry there is no infrared divergence and also the mass of the electron can 

be ignored, hence terms such as b E/AE and J!n(-q2/m2) can not occur. Further- 

more besides Q! we have a small sin e13 to make the asymmetry small.. Hence it 

is very difficult to make the asymmetry one order of magnitude larger than Q! at 

small scattering angles. 

V. DISCUSSIONS 

Berstein, Feinberg and Lee 14 noticed that the ratio of amplitudes 
15 

of 

52 -2n to Kl-2n is roughly a/n and proposed the possibility that the cause of 

the CP noninvariance in the K2 decay might be due to the electromagnetic inter- 

action of hadrons. If we want to account for the apparent CP violation in the decay 

K2-2a by the possible CP violation in the electromagnetic interaction of hadrons, 

the abnormal current ja 
P 

and the normal current jn of Eq. (Il. 24) must have the 
P 
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same order of’strength. The experiment of Rock et al., shows that the asymmetry -- 

is less than 6%. This 6% asymmetry can be either due to a statistical fluctuation, 

a3 effect or a genuine T violation. It is natural to ask whether one can obtain a 

lower limit for the ratio of the matrix element of j: to that of jr by assuming that 

this 6% asymmetry is all due to T violation. It should be noted that one can not 

obtain an upper limit of < jf > /< jn > 1 from the asymmetry because even if 
I 

(<j~>/Cj~>l 
J 

is large one can still get no asymmetry if the phases of the matrix 

elements conspire in a certain way. Ignoring the mass of the electron and using 

the properties of j: and j: under the operator X= PT, we can simplify Eq. (II. 26) 

into 

tv* 1) 

and 

AZz = 2F[l<p2tljilf>12 -)- l<P2t(j:lf>(2] s4(q+P2-Pf) 

= 2 [(J$ +(J;y] 
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Hence 

IBih& L 
2J; J; 

(JrJ2+ (J”x) 2 ( 
Ji’J? JE’Yi 1 

IBI/A xx I 1 + Rq;/(-q2) 
( )( 

J;/J; + J;/J; 1 

where 
16 

R E ap/uT = 
( ) 
-q2/qf, A&& 

From Eqs. (V. 1) and (V. 4) we obtain 

( 

2+cot2 ; $ (l+R) 

J;/J; + J;/J; 
) 

2 A(T violation) ( 1 Q 
-1 6 -q2 -- (El + E3) q. cot 2 

( i( Q2 
l+Rq;/-q2 

In the kinematic region of the bump in Fig. 1 we obtain 

1-t-R 
J;/Jt -t- Jt/Ji 2 1 A(T violation)1 12 . . 

w 3) 

W.4) 

(V. 5) 

Therefore the measurement of A(T violation) of Eq. (I. 1) gives the lower bound 

of Jt/Jz + Ji/Ji and if R = CT/C 1! T is of order one, the magnitude of A(T violation) 
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is roughly equal to this lower bound. Since we can not give an upper bound for Ji 

and J: from a given A(T violation), even if A(T violation) is equal to zero we 

can not say that the T ‘violating current ja is equal to zero. However it will take 
P 

some miraculous cancellations among various terms in Eq. (V. 2) to give zero 

asymmetry when j: is comparable to jr. This would be especially true if 

A( T violation) is zero at all energies and angles. Hence the smallness of the 

asymmetry found by Rock et al., -a indicates that T is a good symmetry in the 

electromagnetic interaction of hadrons, and the apparent CPviolation of K2-2n 

decay is very unlikely due to the electromagnetic interactions. 

The maximum allowed asymmetry for any given value of R can be obtained 

from the inequality (V. 3) and 

IBt I4(J;J;+‘J;J;) I 2(AmAzz)1’2 . W 6) 

The last inequality is equivalent to Eq. (27) of Christ and Lee. From (V. 5) and 

(V. 1) we obtain 
l/2 8 

IA(T 
cos - 

violation)~ 5 
W1+ E3) (E1E3R) 

2 2 28 (V- 7) 
Q +2E1E3(1+R)cos ‘z 

For small angles and small energy loss, the inequality (V. 7) reduces to 

2R1’2 IA(T violation)1 5 m (V. 8) 

The righthand side is maximum when R = 1 and the maximum allowed IA(T violation)1 ’ 

is equal to 1 when R = 1. 

Let us next discuss the asymmetry due to the 0~~ cross sections. We have shown 

that the asymmetries due to both the bremsstrahlung and the two photon exchange 

have neither the infrared divergence nor the divergence due to m2- 0. For this 

reason it is very difficult to obtain an asymmetry which is one order of magnitude 

larger than 01. The arguments given in Chapter III to show that Ab is small are 
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convincing. For At, we do not know how to calculate the cross section if the 

intermediate state is not a proton. We can improve the treatment of final states 

in our calculation of At. We can include the small Q2 and E2 amplitudes for the 

N* excitation by using a more recent data. 12 The contribution from the nonresonant 

s-wave part can be estimated by first using the Nambu-Schranner formula 14 to 

evaluate the blobs in Figs. 8a and 8b, and then calculate the contributions from 

these diagrams to the asymmetry. It should be noted however that adding more 

intermediate states or final states to the calculation does not necessarily increase 

the magnitude of the asymmetry. In fact it has been shown by Guerin and Piketty’ 

for the case of the elastic scattering that various intermediate states give roughly 

the contributions of the same order of magnitude and furthermore they have more 

or less random signs. Hence in order to estimate the order of magnitude of the 

asymmetry, any reasonable choice of intermediate states or final states will give 

a correct estimate. 

The general expression for the asymmetry due to the two photon exchange can 

be obtained from generalizing Eq. (IV. 1) to include all intermediate and final states 

(see Fig. 2b for notations): 

1 d3pT 

2E’(2~)~ qt2k2q2 

spigf p seiq* xe 4~ y d*x d4ycp2~r,~jy(x)jx(~)$~~)/P2~ (V-9) 
2 

where q = p1 - p3, k = p1 - p’ and q’ = p1 - p 3. The minus sign is for e- + p 

scattering. Using the same normalization, two times the cross section from an 
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unpolarized proton target can be written as 

,.&siL.+m=L P3P 1 1 
w3dE3 dn,dE3 W) 3 8MPy1 

4 
q 

‘z Tr(& f m)YXg3 +m)Yp 

Fl- C 
spin of p2 

iq l yd4ycp,ljA0 jp(y)Ip2 > 
(V. 10) 

From Eq. (V. 9) we can obtain the expression for the contribution from any final 

and intermediate states by simply inserting them between the current jv(x), j*(O) 

and j 
P 

(y). For example the up-down asymmetry in the elastic ep scattering can 

be obtained from Eq. (V. 9) by inserting the final proton state 

c 
spin of p 

lp><pl d3p(2E)-1(2?r)-3 between jv(x) and jA(0) in Eq. (V. 9). We obtain 

e6 n E1& 
2 

=ri-- - ( )J d3pl 1 

(27q3 8 ME3d 2E’(2n)3 qf2k2q2 

$Tr 
!!i 

p-m)yVtg + rn)+g + m)YP 

spincOf p ’ e 
-ik l y d4y <p2 (y5 ; jy (0)[p><p~jA(O)j~(y)~p2> 

and p 2 - 

(V. 11) 

In general even if we know the unpolarized cross section, Eq. (V. lo), from 

experiment for all q2 and q. we still do not know how to calculate Eq. (V. 9) or for 

that matter even Eq. (V. 11). The reason is that in Eq. (V. 11) both the spin and , 

momentum of Ip> can be different from those of 1 p2 > and hence knowing 

< P2X2 IjA(0)jp(y)Ip2A2 > is in general not sufficient to compute <phljkO) jp(y)lp2A2 > 

unless some dynamical assumptions are made. 

The only thing common among Eq. (V. 9), (V. 10) and (V. 11) is that they all 

involve products of currents at different space time. Hence if one has some model 

for products of operators at different space time, it can be tested against the 



experimental results using Eq. (V. 9), (V. lo), and (V. 11). As far as we know no 

one has ever proposed such a model. 

For completeness of discussion’let us consider the contribution of two virtual 

photon emission and absorption from a hadron current to other observable physical 

phenomena. 

A. The Radiative Correction to the Electron Scattering From an Unpolarized 

Proton Target 

In this case only the real part of two photon exchange diagrams Fig. 4c plus 

Fig. 2b contributes. Two diagrams must be considered together because of the 

gauge invariance. Both diagrams have infrared divergence when the intermediate 

state is either equal to the initial or the final state. The real part of the two 

photon exchange is related to the imaginary part by dispersion relations. However 

the imaginary part required here is not the part which appears in the up-down 

“imaginary parts” of the two photon exchange diagrams are completely independent 

of each other. t his can be seen easily if we go to the laboratory frame where 

Ip2 > becomes a two component spinor and yg reduces to a 2 x 2 matrix g l s , 
cp 

and jv(x) jA(0) jp(y) can also be reduced into a 2 x 2 matrix which can be represented 

in general by A f 8 l g. We have, then 

asymmetry, but the one obtainable from Eq. (V. 9) without y@. These two m 

c <p2 
spin of p2 

Iy5;jy(x)jX(0)j&y)lp2 .--Trso(A+*g)] = 2s* B 
& Y Ire* 

where as 

c 
spin of p2 <p2 ~~vtx)jAW I,ty)~p, > = WA + B,* g) = 24 

hence two expressions are entirely independent of each other. 

. 
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B. Hyperfine Shift of the Hydrogen Atom 

Iddings15 showed that the two photon exchange contribution to the hyperfine 

shift in the ground state’of a hydrogen atom is related to the crosssection of 
. 

polarized electron on polarized proton scattering if there are no subtraction 

terms in the dispersion relations. From Eq. (IlI.4) of Iddings’ paper we see 

that the quantity needed is 

c s emiqm 
spin of p2 

’ a4y <P2~y5~j~tO)j~(y)Ip2>. 
which looks like the expression in Eq. (V. 10) except for the operator y5 s. Using 

the same argument as in the previous section, we see that two expressions are 

independent of each other. Let us consider the relation between Eq. (V. 11) and 

(V. 12). In Eq. (V. ll), the factor <p2 1y58jy(0)/p> is known for all combinations 

of spins of p2 and p. The expectation value in Eq. (V. 12) can be written as 

C <P21Y5i&tWptY)Ipz 
spin of p2 

> z ~p2tljhVWp(Y)IP2t >- <P2@A(0)jp(y)jp2+> 

whereas the last factor of Eq. (V. 11) contains 

<Ptlj#jJy)lP2+>, <PfIj#J)j,&y)Ip2t> etc., where in general p2 # p. Hence 

if one knows how to calculate Eq. (V. 12) one can certainly calculate Eq. (V. 11) but 

not the other way around.’ 
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APPENDIX A 

In this appendix we give an alternative proof that the o!3 contribution to the 

up-down asymmetry is given completely by the imaginary part of the diagrams 

shown in Fig. 2a and 2b. In Section 2c we have shown this by using the properties 

of Feynman diagrams. In this appendix we show this directly using T and P J 

invariances and the unitarity of s matrix. 

Let us write the s matrix in the form 

<flsli >= sif -t i(2n)* a4(pf -pi)<f)Ali> 

where 

(A* 1) 

Unitarity of s gives 

+e3A3+... (A* 2) 

<fiA+Ii> =<flAlij - i(2r)4 C <f(Ain><nlA+li> a4(pi - pn) 
n . 

The asymmetry is proportional to 

(A.3 

A= W-4) 

We consider this in the laboratory system, Fig. 3. Alh3 and hf are helicity states 

and It> and II> are eigenfunctions of angular momentum J 
Y 

for the initial proton. 

Decomposing iI> and II> also into helicity states 

lt>=>(]$> +il-$>) and iI>= -&(I$>-iI-+>) 

we can write Eq. (A.4) as 

A= -$ (A* 5) 



The time reversal invariance implies 

<flAti >* = <TflACITi> (A* 6) 

Let us use the coordinate system defined by’ Fig. 3 and let R be a rotation by r 

about the y axis. Then we have 

Rl’lp,h, > = rl l~2h2.> (A4 

where q is a phase independent of A2. ’ 

Using Eqs, (A. 6) and (A. 7), Eq. (A. 5) can be written as 

A= -2 Im C 
?i x3hf 

<P3X3Pfxf IA’1 PIXIP~ f ><P~~~P$~/A+IPLA,P - f >* (A* 8) 

Substituting the unitarity relation-(A. 3) into (A. 8) adding the resultant A to the A 

obtained in Eq. {A. 5) and dividing the expression by 2, we obtain 

A=.- Im 

(A. 9) 

Where we have used short hand notations 

+<p3h3pf’lfI, 12 =I 1 1 A,- ‘p x p 1>, I- f>z lplAIp2 - f > and 2 2 

a4 AA”“c$(pi - p,) A(n> < n(A’. 
n 

Applying the antiunitary operator RT defined in (A. 7), we see that the last term in 

Eq. (A. 9) is real and therefore it can be ignored. The first two terms in Eq. (A. 9) 

can be further simplified by using the invariance under Y = e -inJyp, 

Since YIpA> = qf(-l)s-xlp-X>, where 7’ is a phase independent of p and A, 

wehaveYI$> YI-$>*=-l-$>l i>*. Thus Eq. (A.9) can be written as 

A=2Re C (zs)~<)s~ AA’ li><I~l-i>* 
. 

VShf 
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For the a3 contribution to A, A in <iA I - $ >* can be either e2A2 or e3A3. In the 

former case < 1 ia AA’ I$ > represents the absorptive part of the two photon 

exchange diagrams. On the later case <IhI - f >* represent the bremsstrahlung 

emission from the electron lines and < 1 a4 AA’ I$ > represent the absorptive 

part of the bremsstrahlung emission from the hadrons. In both of these cases 

</AI-$ * > in Eq. (A. 10) does not have any absorptive part, hence AS = A for 

this matrix element. Changing from the helicity representation back into the 

angular momentum representation we have 

A=R;Gf i(2rf{<164AAClt><lAlt >* 

- <164AA+l+~<\Al{ >* ++4A.A+l+><1Alf>* 

- +4AA+lt><(All>*/ (A. 11) 

Applying the invariance under PT, Eqs. (II. 8) and (II. 9), to the first and the third 

terms inside the curly bracket-and using PTA(PT)-’ = A+, we see that the first 

term is complex conjugate of the second and the third term is (-1) times the 

complex conjugate of the fourth, Hence the third and fourth terms and the Re 

symbol can be dropped from Eq. (A. 11). 

A=e6x A5 X(<IA2Y5gJhZ>t< Jr(zn)*a4A2A$X2> 
123f 

I- <IA3Y5:1~2 >*< (i(2nJ4 s4AlAiIh2> 1 

The first term corresponds to the class of diagrams represented by Fig. 2b and 

the second term corresponds to those diagrams represented by Fig. 2a. ‘Hence 

we have reproduced all the results contained in Section 2c without using the 

properties of Y matrices. From Eqs. (A.2) and (A. 3) we see thatdi(2x)464A2A2fIh2> 

in Eq. (A. 12) is 2i times the imaginary part of the two photon e?change diagram 

<IA41 h2 > and hence can be obtained from Cutkosky rule Eq. (B. 5). 
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APPENDIX B 

CUTKOSKY RULE 

In Chaper IV we have used the Cutkosky rule 19 to obtain the imaginary part 

of the two photon exchange diagram. It is easy to see the rule as applied in our 

calculation is equivalent to the unitarity relation. Using the notation of Appendix A, 

the unitarity of s gives 

<iA4 - Ai/ h2 > = <li(2r)484<A21h2> P. 1) 

Suppose we are interestedin the contribution from an intermediate state con- 

sisting of one electron denoted by p’ and one proton denoted by p. fnserting the 

states of these two particles and summing their spins, Eq. (B. 1) becomes 

i<lAi s (2r)“s4(pl+p2-p-p’) $$- 2 1 (2nj6 $+W g’+m)A21h2’ . 

+ = i<lA2 A2> 

PW 

Now except for the factor i in front of < I, the expression (B.2) is exactly what 

one obtains by applying the Cutkosky rule to the usual Feynman rule for the two 

photon exchange diagram. ’ The origin of i in front of < 1 is that the usual Feynman 

rule refers to the s matrix element which differ from the matrix element of A by , 

a factor of i (see Eq. (A. 1)). Since we are interested only in the interference 

terms between two matrix elements, only the relative phase between them enters 

into the problem and the factor of i above always get canceled out as long as we 

use the same phase convention for the two matrix elements, 

In order to illustrate some of the interesting features of the two photon 

exchange mechanism and the use of Cutkosky rule, let us consider an integration 
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whose real and imaginary parts are 20 known 

b = J id4k 

i k2-2pl. 
=- - 

k)(k2+2p2. k){(k-q)2- X2 (k2 - X2) 
(B. 3) 

This integration occurs in the two photon exchange diagram in the e-e scattering 

shown in Fig. 9. The answer is correct in the limit s>>m2 >> A2 and -q2 >> m2, 

where s = (pl + P,)~, q2 = (pl - P,)~, pt = pl = m2 and X2 is the fictitious mass 

of the photon for handling the infrared divergence. 

Applying the Cutkosky rule we can easily calculate the following integration 

Comparing Eq. (B.3) with Eq. (B.4), we obtain 

2i Im b = bcut (B-5) 

Equation (B.3) is not easy to calculate whereas Eq. (B.4) is relatively easy. 

Hence the Cutkosky rule is just a quick way to obtain an imaginary part of a matrix 

element. Equations (B.3), (B.4) and (B.5) give correct sign and numerical factors 

in applying the rule. 

This example also shows that in general the two photon exchange diagram has 

infrared divergence in both the real and imaginary parts. The reason that we do 

not have infrared divergence in the up-down asymmetry is that the infrared divergent 

part is always proportional to the lowest Born diagram, which does not produce any 

We also notice that the imaginary part is finite as m2-0, up-down asymmetry. 

whereas the real part diverges logarithmically as m2 -0. (Compare with 

Appendix D. ) 
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APPENDIX C 

In this appendix, we show explicitly that the infrared divergent part of the 

matrix element is proportional to the lowest order diagram and hence does not 

contribute to the up-down asymmetry. The matrix element for the two photon 

exchange diagram shown in Fig. 6b can be written as (ignoring numerical factors) 

T2 = u(p,) ii* y5 r*o(q- k) 
g+&+M 

k2+2p2 l k 

fgk) u(p2) 
1 1 

(q-k)2- X2 k2- x2 

Since the infrared divergence occurs at k-0, the infrared divergent part 

Of M2 can be obtained by letting all the k’s in the numerator and in the denominator 

(q- k)2 - A2 equal to zero. We also note that 

9r 

1 + ml Y’ u(p,) = 2~: u(~,), 

and 

fpW - 
k- 0 yp 

iB 2 + w Ycl U(P,) = 2P2c1 u(p2). 

Hence the infrared divergent part of M2 is equal to 

T2 infrared = ~(P2)Yxu(P1)~(Pf)Y5 K*,(S) u(p2) + 
q 

x4(p1’p2) J A3L 
(2$ (k2-2pl, k)(k’+2p2. k)(k2- h2, 

which is proportional to the lowest order graph Tl shown in Fig. 6a. 
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Even though there is no infrared divergence in the up-down asymmetry, in 

practical calculations one has to be careful in choosing the coordinate system in 

order to avoid the i&grand to blow up near k2 -0 (see Chapter lV and Appendix D). 



APPENlXX D 

In this appendix we show that no singularity will be induced by ignoring the 

mass of the electron in the two photon exchange contribution. to the up-down 

asymmetry At. We have shown this explicitly in Chapter IV that when the hadron 

intermediate state is a proton and the final hadron state is N*, via Ml transition. 

Using gauge invariance we show that this is true also for an arbitrary final and 

intermediate hadron state. When the mass of the electron is ignored qf2 vanishes 

when $ is parallel to(t*P3. (See Fig. 7b.) Whena, is almost parallel to&, qt2 is 

proportional to @I2 where 0, is the angle between j,p, and &‘. The solid angle is 

proportional to 0,, hence all we need to prove is that L fivh B 
WA 

is proportional 

to 6, when\*p3 and p, are almost parallel to each other and the mass of the electron 
I 

is ignored. Let us choose the direction of q, = p, - p3 as the z axis, and both p, 
Irr Y Y’ 

and p3 are on the xz plane in the center-of-mass system. When-the mass of 

electron is ignored we have 

q,2 I (p’ - P,)~ = qf - q+‘E3@f2 

Let us consider first the case when the.masses of the final and the intermediate 

hadron states are not equal to each other, so that qb # 0. Then from Eq. (D. 1) 

we may write 

tD. 1) 

(D. 2). 

Equation (D. 2) together with current conservation qfA B 
WA 

= 0, yields 
- 

B 
wo 

=B 
WJ= P- 3) 

In the same coordinate system, the four vector p3 (mass ignored) can be written 

as 

p3x = E3(l, sin e3,0, cos e3) 
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where 

Hence 
e3 = 8’ El/Q’ 

x 
p3 BCrvA = E3 Bpvo - f$vzCOS e3 - Sin e3 Bpvx Z- E3E’B’/Q’ BClvx+ O(0f2) 

( 1 
w 4) 

When the spin of the electron is ignored, the lepton trace L VA/J is equal to 

8~; pkpf as shown in Eqs. (IV, 2) and (IV. 3). Hence L vx/-$ 
WA 

= 8’ as desired. 

Now suppose we restore the spin of the electron, but ignore its mass, we have 

from Eq. (lV.2) 

= @(Y c1p1YV~3)- 8$p~Yv&3)+P;(gYpYv $3) 

Using the previous arguments, the terms proportional to pk and plx = pk -t qtx 

in Eq. (D. 5) yield terms proportional to 8’ in L V$ 
VXfi’ 

We notice that in the 

rest of the terms in Eq. (D. 5), g3 andg, are next to each other inside the trace. 

Wheng3 and E* are parallel to each other, these terms are equal to zero separately 

if the mass of the electron is ignored. Hence we have proven that the neglect of 

the mass of the electron does not cause any singularity in the imaginary part of 

the two photon exchange diagram for arbitrary final and intermediate states of 

hadrons provided that they have different invariant masses. 

We next consider the case in which the virtual photon is coupled to the hadrons 

with identical invariant masses such as ypp or yN*N* couplings. The vertex 

labeled /A with momentum transfer 1~ in Fig. 6b is such an example. In this case . 
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the energy transfer is zero in the center-of-mass system and hence Eqs. (D.2) 

and (D.3) are meaningless. We notice that in this case the vanishing of qr2 in the 

forward scattering is independent of the mass of the electron as can be seen from 

Eq. (IV. 12) where &!I2 and T$ are now equal to each other, We also notice that 

in this case the kinematics is such that in order to have a vanishing qV2, all four 

components of q, must vanish, which is precisely the infrared limit, Since we 

know there is no infrared divergence for the up-down asymmetry independent of 

the value of the mass of the electron we conclude that the mass of the electron can 

be ignored in this case as well. In contrast to the previous case the nonexistence 

of the infrared divergence depends critically upon the fact that there are odd 

numbers of y5 in B Pvh hence it is true only for the asymmetry, but not true in 

general for the imaginary part of the two photon exchange diagram, (See Appendix 

BandC.) 

This observation not only enables us to ignore the electron mass in this kind 

of calculation but also tells us that there will be no terms such as a! .&@/m2) and 

a! J!n(-q2/m2j in the asymmetry At. It should be emphasized however that in the 

actual numerical integration with respect to the solid angle of p,, even though we 

have proven that the singularities due to the two photon propagaotrs are canceled 

by the zeros in the numerator, one has to choose coordinate systems properly, 

otherwise the integrand is too singular to perform the numerical integration even 

if the electron mass is not ignored. In Chapter IV, we have chosen the z axis to 

be along g3 when ,p’ is almost parallel tog3 and the z axis to be along gl when &’ 

is almost parallel to p Ir*l. We have found no trouble occurred even if the mass of 

the electron is ignored. 

- 46 - 



REFERENCES AND FOOTNOTES 

1. N. Christ and T, D. Lee, Phys. Rev. 143, 1310 (1966). 

2. J. R. Chen et al. ,-Phys. Rev. Letters 2l, 1279 (1968), and Phys. Rev. -- 

(in press). 

3. S. Rock et al., I- Report No. SLAC-PUB-720, Stanford Linear Accelerator 

Center, (1970). 

4. Y. S. Tsai, Phys. Rev. 122, 1898 (1961). 

5. A. 0. Barut and C. Fronsdal, Phys. Rev. 120, 1871 (1960); F. Guerin and 

C. A. Piketty, Nuovo Cimento32, 971 (1964). 

6. In the kinematical region between one pion threshold and the peak of the 3-3 

resonance, the main contributions to the cross Sections are from the p wave 

3-3 resonance and the s wave pion production. The latter contributes about 
. 

10% to the cross section at the peak. However the s wave part can be roughly 

reproduced by Born diagrams which are real, hence we do not expect the s 

wave part to contribute to the up-down asymmetry in Fig, 2a. On Fig. 2b, 

the up-down asymmetry is independent of the phase of the final state, hence 

the argument given above does not apply. In a more complete treatment of 

the problem the s wavg part has to be included in both the denominator and 

the numerator of At in Eq. (IV. 13). 

7. In the calculation of the asymmetry do-()) - do-(j), s is set equal to (0, 0, 1, 0) 

and hence 

8. Since we are always dealing with the interference between two matrix elements 

as given by Eq. (II. 14), we need to know only the relative phase between Tl 

and T2. However it is convenient to define the phase of a matrix element 

such that the absorptive part of a matrix element corresponds to the imaginary 

- 47 - 



part. This is automatically accomplished if we use the T’matrix elements 

instead of the s matrix elements. In the text books, usually the Feynman 

rules for constructing the s matrix elements are given. In order to obtain 

T matrix elements, all one needs to do is to multiply a factor i on the s matrix 

element. (See Appendix B. ) 

9. A. J. Dufner and Y. S. Tsai, Phys. Rev. 168, 1861 (1968). 

10. Since we are going to evaluate the traces by explicitly multiplying y matrices, ‘- 

it is convenient to choose an expression which contains least number of y 

matrices. The expression @I. 5) for the ypp vertex was chosen for this reason. 

11. We notice that in Eq. (ICI. 8), the trace involving the lepton line Lclv is 

symmetric with respect to the interchange pl- p3 and thus we need to consider 

only the term pl . E /pl l k in (p, l E /p3 l k - pl l e/pi. k). The contribution 

from the other term p3 l e/p3 . k can be obtained hy a simple substitution 

,pl-% after the integration with respect to the solid angle of k. In order to 

reduce the integrations into the forms shown in Eq. (III. 13) we have to rotate 

the coordinate system from Fig. 3 into a new one where the xf .s.xis is along 

,pl and the z, axis is along ,pl x ,p3. In this coordinate system many terms 

drop out because they are odd in Cpi 

12. C. Mistretta, J. A. Appel, R. J. Budnitz, L. Carroll, J. Chen, J. R. Dunning, Jr., 

M. Goitein, K. Hanson, D. C. Imrie, and R. Wilson, Phys. Rev. 184, 1487 

(1969). 

13. The seriousness of this approximation may be judged from its effect on the 

Born term. There we find that in Eq. (III. 28) the factor (Qi + (Elf + E3a)2) 

‘2 would be replaced by (-Q1 t (Elm t E3d2) in the spinless electron approximation. 

This is a very shlight change in kinematical region of interest. 

- 48 - 



14. J. Bernstein, G. Feinberg, ‘I’. D. Lee, Phys. Rev. 139, 131650 (1965). 

15. J. H. Christenson, J. W. Cronin, V. I. Fitch, and R. TurIay, Phys. Rev. 

Letters l3, 138 (1964). 

16. L. H. Hand, Phys. Rev. 129, 1834 (1963). - 

17. Y. Nambu and E. Shranner, Phys. Rev, 128, 862 (1962); S. L. Adler and 

F. 3. Gilman, Phys. Rev. 152 1460 (1966); Y. Nambu and M. Yoshimura, 

Phys. Rev. Letters 24, 25 (1970). 

18. C. K. Iddings, Phys. Rev. 138, B446 (1965). 

19, R. E . Cutkosky, J. Math. Phys. ‘1, 429 (1960). 

20. M. L. G, Redhead, Proc. Roy. Sot. (London) A220, 219 (1953); R. V. Polovin, 

J. Exptl. Theoret. Phys. (USSR) 3l, 449 (1956); Translation: Soviet Phys. 

JETP 4, 385 (1957); Y. S. Tsai, Phys. Rev. 120, 269 (1960) and unpublished 

note. 

- 49 - 



i 

--I---- 
l 

d- . 



f’ 

-+ 
A 

q 

k 

PI 
(a) 

x pl n 

PI P2 PI 
(b) 

p2 

1558A6 

FIG. ~--TWO classes of Feynman diagrams which contribute to the up-down asymmetry. 
f, f’ and n are arbitrary states. p2 represents the polarized target proton. p1 
and p3 are incident and outgoing electrons respectively. 
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FIG. 3--Coordinate system used in the calculation. 
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