
SLAC-PUB-715
March 1970.
W=C)

GENERALIZED IBM SYSTEM 360 SOFTWARE MEASUREMENT*

R. H. Johnson and T . Y. Johnston

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305

(Submitted to Datamation.)

-‘Work supported by the U. S. Atomic Energy Comn-iission.

I
The areas of computer hardware and software measurement are currently

receiving a great deal of attention, This is because computer hardware and soft-

ware have become increasingly complex, and some performance evaluation

techniques are necessary to improve or even measure either hardware or soft-

ware efficiency. This paper is an attempt to show how a generalized software

monitor might be utilized to do this.

For some time now the staff of Computation Center at the Stanford Linear

Accelerator Center (SLAC) has seen the need for a way of measuring the per-

formance of programs which run on our computer. We are presently using an

IBM System 360 Model 91, primarily for the analysis of particle event data pro-

duced by the operations of the Linear Accelerator in high energy physics research.

Our computing load is increasing rapidly.

Our computing load can be divided into two dominant categories.

1. Production runs of relatively few programs, of complex

structure, which use large amounts of CPU time.

2. Many short runs using language translators, data set

utilities, linkage editors, and other externally supplied

software.

Even slight improvements in the efficiency of either our production programs

or externally supplied software can produce great savings in computer time for I

us.

Early this year we set about to create a software measuring program. Com-

mercial package programs were already available to perform this function, but

their use was ruled out. We run the MVT option of the 360 Operating System on

our computer (multiprogramming with variable number of tasks). This enabled

us to design a very simple, but effective, monitoring system of our own. The

-2-

MVT option allows us to attach virtually any program structure as a subtask

under our monitor.

Program structure is determined by how programs link to one another.

Programs running under OS MVT can link to other programs in at least five ways.

1. LINK - ,Control is passed to another program module (which may

have to be fetched from external storage). The parent module re-

ceives control back after the LINKed to module has finished

executing.

2. ATTACH - The parent module creates a subtask. Both modules

can vie for access to the CPU. The subtask merely informs the

parent task when it has finished, but otherwise they operate in-

dependently of each other. For the previous case (LINK), the

parent module remains inactive until control is returned to it.

3. XCTL - Similar to LINK, except that when the called module

finishes executing it returns to the module which invoked the

parent module and not the parent module.

4. To conserve core storage, some programs are constructed so

that various of their subprograms can overlay each other in core

storage as control passes from one subprogram to another. When

this occurs, a part of the Operating System called the overlay

supervisor is invoked which performs the function of fetching the

desired subprogram, loading it into the proper part of core stor-

age and then passing control to the loaded subprogram.

5. LOAD - A module may be brought into core storage from external

storage and have control passed to it by a branch instruction later

on. This differs from the use of LINK, since when a module is

LINKed to, it receives control immediately.

-3-

I

A possible program structure might be as follows:

MODULE C MODULE D
4 I

MODULE E

Our monitor program is capable of recognizing passage of control by any of

the above five methods of linkage. The monitor keeps records, while the meas-’

ured subtask runs, of which modules are in control and what their status is.

The subtask is relatively uneffected by the monitor, which is the main task.

Periodically, at fixed time intervals, the monitor interrupts execution of the

subtask and records certain statistics about the state of the subtask when it was

interrupted. These include:

1. Xdentif ier for task(s) currently active

2. Name of the module active in the task

3. Number of the highest overlay segment in core for the active module

4. Load address of the active module

5. Code telling wheth%r the module was running or waiting

6. Core address when module was sampled.

-4-

After the program structure to be measured has finished execution, a post-

processor is evoked which summarizes these data produced by the monitor. Out-

puts produced by the post-processor include:

1. A timeline showing flow of control from module to module as the

subtask executed.

2. A summary of modules encountered and totals of the number of

times each was found waiting or running. A typical example is

seen in Table 1.

3. A wait and run histogram which graphs frequency of PSW address

at interrupt versus core location range. We generally set this

range (or “bucket” size) at 10016. An example of a run histogram

is given in Fig. 1.

Notice that bucket addresses are given both in absolute and relative to the

beginning of the module load address. This greatly facilitates reference back

to linkage editor maps and assembly listings.

The overall flow of control of the monitor is as follows:

USER PROGRAM ’
ATTACHED As SUBTASK

USER PROGRAM EXECUTES AND
IS INTERRUPTED PERIODICALLY
DURING EXECUTION TO PRODUCE
DATA FILE

r
POST-PROCESSOR

SUMMAIUZES DATA FILE

,
PRINTED REPORTS

By scrutinizing this final output one can determine the percent of total time

each module was active and the percent of time it was running or waiting. The

histograms tell roughly what proportion of the time a module executed its own

code, and the proportion of time the module spent in executing code in Operating

System I/O Access Routines. Frequently executed loops show up as peaks on

the histogram.,

By referring to the histograms, and to assembly listings of the code being

measured, it is possible to correlate peaks on the histogram with actual identi-

fiable sections of code. In some cases, by recoding certain sections of a pro-

gram, decreases in running time can be achieved.

We have already received dramatic savings in CPU time by monitoring two

of our most heavily used production programs, In both cases we examined the

run histograms and noticed some very large peaks which accounted for a large

proportion of the total CPU time used by the programs,, In one case we recoded

a critical routine from FORTRAN into Assembler language and reduced total CPU

time per run by 35 - 40%. The other program was one that accounts for one third

of all our CPU time. In it we found an unnecessary error checking procedure.

This was removed and cut total CPU time per run by 15%.

As indicated previously, the idea of monitoring the execution of a program

is not new, but our monitor has one characteristic which is unique, That is, it ,

can be used to measure the performance of system routines as well as user

routines. The subtask running under our monitor can be a compiler, an assem-

bler, a data set utility, or a linkage editor, etc. , as well as a user program.

Most existing software measuring programs must be somehow incorporated into

the program to be measured (usually by a subroutine call or link editing) through

some special processing. The combined programs are then run to make the

-6-

.

measurements 0 To do this with something like the IBM Fortran H compiler

would be a prodigious task. Our monitor requires no modification in the program

to be measured, which means we can very easily measure the executing char-

acteristics of a compiler.
\

We have already,made some measurements on a few of the IBM supplied

processors and would like to briefly describe them here.

Fortran H

At our installation this is the most frequently used language processor. We

keep statistics on number of calls to each program on our system and Fortran H

amounts to almost half of our total calls. We therefore chose this processor as

the first one to investigate. The test compilation was approximately 800 cards

in length and consisted of thirteen subroutines. The compiler itself is an overlay

module with 13 overlay segments. The segments are called into core in a fixed

order as each subroutine is compiled. The statistics we gathered are given in

Table 1.

Part of the OS I&VT system is a program called FETCH. FETCH is respon-

sible for locating program modules on external storage (drum or disk) and bringing

them into core memory so that they may be executed.

That part of our post-processor output which summarizes total wait and run

time showed that of the 10.2 set of CPU time used by the compiler, 30 percent of

that time was spent in program FETCH bringing in overlay segments, and that

96 percent of all the wait time was also in FETCH. This would suggest that it

would be futile to attempt to streamline the code of the compiler in order to

decrease running time, since program FETCH is the real bottleneck! This also

shows that the time it takes to compile a given program will depend heavily on

how m,any subroutines the program has, since each additional subroutine implies

a fixed number of calls to program FETCH.

-7-

PL/I F

So far we have made only a few simple tests of this compiler. We have

’ discovered that it spends 20% of all its CPU time in program FETCH, We are

in the process of making further measurements.

Assembler F versus Assembler G

In the future world of %nbundled” software the buyer of software is apt to

be confronted by multiple packages which have similar external characteristics

(i.e., input and output formats),but which operate quite differently internally.

It is our contention that a monitor such. as ours can be used to compare competing

software packages D As an example of what might be done we have made a com-

parison of Assemblers F and G.

Assembler G is a modification of IBM’s F assembler. Assembler G was

produced at the University of Waterloo in Waterloo, Ontario. The main modi-

fication effected was to improve buffering of the assembler’s input and output.

To illustrate the effect of this change see Table 2. Our test case was an assem-

bler language program some 6000 cards in length.

Detailed examination of the histograms showed that ASMF modules spent

considerable more time in OS Access.Method code (doing Input/Output) than did

ASMG. This is reflected in the fact that our job accounting data shows that

ASMF, has, on the average, a higher elapsed time/CPU ratio than ASMG.

While the results of this test might be of some interest, a second test we

made was considerably more enlightening. It is known by those who use the

assemblers that they use up vast amounts of computer time when called upon to

do expansion of Macros. A Macro is a code skeleton, usually of many instruc-

tions, with dummy operands. The user writes the Macro with its actual operands

just as he writes machine instructions with their operands,, The assembler then

-8-

.

“expands” the Macro by filling in the dummy operands with actual operands and

generating the actual machine instructions. 1n.a sense a Macro enables the

’ assembly language programmer to use abbreviations for frequently written se-

quences of code, We decided to try and find out how ASMG and ASMF compared

at Macro expansion and also to locate that section of code which uses all the

CPU cycles. As a test example we used an 800 card input to the assemblers

that consisted almost entirely of deeply nested Macro expansions (i, e, , Macros

within Macros). The results for both assemblers are summarized in Tables 3

and 4.

Even the relatively unsophisticated person can tell by glancing at the tables

that the module ASMGF3 (or IEUF3) is the one using all the CPU time. It can

also be seen that ASMG has at least eliminated the necessity for large amounts

of input/output to do Macro expansion. For those interested, Fig. 1 is a histo-

gram which shows how CPU cycles are distributed relative to the beginning of

the ASMGF3 module. Perhaps some systems programmer might devise a way

to modify the frequently executed code to increase running efficiency! This ex-

ample points out,by the way,that a monitor such as ours can make it possible for

a person who is not familiar with all the code in a large system to improve its

running efficiency. He can do this by looking for the “critical bottleneck” (if

there is one)and then optimizing its code.

Improvements

We hope soon, as part of our analysis program output, to produce a matrix

showing total number of calls from module to module. This will be of help

especially in programs with complex overlay structures. From the matrix a

user would have a much better idea of where to place modules in his overlay

segments so as to minimize the number of calls to the overlay supervisor.

-9-

.

Conclusion

We think we have demonstrated that it is possible to measure the external

’ running characteristics of user and systems software and thereby gain some

understanding of their faults and advantages without having to delve into the actual

code of the program involved. We feel also that our monitor can be used to

compare competing software packages as well as to improve existing ones.

We believe that it may even be possible, by using the monitor, to relate

program structure to demands made on the system. We would like to measure

programs compiled in different higher level languages that perform exactly the

same function. Just as ASMG and ASMF have the same inputs and outputs, so

might a user-written FORTRAN, PL/l or ALGOL program; but ‘yet because of

techniques used by the compilers, they may make vastly different demands on

system resources.

- 10 -

.

TABLE1

FORTRAN H COMPILER IEKAAOO

Number of Number of times
Overlay Segment found waiting

Number of times
found running

Percent of !time
in control

1 17

2 197

5 158 58

6 52

7 22

8 35

9 82

10 109

13 139

1

69

30

4

29

68

10-6

42

1.5

20.5

18.0

,6, 8

2.2

5.3

12.5

'17,.9

15.1

TABLE 2

ASMF

ASMG

Number of times
found waiting

4409

1561

Number of times
found running

774

664

Total CPU time
(seconds)

18.2

18.0

TABLE 3

ASSEMBLER G

Module Name Number of times Number of times Percent of time
found waiting found running in control

ASMG

ASMGFB

ASMGISO

ASMGF3

25 1.6

47 30 4.2

1 2 0 0.1
\

9 1614 89-l

ASMGRTA 2 1 0.2

ASMGF7 17 la8

ASMGF8 30 17 2.6

ASMGFPP 7 I 0.4

TABLE 4

ASSEMBLER F

XIc,-l..l^ XT..- ̂ Number of times Number of times Percent of time
lvJ.uuult.? 1~kLlIltj found waiting found running in control

ASMF 3 0 0.0

IEUM&C 16 0 0.1

IEUFl 29 5 0.2

IETJFB 209 86 1.4

IEUFS 17308 3115 96.5

IEURTA 15 0 0.1

IEUF7 91 24 0.5

IEUFl 17 2 0.1

IEUF8 148 15 0,8 .

IEUFPP 73 5 0.4

03
E2

00

03
EE

O
O

03

FD
O

O

04
01

00

04
03

00

04
09

00

04
O

AO
O

04

0B
O

O

o4
oc

oo

04
O

D
O

O

04
0E

O
O

04

0F
O

O

04
10

00

IT
1 a.

cn

04
11

00

i
04

12
00

d

04
13

00

04
14

00

04
15

00

04
17

00

04
18

00

b

00
00

00

00
00

00

00
00

00

O
O

O
O

FO

00
02

F0

00
08

F0

00
09

F0

O
O

O
AF

O

O
O

O
BF

O

O
O

O
C

FO

O
O

O
D

FO

O
O

O
EF

O

O
O

O
FF

O

O
O

lO
FO

O

O
llF

O

00
12

F0

00
13

F0

00
14

FO

00
16

F0

00
17

F0

PE
R

C
EN

TA
G

EO
FT

O
TA

L

t- l- I

15
49

Al

-

1

.-G
-

_-

_I

