SLAC-PUB-713 March 1970 (TH) and (EXP)

MUON INELASTICITY IN UNDERGROUND

COSMIC-RAY NEUTRINO INTERACTIONS*

J. D. Bjorken

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

ABSTRACT

The inelasticity of the secondary muon in high-energy neutrino interactions, defined in a manner appropriate for the deep-mine cosmic-ray experiments, is computed. On the basis of the hypothesis of locality of the lepton current, $\langle E_{\mu}/E_{\nu} \rangle = 0.62 \pm 0.12$.

(Submitted to Nuovo Cimento.)

Work supported by the U. S. Atomic Energy Commission.

In order to interpret underground cosmic-ray neutrino experiments, ^{1,2} it is necessary to estimate the fraction of energy $\epsilon = \langle E_{\mu}/E_{\nu} \rangle$ retained by the muon in the interaction which absorbs the neutrino. The purpose of this note is to show that, provided only that the lepton current is of local V-A form, the effective ϵ for the high-energy contribution is given by $\epsilon = 0.62 \pm .12$, where the limits are absolute.

Let E_{ν} = neutrino energy, E_{μ} = muon energy at production, and let $\nu = E_{\nu} - E_{\mu}$. Assume that the muon ionization loss $dE_{\mu}/dx \cong$ constant and range fluctuations may be ignored. Assume the incident differential neutrino spectrum can be approximated ^{3-5,6} by a power law⁷ spectrum $\sim E_{\nu}^{-\gamma}$. Then the rate for detecting muons underground in a given element of solid angle is

$$R = C \int_{0}^{\infty} dE_{\nu} E_{\nu}^{-\gamma} \int_{0}^{E_{\nu}} dE_{\mu} E_{\mu} \left(\frac{d\sigma}{dE_{\mu}}\right)$$
(1)

where the nature of the constant C is not important for the argument here.

Conventionally, in the cosmic-ray literature it is assumed that the muon carries off a unique fraction ϵ of the neutrino energy; i.e.,

$$\frac{d\sigma}{dE_{\mu}} = \frac{d\sigma}{d\nu} = \sigma(E_{\nu}) \ \delta(E_{\mu} - \epsilon E_{\nu})$$
(2)

where ϵ in principle could vary with E_{μ} .

With this artifice, the rate underground becomes

$$\mathbf{R} = \mathbf{C} \int_{0}^{\infty} d\mathbf{E}_{\nu} \mathbf{E}_{\nu}^{1-\gamma} \sigma(\mathbf{E}_{\nu}) \epsilon$$
(3)

If one assumes that the lepton current is local the cross section for the process

$$\nu_{\mu}(\bar{\nu}_{\mu}) + N \rightarrow \bar{\mu}(\mu^{+}) + hadrons$$

- 2 -

may be written (upon neglect of the muon mass) as

$$\frac{d\sigma}{dE_{\mu}} = \sum_{n=0}^{2} \left(\frac{E_{\mu}}{E_{\nu}}\right)^{n} f_{n}(\nu) \equiv \sum_{n=0}^{2} \frac{d\sigma_{n}}{dE_{\mu}}$$
(4)

To obtain this form⁸ requires an approximation, valid for $\nu \gg 1$ GeV. The correct expression would modify the value of E_{μ} and E_{ν} in Eq. (4) by an amount which is at most 0.5 GeV.

The $f_n(\nu)$ in Eq. (4) are non-negative functions, being the contributions from hadronic final states of helicity -1, 0, +1 (+1, 0, -1 for $\bar{\nu}_{\mu}$ incident) for n = 0, 1, 2 respectively. To protect our approximation,⁸ we hereafter take $f_n(\nu) = 0$ for $\nu < \nu_0$ (ν_0 could be taken ~ 5 GeV). The remaining low - ν contribution may be separately computed with the help of the data⁹ from CERN.

From Eq. (4) it is straightforward to show that

$$f_{n}(\nu) = \frac{1}{n!} \frac{d^{n+1}}{d\nu^{n+1}} \nu^{n} \sigma_{n}(\nu)$$
(5)

where

$$\sigma_{\mathbf{n}}(\mathbf{E}_{\nu}) = \int_{0}^{\mathbf{E}_{\nu}} d\mathbf{E}_{\mu} \left(\frac{d\sigma_{\mathbf{n}}}{d\mathbf{E}_{\mu}}\right)$$
(6)

as defined by (4).

To compute the rate R we insert (4) into (1) and change orders of integration.

$$R = C \sum_{n=0}^{2} \int_{0}^{\infty} d\nu \int_{\nu}^{\infty} dE_{\nu} E_{\nu}^{-\gamma-n} (E_{\nu}^{-\nu})^{n+1} f_{n}^{(\nu)}$$
$$= C \sum_{n=0}^{2} \frac{\Gamma(\gamma-2) (n+1)!}{\Gamma(\gamma+n)} \int_{0}^{\infty} d\nu \nu^{2-\gamma} f_{n}^{(\nu)}$$
(7)

Using (5), we obtain after integrating by parts 10

$$\mathbf{R} = \mathbf{C} \sum_{\mathbf{n}=0}^{2} \left(\frac{\mathbf{n}+1}{\mathbf{n}+\gamma-1} \right) \int_{0}^{\infty} d\nu \ \nu^{1-\gamma} \ \sigma_{\mathbf{n}}(\nu) \tag{8}$$

For $\gamma \approx 3$, as computed by Cowsik <u>et al.</u>,⁴ and Osborne <u>et al.</u>,³ we find from (8) and (3)

$$R \approx C \int_{0}^{\infty} d\nu \ \nu^{-2} \left\{ \frac{1}{2} \sigma_{0}(\nu) + \frac{2}{3} \sigma_{1}(\nu) + \frac{3}{4} \sigma_{2}(\nu) \right\}$$
$$\equiv C \int_{0}^{\infty} d\nu \ \nu^{-2} \left(\sigma_{0}(\nu) + \sigma_{1}(\nu) + \sigma_{2}(\nu) \right) \epsilon$$
(9)

We see that ϵ must lie between $\sim \frac{1}{2}$ and $\sim \frac{3}{4}$, independently of energy with a slight modification possible when the contributions from low ν , which we have omitted, are included.

The estimate of ϵ can be sharpened by observing that upon including only the dominant $\Delta S = 0$ neutrino processes, ¹¹ then charge-symmetry⁸ equates $\bar{\sigma}_0$ for antineutrinos incident to σ_2 for neutrinos incident, ¹² and $\bar{\sigma}_1$ to σ_1 . Therefore there are good theoretical grounds for asserting

$$\begin{split} \bar{\sigma}_{0}^{}(\mathrm{E}) &\approx \sigma_{2}^{}(\mathrm{E}) \\ \bar{\sigma}_{1}^{}(\mathrm{E}) &\approx \sigma_{1}^{}(\mathrm{E}) \\ \bar{\sigma}_{2}^{}(\mathrm{E}) &\approx \sigma_{0}^{}(\mathrm{E}) \end{split} \tag{10}$$

Therefore were the ν and $\overline{\nu}$ fluxes equal, or were $\sigma_0 \approx \sigma_2$ as in Harari's model¹³ or other "diffraction" models, ¹⁴ then the mean inelasticities would be

$$\epsilon \simeq \frac{2\gamma-1}{\gamma^2-1} \approx \frac{5}{8}$$
 n=0,2

- 4 -

 $\epsilon \approx \frac{2}{\gamma} \approx \frac{2}{3}$ n=1 (11)

Thus in the estimate $\epsilon = .62 \pm .12$ the quoted uncertainty is conservatively large.

We have neglected the effect of electromagnetic corrections, which will tend to reduce ϵ . While we know of no detailed calculation of this effect, a rough estimate gives a correction of at most a few percent.

In conclusion, we emphasize that a radical revision of present ideas of weak interactions, specifically a nonlocality of the lepton current, is implied by a value of ϵ much different from $.62 \pm .12$. The existence of nonlocality of the weak interaction arising from exchange of an intermediate boson between lepton and hadron does <u>not</u> modify the result (to the extent that W production by neutrinos can be neglected). Either the pure Fermi coupling or the W-exchange model satisfies the hypothesis of local lepton current.

This work was stimulated by a private communication from Prof. A. Wolfendale.

and

REFERENCES

- 1. F. Reines et al., Can. J. Phys. <u>46S</u>, 350 (1968).
- 2. M. Menon et al. Can. J. Phys. 46S, 344 (1968).
- J. Osborne, S. Said, and A. Wolfendale, Proc. Phys. Soc. (London) <u>86</u>, 93 (1965).
- 4. R. Cowsik, Y. Pal, and S. Tandon, Proc. Indian Acad. Sci. 63A, 217 (1965).
- 5. G. Zatsepin and V. Kuzmin, Soviet Phys. JETP 14, 1294 (1962).
- 6. An exponent slowly changing with E_{ν} will also be acceptable, as will be clear from the nature of the result.
- 7. For low values of E_{ν} , this is not a good assumption. However, even if the spectrum is cut off sharply for $E_{\nu} < E_{0}$, the main result, Eq. (7) is only modified by replacing $f_{n}(\nu)$ by $f_{n}(\nu) \phi(\nu)$, where $0 < \phi < 1$ for $\nu < E_{0}$ and $\phi \equiv 1$ for $\nu > E_{0}$. Thus only the contributions from low-mass hadron final states are affected; our major concern here is on the asymptotic region.
- 8. T. D. Lee and C. N. Yang, Phys. Rev. <u>126</u>, 2239 (1962). Equation (4) follows from Lee and Yang's Eq. (49) and the approximation $P = \sqrt{\nu^2 + q^2} \approx \nu$. From kinematics, $q^2 \leq 2M_N^{\nu}$ and the error ΔP in the approximation is $\approx q^2/2\nu$. ΔP is rigorously bounded above by $M \sim 1$ GeV; a more reasonable estimate gives $\langle \Delta P \rangle \lesssim 0.3$ GeV.
- 9. I. Buganov et al., Phys. Letters 30B, 364 (1969).
- 10. Because f_n is taken to vanish for $\nu < \nu_0$, there is no trouble with surfaceterms coming from the limit $\nu = 0$. Because the observed rate is finite there can be no problem from $\nu = \infty$.

11. The $\Delta S = 1$ processes are suppressed by a factor $\tan^2 \theta_{\text{Cabibbo}} \approx .05$.

- 12. Specifically $\sigma_0(\bar{\nu}p) = \sigma_0(\nu n)$, etc.; for rock (Z \approx N) we then get the result in the text.
- 13. H. Harari, Phys. Rev. Letters 22, 1078 (1969).
- 14. H. Abarbanel, M. Goldberger, and S. Treiman, Phys. Rev. Letters 22, 500 (1969).