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ABSTRACT 

The fourth-order radiative correction to the slope at q2= 0 of the 

Dirac form factor of the free electron vertex is calculated using computer 

techniques. The result, 

m2 a F(4)(0)/a g = (~/a)~ [0.48 f 0.071 , 

disagrees with previous calculations, and implies a new theoretical value for 

the order cr2(Zo!)4mc2 contribution to the Lamb shift. The new values for the 

29 - 2P1 
z 

separation in H and Dare increased by (0.35 f 0.07) MHz and are in 

good agreement with the results of recent experiments. 
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It is rather ironic that the only tests of quantum electrodynamics 

which still show a serious discrepancy between theory and experiment are the 

29 - 2PL and2Pa 
2 2 

- 2s~ separations in atomic hydrogen and deuterium - pre- 

cisely the levels measured by Lamb’ and co-workers which gave the theory its 

start. The disagreement ( > 200 ppm) has become more acute with recent 

measurements and refinements by Robiscoe and Cosens’ of the Lamb interval 

in H and D, and three measurements this year3 of the 2P3 - 2s 
i 

interval in H. 
7 

The results are tabulated in Table L 

‘The only experimentally relevant contribution to the theoretical 

value of the Lamb shift not checked by independent methods is the fourth- 

order self-energy correction to the energy levels of the bound electron4. The 

leading contribution, of order lu2 ( Zu)4mc2 to the level shift formula, may be 

obtained directly5 from the Dirac form factor.’ of the free electron in fourth 

order: 6 

aE(4)(q, j, Q) = 6 4(Za)4mc2 m2 
a Fl(4) 

lo n3 w2 q2=o 
. 

This contribution comes from the same set of fourth-order Feynman diagrams 

(see Table II) which give the well-known 0.32847. . .((~/?r)~ contribution to the 
I 

electron magnetic moment7. 

Jn this paper we report the results of a new computation of the slope , 

at q2= 0 of the Dirac form factor in fourth order. In the calculation, all traces, 

projectio 
f 

s, and reductions to Feynman parametric form are performed auto- 

matically by REDUCE, an algebraic computation program written by A.C. Hearn’. 

The integrals over the Feynman parameters (up to five dimensions) are per- 

formed numerically to a typical precision of 0.1% using a program based on 



work by G. Sheppey’. The integration method is basically a computation of 

the Riemann sum, but on successive iterations the integration grid is modified 

by the program to minimize the variance of the integrand within each hypercube. 

Our results for each graph are shown in Table II along with those 

of the previous analytic calculation of Soto4. .Except for a discrepancy in 

overall sign, our results for the individual contributions are consistent with 

the asymptotic infrared behavior of the individual amplitudes given in Refs. (4) 

and (5),as well as the expectation that the separate sums of ladder plus crossed- 

ladder contributions [Table II - (a) and (e)] and corner plus self-energy con- 

tributions [Table II - (b) and (d)] are finite as the photon mass h - 0. The 

results shown in Table II are obtained from several types of least-square fits 

to the results of numerical integration of the individual amplitudes for 

1o-6 < A2 < 10-2. In addition to the discrepancy in overall sign, our numerical 

results for the corner and cross graph contributions do not agree with Soto’s 

results for the finite (non-infrared divergent) contributions. In the case of the 

corner graph, this discrepancy is quite large. 

The sign of the Lamb shift contribution of the vacuum polarization 

insertion graph (Table 11-c) can be obtained simply without computation. It 

is easy to check that the second order vertex yields a positive contribution to 

F; (0) independent of photon mass. The spectral integral representation of the 

photon propagator corresponds to a summation over spin one propagators with 

mass A2 > 4m 2 and a positive weight function. Thus to all orders, the vacuum 

polar.ization insertion in the second order vertex yields a positive contribution 

to F; (0) and hence a positive correction to the Lamb shift6. This is opposite 

to the result of Refs. (4) and (5). 
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Our results imply an increase of (0.85 f 0.07) MHz in the theoretical 

value for the 2S1 -2P 
% 3 

level separation in H and D. A tabulation of the various 

contributions to the theoretical result for H, including the revised fourth order 

contribution of F;(O), is given in Table III. The comparison of the revised 

theory with experiment is given in the last column of Tables Ia and Ib. The 

majority of the experimental results are within one standard deviation of theory, 

leaving only one high precision measurement, the first to use the non-atomic 

beam “bottle” method, in serious disagreement. The one standard deviation 

error limits used in the comparison of, theory and experiment were computed by’ 

combining the standard deviation experimental error assigned by Taylor et al. 
2 

with one-third of the limit of error (L.Ei) of the theoretical result. 

We have performed several checks on our result including a compu- 

tation of the contribution of the corner and crossed graphs to the fourth order 

magnetic moment. The results agreed with Petermann’s computation’. The 

reducible corner and ladder graphs were renormalized by a direct subtraction 

in the integrand of the five dimensional integrals. As a check we have also used 

1( intermediate renormalization” 10 in which the subtraction term is computed at 

m = 0. A complete discussion of these checks and a description of the calculation 

will be described elsewhere. 

Since our results are in disagreement with the previous calculation 

and contain error intervals from numerical integration, it is important that this 

contribution to the Lamb shift be recomputed using independent methods. 
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TABLE CAPTIONS 

Table I The Lamb shift in Hydrogenic Atoms (in MHz). The experimental results 

for H and D are from Refs. (l-3). Robiscoe’s and Cosen’s values include 

a correction for the non-Maxwellian velocity distribution of the atoms in 

the beam. (R. Robiscoe and T.W. Shyn, private communication. See 

B. N. Taylor et al., Ref. 2, note added in proof. ). The corresponding 

correction to the H result of Triebwasser et al.’ is shown in the second 

line of the table, although there is some question whether this correction 

is appropriate. No estimates have been made for the corresponding cor- 

rection to the deuterium measurements of Ref. (1). The values for 5Z? 
we 

listed in parenthesis are computed from experimental measurements of 

the large interval 1f AE-g u = AE(2P3 - 2Sa) and the theoretical fine 
T 

structure (see Table III). The lloldf’ theoretical values are from B. N. 

Taylor et al. (Ref. 2). The revised theory corresponds to the corrected 

result for the fourth-order contributions discussed i.n this paper. We use 
/ 

the conventions of B. N. Taylor et al. , Ref. (2), and take the limit of 

error (L.El) to be three standard deviations. 

Table II Comparison of the results of this calculation and that of Ref. (4) for the 

Feynman graph contributions to a4 = m2d Fl/dq2(q2=O) (02/7r2). The 
/ 

corner and self-energy graph results include the contribution of mirror 

graphs. The infrared behavior is expressed in terms of a photon-mass 

parametrization for h2 << m2. The infrared convergent ladder plus cross 

contributions (0.68 f 0.04) as well as the corner plus self-energy contri- 

bution (- 0.23 f 0.03) could be obtained without knowledge of the infrared 

divergent behavior of the individual graphs, which were, however, found 
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to be consistent with the negative of the asymptotic behavior (A2 CC m2) 

given in Refs. (4) and (5). The individual non-infrared remainders given 

in the last column were determined from fits with the logarithmic terms 

constrained to those values plus “backgrounds ‘terms multiplying J- A2 

and A2 log A2. 

Table III Revised tabulation of the theoretical contributions to the Lamb interval 

g= AE(2Si 4 - 2P ) in H. References to the various entries may be 

found in G. W. Erickson and D. R.- Yennie (Ref. 6) and B. N. Taylor 

et al, (Ref. 2). The only revision from the compilation of Ref. (2) is 

the new result for the order fx2(Z@4m contribution to the energy shift 

from the slope of the Dirac form factor in fourth order as given in this 

paper. The result of Ref. (4) is 0.102 MHz. Note that fourth order con- 

tributions also arise from the anomalous magnetic moment and vacuum 

polarization corrections. 
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