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ABSTRACT

Pion deuteron elastic scattering is calculated via the iﬁlpulse
- approximation (including double scattering) at intermediate energies.
Good agreement is found with experiméntt at»87 , f42, and 180 MeV/cz
incident pion energy. Thus the impulse a.ppfoximation seems to give

reliable results even in the region of a large resonance.
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1, INTRODUCTION

The elastic scattering of pions by deuterons is for several reasons a good
test of our ability to understand composite systems of strongly interacting particles
using a bound state model and a generalized impulse approximation. First, the
deuteron is well described as a bound state of a neutrop and proton with a wave
function whose properties are known. Second, the weak binding of the deuteron
and large distance between its components encourages the belief that the scattering
amplitude can be well approximated -by a simple expression involving amplitudes
for pions scattering 6n free nucleons. Such an expressi?n will be some version
of the .impul,se’a.pproximatikon,1 and fortunately the requisite accﬁ;ate information
on the pion-nucleon .scattering amplitude is available. Third, a theoretical cal-
culation can .imniediately compared with nature as there are a number of differential
cross section measurements, including a recent experiment with an incident pion
" lab energy of 180_MeV.2 |

If the comparison shows that pion deuteron scattering can be calculated well,
then our knowledge of the deuteron’wavé function is corroborated and we can be
more confident of other calculations of scattering from deuterons. In particular,
we can be more sanguine in situations where information about scattering on neutrons
is gotten by calculation from experiments on scattering by deuterons.

The calculation presented here is based on the impulse approximation. In the
simple version of the impulsé approximation, the pion-deuteron scattering :impl.i—
tudes is expressed as a superposition of scattering amplitudes for pions on a set

of free neutrons and protons which have the same momentum distribution that they

would have inside the deuteron. This leads to formulas similar to

3
AD = fd p AP(}-).) ¢f'(2) ¢I(£) + term for neutron,




where AD, AP’ and AN are scgttering amplitudes for pions on deuterons, protons,
and neutrons, respectively, and ¢ F and ¢I are deuteron wave functions. The
proton and neutron scattering amplitudes are customarily brought out of the integral
on the grounds that they are slowly varying, fand evaluated at some average value
of p. However, in a bound 'system, in addition to the possibility that the pion will
undergo just one scattering (which leads to the simple impulse approximation),
there may be significant effects due to multiple scattering and the binding potential.
' These corrections are considered here following : generalization of the impﬁlse

approximation by Chew and Goldberger. 3

The préceeding considerations are described in detail in Section II, ar,ld in

Section III the calculation is compared to the experimental data.
II. THE IMPULSE APPROXIMATION AND FIRST ORDER CORRECTIONS

Our starting point is the generalized impulse approximation of Chew and
Groldberger.3 We consider a scatterer which is made up of several constituants
bound by a potential U, and an incident particle which interacts with the kth

particle of the scatterer through a potential Vk. The total Hamiltonian is

H=K+U+YV, (1)
where K is the kinetic energy operator and
V=XV, (2)
'k

For convenience, we define operators wk(i) such that wl(:), operating to the right

on an eigenstate of K with energy E, is givenf by
S T | (3¢
@p ' =1+ (B-K-V +1€) Y, (3a)
and wlg') is a similar operator acting to the left,

) S |
W 7= 14 V(E-K-V,_+i€) . (3b)



The scattering operators for two-body scattering are given by

tM ey (42)
) =l )v | (4b)

1(:&) between
<

initial and final states consisting of free particles. (We might note that if the

and the scattering amplitudes are given by matrix elements of the t

initial and final states have the same energies, then there is no difference betwcen
) ana 1)
K K ‘
The impulse approximation relates the scattering operator for scattering on

the entire bound system to the two-body operators. The total T-matrix is

)y D (-) () (=) _ (+)
T ftkffg;ﬁ:(tk( 1)+E2(m,k' 1)[U,wk], (5)

where this operator is to be evaluated between eigenstates of the unperturbed
Hamiltonian for the entire_composite system, which is

H =K+U. | (6)

0
The first term here is just single scattering and gives the simple impulse approxi-
mation; the second term gives the multiple scdttering corrections; and the last term
shows the effects of the binding potential on the individual two-body scatterings.

The necessary matrix elements of the two-body scattering operators tlii) are

known from available analyses of pion-nucleon scattering data, and as a practical

matter we note that

-1

ol 1= (@-K+ie e o o

which can be evaluated easily. Thus the single and double scattering terms in the
. + . . .
expression for T( ) are written in terms of known quantities. We will argue that

the binding corrections are small,




. . ' o 4
The results of analyses of pion-nucleon scattering are a set of phase shifts
which give the scattering amplitude in the center-of-mass system.  The necessary

relations between these phase shifts and the matrix elements of t, ave given here
'S

1
for the deﬁnitd example of the reaction T p 7 4 p. Let us say we are scial-
tering from an%init".ianl pion 'pro'ton state X 4 to a final state Xb’b with the spin pro-
jection of the m,itial'pr()ton i, and of the finnl pr’otér_i j.. The kinematics arce shown
in Fig. 1. A mai:rix element of tk contains a S-function of three momentum which
will be taken ox?xt so that it does not appear explicitly in subsequent formulas.

SXJIX> = @70 py v, -py-) KBy yivia). @
In the centér—"oﬂmass, there is a conventionally defined scattering amplitude
matrix, f, arelated‘t'o F by

‘ (Vf&ElEzf/zFﬁ=-2WW%i, | (9)

where W is the ﬁotalc. m. energy and the quantity on the left is a Lorentz scalar.

: I
If |i> and|j> represent Pauli spinors for the proton spin states, we huvc"

fi; = <ifefi> | (10)
with |
£4f +o+ qo- 4,1
f=9a (W)P'- (cos 6) + 2 (W)P! _(cos 0 : ~(11
L, = £§O.Q+ b1 . ﬂ%z p-¢ '2_1(" ) : 4(/,,1J)
REEIA W)-a, (W))P (cos 6) , | B '
2= ﬂz=:1< 1 (W) =2, (W))P: (cos 6) | | (110)
and finaily .
ié
= b v
&y, = 1/q e " sin dpa s _ (12)

dy and ¢, arc the pion momenta in the ¢, m., q their magnitude and 0 the angle
vl AEE . ’ ,

between them,




We must also establish the notation to be used for the deuteron wave function.
The deuteron has total angular momentum 1, spin 1, and the orbital state is a

combination of S-wave and D-wave. Its wave function in co-ordinate space is

(m) . _ N ' om | n,
7T = T (U Y0, ) XA W) DYy 0, 8) X Cpyp p (19)
where X is a combination of Pauli spinors in a.total spin one state, with a
magnetic quantum number m; Cm—n n is a Clebsch-Gordon cocfficient,
Crpen, o = (2005 2,n|2,1; 1, m) (14)

in Edmond's6 notation; the normalization constant N is determined by the condition
fdr (uz(r)‘+ w2(r)) =1, (15)

The forms of the S- and D-state radial wave functions, u(r) and w(r) are taken

from the work of Morave Sik. 7

A. Single Scattering Terms

Keeping only the single scattering terms in the formula for T(+) gives what is

often called the "simple impulse approximation.' We have
) - Etliﬂ (16)

and this is to be evaluated between initial and final pion-deuteron sta;tes. The pion
may scatter from either the proton or neutron inside the deuteron, and these
processes are diagrammed in Fig. 2.

The kinematics for scattering frorﬁ a deuteron in the laborat_orjr system are
shown in Fig. 3, and the initial and final deuterons have spin projections m and m'
respectively. The matrix element of T(+) will contain a §-function of 3 momentum,

]

which will again be written explicitly so that it will not appear in subsequent formulas

<oy T, > = e’ s @rg-ga_, (@) an




Now it can be scen that

A i@y = ——L—¢*mu(1/2g,f:+,e>¢mij<g

m'm e v (M)

x[ 11('1_3 3, q'; p,q)+8 G (P*IP q's 3 D Q)] (18)

G is defined in the same way as but for the process 7t + n—7t + n.

If I and G are slowly varying as functions of encrgy, we can rembvc them
from the integral, evaluating them at some average value of b= P.O We can find
some optimal value of Po (following Pendeltons) by expanding F and G in a Taylor
series, _ v ‘

FRAP AR =FR+Peqs e @+ T FE + 2045 R0 D (R~ By) +-0. (19)

If we are not right at a resonance ene\rgy, we can assume the term linear in L
will not have a zero coefficient, so that we can choose 30 by requiring that the
linear term not contribute to tﬂe integral. Thus,

1 . ’
\£0= - Z&: (20)

and

w2 = [py5%s (38 @5 - d2.0) o0y (Bros - $229)]
[ L2 gy (Lyeg) o »
2 ZR*TR) ¢ ) - (21)
The integral that remains is a "form factor" that mezisures. the provbabili._ty
that the deutbron will stay together when given a momentum transfer R Writing
the wave function as a combination of S- ahd D-waves leads to four integrals, The

first integral is what the form factor would be if there were no D-state part (and




can be integrated analytically for a Hulthén type wave function),

3
1 dP 1 .
B= 7 f*“‘" w (32+2) up

zm)’ ,
; r
= ——1— fdsx 011/2*2'2& ﬂfl
4m _ ,
= f dr jo(—zl-Pr> w(r) . (222)
The other integrals are o ‘
D= fdrjz (?zl-Pr) wr) w(r) _ (22h)
C= fdrjo(-;—Pr) wz(r) : (22c)
. (1 2 :

B= fdr;;z (EP)I') w(r) . (22d)

Finally, let us writé down the differential cross section in the lab for a calculation

where only single scattering is included.

do _ .1 2_ 2.2 2 27;2
@ ~R'3 E lAmle = RHF+++G++I I ¥ 3]F-++G—+' ‘“’2} (23)
m’m" - .
where
2 1 2101/2
= e 24
971 [(E+C)+4(p Zﬂ B)] (242)
1 1 1
92—E+—\7_.§-D-—2-C+§B, (24b)
and
=@n iy B4 (. e -1 |
R=(21) “pp!' W 9 ( Wq' °°8 0) . (25)

B. Double Scattering Terms

The double scattering contributions to the T-matrix are given by

Zﬂ{ Tt (B -k + 17 ) ‘ (26)
k'#k k ” :

Three processes may contribute, and these are diagrammed in I'ig, 4. For
* simplicity in this paper, formulas will be written down only for the rcaction in
Fig. 4a, which consists of a T scattering elastically first off the proton and then

off the neutron.
-8 -




Some approximations will be made. Terms in the double scattering of order
n ‘

EEN will be necglected, and only tlic & -function part of the propagator will he kept,

so that ’
(E - K + ie) '—nim §(E - K). (27
The deuteron will be taken to be in an S-state only, and again the encrgy
depcndence of the pion nucleon scattering amplitude w,.i.ll be negleeted. This time,

however, we must integrate over an angular variable for the intermediate pion,
so thal it is necessary to make the expansion
_].'. ’l 1. A
Fai(z B-R ? 21.." ! ) Zfozl 2 m, (Ql) (282)
A fom -
272 e
+ . )
pJ(zm 2> 4R g ) Zgﬁ] Yg,m,(Aa) (28b)
3 . 0 "% al " sefivalv
where QI and Qz are the angles between (&', &) and (& » Q' ) respectively,
With these approximations, the contribution to wd elastic scattering can be
calculated straightforwardly. Let the energy and momentum of the intermediate
pion be v'' and ¢''. We have

' 3 3 ' .
(2 _ . dg" dp ,m' s TR -
A= [ o X op TR % R Jow- v

1 ! 1. i3] m ' - 20
X Gﬁ (Z£+£ y g‘: ’&fl_ XlJ d(P') o(P); | (29)
this is reduced to a longer but actually more manageable form in Appendix A.

Some comment on binding corrections is also in order. Using the techniques
9 - ' M
of M. Bander,” onc can show that the binding corrections are of order —
N

compared to double scattering corrections, so they may be consistantly neglected.




II. RESULTS AND COMMENTS

Experimental data on the differential cross scction for pion-deuteron elastic
scattering is available for five values within the range that could be called the
"intermediate" energy region. The kinetic energies of the incident pions in these
five experiments are 61, 10 8T, 11 142, 12 180,2 and 30013 MeV/cz. At low energies
it is difficult to determine if the deuteron has remained intact after scattering the
pion, so that data on purely elastic scattering is not available below 61 MeV/ 02.
At high energies, one cannot treat the nucleﬁs nonrelativistically, so that the cal-
culation presented here is not applicable above 300 MeV/cz. This is why we have.
restricted our attention to the exper.imenté.l energies listed above.

Perhaps the most interesting data is that taken at 180 MeV. This is only ten
of fifteen MeV/c2 lower than the energy required to excite the 33 resonance at its
peak. Since the.individual! scattering amplitudes are large near a resonance, one
expects that the contribution of the double scattering terms will be largest here.
Also, it has been suggested that the approximations thdt are made in the impulse
approximation are for various reasons, not valid near a resonance region.

The results of this calculatioh and the experimental data is shown graphically
in Figs. 4 through 8. The agreement with the experimental data is not good at
61 and 300 MeV/cz; however the other curves aré in agreement with experiment
within statistical expectations.

The agrecement at 180 MeV is reasonably good, although high in the backward
direction, indicating that the impulse approximation is valid in this energy region.
The table shows the effects of the various corrections at some angles at one of the
encrgics, 180 MeV. Listed in the table are the results of calculating pion-deuteron

elastic scattering first with a pure S-state deuteron and no double scattering; then

- 10 -




including the D-state but not double scattering; then including double scattering
but not the D-state; and finally both the D-state of the deuteron wave function and
double scattering are included, The experimental results of J. Norem2 are listed
for comparison.

It is seen that the effect of the D-state part of the wave function is to increase
the predicted cross section m the backward directit)n; ' Thié occurs because of the
D-state radial wave function; the pure S-state form factor falls off rapidly with
momentum transfer, while the form factors involving the D-state fall less rapidly.

The double scattering terms interfere destructively with the single scattering
terms and also have their greatest effect at large angles. This is bécause of the
rapid decrease of the form factors with momentum transfer. The form factors
measure the probability that the deuteron will stay together when one of its con-
stituents is given a certain momentum transfer. Attémpting to deflect a pion
through a large angle with just one scattering will probably knock the deuteron
apart, and it becomes relatively easier to deflect the pion by scattering it twice
through smaller angles,

The results here suggest that triple scattering, temporary binding of pion and
nucleon to produce an N*, removing the pion-nucleon amplitude from the integral,
and various other thingé which have been suggested as reasons for the invalidity
of the impulse approximatioh at certain energies, do not in fact radically affect
the result. 14 This is reasonable, The width of the 33' resonance is about 120 MeV
while the width of the pion wave function, which determines the "width" of the
integrals, is about 60 MeV. Thus it seems alright to remove the amplitude from
the integrals. The impulse approximation assumes that the interaction takes place
in a short time compared to other time scales within the deuteron, so that if the

pion and nucleon bind together in an N* for an appreciable period the approximution

- 11 -




is wrong. However, with the average size of the deutefon being 4.3 fermis and
with the pions at our cnergies, any N* that is produced can travel ohly a small
fraction of the distance between the nucleous before it decays, Finally, the triple
scattering probably is small. 15
Earlier calculationsle of pion-deuteron elastic scattering ncar 140 MeV/c2
- gave a result that was much foo'large in the backward ‘direction. The main dif-
felrence between the present calculat.ion‘and earlier éalculations is not in the formal
input, but in the wave functioh used. We have used here Morave sik's? best analytic
appfbximation to the Gartenhaus” wave function. This wave function was calculated
by solving the deutéroﬁ bound state probiein ’w\ith a poténtial which was inferred
from an é.na,lysis of nucleon-nucleon scattering data. The Moravesik wave function,
and other wave functions gotten by the same methods18 fall off more quickly in
momentum space than commonly available Hulthén or Hulthén with hard core wave
functions. Thus the form factors or "overlap functions' decrease moro quickly
with increasing momentum transfer than if they were calculated with a Hulthén
wa&e funétion? and thus the calculated cross seétion is more strongly surpressed
in the backward direction. |

Our knowledge of the deuteron wave function, though improved, is still a
hindrance to calculating scattering at high momentum transfers, The momentum
transfers involved in backward scattering at 140 or 180 MeV/c2 are alrezidy high
enough to put us in an area of rharg.i nal certainty for the wave function, 'Unfortmm.te]y
the pion-dculeron scattering experimént probably cannot be used as a probe of
the wave function because at higher m‘omcnvtum transfers multiple scattering
becomes incrcasing important, for recasons already mentioned, and the caleulation

- becomes muddled.

- 12 -




APPENDIX

Douhle Scattering Terms

Making the apprbximfxtions stated in the text, the amplitude is

A(z) —in x<7> (x) ____g_’ g 9)*5(12 v")X+m F_.G, X

@ ﬂ) ; af- “ai Bd i
' Cfim. 4. m,
E : 17172 z
. —3 +m' ‘3 et} ”) ’
= —im(27) ng 4 —m Xaﬁ fai gB_. dx (P (x)e pgnj‘dﬂ Cs 1 (Ql)YQ m2 Q&)
1M 5™, J o
where (8-
. 1.
Q=30a+g). | (A.2)

(),1 represents the angle between ¢ and q", and Qz represents the angles between
q'" and q. 93 represents the angle between . and ;L:': then the exponential factor

in the last integral may be expanded

Rl 212,/47r(2ﬂ+1) ) Y005) - (A.3)

This leaves integrals of the form
I =fde (Ql) gy, (02 V) (A

which cannot be integrated immediately because the arguments of the spherical
harmonics measure the direction of ‘(l" in three different rcference systems. One
may, however, rotate each of these reference systems to some standard co-ordinate
system. If the Euler angles for rotating the standard system to a system v ith its

z axis along gare wl, then

Y, (Q.)= ZD @)Y, (Q,), el. A5
gm T LT mimy le 0o (A.D)




‘Now with the help of some formulas from Ednrxonds,6 the integral can be done

Q
Z Dm.o(wg)D @)D2, mym,(©2)

m'm m' m' m,

1/2
x<(2n+1)(2lzlfr1)(zxz2+1)) (ﬁ £ 22)(2 2 !lz)

4w 00 0 (A.G6)

Edmonds! conventlon is uscd for the 3-j symbols.
Choosmg the z axis of the standard system parallel to &allows the angular

part of the x mtegral to be done easily., One fmds

g [ AY/ N
%) =-ieny g 2; 20+ 1)z, + 1) %2, + 1)1/ (0 N 02)(0 n},_nf.)

gy Lm, 12t
1 1
fmlmz
Lm, Lm, _ & o
tm' 1M1 22 m b 2
X Xop Tai 88; ij m'1 @1)dp m}m 2( 09) &, » (A7)

where 01 and 92 are the angles between (g, 9) and (q', ) respectxvcly, and <I>!Z is

the radial integral,

. ,
- fO dx % (a%) §,(Qx) ¢7(x) - (A.8)
If the wave fﬁnction is of Hulthen type, | —C X
: i
. X =NIC; T5—, (A.9)
then thesﬁe. radial integrals can be done f.nalytically, One uses | v
o iy = 5 - [dL B gyl (A.10)
_ | 1 ,

to show that

1
o+ aj' -qr -1Qn Pyn)

v@£= L 1yN® Iz eg, fdz:anﬁ(g) (A.11)

The last integrals are quitc manageable.
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PION DEUTERON ELASTIC SCATTERING CROSS SECTIONS

Pure S-state

- single scattering

W/D-state
single scattering

Pure S-state
double scattering

W/D-state
w/double scattering

Experiment (Ref, 2)

TABLE 1

AT 180 Me‘\//cz (mhb/sr)

6. 07

' 5.32

6. 07£0.48

759

0.67
0. 66
0.94

0.82

0.87%0.14 0.65%0.13 0.41%0. 12
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1059

0.51

0.63

0. 69

0. 74

135°

0.51

0.74

0.62

0.76

175°

0.48

0. 75

0.25+0,36



FIGURLE CAPTIONS

Pion-nucleon scattering kinematics.
Pion-deuteron single scattering processes.,
Pion-deuteron kinematics in lab systexh.,
Pion-deuteron double scattering processes.
7-d elastic scattering at 61 MeV/c2 (Réf. 10).
m-d elastic scatfering at 87 McV/c? (Ref. 11).

m-d elastic scattering at 142 MeV/cz' (Ref. 12).

7-d elastic scattering at 180 MeV/czl (Ref. 2). _ S
7-d elastic scattering at 300 MeV/c‘?_' (Ref. 13). 4 o .
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