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ABSTRACT 

Pion deuteron elttstic sc&ering is calculated via the impulse 

approximation (including double scattering) at intermediate energies. 

Good agreement is found with experiment at 8’7, i42, and 180 MeV/c2 

incident pion energy. Thus the impulse approximation seems to give 

reliable results even in the region of a large resonance. 
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I. ItiTRODUCTION 

The elastic scattering of pions by deuterons is for several reasons a good 

test of our ability to understand composite systems of strongly interacting particles 

using a bound state model and a generalized impulse approximation. First, the 

deutcron is well described as a bound state of a neutrop and proton with a wave 

function whose properties are known. Second,’ the weak binding of the deuteron 

and large distance between its components encourages the belief that the scattering 

amplitude can be well approximated by a simple expression involving amplitudes 

for pions scattering on free nucleons. Such an exljression will be some version 
1 

of the impulse approximation, ’ and fortunately the requisite accurate information 

on the pion-nucleon scattering amplitude is avaikble. Third, a theoretical cal- 

culation can immediately compared with nature as there are a number of differential 

cross section measurements, including a recent experiment with an incident pion 

lab energy of 180 &IeV.2 

If the comparison shows that pion deuteron scattering can be calculated well, 

then our knowledge of the deuteron wave function is corroborated and we can be 

more confident of other calculations of scattering from deuterons. In particular, 

we can be more sanguine in situations where information about scattering on neutrons 

is gotten by calculation from experiments on scattering by deuterons. 

The calculation presented here is based on the impulse approximation. In the 

simple version of the impulse approximation, the pion-deuteron scattering ampli- 

tudes is expressed as a superposition of scattering amplitudes for pions on a set 

of free neutrons and protons which have the same momentum distribution that they 

would have inside the deuteron. This leads to formulas similar to 

AD = 
s 

d3p Ap(g) $.$,($> #I(p) -t term for neutron, *k 



where A , DA p, and A are scattering amplitudes for pions on deuterons, protons, N 

and neutrons, respectively, and + and $I are deuteron wave functions. The F I 

proton and neutron scattering amplitudes are customarily brought out of the integral 

on the grounds that they are slowly varying, -and evaluated at some average value 

of p. However, in a bound system, in addition to the possibility that the pion will 

undergo just one scattering (which leads to the simple impulse approximation), 

there may be significant effects due to multiple scattering and the binding potential. 

These corrections are considered here following : generalization of the impulse 

approximation by Chew and Goldberger. 3 

The preceeding considerations are described in detail in Section II, and in 

Section III the calculation is compared to the experimental data. ’ 

II. THE IMPULSE APPROXIMATION AND FIRST ORDER CORRECTIONS 
- _ 

Our starting point is the generalized impulse approximation of Chew and 

Goldberger. 3 We consider a scatterer which is made up of several constituants 

bound by a potential U, and an incident particle which interacts with the kth 

particle of the scatterer through a potential Vk. The total Hamiltonian is 

H=K+U+V, (1) 

where K is the kinetic energy operator and 

v= fvk (2) 

(f) For convenience, we define operators ok such that a:), operating to the right 

on an eigenstate of K with energy E, is given by 

a+) = 1 + (E-K-Vk + ie)-‘Vk, 

and til!-) . is a s.imiJar operator acting to the left, 

t-4 
Ok = 1 -f- Vl$E-I”-$ -i- ie) -1 . 
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‘I’hc scaltering operators for two-body scattering are given by 

p = Vkctp (44 

p =pyk, WI 

(“1 and the scattering amplitudes are given by matri.x elements of the tlC between 

initial and final states consisting of free particles. ( 
We might note that if the 

initial and final states have the same energies, then there is no difference between 

The impulse approximation relates the scattering operator for scattering on ’ , 

the entire bound system to the two-body operators. The total T-matrix is 

where this operator is to be evaluated between eigenstates of the unperturbed 

Hamiltonian for the &tire. composite system, which is 

I-IO =K+U. (6) 

The first term here is just single scattering and gives the simple impulse approxi- 

mation; the second term gives the multiple sc&tering corrections; and the last term 

shows the effects of the binding potential on the individual two-body scatterings. 

t*t) The necessary matrix elements of the two-body scattering operators tk are 

known from available analyses of pion-nucleon scattering data, and as a practical 

matter we note that 

tip- = 1 (E-K+ia)-‘f) v 

which can be evaluated easily. Thus the single and double scattering terms in the 

expression for T (+) are written in terms of known quantities. We will argue that 

lhe Jkding corrections are small. 
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r&lions bctwcen thcsc phnsc shifts and the matrix clcmcnts of t 1; arc giv;c:11 lic1~ 

for the dcfinitc’ cxamplc of the reaction T’ -f- p -7r+ + p. Let us say \\‘C a!T fic:\t-. 

@ring from an initial pion’proton state Xa to a final state Xb, with tlic :;j'Jill I:l'O- 

jcction ‘of the initial proton i, and of the final proton j. The kinemu tics m-c: c:110\;‘~1 

in Fig. 1. A matrix clement of $ contains a &function of three momentum c’hich 

will be talzcn out so that it does not appear explicitly in subscqucnt formulas. 

< x&l xa> = (W3 S3Q1 ‘& -p2 -&I Fji(P2, q2; PIqI) ? (8) 

In the center-‘of-mass, there is a conventionally dcfincd’scattering nm.pl.itudc 

matrix, f, related to F by 

(vIv~E~E~) u2 F ji = -27rWfji ) 

where W is the totalc. m. energy and the quantity on the left is a Lore&z scalar. 

If Ii> and[j > represent Pauli spinors for the proton spin states, wc l~~vc’ 

f ji = <jlfli> (1~4 

wit-11 

f = fl +g* L$g* $2f2 ( 1 la) 



We must also establish the not&on to be used for the dcutcron wave function. 

The dcutcron has total. angular momentum 1, spin 1, and the orbital state is a 

combination of S-wave and D-wave. Its wave function in co-ordinate space is 

$(q$ = E r ~1(r)YoO(B,4b)Xm+W(r)CY 
I n 2, nlmn(n’ 6)xnc 1 m-n, ni (13) 

r 
where X m is a combination of Pauli spinors in a.$otal spin one state, with a 

magnetic quantum number m; Cm n n is a Clebsch-Gordon coefficient, 
, 

c m-n, n= (2, m-n; 2,n 2,l; 1, m) I (14) 

in Edmond’s’ notation; the normalization constant N is determined by the condition . 

Jdr ( u2(r) + w’(r)) = 1 . (15) 

The forms of the S- ‘and D-state radial wave functions, u(r) and w(r) are taken 

from the work of Moravcsik. 7 

A. Single Scattering Terms 

Keeping only the single scattering terms in the formula for T (+I gives what is 

often called the “simple impulse approximation. 11 We have 

,(+I = ++’ (16) 

and this is to be evaluated between initial and final pion-deuteron states. The pion 

may scatter from either the proton or neutron inside the deuteron, and these 

processes are diagrammed in Fig. 2. 

The kinematics for scattering from a deuteron in the laboratory system are 

shown in Fig. 3, and the initial and final deuterons have spin projections m and m’ 

respcc tively. The matrix element of T(+) will contain a 6 -function of 3 momentum, 

which will again be written explicitly so that it will not appear in subsequent formulas, 

<$,~T(+)I$,> = (2n)38(3)~+81-~)Am,m(~~). (17) 

-G- 



X Gjljp,i,icp+~, ~; ~ ~ 3- ‘i’iGjIj(~.“~, ~; ~, ~ 

[ 1 l (18) _ 
G is defined in the same way as I? but for the process T’ + n--?rt -t- n. 

If I? and G arc slowly varying as functions of energy, we can rcmovc them 

from the integral, evaluating them at some average value of & = b. WC can f.ind 

some optimal value ofgO (following Pendelton’) by expanding F and G in a Taylor 

series, 

“~fg,~‘;p,g>rF(~*9o,~;~*,~+ ~“(~+cP*‘~;EO’~(~-~o)+“’ W) 

If we are not right at a resonance energy, we can assume the term linear ill& 

will not have a zero coefficient, so that we can choose p’ by requiring that the rC0 

linear term not contribute to the integral. Thus, 

and 

The integral that remains is a “form factor” that measures the prob:ibili.ty 

that the deutcron will stay together when given a momentum transfer 2 Writing 

the W:LVC function as a combination of S- and D-waves leads to four inicgrals. The 
. 

is what the form factor would be if lhere were no D-state! part (and 
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cm be integrated analytica1l.y for a IIulth~l type wave function), 

s dr jo(iPr) u2(r) O = 

The other integrals arc 

D = ldr j2(iF’r) U(r) w(r) 

C = $drjo(iPr) w2(r) 

B = ldrj, ($l?r) w2(r) . 

(22a) 

PW 

(22c) \ 

(22d) 

Finally, let us write down the differential cross section in the lab for a calculation 

where only single scattering is included, 

dc B =Reg l c 
m, mt 

IAm,m12 = R (IF++ + GJ2~: + $+ + G-+i2;;\ (23) 

where 

2x1= [(EiC)2+4(D- +jy 

S2=E-t -+D- 
lr 

+C*;B, 

and 

R = (2~)-~ 1/v’ - E’ s’ 
w q 

B. Double Scattering Terms 

The double scattering contribu.tions to the T-matrix are given by 

E - I< + .ie)-’ c’ 

(2W 

Wb) 

(25) 

cw 

Three processes may contribute, and these are diagrammed in Fig. 4. For 

simplicity in this paper, formulas will be written down only for the reaction in 

Fig. 4a, which consists of a ?T’ scattcr.ing elastical.ly first off the proton and then 

off t11c 11c11tlTJ11. 

-8- 



Same :~pl~roximations will be made. Terms in the double scattering of order 
in 
;;;-” will be ncglcctcd, and only the 6-function part of the propagator will bc kept, 

N 
so that I 

(E - IS -t- ie)-‘--in 6(E - I<). (27) 

The dcuteron will be taken to be in an S-state only, and again the energy 
. 

depcndonce of tho pion nucleon scattering amplitude w,ill be neglcctcd. This time, 

however, we must integrate over an angular variable for the intermediate pion, 

so that it is necessary to make the expansion 

where ‘R1 and R, are the angles between (c&J, k) and ($, c&‘) respectively. 

With these approximations, the contribution to nd elastic scattering can be 

calcul.ated straightforwardly. Let the energy and momentum of the intermcdinte , 
pion be vl’ and q”, We have 

( 28b) 

~(2) = -in 
m’m s 

w - v “) 

xG/3j (29) 
this is reduced to a longer but actually more manageable form in Appendix A. 

Some comment on binding corrections is also in order, Using the techniques 

9 m 
of M. Bander, one can show that the binding corrections are of order 5 

XI 
Pi 

comp:~rcd to double scattering corrections, so they may bc consistantly neglected. 
1 
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III. RESULTS AND COMMENTS 

Experimental data on the differential cross section for piondcuteron clnstic 

scattering is available for five values within the range that could be called the 

“intermcdiatel’ energy region. The kinetic energies of the incident pi.ons in these 

five experimeiH25 are Gl, lo 87, l1 142, l2 180,2 and 30013 MeV/c’. At low energies 

it is difficult to determine if the deuteron has rdmained intact after scattering the 

pion, so that data on purely elastic scattering is not available below 61 MeV/c2. 

At high energies, one cannot treat the nucleus nonrelativistically, so that the cal- 

culation presented here is not applicable above 300 MeV/c2. This is why we have 

restricted our attention to the experimental energies listed above. 

Perhaps the most interesting data is that taken at 180 MeV. This is only ten 

of fifteen MeV/c2 lower than the energy required to excite the 33 resonance at its 

peak. Since the.individuaT scattering amplitudes are large near a resonance, one 

expects that the contribution of the double scattering terms will be largest here. 

Also, it has been suggested that the approximations that are made in the impulse 

approximation: are for various reasons, not valid near a resonance region. 

The results of this calculation and the experimental data is shown graphically 

in Figs. 4 through 8. The agreement with the experimental data is not good at 

61 and 300 MeV/c’; however the other curves are in agreement with experiment 

within statistical expectations. 

The agreement at 180 MeV is reasonably good, although high in the backward 

direction, indicating that the impulse approximation is valid in this energy region. 

The table shows the effects of the various corrections at some angles at on.e oi the 

encrgics, 180 MeV. Listed in the table are the results of calculating pion-deutcron 

elastic scattering f.irst with a pure S-state deuteron and no double scattering; then 



incl,uding Ihc D-state but not doulde scattering; then including double scattering 

but not the D-state; and finally both the D-state of the deuteron wave function and 

double scattering are included. The experimental results of J. Norem are listed 

’ for comparison. 

It is seen that the effect of the D-state part of the wave function is to increase 
. 

the predicted cross section in the backward direction. This occurs because of the 

D-state radial wave function; the pure Sstate form factor falls off rapidly with 

momentum transfer, while the form factors involving the D-state fall less rapidly. 

The double scattering terms interfere destructively with the single scattering 

terms and also have their greatest effect at large angles. This is because of the 

rapid decrease of the form factors with momentum transfer. The’form factors 

measure the probability that the deuteron will stay together when one ‘of its con- 

stituents is given a certain momentum transfer. Attempting to deflect a pion 

through a large angle with just one scattering will probably knock the deuteron 

apart, and it becomes relatively easier to deflect the pion by scattering it twice 

through smaller angles, 

The results here suggest that triple scattering, temporary binding of pion and 

nucleon to produce an N*,’ removing the pion-nucleon amplitude from the integral, 

and various other things which have been suggested as reasons for the invalidity 

of the impulse approximation at certain energies, do not in fact radically affect 

the result. 14 This is reasonable. The width of the 33 resonance is about 120 MeV 

while the wi.dth of the pion wave function, which dctermines.the ffwidthr’ of the 

integrals, is about CO MeV. Thus it seems alright to remove the amplitude from 

the inlcgrals. The impulse approximation assumes that the interaction takes place 

in a short time compared to other time scales within the dcutcron, so that if the 

pion and nucleon bind together in an N* for an appreciable period the approximation 

- 11 - 



is wrong. However, with the avcragc size o.C the deutcson being 4.3 fcrrnis and 

with the pions at our cncrgies, any N* that is produced can travel only a small 

fraction of the distance between the nucl.eous before it decays. Finally, the triple 

scattering pr0bnbl.y is small. 15 

Earlier calculations 16 of p&n-dcuteron elastic scattering near 140 McV/c2 

gave a result that was much too large in the backward direction. The main dif- 

ference between the present calculation and earlier calculations is not in the formal 

input, but in the wave function used. We have used here Moravcsik’s7 best analytic 

approximation to the Gartenhaus 17 wave function. This wave function was calculated 

by solving the deuteron bound state problem with a potential which was inferred 

from an analysis of nucleon-nucleon scatteriri, data. The Moravckik wave function, 

and other wave functions gotten by the same methods 18 fall off more quickly in 

momentum space than commonly available Hulthbn or Hulth6n with hard core wave 

functio~ls. Thus the form factors or “overlap functions” decrease more quickly 

with increasing momentum transfer than if they were czalculated with a I-Iulth& 

wave function, and thus the calculated cross section is more strongly surpressed 

in the backward d&cc Con. 

Our knowledge of the deuteron wave function, though improved, is still a 

hindrance to calculating scattering at high momentum transfers. The momentum 

transfers involved in backward scattering at 140 or 180 MeV/c2 are already high 

enough to put us in an area of marginal certainty for the wave function. Unfortunately 

the pion-dcukron scattering exTeriment probably cann.ot be used as a probe of 

the wave function because at higher momentum transfers multiple scattering 

becomes increasing important, for reasons already mentioned, and the cn%cuIati.on 

becomes muddlccl. 

- 12 - 



APPENDIX 

Double ,%ntterii Terms 

Making the approximations stated in the Icxt, the nmpl.itude is 

= -ia(2n)-3j, 7 
Qlml f21n2 

X$‘fcui 

gplrnl 2m2 
9. J 

x;ji?x ,p2(x) c -~~.~~~e~~YQlrnl(nl)YP 1n (j--l,) 
2 2 

where (A. 1) 

Ill represents the angle between q and q”, and 0 represents the angles between 2 
qfl and q. 0, represents the angle betweellaandg, then the exponential fat tor 

in the last integral may be expanded 

6B’$= Tit &m) j,(qx) Y,,(Q,) . (A* 3) 

This leaves integrals of the form 

2 m 2m2P,,(n,) > (A* 4) 

which cannot be integrated immediately because the argumcnls of the spherical 

harmonics measure the direction of&’ in three different reference systems. One 

may, however, rotate each of these reference systems to some standard co-ordinate 

system. If the Euler angles for rotating the standard system to a system \;.ith its 

z axis alongaare o , then 1 

Y Qlml(nl) = CD 
5 

111' nlilnl t”llyQ’ 1 nl 1 to()) 2 “” (A. 5) 



Now with the help of some fopmulns from Edmonds,Gthc integral can be done 

I= c 
% 

mtm;mg 
D&ro(Q D 

Q2 
lllillll (o,p m$m2(*2)’ 

( (201)(2L -t-1)(21! -tl) U2 
x ~* 2 ) (b~l~)(~‘~i~~ 

Edmonds’ convention is used for the 3-j symbols. * 

Choosing the z ax-is of the standard system parallel to&allows the angular 

part of the x integral to be done easily. One finds 

At21 
m’m 1)(2114- l)l’2(2j2 + 1)1’2 

xx i$ di 
r ‘l”l .e2m2 Xm d% 

gPj ij miml Cs,, ~~~m2 C-e2, ~Q 9.. 

where 81 and g2 are the angles between (CJ, 2) and (2, G& respectively, and e1 is 
I 

the radial integral, 
og 

a) = 
s 0 

do x2 j,(w) j&Q4 $2(x) o 

If the wave function is of Hulthen type, 
-O!,X 

#I(X) = NCC 
i 5 , 

then these radial integrals can be done analytically. One uses 

j&qx) = i(- i,eS:, 5 P,(Z;) eiqx5 

-1 
to show, that 

(A. 7) 

(A* 8) 

(A4 

(A. lo) 

(A-11) 

The last integrals are quite manageable. 
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An interesting model is one in which the nucleon masses are infi.nite and there is 

only S-wave scattering and the scattering is the same for neutron as for proton. 

At resonance energy in the backward direction the various orders of multiple scat- 

tcring cancel. in pairs: i. e. , single scattering and double scattering cancel, triple 

scattering and quadrupole scattering cancel, etc. The ratio of triple scattering to 

single scattering depends on the dctai1.s of the situation; i;f other details of our model. 

are m,ade like our pion-deuteron scatteri.ng near the 3-3 resonances, triple scat- 

tering is about half single scattering. I was told of thi.s model by Dr. Hugh Pendlcton, 
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TABLE 1 

PION DEUTEhON ELASTIC SCATTERING CROSS SECTIONS 

AT 180 McV/c2 (mb/sr) 

Pure s-state 
single scattering 

450 750 105O 135O 

5.31 0.67 0. 5.1 0.51 

W/D-state 
single scattering 5.62 0.66 0.63 0.74 

Pure S-state 
double scattering 6. 0’7 0.94 0.69 0.62 

W/D -state 
w/double scattering 5.32 0.82 0. 74 0.76 

. Experiment (Ref. 2) 6.07 f 0.48 0,87*00.14 0.65hO.13 0.41’*00.12 

175O 

0.48 

0. 75 

‘0.56 

0. 75 

0.25 f 0..36 



1. Pion-nucleon scattering kinematics. 

2. Pion-deuteron. single scattcring processes. 

3. Pion-dcuteron kinematics in lab system. 

4. 

r 
3. 

6. 

7. 

8. 

9. 

FIGURE CAPTIONS 

Pion-deuteron double scattering processes, . 

n-d elastic scattering at 61 MeV/c’ (Ref. 10). 

n-d elastic scattering at 87 MeV/o’ (Ref. 11). 

n-d elastic scattering at 142 MeV/c’ (Ref. 12). 

n-d elastic scattering at 180 veV/c2 (Ref. 2). 

n-d elastic scattering at 300 MeV/c2 (Ref, 13). 
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