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I. INTRODUCTION 

In a recent paper’ we presented a first attempt at incorporating a recoiling 

source into the old strong coupling model of the nucleon. 
2 The basic constituents 

of the model were a heavy point fermion with a spin of l/2 and the neutral pseudo- 

scalar meson field. The only free parameters in the system were the bare mass, 
. 

mo, of the fermion and the coupling constant g. The pion mass was taken to have 

its experimental value. 

Solutions to the above model were obtained under the following set of assumptions: 

1. The fermion remains non-relativistic both in the kinematic sense and in 

the sense that virtual fermion pair states can be consistently neglected. 

2. The eigenstates of the Hamiltonian can be represented as simple products 

of fermion and field states (the “independent particle” assumption). 

3. The strong coupling approximations in the form originally used by Pauli 

and Dancof f2 are valid. This implies that the pion field can be constructed out of 

only p-wave pions and that the field strength executes only small zero point oscil- 

lations about some large constant value. 

In addition to the above three assumptions which are quite important and whose 

consistency is essential to the validity of our results, three additional simplifications 

were made to make the model more tractable and its exposition more concise. 

These were as follows: 

4. Isotopic spin was neglected and the assumption made that the basic result 

of Pauli and Dancoff (i.e., that T = J gives the bound states) would continue to hold, 

5. Only spherically symmetric (1= 0) fermion wave functions were considered. 

This was a technical problem rather than a limitation in principle. 
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6, The basic interaction between the fermion and pion fields was taken to be 

HI= 
-g 

J- 

d3x $t(,), l &J(X) $(x), 

(hereafter referred to as the “non-graclicnVt model), as opposed to the probably 

more realistic I 

5/-- = 2m0 $ d3x ~~Wp&x) l E 45W 

(i. e., the “gradient” model). Again this was done to simplify the algebra, but the 

implication was that there were no crucial differences between the two interactions. 

This is not true, and the physical implications of .the two models are quite different. 

It is the purpose of this paper to extend the calculations of I and examine in 

much greater detail the nature and validity of .the first three assumptions. In 

particular we will show that the Pauli-Dancoff strong-coupling formulation is not 

successful in the fully self-consistent, non-gradient model and that the assumption 

of non-relativistic kinematics and the neglect of .pair states are also unjustified. 

On the positive side we will derive methods for overcoming the restriction to 

B = 0 core states (see #5 above),for expanding the self-consistency calculation to 

include the field strength as well as the core wave functions (see # 3 above), and 

for calculation of matrix elements between different states of the system. This 

last technique will involve a derivation of the representation of the field eigenstates 

on the number operator basis’ which is quite instructive and highly reminiscent of 

similar representations derived by Glauber3 for the description of the fields in 

a laser beam. 

The result of the above development will be a nucleon resonance spectrum 

which for certain values of m 
: O 

and g is a not too unreasonable facsimile of the 

actual spectrum. It is similar in that it contains both positive and negative parity 

resonances, it contains resonances in which the total angular momentum can be 

different from the isospin (i. e. , “Regge recurrences”) and. the ordering of the 

stntcs is not wildly different from that of the real spectrum. 
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However, the values of m. and g needed to get reasonable values for the 

energies are such that assumptions 1 - 3 are badly inconsistent. In other words, 

.A we find that in the non-gradient model g and m. must both be rather large to get 

the nucleon energy down below that of its excitations. This in turn leads to a 

kinetic” energy in the field Hamiltonian which is comparable in magnitude with 

the field binding energy but opposite in sign. This results in the invalidation of 

the %mall quantum oscillation’1 assumption. It also makes the energy of any given 

state the result of the subtraction of two large numbers of about the same size. 

* This is highly inaccurate and very sensitive to small changes in the parameters. 

In summary, the purpose of this paper is to demonstrate the inconsistencies 

of the non-gradient model introduced in I, but in so doing to expand and clarify 

the technical tools used for the model and to gain more physical insight into the 

nature of the states. These tools and insights will be valuable when we examine 

other formulations of the model in subsequent papers. 

We will close this introduction by mentioning a point which is generally either 

ignored or only casually referred to as a potential problem in describing the spectrum 

of the nucleon. It is an unpleasant fact of life that the widths of nucleon resonances 

are in all cases comparable to or substantially larger than the spacings between 

levels (see Fig. 1). This is to be contrasted with the situation in atomic or nuclear 

physics where the width to spacing ratios are of the order of 10e5 or less. It seems 

quite naive to expect that we will find a neat and precise model of the nucleon 

spectrum. Such a model cannot be realistic. In fact a successful model of this 

-’ spectrum will have to be, in a sense, as imprecise as the system itself seems to 

be. For obvious reasons, we hesitate to advertise our model as the most imprecise 

and therefore the most realistic of those proposed to date, but as we will see in 

the following, the strong coupling treatment of the pion field seems to have a 

certain amount of well defined Yimprecisiontt built in. 
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This feature of the meson field has been examined in the past by Schiff4 and 

Yennie’ and recently by Wale&a. 6 These authorshave examined the problem of 

linearizing a non-linear boson field Hamiltonian to describe small quantum oscil- 

lations about a large, constant classical or c-number background field. This 

program is always plagued by the fact that for non-linear boson fields of large 

intensity the quantum fluctuations are also large. There seems to be no way to 

avoid this. 

Our problem is non-linear in the sense that the pion field is coupled to itself 

through the self-consistency with the fermion field. In other words the fermion 

variables could in principle be’eliminated from the pion field equations leaving an 

effective non-linear Hamiltonian. So we expect many of the same troubles 

encountered by the above mentioned authors. Our point is that these “troubles” 

may be just, what are needed in the model to make it conform to reality. We do 

not minimize, however, the difficulty of doing believable calculations with such 

a model. This problem remains to be solved. 

This paper will be organized as follows: In Section II we present the expanded 

self-consistency calculation and include core states in which B # 0. In Section III 

we give some results of this calculation and illustrate how the spectrum is affected 

by changes in the parameters g and mo. We also discuss the various contributions 

to the energy and how they compare with what our approximations would lead us 

to expect. 

In Section IV we will derive the representation of the field states on the pion 

number basis and show how this can be. used to calculate ,matrix elements which 

are difficult to get in any other way. 

In Section V we will examine in detail our approximations and show how and 

why they break down. Section VI will include a summary of conclusions and a 
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brief discussion of the possibilities of reformulating the strong coupling problem 

to make it more realist’ic. 

. 
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II. FULL SELF-CONSISTENCY 

I As in I we begin with the Hamiltonian: 

and we begin our variational calculation with the 9ndeQendent particle” trial state 

vet tor 

(2) 

These two statements involve several approximations, which we now enumerate: 

1. Non-relativistic kinematiezs for the fermion. 

2. Non-gradient psuedoscalar coupling. 

3. One-particle fermion states. 

4. The fermion spatial wave function and the field eigenstate (which includes the 

fermion spin) are uncorrelated in the sense that each is determined by averaging 

the other over time and space. This is in close analogy with ordinary Hartree- 

Fock methods for atoms and nuclei. 

We will reserve comment on these approximations for Section V. We now consider the 

the set of coupled equations: 
B 

1 
2p+1 c 

m-- 
<+%!2rn~lHl**rn1> I@jmj> = E19jmj> 

l--l 

1 
j 

2j C <+jm IH/~jm>IqnQm~ = EI%.em> B e m;=- j j j 

(34 

w 
.‘. J 

In both of the above we have taken spherical averages to ,ensure that the field has 

a spherically symmetric source (Eq. 3a) and that the fermion moves in a spherically 

symmetric potential (Eq. 3b). These assumptions lead to degenerate multiplets T 

in J = I + j, and they can be checked for consistency by calculating the splittings 

in perturbation theory. (See Section V) 
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We begin with Eq. (3a). Using Eq. (1) for H and neglecting all fermion pair 

states we see that the eigenvalue problem for the field becomes: 

n2 + (p(-V2+p2) $ 

. * 

where we have dropped the expectation value of the first term of H. 

We define the source density for the field equation by 

(9 

(4) 

(5) 

and we see immediately that it .is spherically symmetrice We can also see from 

Eq. (4) what happens if we do not make p(xJ spherically symmetric. In this case 

the product $Irn (xJ 
I 

\tam (xJ causes all even values of angular momentum from 0 
Q 

to 2P to appear in p(x); When this is multiplied by $ and integrated with $(x), 

portions of all odd multipoles from 1 to 2P+ 1 are projected out of (p(x). 

There is nothing in principle preventing us from solving this larger problem. 

The self-consistency problem would have to be expanded to include f, h, . . . wave * 

pions and with sufficient labor this could be done. For a beginning, however, we will 

restrict ourselves to spherically symmetrized sources and therefore to only p-wave 

pions, 

We now follow the same derivation as in I (see Eqs. (54-74) and arrive at the 

separated Hamiltonian: 

s ,d3x “‘(2 ; p(xJ . (6) 
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Still following the development of I we diagonalize the g- q term and assume that W” 

we can measure the eigenvalue of H relative to the zero value of the “freel’ pion 

part. The last term is assumed to be small. 

At this point we depart from the derivation in I and instead of assigning the 

value qi = (gN)2 to the q2 which appears in the centrifugal barrier term, we include 

this term in the eigenvalue problem as it stands. The Yradial” part of the field 

equation is therefore: 

This can also be written as follows: 

where 

(9) 

forms an effective centrifugal barrier for the field amplitude equation. 

Equation (8) is solved numerically after the parameters R, N, T are calculated 

from the fermion source density (see Eqs. (67), (68), (71) of I). The resulting field 

wave function has the form7 

< 4,IU 1 @jm > = fn j(S) 
j 

Dg +l/z(~P 0) 
q j . 

where nq is the radial quantum number for the field amplitude vibrations. The 

other result of thiscalculation is, of course, the eigenvalue E’ 
4’ 

This completes the solution of Eq. (3a). We now use this solution in Eq, (3b) 

to derive the fermion Schrodinger equation. Neglecting all fermion pair states we 

can reduce the fermion field equation to a single particle Schrodinger equation by 



standard techniques and we get: 

This time we have dropped the expectation value of the free pion’field Hamiltonian. 

We now follow the derivation of Eq. (79-83) of I except that this time the value 
. 

q. = gN is replaced by <q> where 

<4> = / aSS3 f”, j(q) 
q 

So the fermion Schrodinger equation is 

V2 -me 
2m0 JI($ = (Ef - mo) +((x,, . 

(12) 

(13) 

Using the h(x) determined from Eq. (65) of I we solve Eq. (13) numerically for 

the fermion wave functions. These have the form 

where the Rti(r) are the solutions of 

These fermion wave functions are then used to determine a new set of values of 

R, N, T and in turn these are used to get a new solution to the q-problem. This 

process is repeated until it converges. 

The total energy of the product state is given by 

From Eq. ‘s (I), (8), (13) we know that: 

E4= <cP ]HG + HI)0 
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This means that . 

which is easily shown to be 

E=E,$+Ef+g <q>. (20) 

So as a result of our fully self-consistent solution we have the complete wave 

function (Eq.‘s (10),(14)) and the energy (Eq. (20)) of a state with any given set 

of fermion and field quantum numbers. Wk noti examine some numerical results. 



III. SPECTRA 

In Fig. 1 we show the known spectrum of nucleon resonances. We show only 

the ‘lwell establishedft ones as of August 1969.8 Referring to Table I we see that 

the known T = l/2 spectrum can almost entirely be accounted for by the set of 

quantum numbers shown.’ The only discrepancy ‘is the presence of a (3/2)+ in 

Table I which does not appear in the spectrum. We note that Greenberg lists a 

possible (3/2)+ with a very large width at 1900 MeV. 

The T = 3/2 spectrum of 6 states is somewhat overdescribed by the states 

listed in Table I. The spectrum is lacking two (3/2)’ states and a (5/2)-. Again 

we note that there are candidates for all three of these listed in the “possible1 

category by Greenberg. 

Finally there is the famous T = 5/2, (5/2)’ resonance, one of the principle 

rocks upon which the strong coupling model has so far foundered.’ There is 

disagreement as to whether this state has or has not been seen, 10 but there are 

several reasons not to let the absence of this state discourage one from exploring 
, 

the strong-coupling model: 

1. The prediction of the static strong coupling model for the mass of this 

resonance may be greatly in error, and the mass may be large enough to have 

prevented its being seen as yet. Although, as we will see, our numbers are -7 
unreliable in many respects, we do consistently find the T = 5/2 resonance at 

very high masses. 

2. The resonance may have a very large width causing it to be nearly indis- 

tinguishable from the background. 

3. The resonance may be hard to produce by the standard techniques of 

photoproduction or pion-nucleon inelastic scattering. 
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In principle our theory enables us quantitatively to test the above possibilities. 

If we should find that, indeed, the T = 5/2 resonance has a mass within the low 

resonance region (i.e., around 1700 MeV as predicted by the static model), and 

if its width is reasonably narrow, and if there are no inhibitions to its production, 

then we might reasonably begin to worry about the absence of the T = 5/2 resonance 

as a challenge to the validity of the model. 

Our assumption of spherical symmetry in the self-consistency calculation 

leads to the degeneracies indicated in Table I. It is amusing to compare these 

with the observed spectrum. For T = l/2 we predict a (l/2)-, (3/2)- doublet and 

there is a good candidate at (1525, 1515). Another (l/2)-, (3/2)- doublet appears 

at (1715, 1756). We predict a (3/2)+, (5/2)+ doublet but our spectrum lacks one 

member. If we use the tentative 1900 MeV resonance we get (1900, 1690). Finally 

we predict a (5/2)-, (7/2)- doublet and experimentally we have (1675, 2190). So 

if these are the correct assignments, then our model must account for only a small 

splitting in the first two doublets but a quite substantial one in the last two. 

For T = 3/2 we predict a (l/2)-, (3/2)-, (5/2)- triplet for which the last member 

is missing. If we use the possible (5/2)- from Greenberg we get (1630, 1670, 1950). 

Our quartet of (l/2)+, (3/2)+, (5/2)+, (7/2)’ has three of its four members observed, 

and,depending on which of the tentative P 33’s we pick,we get (1905, 1690 or 2000, 

1880, 1940). 

As we will see in SectionV our assumption of spherical symmetry is not at all 

borne out by our numerical results. In other words we predict multiplet splittings 
* 

(for the T = 3/2 spectrum) which are as large as or greater than the spacings 

between multiplets. The data, however, seem to be quite suggestive of a system 

of multiplets, especially the T = 3/2 spectrum. We can only hope that our model. 

when put into one of its other possible forms (c. g., gradient model) will give us 

back the near degeneracy within multiplets which the data suggests. 



In Figs. 2 and 3 we show the behavior of some representative states as the 

parameters m. and g are changed. In Fig. 4 we show the spectrum for g = 33 

and m. = 9 superimposed on the observed spectrum. 

In Fig. 2 we have fixed m. at 9 pion masses and varied the coupling constant 

from 27 to 33. The most striking behavior is that of the ground state for each 
. 

value of T. These fall dramatically as the coupling is increased. This drop is a 

result of the increasing concentration of the fermion wave function near the origin 

(see Fig. 5). This results in a highly concentrated probability density which in its 

role as source for the pion field produces a field which is very intense in the 

volume near the origin. This field is essentially the potential in,which the fermion 

moves so the result is a particle lying very low in a deep, narrow potential well. 

-1 For the field equation (Eq. (8)) we see that the quantity R acts l.ike a mass 

and i-l like a spring constant in the oscillator equation (see Fig. 5b), As the 

fermion wave function becomes more concentrated at the center all three of the 

parameters R, N, T increase, but R (the integral of the squared probability density 

of the fermion) increases most rapidly. Notice also that as T increases the centrifu- 

gal barrier is reduced. Finally g is being increased so the binding term becomes 

more and more negative. 

The result of all this is a balancing of competing effects with the net tendency 

being to lower the field energy. The lowering of the centrifugal barrier and the 

increased binding are the lowering effects. The decreasing mass and increasing 

spring constant contribute to increasing the field energy. The increase in the spring 

constant turns out to be a rather mild effect so the combination of the centrifugal 

and binding effects is enough to overcome the decreasing.mass (especially since 

it is the square root of the mass which is relevant) and decrease the field energy 

as g increases. 

* 
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So we see that as g increases the total energy .of the states should decrease, 

and it should decrease most for those states which allow the fermion to have a 

concentrated probability distribution. The states with I > 0 have an additional 

centrifugal barrier which forces the wave function to be more spread out (see 

Fig. 6a, b), but there is still some lowering of the energy as g increases. The 
. 

states with n > 0, however, seem to be very insensitive to changes in g because 

the combined constraints of normalization and n radial nodes always force the 

higher n wave functions to spread out considerably (see Fig. 7a, b). Finally, in 

Fig. 8a, b we show the retits for the A3,2 3,2 resonance. The extra cen- 
, 

trifugal barrier in the field Hamiltonian causes the field energy to increase and 

because the effective mass in the field equations is so small, the effect is too 

large and the A lies much too high in energy. 

It is interesting to compare the graphs for the field problems in the order, 

Figs. 8b, 5b, 6b, 7b, where we have listed the figures in the order of increasing 

extension of the fermion wave function. As the fermion spreads out the constants 

R, N, T all decrease and the field potential becomes narrower and steeper (T and N) 

and the effective mass becomes larger (R). The eigenvalue does not change nearly 

as fast as the separate parameters do because, as we have mentioned above, these 

changes in the parameters have opposing effects on the eigenvalue. The value 

of <q> is substantially affected, however. 

The set of solutions shown in Fig. 4 comes as close as we can reasonably get 

to the actual spectrum. It is quite apparent that there are still serious discrepancies 

between the calculated and observed spectra for this model. In order to get the 

ground state to lie below the excited states, g must be quite large. But no matter 

how large we make g we cannot get the first radial excitation (i, e., the Roper 1460) 

to lie below the rotational excitations of the core fermion. 

- 15 - 



There is one possibility of fixing this, which depends on the fact that the 

n = 1 and n = 2 radial excitations are close together (indeed the n = 2 state lies 

below the n = 1). Since our states are not orthogonal to each other (in effect they 

are solutions to different Hamiltonians) there’will be mixing between levels with 

the same angular wave functions and they will repel each other. In the next section 
. 

we will develop the techniques necessary for calculating off-diagonal matrix elements 

of the Hamiltonian so that in principle this mixing can be calculated. However, as 

we will see below, the results of this model are bad in so many other respects that 

it seems rather pointless to add such a refinement now: 

One possibility remains to be discussed. There is no reason to exclude 

3adial” excitations in the q variable. Referring to Figs. 5b, 6b, etc., we see 

that this would imply finding an f(q) with one radial node, We have looked for and 

found such solutions, but because of the very tight binding (in particular the large 

value of R which corresponds to a small mass in the oscillator equation) this 

radially excited state has an extremely large energy. These states are therefore 

far above the’region which is depicted in Figs. 1 and 4 and not of great interest as 

yet. There are also reasons to expect that these states will be very broad (see Ref. 1). 

There are more details of the spectra to be examined, but these are better 

treated in a discussion of the validity of the approximations, and we put this off 

until Section V. 
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IV. NUMBER OPERATOR REPRESENTATION 

Before examining in greater detail the results of Section III we will derive a 

representation of the field states which will allow us to calculate matrix elements 

between different states and also estimate the errors we have made in performing 

the separation of the field Hamiltonian into bound and free parts, In fact this 
. 

technique will lead us to an entirely new approach to the self-consistency problem 

which shows some promise of being more realistic and reliable than the method 

described in this paper. This new approach will be explored in a later paper. 

We begin with the interaction part of the Hamiltonian after the fermion coordinates 

have been spherically averaged and integrated out. The interaction term is then 

HI = -g,“* s d3x ~00 fi 9(x) s (21) 

and as usual we define 

s&f 
= d3x P(X) :! W4, (22) 

where q is an axial-vector operator representing the strength of the overlap of 
)M 

the p-wave part of the pion field with the source density. 

We are trying to solve the eigenvalue problem 

(“c$I + :I) 14jmj> = E$i +jmj’ ’ (23) 

and we now assume that the eigenstates of CJ form a complete set, i.e., span the 

entire space of possible pion field states. This, of course, is not true. There 

are pions of all partial waves besides Q = 1 which can be created and destroyed, and 

there are p-wave pions whose radial wave functions are orthogonal to p(x). The 

strong-coupling approach neglects these states, and previously we have done this 

by splitting the field and its conjugate momentum into two pieces, viz 

e(x) = 2.’ &(x) -I- $‘(x) 

(24) 



and then assuming that all terms containing @I(x) and r*(x) could ‘be neglected. 

The alternative we propose now is to avoid separations like those of Eq. (24) and 

assume directly that the states Iqt > form a complete basis for the description of 
v+ 

the pion field. 

With this assumption we can write Eq. (23) as 

which is now an eigenvalue equation for the a-space wave function of the field 

/ 
d3Sf W.2 :I cPjm.($) = E 4jmj(s l (26) 

J 

If we know H(z $) then we can solve this as we would any Schriidinger equation 

in coordinate space. 

In the model discussed in the first three sections we actually had such a 

representation (see Eq. (8)): 

- - 2 d + iiffE9 d2 2 

dq2 q ds q2 1 1 + 2+ - gq (27) 

which was the result after all terms containing #l(x) and V(x) had been dropped. 

We wtil now show how an analogous, but quite different, expression for HQ, $) 

can be derived without ever making the bound-free separation. 

We begin with the requirement that the states Is’> be eigenstates of the 

operator 
s: 

sls: ’ = $I$> l (28) 

This represents, of course, three separate and independent eigenvalue equations 

for the three components of 8, e.g. , 

qg,’ > = qs,> * (29) 

- 18 - 



Henceforth we will deal with the qx problem alone, noting that obviously the 
?Y 

and qz derivations will be identical to it. Referring to Eq. (22) we have 

kf = d3x fix~(X) $tx) 
and if we expand q(x) in partial waves 

we can do the spatial integration and get: 

where 

and 

r2 p(r)jl(W 

(32) 

(33) 

Except for the factor of CIJ -l/2 in Eq. (33) we see that p(k) is proportional to the 

coefficientin anexpansion of p(r) on the complete set of jl(kr) (i, e., complete on 

the interval 0 < k 500). l/2 The factor of o comes from the expansion of @J(X) and 

ensures that the a(k) operators have the simple commutation properties 

(35) 

The next step is to expand the state 
I% r > in terms of the number operator 

representation. Let 

I$> = $$$Jikn “n(kl...kn)/k,..kn> 
n=O 

(36) 

where 

I kl...kn>= l 
(37) 
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Bose statistics tell us that the a! (k 
.nl 

. . . kn) must be completely symmetric in their 

arguments. The number states in Eq. (37) are clearly an orthonormal and complete 

set on the subspace of p-wave pions polarized in the x-direction. 

Now inserting Eqs. (36) and (32) into (28) we get 

= q& $&/ikl:. . dknarn(kl. . . kn) 1 kl.. . kn> . 
kX=O 

(38) 

Using the orthonormality of the states in Eq. (37) and the symmetry of the Q’S we 

can project out of (38) the coefficient of the general state with n pions: 

/ 

n 
(n+l)1’2 dbtk) ~n+l(k,kla. l k,) + v& c p($) yJkl.. .(i). . . kn) 

n i=l 

= q&(kl...kn) (39) 

where the symbol l’(i)” in the second term means that ki is missing from the argument. 

A solution to this equation is easily obtained by induction: 

-f 
n=O cik p(k) +k) = gk’yo , (40) 

n=l db(k) a2tk, kl) = ~"l(kl)- "OPtkl) , (41) 

n=2 - 'z 
PC 

Ptkl)'Yltk2);t. ~(k~)q(k~) . (42) 1 
From these equat.ions, and the requirement of symmetry of the Q!‘S we can see by 

inspection that the simplest solution has the form: 11 

an(kl. . . kn> - P(~~IP(~&.. p(kJ . 

Using this in Eq. (40) we find that 

ob 

(43) 



- 

where 
‘- 
R= 

s dk P2W (45) 

Equation (41) now becomes 

and if cr2(k, kl) has the form (43) it must be . 

we can write the general cm in the form 

an(kl.. . kn) = 
aO 

(n’ P(k& l l Poq PnWL (49) 

. 

where the P,(x’) are polynomials of order n in xr which can be shown by means 

of Eq. (39) to satisfy the recursion relation 

(43) 

Pn+lW) = x’Pn(xl) - nPnWl(xl). (59) 

But these are closely related to the Hermite polynomials which satisfy 

Hn+&x) = 2x Hn(X) - 2n Hnv ltx)y 

and it is well known that 
12 

(51) 

P,(x) = 2 -n/2H x 
n2’ ( 1 J 

(52) 

Therefore, if we define 
% 

x=(z (53) 



we can write (49) as 

cxn(kl. ). kn) = 
"0 

H 00 Ptklh l . 

(n!2nfin)1’2 n 
Ptk,) . (54) 

We now insert (54) into (36) and get the full for the basis states c$: 
00 

I$ >= a0 c 
H,(x) 

n=O (m 
(55) 

. 

where we have defined 

S c-k p(k) a&) . (56) 

Finally we determine a0 by demanding that 

<q I$> = “(qpqf) . 

This leads directly to the requirement that 

2 
c 

Hnt x”)Hn(x’) 

“0 n $5 . 
= --$p 8(x”- x0, 

(57) 

(58) 

where we have used (53) to convert the &function. But the sum in (58) can be 

done explicitly because we know the expansion of the $-function in terms of the 

complete set of harmonic oscillator wave functions. A one-dimensional oscillator 

. 13 wave function is 

<+> = ‘!“tx> = --&p- $ 0 114 
e- 1’2px2 Hn( @x) , 

. 

where /3 = mo. If we let /3 = 1 and use the completeness property of these wave 

functions we get 

c 

HnW H&x’) 
= 

2nn! 

TV2 ex2 S(x - x’) . 

Applying this to Eq. (58) we have 
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Our final result is therefore 

where each of the factors has the form of Eq. (55). 

We can now proceed to use the expansion (55) to calculate the matrix element 

of H in (25). The matrix element of HI is, of course, trivial since the entire 

representation was built around this term. We have 

Q’PIIP = -gg- l g s3ts__ $1 l (63) 

The matrix element of H is more complicated but reduces to a simple form, We 
4 

first express He as a sum of partial wave terms 

He = i /d3x iT2tx) + l~@tx)12 + P2 $2(X)) = El&@ aim(k) aQm(k) 
(64) 

where we have dropped the zero point energy as usual. Forming the bracket 

<$lHt$i4 > and using the commutation relation t [ 1 api(k), ap = 
j . 

we find that 

(65) 

<$ 

ob 

c 

tin tx) Hn (x1).. . Hn W$., @‘I 

I L H+ q>=Q 
x .x _ z Z 

n ,n ,nz=O 
2nn!n!n! 

x Y x Y = VW 

where 

and 

n =nx-l-n +n 
Y z 

Q= ’ 

(2iq3'2R5/2 f 
dko p2(k). (67) 

A straightforward calculation shows that the integral in Eq. (67) is proportional to 

the quantity R defined in Eq. (67) of I. In fact 



so 

Referring to Eq. (66) we see that the presence of the n in the numerator of 

the sum means that (66) is the sum of three terms, each of which has two factors 

which are precisely of the form of Eq. (60), and one factor which differs by a 
I . 

factor of n in each term of the sum: 

<$lH&> 

Hn omn (x0 
-imx , 

2 x(nx-l)! 

Converting the arguments of the S-functions back to 
‘. 

?Y 
and q, we get 

<$1”&> 

So the problem reduces to the summation of the series in (71). 

For this we use the following identity. l4 Let 

exp - $(x2+xt2) . [ 1 (72) 

Then 

WI, x, x’, = 
1 

.1’2(1-??2)1’2 t 
exp 

2xx’r) - $(x2 +xf2)( 1 + q2) 

1 - q2 
. (73) 

It is relatively straightforward to show by taking limits in the proper order that 

lim 
b 

/ w-1 a 
dx’ F(x’) f(q, x, x’) = F(x) if a<xcb 

0 otherwise . 
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I Therefore, as we expect 
Urn, 

’ 1 
vl f(q,x,x’) = 8(x-x’) (74) 

We now notice that the sum in Eq. (71) can be written as 

(75) 

The same technique can be used to prove 

Finally, using (53) again to convert the argument and noting that the three terms 

of the matrix element of H 
$ 

can trivially be added we have 

<$‘p&p = 

The similarity in form with Eq. (27) is striking, but we see that the coefficients 

are quite different. The constants N and T which appear in (27) no longer appear 

here, and only the old constant R and the new one E remain. 

The implications of Eq. (77) are great.. First it means that we can check the 

validity of the separation performed in the derivation of Eq. (27). But even more 

important we see that the ability to evaluate this matrix element exactly opens the 

way to an entirely new self-consistency problem in which the bound-free separation 

need never be made. We will explore this new formulation in a later paper. 

We now demonstrate one more very useful property of the expansion (55). We 

will in the future wish to calculate matrix elements of the Hamiltonian and other 

operators between different states. But each state is characterized by its own 

core density p(r), so the q operators for each state span different spaces. These (k 

spaces overlap, however, and we now calculate the overlap. The transformation 
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function is given bi 

$N’I$N> 

where N* and N stand for different nucleon states. Using Eq. (55) we find 

<%*I%> = <q~;lq~~> Cq~;lq~~> <~N$$J,> (78) 

which follows from the fact that the three directions are independent. \ 

Concentrating on one of the above factors we have 

cqN;lqNx> = 

But it is easy to show that 

[BP’* Bpt] = ‘* ~%$,$k)f$(k) = BN,N’ (80) 
I 

Note that BNN = BNINl = 1. Using (80) we get for (79) 

<qN’ IqN > = 
11,tsf) HntX~) 

(81) 
x, x -2n n! 

which is exactly the form we saw before in Eqs. (72) - (73). The series can 

therefore be summed to give , 

<qN’ lqN > = 21- - 
1 

x. x t4T RNR~I) 

(82) 

Of course there are similar solutions for the other two factors in Eq. (78). 

This is a rather complicated expression, but since all our calculations must 

be done by computer anyway, it is not as unpleasant as it looks. For any general 
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matrix element we have a 

and if we know the zrepresentation of the operator 0 we have all we need to cal- 

culate the off-diagonal matrix element. 

We close this section with some remarks concerning the generality of the 
,/ 

solution (54). If we return to Eq. (40) we note that Eq. (44) is not its most general 

solution. We could have written 

OO 
~~tk) = T QW -t rltk) (84) 

where the only requirement on q(k) is 

s * p(k) r)(k) = 0 . (85) 

A straightforward calculation then shows that the most general form for a2(kl, k2,) is 

a2tklr 3, = 
% 

p(~)+-~(~)(k~~P(kZ)+ ?l(kZ)~(k~)) '772(kl,k2) 9 (86) 
@- 

where the only requirements on v2(k1,k2) are that it be symmetric and orthogonal 

to p(k). 

Since the requirement of being orthogonal to p(k) is quite unrestrictive we see 

that there are an infinite number of possible solutions for the Q’S, and that we have 

written down only the simplest one in Eq. (54). It seems clear that this ambiguity 

is analogous in some way to the ambiguity inherent in the separation of the field 

operators into bound and free parts. Presumably with the proper choices of the 

functions ql(k), ‘q2(kl,k2), . . -, etc., we could reproduce the result of Eq. (27), 

but we do not intend to attempt this here. 

In conclusion, the result of this section has been to transform the ambiguity of 

the bound-free separation into a different form. The advantage of this method over 

the Pauli-Dancoff method is that we can derive explicit expressions for matrix 
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, 

elemeks and therefore evalkte the effects of different q(k), whereas we had no 

reliable way to calculate the matrix elements of ?r’(x) and #I’(X) in the Pauli-Dancoff 

representation (see Section V. C). 
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V. CHECKS OF APPROXiivIATIONS 

In this section we return to our results of Section III and examine the degree 

to which they are consistent with the approximations we have made. We will find 

some rather disturbing inconsistencies which will lead us to the conclusion that the 

non-gradient model presented in this paper is inadequate in its present form. In 
t’ 

the last section we will present some possible alternatives. 

A, Non-Relativistic Kinematics 

Before we do any quantitative calculations we can see very quickly that we are 

in trouble on this assumption. Referring to Fig. 5a which gives the ground state 

wave function and recalling that the bare mass of the fermion in this case is 9 pion 

masses we note that the binding energy is nearly 8 times as large as the mass. The 

average height above the bottom of the well is about 17 pion masses meaning that 

the average kinetic energy is roughly twice the mass. 

Another relevant observation is the radius of the probability density. We notice 

that in the ground state the fermion is confined almost completely within a region of 

radius . 1 pion Compton wavelength. But this is almost exactly the Compton wave- 

length of the fermion itself, so we expect that the formation of virtual pairs will not 

be negligible. 

The approximation of non-relativistic kinematics has been checked quantitatively. 

We have calculated the expectation value of the third and fourth terms in the expan- 

sion 
2 4 6 

E=(p2+m2)1’2=m+$ - k.!$ + $ P 
m6 

- . . . 
m 

and compared their sum to the bare mass of the fermion and the kinetic energy of 

the fermion. The results for four of our states are given in Table II. One look at 

this table is enough to convince us that our assumption of non-relativistic kinematics 
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is patently ridiculous. Even in the’best case, the Roper excitation, the fact that 

the relativistic correction is positive shows that the fourth term of (87) is larger 

than the third term. 

There is very little more to be said about this problem. We must either find 

a formulation of. the model in which the binding need not be so strong or go to a 

Dirac equation for the fermion. 

B. Spherical Averaging 

We have been working with states which are products of fermion states with a 

given 11 and field states with a given j. Since the solution of each separate eigenvalue 

problem is obtained by spherically averaging over the coordinates of the other sys~ 

tern the net result is an energy which depends only on the values of Q and j and not 

on their vector sum. We now proceed to test this assumption by returning to the 

basic Hamiltonian of Eq. (1) and calculating the “fine-structure. ‘I If the splittings 

are small we can feel safe with our procedure, but if they are large, as indeed they 

will be, we are led to question the consistency of this approximation and look for a 

more valid one. 

Even at the outset we should be apprehensive. We have seen that the expecta- 

tion value of the interaction term in Eq. (1) is very large in our results. Indeed it 

is the essence of a strong, coupling approximation that this term shall dominate the 

energy O But all the contribution to the fine structure splitting comes from this 

term, so it seems almost a priori inconsistent to enforce spherical symmetry for 

the basic equations. An alternative approach which incorporates the fine structure 

into the self-consistency problem .from the beginning is possible and will be briefly 

mentioned at the end of this subsection. 

We now consider the matrix element of 

HI = -g J h3x q?(x) ,b’ r^ $qx) #(x) (88) 
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in a state with given values of 8, j,’ and J. We evaluate this matrix element in 

the “body-fixed frame” l5 so that the transformation U (see I Eqs. (24) -  (27)) 

must be applied to HI first. As we have seen in I the effect of this transformation 

is to change g to.4 and reduce the two-component spinor equation to a one- 

component equation. Our matrix element is now 

-g ‘?&jJM I/ ’ d3x J(X) 4 l C Jl(X, $(X;! U’&JJM> t (89) 

where 

<:,:I 1Y~jJM’= R&3 fj(q) c <emjm’lejJM.jY~(~)(-I)m’-1’2 cEf+l/z(r) l 

m,m’ 

The field angular wave function is7 

C~~+v2(o$O) = 
f- 

F D(j) m’+l/2w30)~ l (90) 

The next step is to assume that the expectation value of e’(x) (see Eq. (24)) is 

zero and that the expectation value of Cp(x) in the state in question is given by 

q . Es(x). With this assumption, the matrix element (89) breaks up into three 
*r 
distinct factors: 

where we have suppressed the obviously irrelevant index M. 

(91) is nothing more than 

J r2dr’ p(r) t(r) = 3 , 

The first factor in 

(92) 



which can be seen by using Eqs. (5) and (14) of this paper and Eq. (62) of I. The 

second factor of (91) is just <q> (Eq. (12)) so we are left with 

The problem has now reduced to the evaluation of the angular matrix element, 
. 

and this is done using standard Wigner-E&hart theorem techniques. We write 

(&t,2 =+ + QijRij , VW 

where 

Qij = aitj - $ kj , 
(95) 

and Rij is the analogous tensor made from f. Eq. (93) becomes 

= -g<q> -3g <q> 7J.j J , 

where we recognize the first term as our spherically averaged interaction energy 

and the second term as the l’perturbation” which will break the degeneracy. 

To evaluate the second term we first note that 

Qi jRi j =; C&R 
WT (97) 

where Q and R are the properly normalized irreducible tensor operators. Then 

using a standard formula (Ref. 7, Eq. (7.1.6)) involving the 6-j symbol we find: 

yQjJ =$-lp+J ; ; : 
'i 1 

<Q !I$ I!Q>Cj l!gllj> . (98) 
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The reduced matrix elements can in turn be evaluated (Ref. 7, Eq. (7.1.1)) in 

terms of the reduced matrix elements of $ and $. All of this is quite straight- 

forward and we simply give the results: 

(99) 

( 1 
j+.L 2 

. 

<j II $j IJ j> = - - 

2 k ~(j+l;] 

-+ (2j+3)(2~+l)(2j-l;ll/2 
[ 

. (100) 

After inserting Eqs. (99) and (100) into Eq. (98) and evaluating the 6-j symbol 

(Ref. 7, p. 132) we have 

yljJ = 
3X(X-l) - 4j(j+l) m(Q+l) 

(2&1)@,+3) t (101) 

where 

X = j(j+l) + I!(f+l) - J(J+l) . (102) 

It is easy to verify that when either 1=0, or j=1/2, rpjJ=O. So we predict zero 

splitting for all the T=1/2 core excitations. As we have seen in Section III this is 

not a bad prediction for two of the observed doublets, but it cannot account for the 

sizable splitting of two others. Of course our choice of states could be wrong and 

there might be as yet unobserved resonances which fit the predictions much better. 

The only splittings occur in the T=3/2 spectrum (and of course also when 

T > 3/2). The rmjJ ‘s for these multiplets can be expressed in the form 

1 16 2 

y’=x = cYs 0 (103) 

and the CY’S are given in Table III. We note that all of the above y’s are reasonably 

small compared to l/3 so that the splitting is only a small fraction of the binding 

energy. However, as we can see from Fig. 9, where the splittings have been 
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incorporated into the T=3/2 spectrum, the splittings are not small compared to the 

separations between multiple&. This’is because g<q> = 50.0 for the Q=l state and 

28.9 for the Q=2 state. In fact it is only luck which keeps the lowest lying levels 

from having negative energy. If the coupling were only a little stronger this would 

occur. 

As we examine Fig. 9 we see that we can draw very little comfort from the 

comparison of our model with the real spectrum. It is not only the fact that the 

fine structure splittings are very large which is disturbing but the directions of the 

splittings are not consistent either. For the Q=l set the (l/2)- is pushed down, the 

(3/2)? up and the (5/2)- slightly down. We therefore predict the ordering 
I- 2’ z- 
2’2’2 whereas we observe the order if we accept the reality 

of the (5/2)- at 1950. 

The Q=2 set is even worse. Our theory predicts the order 

z+ 1” 7+ 3+ 2 , ‘z , z , ‘31 depending on which 

of the two possible (3/2)+ states we use. Roth of these suffer from having the 

(5/2$ state at the wrong end. 

We conclude that our procedure of calculating the degenerate energy levels 

by spherically averaging the potentials and then calculating the splittings in per- 

turbation theory is not valid. The fine structure must sotiehow be incorporated 

into the zeroth order solution. What this means in practice is that we cannot really 

treat P and j as good quantum numbers since strong matrix elements exist which 

mix different I, j states to give the same J. This is analogous to the trouble one 

encounters with Russell-Saunders coupling in atoms when the individual spin- 

orbit forces are beginning to become appreciable. , 

The only solution we can offer to this problem is to begin with states which are 

eigenstates of J and sums of products of Q and j eigenstates. These of course will 

be infinite sums in general, but one might hope to truncate them and get better 
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answers than we presently have. This will involve considerably,more work since 

it means the abandonment of assumption 2 (Section I) and the introduction of cor- 

relations. Relativistic’kinematics would also introduce a spin-orbit interaction 

for the fermion which would split the J-states. If in addition g were smaller, then 

there might be a chance that the orderings of the levels and the magnitudes of the 

splittings would be more realistic. As of now this is oply a hope. 

C. Bound-Free Separation 

The results of Section IV have been used to test the validity of the Pauli- 

Dancoff separation of the Hamiltonian into bound and free parts. We recall that 

in evaluating the energies of the nucleon states we have neglected the last two 
. 

terms in Eq. (6). We have done this under the following assumptions: 

1. There is a zero-free-pion state with energy equal to zero which is an 

eigenstate of the fifth term of 6. 

2. The expectation value of $(x) is zero in our states and the second order effect 

of the last term is negligible. 

We can now test these assumptions by taking the field wave functions we have 

found from the first four terms of 6, and using the techniques developed in Section 

IV to calculate the expectation value of the full field Hamiltonian H -f- H (see 
cb 1 

Eq. (23)). To the extent that this latter result agrees with the field energy derived 

from 6, our assumptions are valid. 

We will not give the details of the calculation here but will outline the pro- 

cedure used and summarize the results. From Eqs. (63) and (77) we have that 

where 
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We use the wave functions of Eq, (10) to evaluate the matrix element 

<#jm l.U’H(Q’ 
j 1, fjm > = Jd3S Cp *(s) H(q) cP(S) 9 

j 
(106) 

and we compare the resuit of Eq. (106) with the result of a similar calculation 

using Eq. (27) for H(q). 
. 

The results can be summarized quite briefly. In virtually every case the 

difference between the two calculations of E9 is comparable to the total energy of 

the state. Again we have found that the intense binding required to give realistic 

energy levels has taken us into a region of solutions in which the initial assumptions 

are inconsistent. However, in this case the problem may be even more funda- 

mental. The “free” fields Cp’(x) are actually very complicated and non-local, and the 

assumption that there exists a zero energy ground state of the Hamiltonian H 
P 

made 

up of @l(x) and s”(x) seems to be not at all justifiable no matter what the binding energy. 

We have made some attempts at analyzing in detail the nature of the eigen- 

states of H 
cp 

,, but without great success. It is clear, however, that they cannot 

be eigenstates of any number operator and that to speak of the state with “no free 

pions” (i.e. , no free quanta of the 4’ field) is incorrect. Indeed it was to make 

this concept more precise that the representation of Section IV was developed. 

We can summarize this section by noting that each of the approximations or 

assumptions we tested has turned out to be grossly in error. We are forced to 

the conclusion that the model in its present form is unacceptable. In the next 

section we propose some changes in the model which might rectify some of these 

difficulties. 
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VI. CONC LUSION 

We have extended the strong coupling model begun in Ref. I to include a full 

self-consistency calculation for the field and core eigenstates and a mechanism 

for including core excitations with P > 0. We have not changed the assumptions of 

non-relativistic kinematics, no virtual pairs, and independent particle wavefunc- 

tions. 

We have found that in order to get a rough agreement with experiment on the 

magnitudes of the energies we need a very large coupling constant and a fairly 

large mass. An inevitable result of this is that the kinetic energy stored in the 

field oscillations is large and comparable to the field binding energy. The energy 

of a state is therefore the small difference between two large numbers and this 

leads to many difficulties, three of which are: 

a. The assumption of non-relativistic kinematics is demonstrably 

inconsistent and the neglect of virtual pairs almost certainly 

unjustified. 

b. The spherical averaging technique which makes both the core 

and field angular momenta good quantum numbers is demonstrably 

inconsistent. 

C. The separation into bound and free fields originally used by Pauli 

and Dancoff is not reliable in our self-consistent model. 

These difficulties have led us to reject the self-consistent strong coupling model 

in the form in which it is presented in this paper. There is still some hope, 

however, that the model may prove useful when suitably modified. 

In subsequent papers we hope to explore the consequence of using relativistic 

kinematics (i. c. , the Dirac equation) for the fermion, a gradient coupling be- 
t 

twecn the fol*nrion density and the field, the number operator representation for 
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the field states, and trial wavefunctions which include some correlations. There 

is also the possibility of introducing explicitly non-linear terms into the pion field 

Hamiltonian. 

At the present writing we cannot predict whether these changes will save the 

strong-coupling model. In fact we cannot even predict whether self-consistent 

: solutions will exist, since each change in the equations of motion re-opens this 

question. 

We do believe, however, that these possibilities ought to be explored before 

, the strong-coupling model is totally abandoned. 

Finally, we must face up to the problem mentioned in the introduction. It may 

be true that by postulating a strong-coupling between source and field we are building 

in at the outset the result that the field energy will be a delicate balance between 

the binding energy and the energy stored in the quantum fluctuations. This is known 

to happen in simple non-linear theories, 4-6 and to the extent that the non-linearity 

in our model is similar to that in these other models, we can expect the same 

troubles. 

As we mentioned in the introduction this result is not necessarily bad. We have 

already left behind the necessity for assuming an essentially classical pion field. 

Our field equation (either Eq. (27) or Eq, (77)) is a bona-fide quantum mechanical 

equation and we have solved it exactly. It may be that the large quantum fluctuations 

in the pion field are just the mechanism we need to account for the large widths of 

the resonances. 
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LIST OF 

1. Quantum number assignkents for the observed nucleon resonances in the 

strong coupling model. The quantum numbers are defined as fb\lows: 

n= radfal fermion quantum number (i. e. , number of radial nodes in fermion 

wave function); P = fermion orbital angular momentum (determines parity of 

state); j = field angular ‘momentum which is equal to the isospin T of the 

state. The last two columns give the standard spin-parity and partial wave 

assignments and the degeneracies have been made explicit. 

2. The first three columns give the quantum numbers of the states in question 

and the next three list respectively, the fermion bare mass m o, ~the fermion 

kinetic energy (i.e. , the expectation value of the second term of Eq. 87), 

and the relativistic correction to the fermion energy (the third and fourth 

terms of Eq. 87). The energies are measured in pion masses. 

‘3. The quantity CY in Eq. (103) of the text is given for each of the J values 

possible for a given set of 1, j. 
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FIGURE CAPTIONS 

Known spectrum of T =‘1/2 and T = 3/Z nucleon resonances. The widths of 

several of the states are shown for comparison with the level spacings. 

Plots of the masses of some states vs the coupling constant g for fixed bare - 

mass equal to 9 pion massesa The energies are all in MeV. We have in- 

cluded the T = 5/Z state in the T = 3/Z column. ,’ ’ 

Plots of the masses of some states vs the fermion bare mass m. for a fixed - 

coupling constant g = 31. The energies of the states are in MeV. 

The spectrum of states resulting from the choice of g = 33, m. = 9 is shown 

on the right in each column and the actual spectrum on the left. 

(a) Plots of the final self consistent ground state radial wave function @(I$ 

probability density o(r),and potential V(r), x r,where r is measured in pion 

Compton wavelengths. The energy values of V(r) are measured in pionmasses. 

(b) Plots of the effective potential for the field problem V(q) and the final 

q-space wave function f(q) for the ground state (i. e. s nucleon) problem. 

(a) Plots of $(r), p(r), and V(r) for the state with T = l/2 and Jp = (l/Z-, 3/Z-). 

(b) Plots of V(q), f(q) for the same state. 

(a) Plots of $(r), p(r), and V(r) for the state with T = l/2 and Jp = l/2’ 

which has energy equal to 2220 MeV in Fig. 4. This is the %oper” resonance 

in the strong coupling model. 

(b) Plots of V(q) and f(q) for the same state. 

(a) Plots of 9(r), p(r) and V(r) for the statewith T = 3/Z and Jp = 3/Z’, the 

A33 resonance. 

(b) Plots of V(q) and f(q) for the same state. 

9. Spectrum of T=3/2 resonances. The observed states are on the left, and on 

the right is the calculated spectrum in which the fine structure splitting has 

- 45 - 



been taken into‘ account. We-note that the vertical scale of this figure is 

expanded by a factor of tivo from that of Fig&. 1 and 4. 
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