
SLAC-PUB-695
November 1969
(MISC)

EVALUATION OF SYSTEMS PERFORMANCE

IN A MULTI-PROGRAMMING ENVIRON’MENT”

V. Androsciani

IBM, Data Processing Division

C. R. Dickens

Stanford Computation Center (SLAC Facility)

T. Y. Johnston

Stanford Computation Center (SLAC Facility)

R. Lonergan

IBM, Data Processing Division

T. Y. Johnston
Computer Facility
Stanford Linear Accelerator Center (SLAC)
Stanford University
2575 Sand Hill Road
Menlo Park, California 94305

(Submitted to the .19’70 Spring Joint Computer Conference,
Princeton, New Jersey 08540.)

*
Work supported in part by the U. S. Atomic Energy Commission.

ABSTRACT

This paper examines five different system measurement techniques used

at the Stanford Linear Accelerator Center with some notes on the history of

their local development. An attempt is made to show the relative merit of each

technique.

The techniques are:

1. Benchmarks

2. Individual program measurement

3. Analysis of systems accounting information and the

use of charging

4. Hardware monitors

5, Software monitors

The, need for global measurement, understanding, monitoring and changing

of complex multi-programmed systems is emphasized. The techniques described

are heuristic and iterative rather than analytical. ‘When a multi-programming

system can be described analytically, then perhaps analytic techniques can be

used to improve performance. The continuously changeable and non-forecastable

nature of complex multi-programming operating systems is examined, The need

for comprehensive measurement techniques is espoused. Further, basic char-

acteristics of measuring tools are discussed, including: ease of use, economy,

availability and comprehensiveness.

I. INTRODUCTION

The Stanford Linear Accelerator Center (SLAC) is a laboratory performing

basic research in high energy physics operated by Stanford University under

contract to the Atomic Energy Commission. The major computer system at SLAC

is an IBM 360, Model 91, operating under the multiple variable tasking option of

IBM’s Operating System. The goal at the Facility is to provide the best possible

service for a wide range of users with diverse requirements. This paper, then,

is an exposition of how evaluation of systems performance on the Model 91 is ac-

complished. The primary goal in measuring performance is to improve the utiliza-

tion of this large processor.

As a secondary goal, understanding the basic elements which affect performance

within such a complex system is also important so that, for example, a future system

can be written which optimizes all important elements.

This paper is neither a survey of the field of performance measurement nor

is it an analytic description of the discipline, rather, it is a description of how SLAC

has and is going about the problem of understanding the dynamic operating and con-

stantly changing characteristics of a multi-programming system. We feel that our

experience and the development work that we have engaged in over the last two years

is of interest to all members of the computing community from those who are at-

tempting to run a multi-programming system to those who are producing both soft-

ware and hardware components.

II. BASIC PRINCIPLES

The overriding principle and objective of systems evaluation is to understand

the unknown (1). This pervades any discussion of systems measurement and analysis.

Several practical rules of thumb and principles have evolved in our pursuit of

T . Y. Johnston -3-

under standing. Learning is a continuing process hence systems performance

evaluation is both a continuing process and a constantly changing process. This

is complicated by the fact that what is being measured is a system to which changes

are being made. As a result the study of systems performance is an evolutionary

process using the results of today not only to improve performance but also to up-

grade measurement and analysis techniques for tomorrow.

If indeed the evaluation of performance is evolutionary and of a continuous

nature, the tools for measurement and~analysis must be usable. The primary

requisite of usability is availability. The tool that is here today and gone tomorrow

is less than useful. Probably the most dangerous mistake one can make is to

measure the performance of the system and extrapolate the results into the future

without continued remeasurement. This denies both the dynamic and changing

nature of operating systems.

For the same reasons mere availability is not sufficient. Usability certainly

implies more than availability. Measurement and analysis tools must be easy to

use. They should be economical and as simple as is consistent with the job at

hand and the resources available. Evaluation of performance should not and need

not consume large amounts of the resources being measured or require large ex-

penditures of people time and effort. Another aspect of usability is timeliness.

The higher the frequency of measurement and analysis the better. This is in-

consistent, in the extreme, with economy. This is why the stress should be laid

on simplicity. Given the choice of a simple tool that can be used daily versus a

complex tool that can only be used monthly, take the simple tool and use it daily.

We have found from experience that by developing the correct tools that this is

not a compromise at all. Fairly comprehensive tools can be developed and used on

an almost continuous basis. What is a comprehensive tool? Clearly if operating

systems were well understood or if there were only a few phenomena or resources

TO Y. Johnston -4-

to measure the question would admit a sjmple answer. This is just not the case

in a true multi-programming environment. However, there are some obvious con-

siderations. Local measurement and analysis is not global. The locally optimized

system is not necessarily and indeed is almost never globally optimized. The most

reckless and often made assumption is that the problem of poor performance in one

component of the system must be solved by expanding or improving that same

component. Poor hardware performance does not imply the acquisition of more

or better hardware. Thus having tools which merely measure hardware activity

not only reflects a reckless assumption but usually reinforces it.

The real problem then is to analyze systems performance and not individual

component performance, yet we can only measure the many individual components

of the system both software and hardware. The usability argument tells us that we

can’t measure everything, but fortunately for any given problem a reasonable solu-

tion can be obtained by measuring a proper subset. This subset will vary with the

problem.

The ideal tool then is one which has many probes which not only measure in-

dividual component performance but which indicate time relationships among com-

ponents. The addition and deletion of probes must be easy. This ideal tool must

also run in the standard operating environment without a large perturbation to that

environment. No one tool or approach exists. Thus simultaneous approaches

must be made. From an understanding that it is systems and not component per-

formance we are analyzing, we see that the various measuring tools must have

cohesiveness. The relationships among the tools themselves must be examined.

The need for analysis and the tools of measurement are fairly independent of

the goals of the analysis. Only the interpretation of measurement data will vary

from system to system and from time to time. Obviously, components of

T. Y. Johnston -5-

different origin will require unique probes for measuring but on the whole it

has been easy to supply these probes to a properly designed measurement tool.

III. HISTORY OF PERFORMANCE EVALUATION AT SLAC

As the result of a joint research agreement between SLAC and IBM, a few

individuals at SLAC, as a part of this research,effort, were able to use an IBM

Model 50 which was situated at the Stanford Linear Accelerator Center. The

mode of operation of the Model 50 was that of a hands-on machine. The user

was his own operator. He, as a consequence, had a global view of his problem,

both from a programming and operational point of view. The need for optimiza-

tion of individual programs soon became apparent. Since the Model 50 was running

under the Primary Control Program, a sequential system, there were essentially ’

no measurement tools available. The first ad hoc method of measurement was

watching the IBM 2311 disk units vibrating. By watching the motion of these units,

one could determine severe disk arm contention. With this extremely primitive

tool access to data sets was improved. At the same time, a small transistor

radio was hung next to the CPU, and by listening carefully one soon learned to

distinguish prolonged activities of a specific kind. For example, channel program

activity. These particular tools have long since been forgotten. During this same

period, it was observed that watching the sequence of events denoted by the flash-

ing lights on the console and control units provided even more information. It

was not for another two years that this idea reached full fruition, although it was

not uncommon to walk into the shop and find all the control unit doors open. Indeed

these control units were placed so that the user could sit at the console, and

observe the activity of the lights.

A primitive accounting program with manually logged and punched card input

was written, however, at this time no idea for the use of this information for the

T 0 Y. Johnston -6-

evaluation or measurement of performance was considered. It was merely a

device to help in the gross allocation and scheduling of the resources.

With then advent of an IBM 360, Model ‘75, the first computer for SLAC’s

Central Computing Facility, the mode of operation for those who had been running

on the Model1 50, was completely changed. There was no more hands-on use. The

programmer and the operator were now two separate individuals. There was,

since this was very early in the life of a system, no formal effort to develop a

capability for the measuring or evaluation of systems performance. Indeed it was

over six months before even crude accounting data became available and at that,

it was merely a by-product of the introduction of a HASP-MFTI System. The ap-

parent need for developing performance evaluation tools had lapsed. Probably

because the operator and programmer were now distinct individuals. Even the

accounting data provided was used more to tell individuals “who had used what, 11

rather than to determine how the system should be run or modified to improve

performance:

In March of 1968 with the installation of an IBM Model 91 only a few months

away, it was’ realized that sufficient quantitative information was not available to

be able to precisely determine what gains the installation of the 91 would bring,

given the same jobs that were running on the 75. Several benchmark programs

had been runs recently which produced very few real results, Discussions and

talk began as to how to characterize the dynamic properties of the multi-

programming system soon to be used on the Model 91. The key word became

quantification, not qualification. Every effort must be made to expand the

knowledge of this system during normal operation. Where are we now over a

year later? IWhat have we done? The first idea is an exploitation going back to

the original days of running the Model 50. Instead of just watching the lights on

T . Ye Johnston -?-

the console a hardware monitor was built by SUC to record their state. The hardware

monitor was soon found to be wholly inadequate as was the use of benchmarks.

The next method was to make better use of the accounting information. Thus

even prior to the installation of the 91 with an MVT multi-programming system,

there was an effort to try and develop techniques to capture and record as much

information as possible about the running of an individual job in the system.

Another obvious tool was to develop an external monitor for individual programs.

The inadequacy of a hardware monitor and the other methods caused us finally

to develop a software monitor which would augment and increase our capabilities

for performance measurement. These then are the tools that have been used to

evaluate performance of the system here at SLAC.

The five tools then are:

1. Benchmarks

2. Individual program optimization

3. System accounting and charging data

4. Hardware monitor

5. Software monitor

Each of these subjects will be discussed and the value of each weighed.

IV. BENCHMAHKTESTS

Although the use of benchmarks has historically played a strong role in the

selection of computer systems, it has also played a role in the continued evalua-

tion of performance. Beginning in the latter half of 1967 and for about 8 months,

the SLAC Facility ran a series of benchmark tests on the test Model 91 at

Poughkeepsie. This effort amounted to a little over four man-months of systems

programmer time. The overall objectives of these tests were: (1) to compare

T. Y. Johnston -8-

the CPU of the Model ‘75 with that of the Model 91, (2) to gain an idea of the

optimum operating procedures and optimum balance for the system that was to

be installed later in 1968, and (3) to gain an understanding of the dynamics of

a multi-programming system.

There were a total of 11 distinct jobs for the benchmark. One of the 11 jobs

was a standard production program used here at SLAC on the Model 75. After

four test sessions over the aforementioned period, the aggregate results were

analyzed. It became apparent that the objective of comparing the CPU of the

75 against that of the 91, was fairly well met. A ratio of between 3 to 1 and 4 to 1

was established on this set of jobs constituting the benchmark, which we felt at

that time was representative of our shop. This was the simplest test of all,

running each job one at a time, sequentially, on the Model 91.

It soon became apparent that there were no conclusive results, whatsoever,

as far as the other objectives were concerned. With more than one job in the 91

in the multi-programming environment, the test results varied as a function of

the order in which the jobs were submitted, the way in which the data was dis-

tributed both across devices and channels, and seemed to be strongly dependent

on the I/O activity of the individual jobs. Indeed, one peculiarity in using six

identical jobs which were merely renamed showed up. The order of completion

was independent of the order of submission. This was not understood at the time.

One apparent conclusion that resulted from the series of tests was that no more

than three jobs should be multi-programmed because overall throughput suffered.

This has been found to be a false conclusion. The use of benchmarks for evaluating

performance on a continuing basis has been essentially abandoned at SLAC as a re-

liable tool for the evaluation of our system, although in recent months we have co-

operated with other AEC Facilities in running other benchmark tests. It must be

T. Y. Johnston -9-

pointed out here that the weaknesses found in running the benchmark are: (1) in

selecting the appropriate job mix, (2) in interpreting the data, both in terms of

finding the causes of certain phenomena and of just processing the data gathered

in a reasonable and timely fashion, and (3) it causes a severe displacement of the

standard operation.

V. INDIVIDUAL PROGRAM OPTIMIZATION

In’optimizing individual tasks the area that can be most readily,improved is

CPU utilization. It is also possible in the case of overlay programs to be able to

examine these programs and find out if the overlay structure is properly con-

stituted.

Modern operating systems allow extremely dynamic program structures,

master tasks with the subtasks relating asynchronously to them. Subtasks and

master tasks which consist of many separate programs which dynamically transfer

control from one to another both horizontally and vertically as well as predefined

overlay structures. Consequently, if individual programs are to be measured, the

tool must be capable of measuring all of the valid program structures available

under the operating system. Further, it should, if possible, be able to make these

measurements without changing the normal running environment of the program.

Any program should be able to be measured including vendor supplied packages

such as compilers without modifying these programs. Further, the measurement

must be easy and the results easy to interpret. These are, then, the goals that

were established at the Linear Accelerator Center in setting up an individual pro-

gram analysis routine. The original package created did not meet all of these

criteria. Primarily, the ease of interpreting the results was less than satisfactory.

Consequently, the package has been rewritten to provide readily readable histograms

T. Y. Johnston - 10 -

of the results and to provide these facilities with a minimum of effort on the part

of the user,

The total cost of designing, writing, and implementing this package has

been less than two man-months of effort.

The attempt to optimize input/output is a difficult process, particularly the

optimization of input/output by balancing across channels. It has been found

from experience that most programs are better off competing with themselves

than interacting randomly with other programs. Consequently, on such things

as disk device allocation, multiple work files for a single program better fit on

one pack than spread across the system where they will compete with the work

files from other programs. Controlled tests were run that showed in worst

case conditions (with spread data sets) running three jobs in parallel took longer

than running the same three jobs serially. By making the jobs compete with

themselves, rather than others, the average performance of the parallel jobs

showed a 100 percent throughput improvement over the serial operation. That is,

if the serial operation time was equal to 3T where T is the time-for 1 job run

serially, then the improved total parallel time was equal to 1.5 T. These tests

were run using Assembler F which is the standard assembler program provided

for the system. The assembler is an example of a highly I/O round program

with multiple work files. This type of analysis does not necessarily hold true

in the pseudo multi-programming environment where specific large tasks requiring

a major portion of system resources run for long periods of time and have fore-

castable characteristics.’ The true multi-programming environment is not fore-

castable and consequently, attempting to balance input/output across devices

is a hazardous undertaking.

T. Y. Johnston - 11 -

The operating system required by the SLAC Package must have two

capabilities: (1) a task-timing capability and (2) the ability for tasks to have

subtasks running under them asynchronously. The package used at SLAC is

timer driven. This has been found to be a valid technique and one where the

measuring interval can be changed so that the amount of data created is not

overwhelming and the data is readily processible by the second phase of the

operation. It is necessary for such a timing-task to have output capabilities

for putting out the information since, in-core summarization is too expensive

in CPU time and space. The overhead from the timer program is extremely

low and scarcely measurable.

It is possible with this type of technique to measure a program’s performance

in its normal running environment, not just in a stand-alone system environment.

This will show, normally, a higher degree of WAIT, but will not distort appreciably

the program’s functioning. It shows how it really functions in the normal world.

If an attempt is being made to optimize I/O, then the only valid technique is to run

in the normal environment. Further, multiple tests should be run before and

after any change to validate the change.

On programs which are CPU bound, this type of tool provides an excellent

measure of which instructions are using the majority of the CPU time. ;In one

i case measured, the replacing of a few small subroutines in a large FORTRAN

program by assembler language routines reduced the run time by about 35 to

40 percent.

VI. ACCOUNTING AND CHARGING

The system accounting data provides a wealth of information, as well as the

necessary figures for charging the user and for operating the installation. It

also, via the charging algorithms selected, is a technique for guiding the user.

T 0 Y. Johnston - 12 -

The cost of implementing good accounting is a continuing cost. Change

is inherent in the process. The more that is learned about the system, the

more it becomes apparent that certain information is required and other infor-

mation is not necessary; This decision cannot be made before the process

is started. It is very difficult to give a cost for the accounting and charging

algorithms that we have now built into our system. Most of the cost involved

has been charged out to operations overhead rather than to the performance

measurement information which is merely a byproduct. However, it is a very

important byproduct 0

Figure 13 shows some of the results of one program which analyzes the

accounting information. This is an abbreviated comparison of two months of

this year showing several of the main processors including the user produc-

tion programs, and also the summary relationship for the two months., This

information has enabled us to validate that system changes have in fact im-

proved system performance. It has shown the continuing growth of PL/l use

over the period of time. By examining the information that is available in the

entire report showing all programs used within the shop during the month,

decisions can be made on the allocation of resources for making changes and

on the selection of what processors or processes should be changed. Further,

this report has shown, as summarized in Fig. 13, that CPU utilization per

unit of elapsed time increased between April and August over 30 percent with

a fairly constant job mix.

T. Y m Johnston - 13 -

The Linear Accelerator Center has used external job classes to define jobs

of varying characteristics. Two questions come out of this. (1) Does the user

truly understand his job characteristics and properly establish job classes ?

(2) Does the computer facility fully understand these job characteristics and

know what they are in defining the classes ? The accounting data provides the raw

material to answer these questions, By the use of the accounting data and a histo-

gram creating program, answers have been provided to both questions. Yes, the

user does basically understand his job and is able to properly characterize his

work. Secondly, data processing management does know what this class of work

looks like as a group, how well it uses the facility, and can have some feeling of

the impact of changing the mix of classes within the facility.

Charging can be part of the optimization procedure. With an I/O bound

system it is reasonable to charge heavily for I/O to make people attempt to improve

their utilization of I/O. Conversely, on a highly CPU bound system, I/O should be

charged out at a lower rate. Consequently, the choice of charging algorithms can

be used to make the user tend toward desired utilizationof the system. The in-

stallation that chooses to follow this type of technique must bear in mind, however,

that they can also make the user go toward what is worst for the system. An

important concept of charging which is omitted or forgotten by many is that

charging is a twofold thing. You must charge not only for what a person uses

but for what he prevents others from using. The program that uses a tremendous

amount of CPU time should be charged for CPU time. The program that comes

into core and uses practically nothing and sits in memory and uses memory for a

long period of time should be charged for its preventing others from using other

system resources. It will be noted that our charging formula as yet does not

contain the charge for the amount of time that a program occupies an area of

memory without using other major resources.

T . Y. Johnston - 14 -

Figure 14 shows the tail sheet associated with each job showing both the

items for which charges are currently made and the current charging formula.

Basically this formula is an adaption of McDonnel-Douglas’s charging

algorithm. The unit is 1 second of CPU time for an 150K region, This is a

meaningful amount of time on a 360/91.

VII. HARDWARE MONITOR

The hardware monitor used at SLAC was built to our specifications. It

is a small, simple monitor and our manufacturing cost was in the neighbor-

hood of eleven hundred dollars., It consists of 5 probes, and two 32-bit

counters. Associated with these is a clock pulse, and/or circuitry such that

all the Boolean functions in the disjunctive normal form of all 5 probes are

directly available. The monitor was used extensively and now is rarely used.

Today it serves a primary purpose of validating the measurements made by

the software monitor 0

Hardware monitors as a class of measuring instruments have several

advantages as well as disadvantages. The most obvious advantage is the fact

that they are a zero overhead item. Associated with this, however, is the

fact that they can only measure discrete resources, The number of meas-

urements they can make is extremely limited. In all cases, they are counter

units. They don’t tell you anything about the who’s that are inherent in many

things. Since they measure hardware action only, they do not show the soft-

ware interfaces that are so important in modern operating systems.

Further, to use the modern monitors with their many probes and their ,

direct readout features would take a crew consisting of a hardware engineer who

knew where to put the probes, a systems designer to say what should be probed,

T . Y. Johnston - 15 -

and a couple of programmers to convert the data and create the reports. The

reports are not available now. They are available later. It is not easy to

change and if it is more than a simple monitor, like the one used at SLAC,

then it is not possible to freely move it around the system and measure varying

items. It should be noted, however, some of the new hardware monitors do have

some extremely desirable features. They have the capability of taking their

counters and putting them out at regular intervals, such that by the use of

some programming efforts, it is possible to create graphs in time, showing the

interaction on the system. But no where out of the hardware monitor comes a

reason why such an action took place during that time. Why were channel loadings

up, why was CPU utilization up, why was channel loading on a specific channel

high, what disk drive was it? Even if the disk drive is known, is the reason for

high utilization of that drive known? Can you go back and recreate? Perhaps

you do, perhaps the world has changed and you do not recreate it. These are

just a few of the reasons that a hardware monitor, in and of itself, is not a

satisfactory tool, It is better than no tool, but is not a sufficient tool to know

what is going on in a modern system.

Figures 1 through 12 show the outputs from a software monitor. This is at

least to orders of magnitude more information than that provided by any available

hardware monitor.

For hard%are monitors to be of value, they should be used, the results

checked, changes made, and the process iterated. A one time shot may clean

up a few major problems which might have disappeared anyway in time and&could

introduce new ones,unless a check is made.

The hardware monitor has been useful .for measuring basic operating system

performance. This is a discrete resource and one which cannot be measured

T. Y. Johnston - 16 -

by our software monitor. It is also an area where we, as users, can do very

little to change the performance.

VIII. SOFTWARE MONITOR

Unquestionably the most important measurement tool development at the

Linear Accelerator Center has been the software monitor. There is approxi-

mately one man-year’s effort in this system and a very trivial amount required

to run it. This has provided management and the systems programmer the

ability to really know what’s going on in the system. What is the cost and

overhead? There is of course a cost in’both overhead and biasing of the system.

The monitor takes about one and one half percent of the user core and less than

. 1% of the available CPU cycles. It summarizes all information in memory and

prints out a summary report. Consequently, it does not bias any I/O during its

operation. Comparing it with other software monitoring systems it has the

advantage that it is cheap and easy to run. It can be invoked by the operator or

from the job stream. The length of time it is run can be selected when it is

invoked. The results are immediately obtainable. Of what need is this immediate

information? Sometimes, unimportant; other times, as shown later, it has made

the monitor worthwhile for this alone. (

Examination of the monitor shows that it provides many, many probes

into the system. Virtually hundreds of different probes can be added, deleted

or changed as is necessary. As the system changes the probes can be easily

changed and immediate results are available. Furthermore, it not only gives

quantitative information but also gives qualitative information such as what

programs are being used, what resident members of the operating system were

utilized, and how much each major resource was utilized. These are capabilities

beyond the purview of any hardware monitor, no matter how sophisticated.

I T.Y. Johnston 1 - 17 -

I

The software monitor provides a whole spectrum of capabilities. It

provides the ability to balance the system in many different ways: balancing

I/O between channels, putting different modules resident in memory, balancing

the types of jobs that are run. It gives the person responsible for this the

ability to choose the most advantageous alternative. Further, because of its

low overhead cost it gives one the ability to measure and know that the choice

was good; or if it-was bad, to correct it. It can spot unusual activity and j
.

can be invoked rapidly so that when an unusual occurrance happens on the !
_

system the results can be obtained and corrective action taken in a matter of a

few minutes. Most important it can be used to validate what has been done, to

make certain that the improvements were, in fact, improvements, and, if not,

too allow as many tries as are necessary to improve the system. The iterative

nature of software measurement is one which has been brought home time and

time again. For example,’ the modules made resident in the system were first

established according to the list supplied by the vendor. After using the soft-

ware monitor for a short period of time in its original primitive form, it was

found that this was a bad list and it was improved and changed. When other

changes were made to the operating system these echoed into other changes

within this area of system structure such that we again modified this list to

improve performance. There is now a list which is known to be good now but

it is not expected that this list will hold forever as the optimal list for running

the system. The 30 percent throughput improvement between April and August

is in large part attributable to iterative measurement, system change and sub-

sequent performance improvements. The measurements spotted bottlenecks and

effort could be applied to alleviate the bottleneck. For instance, the standard

operating system will not allow any tasks to initiate or terminate while a disk

T . Y. Johnston - 18 -

pack is being mounted. This mount takes 3 to 5 minutes and SLAC has both

many short jobs and many disk mounts. Consequently many jobs were locked

out longer than they would have run. By .improving the standard algorithm so

that only jobs requiring disk mounts were locked out the overall throughput was

improved about 10%. Express jobs run during the day where fast turnaround

is highly desirable improved even more than the entire mix.

Included as an appendix to this paper are exhibits of all the displays avail-

able from the monitor. It would be too time consuming to cover all these in

detail at this point and many of these are too specific toward the SLAC hardware

configuration to be of general interest. Bowever, they provide a clear and concise

picture of the entire system’s performance.

Chart 3 shows the channel usage during a ten-minute sample. The first

portion of this figure shows by channel the amount of in-use ,time and free time.

Free but queued means that although the channel is not busy there is a direct

access seek going on on a device connected to the channel. In the case of

channel 0, free but queued is meaningless for channel 0 is a multiplexor channel,

which can neither be measured properly by the software monitor nor a hardware

monitor. From this chart it is apparent that there is a tremendous channel load

on channel 5 with only slightly over 2% free time. This will be examined further

in one of the other charts to- determine why the tremendous utilization of this

channel. The second portion of the chart shows the amount of overlap time; that

is, what percentage of the time the number of channels shown were busy. Busy

means I/O transfer going on over the channel while free means nothing going on

in the channel or beyond. That is, approximately 16% of the time none of the

channels were busy, 44% one channel only was busy, 29% two channels were

busy, and so on. The third portion shows the concurrency of operation between

T. Y. Johnston - 19 -

sets of channels; that is, for 1.89% of the time channels two and three were

both busy at the same time, whereas for 32.39% of.the time, one or the other

of these two channels were busy.

An examination of the direct access device utilization in Fig. 4 shows the

reason for the tremendous activity on channel 5. Unit 537 shows an activity of

99.3%. This happens to be a systems volume and this heavy activity probably

indicates that the decision (not yet implemented) to place a different portion of

the operating system on drum will improve performance considerably. This

figure portrays the activity on the disk packs and drums and gives the ability

to properly balance data sets across the various packs and the packs across the

various channels.

Figure 2 (the I/O interrupts by device) gives the ability to count the total

number of interrupts and also to count interrupts of certain classes associated

with the devices. This has been an extremely important tool in spotting the

malfunctioning of hardware. For instance, another computer connected onto

the main system was erroneously generating interrupts at the rate of approximately

9,000 per second. By running the monitor this tremendous surge of interrupts

was counted, the reason for the system degradation could be ascertained and the

device was put off line until it could be fixed.

Figure 6 shows the enqueue waits within the system. Any multi-

programming system must at times ensure that certain resources are seri-

ally reusuable. These resources are placed into queues and are enqueued

upon. Extreme degradation can occur if multiple tasks enqueue exclusively

upon the same resource. By observing the performance of the system it was

found that an enqueue was done during the mounting of a disk drive which, as

mentioned previously, held up all initiation and termination of job steps. The

T 0 Y D Johnston - 20 -

subsequent change has had a tremendous performance improvement within our

environment and a constant watch is kept for other lock-out conditions. These

queues are purely software queues and a.hardware monitor could not possibly

measure them.

Figure 12 shows a summary of the information obtained. It gives a quick

once-over of what was happening and in the middle of it is a section showing

possible bottlenecks and why the system was not running as well as it might.

By examination of this page it is usually quite simple to proceed directly to the

proper detail section and find the reason for the tieup. Further, it shows the

amount of CPU time available and not used. By integrating all of the reports

together a good picture can be obtained of what went on in the system and how

well the system performed in many categories.

T,he software monitor thus provides a twofold facility of an immediate

answer to critical systems problems which are degrading the performance of the

system and secondly, a planning tool for examining the system as it changes over

time for optimizing systems performance. It has proved to be a valuable tool

also because it is cheap to run and easy to run and the results are easy to in-

terpret. Furthermore, large amounts of machine time are not necessary to

process the results as is the case for most interrupt driven monitors. The

interrupt driven monitor provides a wealth of information but such a mass of
,

information that the data reduction problem becomes of itself a significant

problem. Such interrupt driven tools may be valuable on occasions but the

/ primary problem is that the cost of running is so high that management refrains

from using this tool frequently. It is too expensive a tool, and consequently, one

of the major benefits, the ability to use it and reuse it to learn a little more about

the complex environment is lost.

T. Y O Johnston - 21 -

IX. CONCLUSIONS

It should be apparent from the foregoing five examples of measuring

techniques that no one of these can stand alone, A software monitor, perhaps,

comes the closest to it. However it is still necessary to be able to validate the

software monitor’s performance, to examine and see which processors have

heavy utilization, to be able to change these processors if necessary, and to

be able to examine them and know what parts of them need to be changed rather

than by some seat-of-the-pants estimate figuring that this is a good area to

change. Further, it must be emphasized that once changes have been made,

the results of these changes must be measured and the system re-examined

to see what its new characteristics are, The purpose of all of these tools is

to make better use of the facilities available rather than to extrapolate the cur-

rent misuse of facilities into some other usually more expensive hardware con-

figuration.

The man-effort spent in the measurement area at the Linear Accelerator

Center has not been large. Certain of the efforts have been pioneering efforts

from which others can benefit and at a much smaller cost. However, unless

some effort is made, the manager will never be able to see what he is doing,

why he is doing it, or how he is doing in a multi-programming environment.

Just as the cost of both core and system overhead of the software monitor has

been trivial on our system, so we believe the cost of maintaining a continuing

program of measuring and integrating the results of measurement is trivial

on any large scale system. It is not clear how large a system must be before

a full-time person could be supported in this effort. Probably any system that is

a true multi-programming system (that is a system which does not consist of

I one or two set applications multi-programmed, but a multijob streamed system)

T . Y. Johnston - 22 -

can justify the cost of measuring that system. Unless, of course, the utiliza-

tion of the system is so low as to give no recapture from improving systems

performance. Unfortunately, few in the ,industry are in this somewhat enviable

position,

X. GUIDELINES FOR SELECTION OF PERFORMANCE EVALUATION TOOLS

Once it has been decided that evaluation of systems performance is necessary,

several questions should be asked when making decisions as to the selection of any

particular measurement tool or set of tools. The first question, of course, is

usability. Usability is a function of complexity, continued availability and cost,

Is it inexpensive to use and how much can you expect to gain from its use? Does

using the tool take up so many resources that you can no longer run jobs in a

nearly normal fashion? How many individuals do you have to allocate full time

in order to be able to use this tool? How long will you have it 3 If the tool is

only available for a few days, clearly it is of little value since these tools must

be used on a continuing basis. Are the results timely? Do you get them back in

short order or do you have to wait several days or even weeks for the interpreted

data?

How does this tool relate to others ? Can the data obtained from using this

tool be related to the other tools in your repertoire? Does it measure what you

want it to measure? If you are interested in knowing which particular data set

should reside in a fast medium of storage - a hardware monitor may be of no

value whatsoever.

Is this tool easily modified to adapt to your changing needs? When you

have successfully measured performance for a period of time, your recognized

needs for measurement increase. The possibilities are practically unlimited.

To Y. Johnston - 23 - .(

The tool, which is difficult to modify or adapt to increased or new needs, is

one that may be of little utility in the future. Does it measure systems per-

formance or just hardware performance? The tool must measure globally and

not just suggest only one solution when there are two.

XI. WHERE DO WE GO FROM HERE?

Our future at SLAC in the evaluation of systems performance is one of

continued effort in the areas already described. With modifications and ad-

ditions to the system, there will always be a need for increased and modified

capabilities. In particular, greater attention will be diverted to obtaining a

better understanding of the resource dynamics of interactive systems. Certainly

other facilities will find the need and the desire to follow the same path that we

have followed.

As far as the computer industry is concerned there appears to be a growing

market for these tools. Thus, we have seen increases in the last year or so in

the marketing of performance evaluation tools. We hope that the industry will

see fit to recognize the need for and provide integrated sets of tools, rather

than individual tools marketed on an isolated basis, requiring the individual

customer to either supplement or integrate other measurement tools.

Manufacturers of computer equipment can greatly ease the burden of meas-

uring systems performance by providing the basic capabilities for gathering

data for subsequent analysis. We have suffered, for exaxnple, because we are

unable to measure the number of bytes transferred over a channel and the rate

at which they are transferred. This should be simple enough to provide at the

time of manufacture.

If indeed large numbers of facilities begin gathering and evaluating data,

these results’will not only be used by each individual facility, but we hope that

T . Y 0 Johnston - 24 -

this data can be pooled in a common bank. The SHARE Reliability Survey,

which covers the area of maintenance for 360’s, is an indication of this. We

think that mechanisms of this sort must develop so that the manufacturer, the

computer designer, and the user will have a large pool of data from which to

better understand individual instances of operating systems, and also by in-

tegrating, provide better systems design’ for tomorrow.

T . Y. Johnston - 25 -

1. H. N. Cantrell and A. L. Ellison, lyMultiprogramming System Performance

Measurement and Analysis, II Proceedings, Spring Joint Computer Conference

(1968).

2. R. Brody, ‘IModel 91 Timing Tests, I1 SLAC *Systems Technical Memo No. 9,

September 10, 1968.

3. J. Blackburn, J. VanderLans, 17SLAC 360 Accounting Device, 11 Systems

Technical Memo No. 11, October 21, 1968.

4. C. Dickens, “Accounting Project, 1T Systems Technical Memo No. 20, March 7,

1969.

5. J. C,romwell, “AMAP vs Boole and Babbage PPE/CUE,” Systems Technical

Memo No. 22, March 18, 1969.

6. C. Dickens, N. Nielsen, llResource Allocation of the IBM 360, l&xlel 91, ‘1

Systems Technical Memo No. 25, July 3, 1969.

7. R. Lonergan, “LRL Berkeley Benchmark, Model 91 vs 6600, l! Systems

8.

Technical Memo No. 28, August 28, 1969.

V. Androsciani and R. Lonergan, ‘SUPERMON, d Software Monitor for

Performance Evaluation, 11 Systems Technical Memo No. 30 (in preparation).

REFERENCES

SIAC Systems Technical Memos are rough-hewn internal documents which are

available upon request.

T . Y. Johnston - 26 -

SUPERVISOR CALL USAGE

NO. USE
c r91.435
3 37,304
6 2,645

1s
21795

195
15 413
18

:z
54
22

27 32
3r 0
33 12

;:
0
9

42 1.7
45 $66
46 202
51 c

0
0

60 c
63 I-
66 c

9
256

c
9

NO. USE
~ 1 45,301

7* 30,302 6,274
10 45,559
13 0

:t 258 197
22 73

:z
3b
13

31 0
34 34
37
40 2:
43 7
46 335
49 0
52 0
55 95
58 0
61 3
64 110
67 0

0
2

;t 71:
92 0
e5 0
68 0

96
0.3

1n2
l"5
to&i
111
114
117
12(!
123
126
120
132
135
138
141
144
147
150
153
156
150
162
165

91
94

1;;: ::
If?3 0
106 0
lC9 0
112 9
115 0
118 0
121 0
124 0
127
130 ::
133 C
136 0
139 0
142 0
145 9
148
151 ::
154 0
157
160
lb3
166

FIG. 1

T. Y. Johnston

NO. 4JSE
2 6,448
5 40

1: 2,954 453
14 3r590
17 0
z; 236

26 ::
29 27

32 35 1;:
38 0
41 9

44 47 1,s~:
50 0
53 9
46 337
59 ?l

8: 16 9
68 0
-71 2,495
2 1

80 ?I
83 9
86
63 :
92 9
95

1:: I: 0
104 9

107 110 :
113 0
116 u

119 122 I:

125 128 :

131 134 ::

137 140 :
143 0
146 9
149
152 :
155 0
158 u
161 0
164 9
167 0

I/O INTERRUPTS BY DEVICE

ADDRESS INTFRRUPTS
ncs 137
9PD 118
7OF 11333
3 1F 0
041 87
043 sa
045 147
047 9
051 71
053 7
955 n
157 23
059 74
958 12
15r 264
?5F
OAF
OBC
3RE
OCr’
oc2
oc4
301
0@3
3El
DF3
DF3
131
133
135
137
1M
231
233
235
237
3Fb
43c
432
434
436

9
n

9
0

593
0

:

:
0
0
0
9

::
7

309
1,861

3:;
2,759

9
50

4ED
5311 1.24:
532 0
534 222
53b 790

540 542 ::
544 r!
546 a
560 0
562 0
564 0
566 0
568
560

cSW’o080’0 cswoco6*0
0 137

b
n
0
0
0
0
e
0

fc
0

8
0
0
0
c
0

839

f
0
9
0
0

::
69

514
0

:
0
c
0
0

;
0

118
1,290

0

23
109

7:

23
74
12

264
0
0

I:

I:
593

:

:
@

:
0

:
0
7

30s
1,029

10
0

2,759
0

50

1.23;
P

153
264

:

:

:
0
0
0
0

OOE
OlC
040
D42
044
046
050
052
054
056
058
05A
05c
OSE
071
087
OBD
OBF
OCl
oc3
ODO
002
OEO
OE2
OE4
130
132
134
136
1co
230
232
234
236
2co
3E7
431
433
435
437
4E9
531
533
535
537
541
543
54.5
547
561
563
565
56-t
569
560

INTERRUPTS

1,352
76‘1

68
123

61
100

51
89

:
86

4
0

8
0
0
:
0

202
5,759

0
0

7,540
9

:

1196:
757
156

30
4,236
1.122

!I
842

1,405
JJ

3,195
0
9

10
233 0

13,366 6,447
0 0

CSH’8090’0

:

1:

:‘:
6

8
4
x
5

22
9

12
0
I)
9

148

8
0

0
11354

763
40

106
54
94

2

:
86

f;

x
0

x
0

18:
31380

8
7,540

0

ii

1~96:
350
156

A
4.236
ltll0

84:
19405

3.0::

90
10

233
71345

0

FIG. 2

CHAN If’4 USE
0 .QO%
1 4.65%
2 27.48%
3 b.8QS
4 24.383
5 67.44%
6 .QO%

CHA’dNEL USAGE IN PERCENT OF AV’AILABLE TIME

FREE
.cKl%

95.352
64.2 5%
93.20%
64.173

2.33%
.QB%

FREE+Q
lQCJ.0144:

.QQ%
8.27%

.60%
11.46%
30.23%

.QO%

BUSY BUSY+0
.OO% .QO%

3.79% r.863
20.59% 6.999

6.80% .QOS
15.76% 8.61$
39.36% 28.09’3;

l QQ% l OQ%

CHANNEL OVERLAP
0
1
2
3
4
5

7”

T . Y. Johnston - 29 -

TIME ACTIVE
16.88%
44.79%
29.54%

8.35%
.34&
.Q9%
.OQ%
.eos:

CHANNEL CONCURRENCE
CHANNELS ALL ANY

2-3 1.89% 32.39%
4-5 17 l 40% 74.42%

FIG. 3.

4’)DRESS
2301 ICO

IDO
2CO

134
135
136
137
230
231.
232
233
234
235
236
237
430
4 31.
432
433
434
435
436
437
55r-i
531
532
533
534
535
536
537
540
541
542
543
544
545
546
547

T . Y. Johnston

SFRIAL NO.
XFOVO

SCFOVl

SPOOL1
SCFEW
SCFEV5
PUB001
WBOO2
PURW3
CRElEln
SYSDV2
SrF170
SPmYL2
SPOOL3
CRBEtO
Af?AtlO4
ICWLO3
IC WLDl
XFOV3
SPOOL4
SCFFV8
SCFEV?
SYSDVl
CG9003
CBZDSK
ACAOO3
SCFOVZ

DIRECT 4CCESS DEVICE UTILIZATION

USE COUNT
o-1
C-F
3-3

c-o
o-o
O-O
O-0
o-o
O-0
c-o
c-o
l-l
8-8
7-8
l-l
l-2
1-3
2-3
l-7
c-o
1-l
1-l
3-3
l-l
o-1
C-2
2 -23
l-l
l-2
l-1
2-2
O-8
o-2
7-7

33 -33
O-O
c-o
o-o
o-o
c-o
c-o
O-0
O-O

ALLOCATE0 NOT READY CW tlusr
100.00% .OO% .OO%
100.00% 100.00% .00x
100.00% .OO% .OO%

SEEK DATA TRANS
.99x 4.653
.00X .OOT
.‘)ot 2.67K

.00x .OO% .00x .OCiS .00x

.00x .OO% .OO% .OOf .ooa

.00X .00x .OO% .GQP .rlo2

.OO% .00x .OO% .00X . OOR

.00X .00x .00x .‘)OP .oot

.OO% .00X .OO% .003 .90x

.00x .OO% .00x .003 .OO%

.OO% .OO% .OO% .00X . r)O%
100.00% .00x .OO? .263 .95?
100.00% .OO% ,008 .O’lT .rlOK
100.00% .00.x .17% .00x 1.03%
100.00% .00x .OO% .OO% .09x
lUO.OO% .OO% .OO% .00x .!l9%
lOC.00~ .00x .09% .091 . Rb%
103.00% .OO% .17% 8.27% 14.28%
100.00% .00x .52f 2.07K 5.51%

.00X .00x .OO% .!m? .oot
100.00% .00x .UO% .86% 1.29%
100.00% .OO% .09% 6.55% 4.82%
100.00% .OO% .09% 1.21% 6.46%
100.00~ .00x .OO% .r)m .00X

51.34% 47.55% .OO% .OO? .43%
1.72% .00x .00x .OO? .26%

100.003 .OO% 1.03% 5.513 10.94%
100.00% l OO% .00x 2.15% 1.89%
100.00% .OO% .OO% .OO% . GO%
100.00% .OO% .00x .903 .00x
100.00% .OO% .00X .OO% .00x

36.09% .00x .OO% 1.21% .17’6
10.852 .00x .00x ,269 1.03%

100.00% .OO% .OO% .52% .95%
100.00% .OO% .QO% 33.16% 63.141

.00x .OO% .00x *00x .90.X

.00x .00x .00x .‘)Of ,003

.OO% .00.x .OO% .OOf .00x

.OO% .00X .00x .O’J% .OG%

.00X .00x .OO% .OOS .Od%

.00x .00x .OO% .I)07 .00x

.00x .OO% .00x .OO% . oor

.OOS .00x ,001. .00+1 .OO%

FIG. 4

- 30 -

.27

.I0

.51

.38

.67
1.36

.19

.5Q
1.14

7.00
.25
.55
.53

TbPE

[J/R

AODRF SS
* 3R-t

OCQ
DC1
OC2
at3
9c4
CEO
OF1
OF2
QE3
OE4

009
CCC
CQD
OOE
OOF
QlC
ml?
040
041
042
043
044
045
046
n47
050
051
052.
053
054
055
056
057
358
059
05A
358
05c
350
05E
05F
371
OBF
ORC
QBD
ORE
OBF
arm
a01
ODZ
003
OF3
3F6
3E-l

NON-IA OEVICf UTILIZATION

T. Y. Johnston

ALLOCATED
.60%
.OOZ
.ooz
.iXJ?
,001

27.569
.OO%
.oaa
.OO%
.OO%

94.14%

lco.ao%
.OO%
.OO?

1aa.oot
.nor
.OQ?
.OC%

100.00%
100.004
100.00t
100.90%

36.099
100.00%
lCO.OO%

.OO%
100.00"%
lao.o0%
lOQ.001
lcO.no?
10o.nr)t
lO~.bd%

36.09%
lCO.OQ%
1cO.oo%
lOO.OOP
loc.Oo%
1c0.aQ%
10F.00%
lCO.OO%
100.00%

.OO%

.QQ?
100.900

,001
.OC%
.OO%
.00X

lOC.OO$
.QQS

1oc.aoz
.OO%

lCO.OO%
100.00?

.OG%

NOT READY
.OO$
.oos
.I301
.oot
.oos

15.69%
.00X
.OO%
.OO?
.003

33.85%

.OO%

.ooa

.OO%

.OQ%

.OO?
,009:
.OO?
.OO%
.OO%
.OQZ
.OO%
.OO%
.00x
.OF%
.OO%
.OO%
.OO%
.OO%
.OO%
.oos
.00x
.OO%
.OO%
.OOf
.oos
.OO%
.a04
.OO%
.OU%
.OO%
.OO%
.QO%
.OO%
.OO%
.OO%
*CO%
.00x
.OO%
.OO%
.00x
.OO%
.003
.QO%
.OO%

FIG. 5

cu BUSY
.OO%
.OO%
.QO%
*UC%
.OO%
,008
.OO%
.OO%
.OO%
.00X
.OU%

.OO%

.OO%

.OO%

.OO%

.001

.OO%

.OO%

.09%

.00x

.OO%

.OO%

.60%

.OOf

.OO%

.OO%

.OO%

.QO%

.OO%

.OO%
.ooz
.003
.OO%
.OO%
.OO%
.OO%
.OO%
.OO%
,008
.QC%
*CO%
.OO%
,008
*CO%
l OO%
.OO%
.QOS
.QO%
.OO%
.OO%
.OO%
.OO%
.OO%
.OO%
.OO%

- 31

BUSY
.OO%
.OO%
.OO%
.OO%
.OO%
.00X
.oot
.00x
.OO%
.OO%
.09%

.00X

.OO%

.OO%

.00X

.OO%

.OO%

.OO%

.OO%

.OO%

.OO%

.OO%

.OO%

.00x

.OO%

.OO%

.00x

.OO%

.OO%

.OO%
.OO%
.OO%
.00X
.OO%
.OO%
*CO%
.OO%
.OO%
.OO%
.OO%
.ooa
.OO%
.OO%
*CO%
.oa*
.OO%
.OO%
.OO%
.OO%
.OO%
.00x
.OO%
.00x
.OO%
.OO%

DATA TRANS
.OC%
.OO%
.001
.OOl
.OO%
.I87
.a01
.001
l OOf
.QO1

31.523

59.699
.COT
.OOT

99.837
.OOT
,001
.003

4.313
11.11%
11.54-i
10.68f

1.385
11.718
11.463

.QQI
99.66%
95.097
91.997

5.173
lOO.OQP
1oo.ao1

.003
97.93%
87.51%
86.993

100.00'1
97.76%

100*001
8a.am

100.007
.OQ%
.OQ"z
.OO%
.OO%
.OOT
.OO%
.092
.bOl
.OQY

5.347
.cot
.ooa

6.80%
.OO?

T, Ye Johnston
-32-

PERCENT OF TIYE SPENT WAITING FOR ENQ QUEUES

NAYE TIME WAITING

SYSOSN
SYSl
USER
USER.VXA
USER.VXA.
USER.VXA.

LINKLIE
YACCIB

.UU%
l UU%
.QO%
.UO%
.00X
.OU%

SVSI EECT
.UU%

SYSIEFSD
QM

::
Q3

::
Q6
QJ

.OO%

.UQ%

.UU%

.UU%

.80X
*cm%
.OOW
.OU%
.OU%

SYSVTOC ,438
‘ITHERS

.OO%

FIG. 6

IDENTIFICATION OF FREE CORE NOT IN A REGION

LOWER BOUNDARY
OK

75K
150K
225K
3OOK
375K
450K
525K
600K
675K
750K
825K
900K
975u

1,050K
1,125K
IttOOK
1,275K
1,350K
1,425K
1,500K
1,575K
1,650K
1 r725K
1,800K
lr875K
1 r950K
2.025K

NO.
REGIONS AVAILABLE

300K
a

150K
97.84%

:

12.93%
2.16% 84.91%

.00%
3

2.16%
.OOS

4
.00%

.OO%
5

.OO%
.OO%

6
.OO%

.OO%
YORF

.00x
,005 .00x

T.Y. Johnston

TOTAL COF
,009

12.939
.ooa

84.48%
.43%

2.16%
-7'1 .“C.d

ioos
.OO%
.OO%
*CO%
.OO%
.OO%
.OO$
.OO%
.OO%
.OO%
.OO%
.OO%
.00%
.OO%
.OO%
.oox
.@@I

‘-2

E
:

.““m

.OOR

.OO%

.OO%

FIG. 7

- 33 -

LARGEST BLOCK
.00%

12.93%
84.91%

.OO%
2.16%

.00x

.00%

.a01

.OO%

.OO%

.OO?

.OO%

.OO%
.OO%
.OO%
.oct
.OO%
.OO%
.00%
.00x
.OO%
.OO%
.OO%
.OO%
.OO$
.OO%
.OO%
,001

FRAGMENTED CORE
LOWER BOUND 300K

,iKK
.ooa

15.09%
150K .oI)s
225K 84.48%
3CCK .43?i
375K .00X
450K .OOf

MORE .OO%

1 SOK
.oot

99.5n
.43t
.00X
.oat
.00%
.cct
.00x

NAMf:
IFFCVOPI
IEFPPLTR
IFEPPRPS
IFFVVNTX
IFEVWILK
IFFOMSSS
II-FSl’lqS
tFf=VHA

*IGCOCrlI
*IGco!xt2b
*IGCiTOZC
*ItCOCC%I
*IGCfVCI?D
*IGTtQrSF
*IGCFCC7A

IGCOl?7B
IGC3137P
IGC3497R
IGG019Ab
Ir,GQl?AC
IGGOlCAG
ltGC!l.QAl
IGGdl9AK
I G G ,‘J 19 A Q
IGG(l1aR.A
IGG319RC
IGGCl?CS
IGGC19CP
IGGnlOCF
IGGnl9CI
IGGOX9CL
IGGl?lOCL
IGGC19BN
IGGnl9CY
IGC~l~lA
IGGClQlS
IGG3191N
IGGPl911
IGG02Ot’F
IGGiiZCDV
rr,csza1n
IGGC2909
IGGCZQfln
IGG0325R
IGGC32 5F
IGG0325H
IGGO55CK
IGT,655llZ

T . Y. Johnston

NO OF USES

:
0
0

:
4

19:
54
12
27
34
95

2,495
136
421
146

12
3

1:
4

1:;
128

n
91
11
63
31

267
267
226
259
143
221

37
201
2Cl
168

27
27
35
34
35

6
36

LINK PACK AREA MODULE USAGE

T OF TIYE USED
,008
.00X
.RCY
.c)OK

100.00%
100.00%

1.29%
10C.009:

101.OCs:
11.64%

.00x
lOC.CO%
100.00%
100.oat
lOC.CO?
100.C@%

.QO%
10cl.005
lOC.OC%
100.00%
lCC.OC%

FIG. 8

- 34 -

NAME
I EECVOP 2
IEEPLDSP
I EEPRTN
I EEVSTRT
IEFQINTZ
IEFSDlOZ
IEFSO263
IGCOAOSA

*IGC0002
* IGWOOZB
*IGCOCO2E
*IGC0003B
*IGCOO03E
*IGCOOO6o
*IGC0007B

IGC04030
IGC3207B
IGC3507B
IGGOl9AB
IGGOl9AD
IGGOl9AH
IGGOlPAJ
IGGClPAL
IGG019AR
IGGO19BB
IGGCl9BE
IGGCl9CC
IGGOl9CE
IGGOLSCH
IGGOLSCJ
IGG0190I
IGG0190M
IGGOl9OS
IGGO19OZ
IGGC191B
IGGOl911
IGG01910
IGGO2OO A
IGG0200G
IGG0200L
IGGC290A
IGG0290C
IGG0290E
IGG03250
IGG0325G
IGG05501
IGG0550N

t-41-I OF USES

;

x
0

14
16

233:
73

z
138
110
525

2')
405
156

4
0

!:
0

15:
0

lCO.wJ?
.O'JX
.901

100.001
.OO% *

100.00?
loo.oC%

.OO?
1?10.00%
lOO.r)O%
lc)Q.OO%
lCO.')I)X

112

Ii
1C

223
" 267

267
223
206

279
97

226
226

2'77
27

% OF TIYE USED
l OO?
.OO%
.OO%
.99?
.901

4% 95a
100.00%

35
34
18
33

NAY!
ASMF
ASMGASY
CRB1503D
IEBCOPY
IEBGENER
IFBUPDAT
IECPBFGl
IEESD563
IEESD565
IEEVATTl
I Ef VOORl
IEEVICLR
IEEVRCTL
IEEVWAIT
IEFBR14
IEFQDELE
IEFQMNQZ
IEFSDOLl
IEFSDO65
IEFSD971
IFFSDO79
IEFSDOB6
IFFSDO94
IFFVGMI
IFFVHl
IEFWCOOO
IEFW41S.D
IFFO85SD
ICHCASDR
IEHIOSUP
IEHMOVE
IEHfJC SLD
IFMAA
IFUASM
IEWLFlPB
IEWLOADP
IEYFORT
IGCOAOlC
IGCDOOlC
IGCOQ02G
IGC0103E
IGCOl07A
IGC0205A
IGC0305A
IGC0405A
IGCG505A
IGC07030
IGCOBO3D
IGC11030
IGC3607R
IGGDCLCL
fGGOCCC3
IGGOlTAV
IGGCl9KE
IGGO19KU
IGGOl9OA

IGGOl9OE
IGGCl9OK
IGGQlOOA
IGGO17OF
IGGOl9QK
IGG0190R
IGGRlPOW
IGGClPlG
IGGOlBlQ
IGG0193C
IGGOl93Y
IGGOZGDB
IGGDZOLB
IGG0203Y
1GG1'325C
IGG055dF
I GGO550L
IGGfk55QU
IGG0551A
IGGC'553B
IGG0553D
IHf ITGA
LINKEDIT
MAIN

NO OF USES
9
0
1

:
0

i
D

0

10
0

1:
D
4
2

:.

:
4
3
1
0
0

46
0
2
2
4
0
1

a”

03
3
3

83
3
4

T, Y. Johnston -35-

NAME
ASMG
COMPRESS
I EBCOMPR
IEBEDIT
IEBPTPCH
IEBUPDTE
I EEPSTRT
I EESD564
IEEVACTL
IEEVDNXl
IfEVDSPl
I EEVLNKT
I EEVTCTL
I EE05030
IEFIRC
IEFQMDPP
IEFQMRAW
IEFSDO62
IfFSD070
IEFSD07B
IEFSDOBS
IEFSOOB7
IEFSDlO4
IEFVHN
I Et= VM.1
IEFWZlSD
IEFW42SD
IEFOB6SD
IEHINITT
IEHLIST
IEHPRDGM
I EKAAOO
I ERRCOOO
IEWL
IEWLFBBD
IEWSZDVR
I FCEREPO
IGCOCLCl
IGCOOO2F
IGCOlOlC
IGCOlOSA
IGCOZOLC
IGC0301C
IGC0401C
I GCO503D
I GC0605A
IGC0705A
IGCO805A
IGC1203D
I GC3B07B
IGGOCLCZ
IGGOCLFZ
IGGOlOKA
IGGOlSKK
IGG019LI
IGGOlPDB

IGGOl9OJ
IGGO19WB
IGGOIPOD
IGGOlSOJ
I GGG19OP
IGGOlSOT
IGGOlPlC
IGGOlPlJ
IGG0193A
IGG0193E
IGG01932
IGGOZDOC
IGGO203A
IGG0230D
IGG05508
IGG0550J
IGG0550M
IGG0550Y
IGG0553A
IGG0553C
IGG0553E
I HEOPQA
LOADER

FIG. 9

NO OF USES

i

8
0

x

:

:
0
0

i
0
9

15
0
7

x
14

00
15

I:

:
0

G

8
999

0

3
9

2

:

i

::

i

1:
2

11
9

FIRST 26 MODULES U&b 8UT NOT

NAME
MONITOR
IHEESMA
IHEEREA
IHEOPNA
IHEOPOA
IHEOPPA
ItiECCTA
IGG6550i
SORT
IHECLTB
IGGOl9lK
IEHDASDS
IEHDPRNT
IEHDSCAN
XEHDDUMP
IGGQ19P8
IEHOPASS
IEHI)AOUT
IEHDMSGB
SUPV
IGG0230C

NO. OF USES
0

11593
1,.593

1Q
10
1Q
10

2
4
1
4
1
5

10
1

:
1

f
1

FIG. 10

IN LIST

T.Y.Johnston - 36-

/
I

,
I
I
1
I
!
I
I
I

I

!
I
I
I
/
I

I

MODULE USAGE BY GROUPS.. NOT IN OTHER

IDEYTIFIER COUNT
I 232
IEE 0
IEF ,
IEM ii
IER 232
IEU 0
IEY 0
IFF 0

OTHERS 18

FIG. 11

T . Y. Johnston - 37 -

REPORTS

MACHINE ACTIVITY AT A GLANCE
DATE: 69.301

ENDED: 16.27.20
TIME MONITORED: 10.00 MINUTES

PARAMETERS
CYCLE RANGE

CORE 5
YOOULES 5
QUEUES 5
I/O DEVICES
CHANNELS :

CYCLE TIME 0.50 SECONDS
CYCL5S COMPLETE0 1,161 OUT OF li200

32.h
83.12%

64,651
54,226 51423 PER MINUTE

50

274,7ti 271474 PER MINUTE
81,435 9,144 PER YINUTE

136 14 PER MINUTE
267 27 PER MINUTE

CPU UTILIZATION
ACTIVITY

ANY SELECTOR CHANNEL BUSY
I/O ACTIVITY INOEK
I/O INTERRUPTS
DEVICES USED
RQE USE SINCE LAST IPL
TOTAL SUPERVISOR CALLS

EXCP
UT0
OPFN

POSSIBLE ROTTLENECKS
ENP UAITS
300K REGION AVAILABLE
AVERAGE CORE WASTE0
TAPE CU WAITING
DISK CU WAITiNG
TAPE NOT REAOY
DISK NOT READY

PROGRAMS USED
PROCESSORS

ASSBYBLY
COSOL oz
FORTRANG 0
FORTRANH 2.
LINKEOIT
LOADER 0’
MAIN 4
PL/l
SORT 0”
UTILITY 3

STEPS INITIATED

.43x
2.16%

203K
.00x

2.15%
4.95 MINIJTES
4.75 MINUTES

16

END OF MONITOR RUN --- VERSION 1.2 10/27/69

FIG. 12

T. Y. Johnston - 38 -

PR
O

C
ES

SO
R

U

SA
G

E

AP
R

IL

19
69

AU

G
U

ST

19
69

SE
LE

C
TE

D

PR
O

C
ES

SO
R

EL
AP

SE
D

%

%

N

U
M

BE
R

EL

AP
SE

D

%

%

N
U

M
BE

R

TI
M

E
C

PU

TI
M

E
R

AT
IO

C

PU

EL
AP

SE
D

C

AL
LS

TI

M
E

C
PU

TI

M
E

R
AT

IO

C
PU

EL

AP
SE

D

C
AL

LS

U
TI

LI
TI

ES

33
7/

l
.0

7
3.

6
12

01

15
4.

0
.0

7
2.

0
13

18

FO
R

TR
AN

14

/l
52

60

3.
6

6.
8

11
.5

3.

3
7.

3
68

69

PL
l

24
/l

.6

1.
8

10
89

15

.7

.8

2.
4

21
55

LI
N

KE
D

IT

93
/l

.8

9.
5

78
30

64

/l
.7

8.

6
97

65

I %

PR
O

D
U

C
TI

O
N

4.

3/
l

87
.8

50

.8

68
90

3.

4/
l

84
.0

54

.0

85
95

I

TO
TA

L
6.

98
/l

33
00

0
5.

33
/l

35
00

0
AL

L
JO

BS

R
AT

IO

AU
G

U
ST

/A
PR

IL

EL
AP

SE
D

TI

M
E

1.
1/

l
,

C
PU

TI

M
E

1.
45

/l

TH
R

O
U

G
H

PU
T

IN
C

R
EA

SE

FO
R

AU

G
U

ST

O
VE

R

AP
R

IL
:

31
%

. FI
G

.
13

JOB STATISTICS
I

3’3 UC1 69 fYJXX036 GP=SFSY SEQ NO=206 CLASSmf PRTY=12

r*+**************1*****904**f*+*+***~~*****~~~*~~*#~*******~*~******~****

CLOCK TIMES (HH:YY:SS)

ON RDR 11 :52:36 BEGIN EXEC 11:54:1)3 ON PRT 11:56:27

OFF RDR 11 :52:37 EN0 EXEC 33:54:43 OFF PKT Ll:56:57

RDR TIME 0:QQ:OQ EXEC TIME O:MJ:40 PST TIME O:OO: 29

*******4******************t******~*****~***~~**~**~$****~********~*~~m~**********

RFSOURCE S USED

CARD5 READ

CARDS PiJNCHEO

LINFS PRINTED

?-TRACK ACCESSES

ERRORS

MOUNTS

Q-TR.ACK ACCESSFS

FRRORS

MOUNTS

D.A. ACCES5ES

:MOUNTS

OT’HFR ACCESSES

CORE AMOUNT

CORE TIME USED

CPU TIYE USED

SVC WAIT

OTHER

l,JNI TS CHAH GE FORMULA

79 R = MAX(LN+0.075 - 3OD.Ol, 01

L = N * 3.35E-03

N-7

0

290

0

N.A.

N.4.

0

N.A.

N.A.

236

N.4.

0

150K

0:00:3ci

Q zoo :01.39

610

2,246 (NOT

67

Y9

M9

ND

MO, M = (V7 t M9)*6Q + MO*bQQ

NM, F = (NI+N9+ND+NM t * 0.0’15

CF = N / 150

G = (8/9J*CF**2 - (2/3)*CF l (119)

TSEC

IYCL IIOJ

****8~***********o**+*********~***~~~~***~~*~******************~*~**~~**~*****a~**

TOTAL UNITS = 20.17 UNITS = G*(TSEC+i=) + R + L + M

*8*0****************~*~~~*****)*4****~***~*u~**~*****~************~**~*~***~****~**

FIG. 14

T. Y. Johnston - 4q -

