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Electron scattering from a hadron target has a singularly attractive feature 

relative to the various processes of hadrons scattering from hadron targets: the 

electromagnetic field generated during the electrons’s scattering is understood if 

indeed anything is in particle physics. Dirac’ tells us the transition current of the ,- 
scattered electron and Maxwell tells us the rest. Therefore, in this process we are 

probing the structure of the hadron by means of a known operator - the electro- 

magnetic current operator. There is an additional advantage in studying this process 

and that is its weakness. We can do our theoretical analyses to lowest order in the 

fine structure constant a! x1/137 which is a comfortable expansion parameter for 

quantitative results. 

The first detailed high energy experimental studies of electron scattering from 

hydrogen targets concentrated on the elastic process 

e+p-e’+p’ 

and measured the elastic form factors defined by 

<Pi Jpl -P> = (/z--j u(pT+‘Fl(q2)+ g K~21~2)luo (1) 
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Work supported by the U. S. Atomic Energy Commission. 



where JCL is the Heisenberg current operator, i I P> and 1 Pr > denote physical 

proton states of momenta (E, 2) and (El, 2’) respectively, and the Dirac and Pauli 

form factors Fl and F2 are functions of the invariant momentum transfer 

q2 = (p - ~1)~ 1 (E - $’ - e - 11’,2 = 2M2 - 2P*?’ < 0. The observed rapid fall- 

off of the magnetic form factor for the proton which decreases roughly as % 
2 

for large q2 from several to 2 25 (GeV)2, ’ 
0 q 

coupled with the theoretically popular 

scaling law’ 

GMb121 = F,(s2) + K F2(s2) 

G,(q2) - 2 
-2 = 2.79 

F&q I* K g F,(s2) 
- 4lvl! 

allows us to write simply for the ratio of electron-proton scattering to its theoretical 

value for a point proton (with the observed magnetic moment): 

(‘jexptl =(‘ipoint ’ ($ffor -q2 > several (GeV)2, 
(2) 

For elastic scattering the momentum transfer to the proton, q2, and the energy 

transfer q 9 P = Mv, with v the energy transfer computed in the target proton’s 

rest system, are related by the mass shell condition 

or 2Mv = -q2. 

Moving next to inelastic scattering with the excitation of particular proton 

resonances the matrix element.(l) is replaced by 

< ‘Ees 
I I 
Jp P> 

and the mass shell condition (3) by 

(3) 

(q + P)2 = $ies = &I2 -i- q2 + 2Mv 

or 



The kinematic region in the (q2, 2Mv) plane is thus displaced by a constant increasing 

with the mass of the resonance being formed,. Once again experiment2 indicates 

a very rapid decrease in the cross section for such excitations that roughly parallels 

the rapid decrease in (2) for the elastic process. 

FIG. 1 

The next step in the evolution of studies of electron-proton scattering is to 

look at very inelastic scattering - i.e., the continuum region beyond the elastic 

and 77disqrete” resonance excitations in Fig. 1. In the analogous process of atomic 

scattering of electrons, beyond the elastic process leaving the atom in its ground 

state andsthe excitation of discrete atomic levels by inelastic scattering there is 

the continuum of inelastic processes ionizing the atom. Similarly electron scat- 

tering from nuclei can be elastic, can lead to excited nuclear levels, or can dis- 

integrate! the nucleus by ejecting individual nucleons analogous to the atomic ioni- 

zation. Here we shall be interested in the ‘@ionization” of the proton - i. e., the 

deep inelastic region in the continuum beyond the elastic and resonance contours 

shown in)Fig. 1. 



In the deep inelastic scattering region we are interested in the behavior of 

the proton’s structure functions as a function of the momentum transfer q2, the 

energy transfer 2Mv) -q2, and the particular hadron channelsI??> being populated 

by <g IJpIP>- In these lectures we will focus in sum rule type measurements 

which detect only the final electron scattered through a given angle 6 with momentum 

and energy transfers q2 and 2xlv and sum over ,a11 final hadron channels. . In order 

to help anticipate and interpret the behavior of the proton’s structure functions 

as measured in this way we ref.er back to the nuclear physics analogue for a use- 

ful if imperfect guide. 

The big difference between the proton and nuclei or atoms is that the latter 

are structures made up of weakly bound ,and well identified individual nucleons or 

electrons. Thus the ratio of binding energies to rest energies for the constituents 

are typically 

for an atom 

for a nucleus 

for a proton 

few eV 
.51 MeV 

N IO-5 Cc I 

8 MeV 
938 MeV - !o-2 << 1 

100’s of MeV _ I 
10.0’s of MeV ’ 

Associated with their strong binding is ,the fact that the constituents of a proton 

remain elusive enigmas of unknown numbers (finite?) as well as unknown qualitative 

properties like charge, spin, and mass. In contrast ther,e is no uncertainty as to 

the numbers and identity ,of nucleons and electrons forming a nucleus or an atom. 

In view of these cpmments we are well aware of the fact that nuclei and atoms 

provide but an imperfect ,analogy to heIp guide us in the study of the deep inelastic 

electron-pro,ton scatterin,g (and the r,elated processes of deep inelastic electron- 

positron annihilation and .of neutri.noTinelastic scattering). They are, however, 

also useful analogies to turn to - in particular in search of simplifying kinematic 

regions and general features. 



Consider in particular inelastic-electron scattering from a nucleus with A 

nucleons and Z protons each treated as very massive so that we take into account 

only the static Coulomb interaction. The transition amplitude is then 

and the differential cross section derived by standard steps is 

d2, = 47Uz2 

dki12 dv 1qi4 - T 
6(Ep+v - Ex)<P cesiq’ ri lz><$eQ rj 1 p> (5) 

1 j - 

where the sums over i and j include all protons and’the sum ong is over all 

nuclear states satisfying the energy conserving S-function Ex = Ep’ + v. 

Summing over all energy transfers v for fixed momentum transfer 1 q I2 we 

can use closure to construct a sum rule free of reference to the specific final 

hadron states3 

where f 2 is the two-body correlation function. 

Equation (6) is the Heisenberg generalization of the Thomas-Reiche-Kuhn 

dipole sum rule first derived for evaluating the f-numbers for the atomic photo- 

electric effect. From (5) and (6) we draw’several observations for our present 

discussion: For q sufficiently large the two body correlation function vanishes. 

Generally f2 is small for q >/Mean inter-nucleon separation/ -’ -150 MeV in which 

case 

for q 1200 MeV (7) 

This tells us that there is a finite area under the inelastic scattering curve including 

all final continuum states of the nucleus and at a fixed and large momentum transfer 

-5- 



q from the electron. In contrast the differential cross sections to individual 

excited nuclear states vanish rapidly in analogy with the proton results. However, 

(7) tells us that the total area at fixed q is just the point scattering result ;4n(Z~)~/ 

4 
11 i q multiplied by l/Z, or the reciprocal of the number of point charges con- 

stituting a nucleus. This factor enters because (6) is proportional to the sum of 

the squares of the elementary proton charges whereas for a point target and elastic 

scattering all the charges scatter coherently and the cross section is proportional 

to the square of the sum of the charges. Recall that we are working in a range of 

q values where the effects of meson production, exchange currents, retardation 

corrections to Coulomb scattering, etc., may be ignored and the proton may be 

treated as a point charge. Another way of looking at (7) is to observe that it cor- 

responds to scattering from Z independent and incoherent point Coulomb scatterers. 

It is the same result as the impulse approximation treatment of scattering by each 

individual proton in the nucleus. 

The correlations and binding forces in the nucleus are negligible and the 

protons can be treated as approximately free in this kinematical region. The area 

under the curve in (7) counts the number of elementary point constituents of unit 

charge of the nucleus and is independent of all dynamical details. Can we infer 

the same for the proton? 

We can learn more from the spectrum of the inelastic-electron scattering 

curve as illustrated in the Fig. 2 schematically representing what happens for 

large q. There is a peak in the continuum inelastic scattering curve at an energy 

loss corresponding to quasi-elastic scattering from a single nucleon. This quasi- 

elastic peak occurs at 

‘qe = lc$/2M = [1 qlP/Z(AMg A 

-6- 

(8) 



I q I* CONSTANT 

1489A2 

FIG. 2 

telling us that each constituent has a mass that is (l/A) of the total nuclear mass, 

This peak is broadened by the Fermi motion of the nucleons inside of the nucleus. 

Thus a quasi-elastic peak in the deep inelastic continuum from a proton would 

reveal the mass of the proton’s constituents, if this is well defined and is not 

obscured by large Fermi momenta, by a relation such as (8) made suitably rela- 

tivistic. 

Returning now to the fully relativistic problem of scattering from the proton 

we look first for a kinematic region where a simple general sum rule such as (7) 

can be constructed free of all dynamical details, We look in other words for the 

kinematic conditions that are appropriate for applying an impulse approximation. 

This suggests that we look in the region of large values of momentum transfer 

q2 = -Q2< 0 and 1 arge energy transfers v so that the interaction can be treated as 

a sudden pulse. During the brief duration of this pulse the constituents - or 

“partons*’ - of the nucleon can be treated as instantaneously free so that an 

impulse approximation will be valid. 



Following the original intuitive arguments of Feynman4 we construct the 

criterion for applying the impulse approach and viewing the proton as an assemblage 

of “free7’ or “long lived” partons:. In terms of the language of old-fashioned per- 

turbation theory and of the uncertainty principle we want the energy transfer from 

the electron to the proton, q9, to be larger than the transition frequencies or 

energy differences, AE, between the important component states that couple 

together to form the physical proton - ii e. , 

l/~intepactio~ - qo - AE (9) 

To establish the conditions for (9) to apply let us work in the center-of-mass system 

of the colliding high energy incident electron plus proton. With the four momenta 

as illustrated in Fig. 3 

> M; =(P+q)* 

FIG. 3 

we have, with the collision along. the 3 axis and M/P-O: p = (P, 0, 0, -9, 

0, 0, P and: 

-&- 



In this system the energy differences can be written in the limit Pdcd, i. e. , P 

larger than all other energies, 

- (P2 + &1’2 = (gx - 3!?)/2P (11) 

where Mx defines a typical intermediate state mass coupling to form the proton, 

Equation (11) just expresses the effect of time,,dilation on the transition frequencies: 

Thus (9) is satisfied if 

Equation (12) is our basic result for applying the impulse approximation or Feynman 

“parton” model. It defines the deep inelastic region and the criterion for the 

Bjorken limit5 - i.e., P&CO, and 

2Mv >> MT 

Q2 >> M? 
d 

2Mv - Q2 ” Iv? 

-2-$$ = w finite (13) 

It is here that we may hope to find the scattering to be describable in simple and 

general terms - and to be computable as well. 

The relativistic generalization of (5) for the differential cross section in the 

rest frame of the target proton is given by 

d2u .- 
dQ2dv 

where E and E’ are the initial and final energies, 8 is the scattering angle of the 

electron, and v = E -E’. The two structure functions summarizing the hadron 

-. 9- 



structure in (14) are defined by 

W = 42 32 
PV c<_P l.Jtit?( n WI JvWI_P > Wh4(q + P - pn) Mm 

=- 
( 1 

cjuqy gpv- q2 W,(q2, v)+& d(Pg-y$.)f?v- yh$v#&.l, 

(15) 

where 1 P> is a one-nucleon state with four momentum P I-t, =(x) is the total hadronic 

electromagnetic current operator; qp is the four momentum of the virtual photon; 

q2 3 -Q2 < 0 is the square of the virtual photon’s mass and Mv GP l q is the energy 

transfer to the proton in the laboratory system. An average over the nucleon spin 

is understood in the definition W 
PV l 

The kinematics are illustrated in Fig. 3. It 

is these two structure functions that we want to focus on. In particular in the high 

energy limit of (14) so that E-ao and 6 -0 the approximate generalization of the 

sum rule (7) becomes 
00 

Z --. S dv W,<v, s2, (16) 
‘min 

This integral “measures1 the charged constituents in the proton. 

What does the data tell us? From preliminary measurement8such as shown 

in Fig. 4, which shows small angle data and thus is insensitive to Wl (unless WI 

is extremely large), it appears that (16) may diverge at least if the present trend 

of SLAC data continues. Also the absence of a quasi-elastic peak suggests that 

there may be no well defined “pparton7* mass-or perhaps the equivalent Fermi dis- 

tribution is very broad. However, the graph reveals (for VW,) a very important 

general feature anticipated by Bjo,rken5 on the basis of formal field theoretic ar- 

guments and that is that the structure functions W1(q2, v) and vW2(q2, v) are 

- 10 - 
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functions of w = 2Mv/Q2 alone, i.e., 

Wl(q2, v) = FIW 

VW,&? v ) = F21W 

for Q2, 2Mv >> M2 (17) 

This behavior car-~ also be derived by qualitative physical arguments as shown 

by Feynman4 on the basis of his parton model. In brief we may view the protons 

as composed of “free” or “long lived” partons a!zcording to the discussion leading 

up to (13) so long as we are in the Bjorken limit and can apply an impulse approxi- 

mation. In this limit with -1”-ao each parton is moving approximately along ,P 

since its transverse momentum is negligible in comparison with the longitudinal 

momentumrl_P; 0474 1, The distribution in v represents the longitudinal momen- 

tum distribution of the partons or elementary consitituents of the proton in an 

infinite momentum (P-c) frame. According to criterion (12) these ‘Ifreef partons 

interact instantaneously with the electromagnetic current and if they are point 

particles this interaction is proportional to their charge or static moments (if 

any) and contains no form factor dependence f(q2). To leading order they acquire 

only a transverse momentum q,a d- Q2 by (10) and remain on their mass shells 

with the same mass, i.e., 

(7~ + q12 = $arton = gparton - Q2 + 2qMv (18) 

This tells us that Q2 = ~(2Mv) or the structure depends on the longitudinal momentum 

distribution viewed in an infinite momentum frame, 7 = l/w, alone. This distribu- 

tion is what the measurements tell us as a function of w. 

Now let us ask two questions. First: is there any sense to the parton model? 

Second: why does the behavior of the structure functions experimentally look so 

different from the picture suggested by the analogy with nuclear scattering? 

- l? - 



In these lectures I want to derive a parton model from canonical field theory 

not only for scattering but also for pair annihilation in the deep inelastic region. ‘I 

I derive this model not because I particularly like or want to preserve field theory, 

but because it is not enough to explain the scaling low; it is necessary to have also 

some predictive power, in particular for the drossed reaction: 

e- + e’--- p + “anythir@ 

and field theory, with its crossing properties, can give some clue about this. In 

fact we can derive a parton model for all the processes 

e + p -e- + l’anything’* 

e’ + e--p + ttanythingl’ 

v(F) + p - e-( e’) + “anything” 

as well as for other hadron charges and SU3 quantum members. It follows from 

this result that all the structure functions depend only on w as conjectured by 

Bjorken for the deep inelastic scattering. To accomplish this derivation it is 

necessary to introduce a transverse momentum cutoff so that there exists an 

asymptotic region in which q2 and Mu can be made larger than the transverse 

momenta of all the partons that are involved. Upon crossing to the e+e- annihi- 

lation channel, an operation we can perform using our field theory basis, and 

deriving a parton model for this process we arrive at the important result that 

the deep inelastic annihilation cross section to a hadron plus “anything” is very 

large, varying with colliding e-e+ beam energy at fixed w in the same way as do 

point lepton cross sections. This result has important general implications for 

colliding ring experiments as well as for the ratios of annihilation to scattering 

cross sections and of neutrino to electron-inelastic scattering cross sections. 

Before developing a formalism for deriving the parton model we can answer 

the second of the above questions of where the analogy with the nuclear scattering 



goes wrong. Underlying the difference between Z and the apparently diverging 

right-hand side of (16) is the presence of an additional physical interaction mecha- 

nism present in high energy strong interaction processes but absent from the 

atomic and nuclear realm and that is diffraction scattering. At high energies 

above meson production thresholds many new channels open up leading to constant 

total cross sections for hadrons in the high energy limits as the incident nucleons, 

pions, or photons are absorbed on a black or very dark grey disk. Indeed the 

structure functions can be directly related to cross sections for absorption of 

virtual photons of mass -Q2. The connection of the lower half of Fig. 3 or of 

the amplitude (15) with a cross section is a matter of algebra and consistent 

normalizations. 

Following Hand’ s8 definitions there results 

w1 = --& (v- Q2/2Wq 

VW2 = -&- (l-Q2,‘2Mv)Q2 
4a20! 

Wa) 

W-W 

where by ot 
9 
,(Q 2 , v) is meant the total cross section for a transversely or longi- 

tudinally polarized photon of mass -Q2 to form a state of the same total mass 

(i.e., s = (q + P)2) as a real photon of the same laboratory frequency. Evidently 

from (19b) if the total cross sections approach constants for virtual photons, as 

they do for hadrons on protons, -vW2 is expected also to approach an energy 

1 independent constant for fixed large Q2 as v-a, : VW - - 2 47r2a! 
Q2Wt + “a’- 

This suggests that the data should continue its present trend leading the right- 

hand side of (16) to diverge logarithmically. It is also apparent from (19b) that 

the Bjorken prediction as well as the observation that vW2 = F2(w) as in (17) requires 

u+u a t Q + f(w) 
Q 

- 14 - 



and more particularly if we accept the present trend as well as the simple Regge 

theory notion of constant total cross sections at high energy 

1’ u-tua- 
t Q Q2 

for large Q2 as v-00 

This contrasts a 1 
Q8 

falloff for elastic or resonance scattering as in (2). The 

natural emergence of this type of behavior has’ been discussed by Abarbanel, 

Goldberger, and Treiman’ from the study of ladder graphs contributing to forward 

virtual Compton scattering - or to the total cross section by the optical theorem. 

From the same conjectured behavior (20) in,contrast to the more rapid falloff 

of resonance excitations Harari 10 has suggested that the diffraction mechanism 

(or Pomeron exchange) responsible for constant total cross sections dominates at 

all energies for Q2 -00 and has derived and discussed implications of this sug- 

gestion. This behavior and the underlying diffraction mechanism are seen as the 

reasons for the inadequacy of the analogy in (16). We turn then to a more formal 

theoretical approach - and in particular one which will provide a basis for crossing 

to the colliding beam region of interest for deep inelastic e- - e+ annihilation. 

The derivation of the parton model for inelastic scattering will be carried 

out in the infinite momentum center-of-mass frame of the electron and proton 

* (10) with the nucleon momentum P along the 3 axis. Let us use good old-fashioned 

perturbation theory (OFPT) which in the P-a, frame enjoys some great cal- 

culation simplifications. We undress the current operator and go into the inter- 

action picture with the familiar U matrix transformation 

J,(x) = U-‘(t)jc,(x) U(t), ‘U(t) = 
-i+,, Jt 

e 
HI (7) di- 

+ 

where JCL(x) is the fully interacting electromagnetic current and jh(x) the corresponding 

free or bare current. Equation (15) can now be rewritten as 

W = 4r2 2 &<up/j~(O)U(O)~n)<n~U~1(O)jv(O)(UP>(2~~~4~~+P-pn) (22) PV 

- 15 - 



where 
IUP> = U(O)IP > . 

A basic ingredient in the derivation of the parton model from canonical field 

theory is the existence of an asymptotic region in which Q2 can be made greater 

than the transverse momenta of all particles involved, i.e., of the pions and 

nucleons emitted into real final states and that also are the (virtual) constituents 

of UP>. I We must assume the existence of such a region in our formal theoretical 

manipulations. Such an assumption is in agreement with present high energy data 

that strongly indicate that transverse momenta of the final particles are indeed 

very limited in magnitude. (Further discussions of this point- and its basis are 

reserved for the question session. ) 

Let us recall that in the infinite momentum frame, because of the time 

dilation factor, one can construct on a physical basis, as shown by Feynman, a 

“free constituent picture. ” Our present goal is to translate this into a formal 

derivation, and then to derive the “impulse approximation” and a “parton” model 

from field theory, for processes with large energy and momentum transfers. 

Now OFPT makes unitarity more evident than relativistic Feynman rules. 

On the other hand, the Feynman amplitudes are manifestly covariant and the OFPT 

ones are not. The main point Is however the following: in OFPT one indeed has 

at each vertex conservation of momentum but not of energy; all internal particles 

are on their mass shells. The’relativistic time dilation factor however, in the 

P-oo frame, implies under certain circumstances also the approximate con- 

servation of energy, so that we can recapture covariance. 

So we work with OFPT in the P -Q) frame, starting with the undressing 

transformation (21). These things are nicely discussed, for the spinless case, 

in Weinberg’s 11 paper; the realistic case is however much more delicate. 

-16- 



To see what happens to our basic object W PU 
in this frame and in the Bjorken 

limit we write from (22) 

WiV = 4n2 2 C(27Q4<UP jp(0) Un><Un jV(0) UP>a4(q+ P-Pn) n I I, I I 

= 492 ‘3 cJd4x eiq * xei(p - ‘n) ’ x 
n 

Now PO = Ep and (P,)O = En are the energies of the exact eigenstates P,> and n) 

respectively. However the states UP> and Un> are not energy eigenstates. Let 

us denote by E and E 
UP 

the energies of the “unperturbed’! individual components 

contributing in their perturbation expansion - i. e. , the energies of the individual 

states contributing to the series developed from (21): 

where c’ indicates the summation over all intermediate states except (P) and Z2 

is the proton’s wave function renormalization constant. Lf E - E -0 and 
P up 

En-Eun -0 in our asymptotic limit then the four momentum operator ti com- 
oP 

mutes with U(O), which automatically conserves momentum, and the exponential 

can be changed into a displacement operator. At this point one has the closure 

sum: c \n><n\ = 1 so that: 

lim W 
PV 

P-a0 
47r2 

= 

q2, Mv-- 

-Q- Ep s 
d4x eiq” x<UPl$(x) j(O)lUP) 

This equation can be regarded as the field-theoretical derivation of the parton 

model: i. e., the proton is an infinite sum: proton, proton + pion, proton + nucleon 

+ antinucleon, etc. (no defined set of numbers; this is the full perturbation expansion) 

and the current operator is the free (bare) one. It is in this way that we come to 

the impulse approximation. Once we have derived a result like this, we can proceed 

to deduce scaling laws, etc. 

- 17 - 



Notice that the crux of this derivation lies in the replacement of Ep by E 
UP 

and En by Eun, which we now will discuss in further detail. The assumption has 

been made that the particles emitted or absorbed at any strong vertex have only 

finite transverse momenta. Then both UlP> and UI .> n can be treated as eigenstates 

of the Hamiltonian with eigenvalues Ep and En, respectively. To show this let 

E UP symbolically denote the energy of one of the multi-pion + nucleon states in 

the perturbation expansion of lUP> . In the infinite momentum frame, E -E 
P up 

is of the order of l/P multiplied by the sum of squares of some characteristic 

transverse momentum and some characteristic mass, For example let lUP> 

denote a state of one nucleon with momentum ~52 + kl plus one pion with 

(1 - q)_P - &I in accord with momentum conservation; take klo ,P = 0. We also 

take the fraction of momentum carried by the nucleon and pion lines respectively, 

V and (1 -q) to be positive along the ,P direction. The kinematics are shown in 

Fig. 5. We find then, for P- 00 

E 
P 

-E 2 k; + M2 k;+p2 

up = ,p + 2p - 17_p + cJrlp ( A 2(147)_p 

1 C k2 1 
=-2p ?1(1-7) + 

This difference in (24) will generally be negligible in comparison with the photon 

energy q” as given in (10) and therefore can be neglected in the energy delta 

function 6(qo + Ep - En) appearing in (22) provided we work in the Bjorken limit, 

2Mv - Q2 >> 2 and we restrict kf e Q”. This argument fails for the regions 
max 

of momenta 77 < 0 or >l which lead to E 
UP 

- Ep w P corresponding to particles 

moving anti-parallel as well as parallel to P. However by analyses such as 

described by Weinberg 11 we establish that for these regions of r] the energy 

denominators introduced by the time integrals appearing in the expansion of the 

- 18 - 
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time-ordered products of U( 0), 
u(o) = (;!&I”‘dt)t)+ 

0- 

P . T)P+k, .. 

O<r)<l 

Pm k,=O 

ZEii 

FIG. 5 

lead to contributions to W 
W 

reduced by factors of l/P. This analysis will be 

spelled out in detail in a forthcoming paper, 7 but can be sketched here adequately. 

In particular we must work only with the good components of the current, i. e., 

Jp for = 0 or 3 along the direction of P. Otherwise the diagrams with partitiles 

moving with 77 < 0 or >l cannot be excluded because the extra powers of P in the 

denominator can be compensated by similar factors in the numerator from matrix 

elements of the bad components of the current, that is JI and J2 in the Pi-” 

frame. However we can compute the contributions of the good components only- 

i.e., Woo and W33 - and by covariance construct the whole tensor. 

Let us sketch the proof of the above statements for the case 7 < 0 and 7 >l. 

The old-fashioned perturbation formula reads: 

! <“#-+> 
Via> =fi la> +c(JnI> Es-E 

1 nl “1 

+ C1 ‘n2’(~$~~~~rIYj-‘H1’a’ + . . . 

“1’ “2 a- nl a n2 1 

where a is some unperturbed state, and Z a renormalization constant. This formula 

shows that in computing the magnitude of each contribution there are equal numbers 

of numerator matrix elements and energy denominators to be considered. In the 

infinite momentum frame, as illustrated in (24), the energy denominators can be 



either: 

Ea - E 
n1 

- l/P (and we call them good) or 

E, - E 
nl 

- P (and we call them bad). 

However the bad denominators can be balanced, but for each bad denominator 
’ 

giving an added factor 1 there must be two compensating “bad” numerators. 
P2 

As 

an example, let us consider the usual pseudoscalar coupling between pions and 

nucleons LZI = gCb5+$. 

It is not difficult to show that in the P -a frame, vertices corresponding to 

this coupling are of the order 1 (small vertices) in the case of (anti-) nucleons 

moving along the same direction through the interaction, and of order P (big 

vertices) in the case of (anti-) nucleons moving along opposite directions; this is 

left as an exercise. This property defines a “bad” current, such as 1, y5, or 

the transverse current components yI and y,; ‘rgoodlr currents such as y. and y3 

in contrast have just the opposite behavior. 

The good currents are penalized rather than enhanced by a factor of l/P when 

they turn a line moving along ]P into one moving against it as P- q. It is this 

simple observation plug the need to balance each bad denominator with two com- 

pensating numerators that allows us to proceed. In Fig. 6 we illustrate a series of 

graphs, the ones labeled “yes’1 meaning they survive to leading order as p-00, 

and the ones labeled “nofl meaning they are reduced by one or more powers of P 

in this limit. Note that we do simple power counting assuming that all expressions 

are convergent which is one of the reasons we have to supply a transverse momentum 

cutoff. 

In these graphs time runs to the right and arrows to the right mean momenta 

along 2. 
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NO 

NO NO 
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NO 

NO 
148OA7 

Examples of graphs with a vertex for a rrgoodf’ external current denoted by 

an x are shown in Fig. 7 along with the corresponding lfyesff or %off for leading 

contributions as P-W, Proceeding in this graphical manner we can arrive at 

the following general statement: any final particle belonging to the state )UP> , 

i. e . , one existing just before the moment when jb acts in (22’) or (23) must go to 

the right along p. Otherwise jcL cannot change its direction, since along = 0 even 

if it does land on it, or because j 
P 

does not interact with this particular line. 
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Therefore it will enter into the state IUn> still moving to the left and hence there 

w,ill appear in its contribution tow PV 
at least two bad denominators but only two 

big vertices at most, which cannot compensate them. Thus whatever so called 

“Z graphs” may appear intermediately as illustrated in,Fig. 6, all lines eventually 

emerging into IUP> move to the right satisfying the criterion indicated above for 

replacing E 
up 

by Ep in our problem. Since j, and j, introduce negligible longitu- 

dinal momentum by (10) all lines also will continue to move to the right inIUn/. 

Finally no lines can move to the left against ?? in the final state IU > in the 

infinite momentum frame as a ‘result of energy conservation and so our claim is 

established. 

There is a second class of simplifications in the Bjorken limit if we now take 

into account the existence of a bound on k,, which allows us to count powers of 

l/Q2 retaining again only the leading contributions. 

To make these simplifications apparent we consider the time-ordered sequence 

of events in the old-fashioned perturbation theory description of a scattering process 

as represented by the matrix element <UP\ jJO)Uin> . Before the bare current 

jp(0) operates, IUP> describes emission and reabsorption of pions and nucleon- 

antinucleon pairs. The bare electromagnetic current scatters one of the charged 

constituents in (UP> and imparts to it a very large transverse momentum c.J,~= Q2. d- 

The unscattered constituents in (UP> keep moving and emit and reabsorb pions 

and nucleon-antinucleon pairs. They ‘form a group of particles moving very close 

to each other along the direction Vg as large transverse momenta are suppressed 

by the cutoff vertices. The scattered charged constituent also emits and reabsorbs 

pions and nucleon-antinucleon pairs., Analogously these form a second group of 

particles moving close to each other but along a direction which deviates in trans- 

verse momentum by al from the first group. These two groups of particles, 
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denoted by (A) and (B), are illustrated in Fig. 8. As $1-m the cutoff strong 

vertices prevent any particle emitted by group (A) from being absorbed by group 

(B) and vice versa. Consequently, there is no interaction between the two well- 

separated groups of particles. It is then obvious that diagrams contributing to 

Wpv and corresponding to electromagnetic vertex corrections (Fig. 9) or more 

complicated diagrams describing interactions between the two groups of particles 

(Fig. 10) vanish in the limit CJ~~OO . It is equally obvious that coherent inter- 

ference between the two matrix elements <UPljp(0)Uln> and <n~UV1jv(0)~UP> in 

(22) is impossible unless they both produce the identical sets of well-separated 

particle groups (A), (B) and (A’), (B’). As a result diagrams of the type given 

in Fig. 11 vanish as aII-ob 0 In Figs. 9. 10, and 11 we are representing squares 

of matrix elements appearing in W 
P-tv 

and the dashed verticle line denotes a real 

physical final state formed from the initial proton. 

. 
h * ,,,,;;,,::;\ . 

---< -- --‘LL 

t- ,i# {A) /’ / , 0 0 0 / L , , , #( -’ -.) _ . /-* 
=x 

\ 

(B) 
\ \ 

(a) (b) mm 

FIG. 8 
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FIG, 9 

FIG. 10 

FIG. li 

In the lab frame this process looks as follows: The constituents of the proton 

in group (B) of Fig. ~8 emerge with very high momenta along q while the rest in Iii 
group (A) are left behind. The invariant mass of each of the two groups is small 

since the transverse momenta of the constituents do not spread far away from 

each other. The energy differences between 1 P> and IUP) , I n and IU( O)ln> are 

therefore negligible in the limit of large Q2 and MY as we argued in (24). 

Since there is no interference between the two groups of particles, the U 

operator acts separately and independently on each of the two groups (A) and (B) 
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in Fig. 8. Our derived result simply states the fact that the total probability that 

anything happens among the particles in each of the two groups (A) and (B) is 

unity because of unitarity of U. An example of this result is illustrated by the 

graphs in Fig. 12. It can also be seen by inserting a complete set of states 

between the current operators in (23) and neglecting the difference E - E P 
as 

up 
discussed above in displacing the current to the origin. This operation gives 

(22) or (22’) with Un> -n> , 

The result of Eq. (23) established the “parton model?’ by allowing us to work 

with free point currents and the superposition of essentially free (i. e., long-lived) 

constituents in describing the proton’s ground state in the infinite momentum frame 

and in the Bjorken limit. 

In particular the form of (23) assures us of universal behavior. If the bare 

current jcl(x) lands on a constituent in IUP> with momentum Pa, Pt N 2 a it 

scatters it on to the mass shell with Pa + q and (Pa + q)2 2 ga. By simple 

FIG. 12 
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integration of (23) this mass shell constraint emerges as a delta function 

6(2P; (25) 

where we have used (10) and q is the .fraction of longitudinal momentum borne by 

the constituent on which the bare current lands. Equation (23) leads to a universal 

behavior of W1 and vW2 as functions of w as predicted by Bjorken5 and shows that 

the observed w dependence reflects the longitudinal momentum distribution of the 

constituents in the infinite momentum frame. 

The detailed calculations of the functional forms for W1 and vW2 were worked 

out in Ref. 7 for large w 3> 1. 

It remains for us only to verify that the result presented by (23) is actually 

finite and nonvanishing -- i. e. , to show that we have actually retained the leading 

contribution in the Bjorken limit. We do this by the following construction. We 

expand lUP> in terms of a complete set of multiparticle states 

/UP> = &Jn> ; Rn12 = 1 (26) 

Introducing this into (23) we use the following relation to identify W2, the coefficient 

OfP P 
P v 

s (dx)eiqx <P L- 2P 2 
n , ,i/jp(X)jv(0)lPn , i> = L 4n2 En i n,p Pn,v’(Q -2Mv7)n, i)+ l l l 

9 

- pPpv 1 

a(?& i - $) -I- 0.. 

&&zp Mlnv , 

(27) 

P . is the four momentum of the charged constituent on which the current lands, n, .I 

and rl, i has the same meaning as in (25); the dots indicate the additional contri- 
, 

butions to the structure function W1. The charged constituent can be a “*, P or 

F. For the nucleon current the above equation follows from the use of projection 

matrices (M + YPn) and (M -t- y(P, + q)) before and after the current acts. Then 
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symbolically we have 

where 3111 i is the charge of the ith constituent in state 1 n> . This relation gives 
, 

a sum rule 

fGfvw,) = F(qAi, i) ( anI = 5 1 anj2 nc 
1 

where nc is the number of charged constituents in state 1 n> . We have here 

implicitly assumed that the constituents are all integrally charged as is the case 

in our model of pions and nucleons. Thus the weighted integral of vW2 over w may 

.be interpreted as the mean number of charged physical constituents in the trans- 

formed proton state UP>. It follows from nc > 1 and the normalization condition 

of anis that 

This inequality is trivial to satisfy if the SLAC data continues its present trend 

with vW2 apparently approaching a constant for large w. 

The area under the integral as measured so far up to wmax - 20 is roughly 

0.7. The ratio of W1 to vW2 is determined in (27) by the fact that the fraction of 

longitudinal momentum carried by the charged constituent on which the current 

lands is fixed at r) = l/w by the 6-function. It is an easy calculation to show that 

for j,(x) representing a pion or a spinless boson W = 0 whereas for jcl(x) a nucleon 
w1 

1 
current - = 6; 

vw2 
Their ratio as measured from the angular distribution in (14) 

will reveal the spin nature of the dominant current interaction in the Bjorken limit. 
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Now we w’ill consider the process: 

e; + e+-?Pt “ANYTHING” 

1439Al3 
. .._ 

FIG. 13 

which can be related by crossing to the deep inelastic scattering examined up to 

now. 

In this case we have q2 > O(time-like photon) and q l P= Mv is the energy trans- 

fer to all the hadrons in the rest system of the detected one. Our basic object will 

be, as before, the quantity 

( 1 
Ii- qV .Z- 

gpv - q2 w,(s2, VI + -.& bp - ?y3$Pv- yh) W2(s2,Y, (2g) 

Now, exactly as before, the question arises: have these functions a scaling 

behavior, etc.. . ? 

First of all, let us examine the kinematical region for the annihilation process. 

Now we want to detect a proton in the final state, so that we must have q2 > 4 M? ; 

moreover, v min will be the energy transfer to the proton detected at rest: i.e., 

since Mv = Pa q, vmin = J- q2* (notice that, in the colliding beam system, 

cl = (q)’ 0)). lJ mar; will correspond to the elastic annihilation process eS-t e--B+ p, 
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so that the kinematical region in the (q2, 2Mv) plane is bounded by the v= J-- q2 

parabola and the q2 = 2Mu straight line (see !igure below) 

, 

PHYSICAL REGION FOR THE 
ANNIHILATION PROCESS 

1489Al4 

FIG. 14 . 

In the colliding beam frame the cross section reads: 

d2cr 47r2Q2 It42 V 

dEd(cos 0) = - - 
(s2? Js”- 

sin2 8 1 (30) 
where E is the energy of the detected proton and 0 is the angle of the proton momen- 

tum,: with respect to the axis defined by the incident colliding e- and e+ beams. 

By straightforward application of the reduction formalism to the proton P in 

the states in (15) and (29) it readily/shown that w and W 
PV PV 

are related by the 

substitution law 

~f&(4, w = -w&l, ‘P) 

W,(s2,v) = - W1(q2, -v), v~2(s2, v) = (-v,W2(q2, ‘V) (31) 



Let us write for space-like q2 

Ivrwl(s2, v) = FIW, s) vW2(s2, v) = F2P9 s) 

2Mv where w-r 2 > 1 and s SE (q + P) i = 2Mv - Q 2 M?>M?. + In the Bjorken limit 
-q 

(limbj) we have 

limbjMWI(q2, v) = Fl(w) = l& 
El+00 

F1(w, s) 

(w > 1) 
limbjvW2(q2, v) = F2(w) = lim F2(w, s) 

S-MO 

The substitution law (31) gives for time-like q2 

M@#12, VI = -F1(w, s), vw,Cq2, v) = F2W, ~1 

where 0 < w = %$ < 1 and s = (q - P)2 = q2 --2Mv + M2 > M!. If we can show 
4 

that the Bjorken limit exists for time-like q2, we expect to find in general 

limbj(-) M%,(q2, V) = F,(w) = :+A' F1(w, s) = FI(w) 

-. 2 
limbj uW,(q , V) = F2(w) = lim F2(w, s) = F2(w) 

S-+00 
(32) 

namely, P,(w), and i?,(w) are the continuations of the corresponding functions FI(w) 

and F2(w) fr0m.w > 1 to w < 1. Relations (32).will be true, for example, if the 

Bjorken limits are approached algebraically so the sign change in w-l between 

w > 1 for scattering and 0 < w < 1 for pair annihilation will not have any pathological 

effect. We shall now demonstrate, using as an example the model of charge sym- 

metric theory of pseudoscalar pions and nucleons with y5 coupling and with a 

transverse momentum cutoff, that firstly, the Bjorken limits of wl and vw2 exist, 

and secondly, the relations (32) are indeed satisfied. 

A convenient infinite momentum frame for this analysis is one in which 

$=q3+& o,q3 pLt= P+$, 
( 3’ ,’ 1 ( 

0, 0, p ) (33) 
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For large q2 >> 2 we have, since q l P S MV , 

In analogy to our discussion of (22) we undress the current by substituting (21) into 

(29). There is an immediate simplification if we restrict ourselves to studying 

the good components of J@ 0-t = 0 or 3), For these components we can ignore the 

U(O)*s acting on the vacuum, and obta..in from (29) 

w = 
PU 4r2 ~~<O~j~(0)U(O)~Pn)<nP~U~l(O)jV(O)~O j (21r)484(q-P- Pn) (35) 

n 

The reason for this simplification is similar to that discussed in connection 

with the inelastic scattering. If U(0) operates on the vacuum state it must produce 

a baryon pair plus meson with zero total momentum so that at least one particle 

will move toward the left and another toward the right along 3 or I?: 

Thus there will appear one or more large energy denominators of order -P 

instead of -l/P. However when working with the good components of the current 

- i.e., Jo or J3 along g an inadequate number of compensating factors of P are 

introduced into the numerator by the vertices and so such terms can be neglected 

in the infinite momentum limit. The detailed systematic writing of this analysis 

is given in Ref. (7). 

Continuing in parallel with the discussion of inelastic scattering we shall 

make the same fundamental assumption that there exists a transverse momentum 

cutoff at any strong vertex. -Equation (35) says that the first thing that happens is 

the creation of a pion pair or of a proton-antiproton pair. In the limit of large q2, 

energy momentum conservation forces at least one energy denominator in the 

expansion of U(0) in the old-fashioned perturbation series to be of order q2>> M? 

or k21 for diagrams involving interact&s between the two groups of particles, 

the one group created by one member of the pair and the other group created by 
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the other member of the pair produced by jpe Therefore contributions of these 

diagrams illustrated in Fig. 15 vanish as q2- G . Diagrams with different pairs 

created at the two electromagnetic vertices as in Fig. 15b also vanish by similar 

reasoning. In complete analogy to the scattering problem as discussed earlier, 

the state U(O)IPn> may be treated as an eigenstate of the total Hamiltonian with 

eigenvalue Ep + En. Thus Eq. (35) ‘can be written with the aid of the translation 

operators as 

w = 47r2 
PV 

ff S ( dx)e+iqx C <O~jp(WJU9~Pn > <~lU-lvwvfO)lO> 
n 

(36) 

A simple kinematical consideration reveals that most of the longitudinal momentum 

of the virtual photon is given to that particle in the pair produced from the vacuum 

by jp which will eventually create the detected proton of momentum ,$. As an 

example, consider the second order diagram with the pion current operating as in 

Fig. 16a (Fig. 16b is its parallel in the inelastic scattering). The contribution of 

this diagram to w 
PV 

according to the charge symmetric y5 pion-nucleon canonical 

field theory model is 

= 2 J 3 

w vi- 
lJv (27r)3 2M 

d i!L &(q’-E -E-we )& 
2EB 2w- 

k 
Tr 1 (M-yP)( M-yP--) 1 

P n- -@ +’ (~w+)~(E,+E~-~,)~ 

(37) 
The notations used here are self-explanatory; in particular we use q3 = $ P by 

(34). In terms of the momentum parametrizations indicated in Fig. 16, the 

(a) (b) 

FIG. 15 
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(a) 

FIG. 16 

solution to the energy conserving delta function in (37) is 

1 -+w as2Mv-+oO 

Hence by (34) 

and 

which verifies our assertion. Thus the virtual photon creates two distinct groups 

of particles with no interactions between the two. The group which contains the 

detected proton moves with almost all of the longitudinal momentum q3, while the 

other group moves with a very small fraction w(kf/q2)q3* Again the U matrix 

acts on the two groups separately and independently. We can sum over all pos- 

sible combinations of particles in the small momentum group to obtain unity for 

the total probability for anything to happen. In other words, in Eq. (36) we have 

retained only those terms in which the small momentum group involves only one 

charged particle (n*, P or H) which we shall denote by A. Therefore 

wpv=47r 2E -T& 
/ 

(dx)e +iqx C <0 j (x)1X, U(O)(Pn)> <(nP)U 
n,X=f lJ %-W+u(Otjo) (38) 

which is the analogue of (23). As suggested by Fig. 16, in the Bjorken limit the 

same classes of diagrams contribute to eP scattering and annihilation processes. 
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Although it is not apparent that Tl(w) and F2(,w) computed from (38) are the 

same as F,-(w) and F2(w) computed from (23) and continued to 0 <w 1, it is I 

actually so by explicit calculation. Verification is trivial for second order pi& 

current contributions and for the similar ones for nucleon current contributions 

of Fig. 16. In particular, (37) gives 

2 
vv2 = -+ 

8n 

We have also verified7 this explicitly to fourth order in g for diagrams with 

both pion and nucleon current contributions, and to any order for ladder diagrams 

with the nucleon current operating (Fig. 17 and its corresponding diagram for the 

annihilation process). In this verification we only have to identify the transverse 

momentum cutoffs in both cases, viz. between Figs. 16(a) and (b)for the simplest example. 

We can now study the experimental implications of (32). In the Bjorken limit, 

(30) becomes, using E = Mv/q” = Mv/ J- q2 and the definition w = F 
q 

2 
du 3 

dwdcose = ‘z 5 w F2(w) sin26 1 w (40) 

where 

is the total cross section of electron-positron annihilation into muon pairs, in the 

relativistic limit. Generally, knowledge about F1 ,(w) for w > 1 as determined by 
2 

inelastic e-p scattering measurements does not provide any useful information for 

0 <w < 1 unless one knows the analytic forms of F 1,2(w) exactly. However w = 1 

is a common boundary for both scattering and annihilation. Therefore with a 

mild assumption of smoothness the ep deep inelastic scattering data near w ;L 1 

predict completely the “deep’* inelastic annihilation process near w 5 1. This 
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connection is a far reaching consequence of the Bjorken limit. The two processes 

occur in different and disjoint kinematical regions and are not related in general. 

Recall that w = 1 corresponds to the twhbody elastic channel and by w near 1 we 

still mean Iq2(w-l)( >>lV?. 
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FIG. 17 

In (40) we may choose sin20 = 0; thus it is necessary that 

F1(w) IO, O<w<l (41) 

It can be readily verified that for any value of w if the interaction of the current 

is with the nucleon 

F1tW) = f F2(w); 

and if it is with the pion 

Fl(w) = 0; 

-35- 



On the other hand, F1, 2(w) are non-negativeforw,> 1. We conclude that both F1(w) 

and F2(w) change sign at w = 1 if the nucleon current dominates, while F2(w) does 

not change sign at w = 1 if the pion current dominates, We therefore predict near 

w - 1 that 

F2(w) = CN(W-~)~~+‘, n= 0, 1, O.. (Nucleon current) 
/’ 

F2(w) = C$W-~)~~, n= 0, 1, . . . (Pion current) (42) 

We are not able to perform a reliable calculation near w = 1 from our field 

theoretical model, since the virtual particles involved are very virtual, and the 

off-shell effects must be correctly taken into account. This is in contrast to our 

results7 for large w >> 1 where we found the intermediate particles to be close to 

their energy shells and the vertex and self-energy corrections to contribute lower 

powers of !Jn w >> 1 for each order of g2. However, a plausible conjecture can be 

made. Diagrams without strong vertex corrections properly included indicate 

that the pion current gives the dominant contribution near w Y 1. For example 

to lowest order in g2 we find near w 2 1 from (39) for the pion current and from 

a similar expression for the nucleon current contribution that 
2 

F2(w) 2 + &I max/p2 (w-l) (Nucleon current) 
167r 1 

., g2 

F2(w)‘* - Bn 
8~’ 1 (Pion current) (43) 

The virtual particle (a proton in the first case and a plon in the second) has a large 

k? (space-like) invariant mass proportional to w-l D If a form factor is included at 

each ‘of the two pioti-nucleon vertices as illustrated in Fig. 18 (43) becomes 

(Nucleon current) 

2 c’ 
F2 a F7r w-l 0 

-‘36 - 

(Pion current) (44) 



FIG. 18 
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The subscripts P or 7r at the squares of the pion-nucleon form factors indicate 

the particle which is virtual. If Fp and Fr behave similarly for large momentum 

transfers, then the pion current will continue to dominate with one less power of 

(w-l) as w- 1 when the vertex corrections are included. On the basis of our 

conjecture we interpret F2(w) near w - 1 as a measure of the asymptotic pion- 

nucleon form fat tor.12 

We want to emphasize that independent of this specific conjecture based on 

our model it follows from the existence of a Bjorken limit that the deep annihilation 

cross section varies with total energy of’the colliding electron-positron system as 

l/q2 just the same as the cross section for a point hadron. Furthermore even 

without calculating the specific values of Fl 2 (w) from a theory one can predict 
, 

from (40) plus the observed structure functions for inelastic scattering that there 

will be a sizable cross section and many interesting channels to study in the deep 

inelastic region of colliding e-e+ beams. Moreover the distribution of secondaries 

in the colliding ring frame will look like two jets with typical transverse momenta 

kl<< q2 on the individual particles. J- The relative roles of the nucleon and pion 

currents can be studied by separating F1(w) from F2(w), or w1 from v%‘~ by the 

angular distribution in (40). 



Three further observations are worth notihg:. 

1) By detecting different baryons in the final states one has a simple test 

of the unitary symmetry scheme of strong interactions. For instance, according 

to SU3 and the hypothesis that the electromagnetic current is a U-spin singlet, the 

differential cross sections labeled by the detected baryon and observed at identical 

values of q2 and q l P should satisfy the relations 

o- =u 
=- 2-t “r+ = oh 

u 
ZO 

= UN = ; (3GA - o--o)~ 

Similar relations can be written for the mesons with an added constraint due to 

the fact that 7r- and 7~’ are each others antiparticles; thus 

CT 
Tr- 

=O- k- = ,I-$+ =uk+ 

This should be an ideal place to test SU3 relations since the mass differences 

among members of a multiplet should have a negligible effect on the dynamics 

as well as the kinematics in these regions of asymptotically large momentum and 

energy transfers. 

2) If charge conjugation is a good, symmetry of the electromagnetic interactions 

the differential cross sections for detecting a particle or its antiparticle are 

identical. According to (40) the differential cross section as a function of q2 is 

comparable in magnitude to that for lepton pair creation and very much larger 

than the observed “elastic” annihilation process fromapppair. Consequently it 

should be feasible by detecting and comparing charge-conjugate states, such as 

A and x for example, to test charge conjugation conservation in electromagnetic 

interactions of hadrons. 
13 
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3) Finally you may wonder what are the fmplications of this model and the 

existence of a Bjorken limit for e-e’ annihilation to’ form a deuteron (or any other 

“composite” system in place of the proton) plus anything. These are best illustrated 

by considering the deuteron and noting that the kinematically allowed regions are 

the same as illustrated in Fig. 14 but with the mass M now interpreted as the 

deuteron mass MD z 2M. For inelastic scattering from the deuteron the very 

large proportion of the cross section comes from the kinematic region corresponding 

to one of the nucleons in the deuteron serving as a spectator and the other as the 
2MDv 

target - i.e., for wD z - > 2. When we probe into the region 1 < wD< 2 
Q2 

which is also kinematically allowed we are simultaneously probing into very large 

momentum components of the deuteron wave functio+ To see this most directly 

we compute the invariant mass of the intermediate proton formed fr”om the bound 

deuteron and moving in the infinite momentum center-of-mass frame for the 

deuteron plus incident electron as used in (10). The result by a straightforward 

calculation with the kinematics shown in Fig. 19 is 

where 0 < q1 < 1 is the fraction of longitudinal momentum of the intermediate proton 

PROTON 

DEUTERON 
P (I-TIP 

FIG. 19 

OTHER 
HADRONS 

)t NEUTRON 

1353All 
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I 

retained on the final proton and (1 - r]‘) is the fraction acquired by all the other 

hadrons produced from the proton. This shows that only for wD = 2/y’. I 2 are 

the low momentum components of the’deuteron contributing so that the deuteron 

wave function does not severely damp the amplitudes vW2 and W1. In order to 

continue to the colliding beam region as we did for proton targets it would be 

necessary to continue across the boundary from wD> 1 to wD< 1. However once 

wD decreases below wD = 2 we have seen that the inelastic scattering is very 

severely dampened and hence we can expect the same very small cross section 

for deuteron production in e-e+ annihilation processes where wD < 1. 

This brings us to the end of these lectures. In a hurried and sketchy manner 

we have constructed a formalism for deriving the inelastic structure functions in 

the Bjorken limit - i. e., the “partont’ model - from canonical field theory. To 

accomplish this derivation it was necessary to assume that there exists an asymp- 

totic region in which the momentum and energy transfers to the hadrons can be 

made greater than the transverse momenta of their virtual constituents or “partons” 

in the infinite momentum frame. 

In addition to deriving the inelastic scattering structure functions, we have 

accomplished the crossing to the annihilation channel and established the parton 

model for deep inelastic electron-positron annihilation. We found as an important 

consequence of this derivation that the deep inelastic annihilation processes have 

very large cross sections and have the same energy dependence, at fixed w ‘i 2Mv/q2, 

as do the point lepton cross sections, 
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no possibility for C violation asymmetries to aijfiear due to the restraints 

imposed by current conservation alone; 


