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ABSTRACT 
l 

We find an explicit operatorial form which represents the %visted’1 

lines in the duality diagrams. Some applications, and in particular the 

derivation of the symmetric three-resonance vertices, are discussed. 
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A convenient operatorial formalism which allows to recast in a compact form 

192 the factorization properties of the n-point dual amplitudes3 has been recently 

obtained. 4,5 

‘The results of Ref. 4 and Ref. 5 are sufficient in order to express all tree- 

diagrams and single-loop planar diagrams in terms of vertices and propagators. 

The calculation of a general Feynman-like dual diagram6 demands the additional 

knowledge of the three-resonance vertices and of the ‘%wisted” propagator intro- 

duced by Kikkawa et al. ’ -- 

The first problem has been studied by Sciuto, 8 who was able to write an 

explicit form for the three-resonance vertex. However, he had to treat the three 

resonances in an asymmetric way, this being reflected in the asymmetry of his 

final result. 

in this letter we find the explicit form of the “twisted” propagator, or, more 

generally, of a Ywistingt operator and discuss some of its properties. In particu- 

lar we are able to obtain the three-resonance vertex in a symmetric form. 

Let us now define more precisely the twisted propagator. We use the nota- 

tions and the results of Ref. 4, and we define: 

Il;oi$ l l 
ir> s 1 pi> = G(p, at) IO> = J dx $&pi) exp 

where (p(%,i;$ is the usual’ integral of the r+2 point function and the vectors 

-04 P are defined in Ref. 1. Then we can write the amplitude for the (r+s+2) -point 

function of Fig. la as 
S r 

The states 1 pi> are clearly a superposition of the so-called coherent states of the 

harmonic oscillator problem’ defined as 

Ia> =e*’ 
t 

IO> 
. 

-2- 



, . 

where a! is any complex number. The properties of these states are fully dis- 

cussed in Ref. 9 and will be used extensively in the following. In our case, of an 

infinite set of harmonic oscillator the general coherent state will be defined 

I@> =lPl.e.B,.e.> =eip ES, at@) IO> 
( > n 

(2) 

. 
The twisted propagator (Fig. lc), as it is clear from a comparison with Fig. lb, 

could be obtained’from an untwisted tree diagram (Fig. lb). On the other hand 

the graph la is equal to lb because of duality. Therefore the twisted propagator 

can be obtained f&m the normal graph (Fig. la) provided we can reverse the order 

of the external lies in the left vertex. We look then for an operator 52 which trans- 

forms the state lpi> = Ii;,, . . . i;,> = lpr.. .pO> into the state Ipi> = Ipo.. .p,> . 

Using the relation of Ref. 1: 
I 

it is easy to show that the operator Sz is given by 

(Xipi) . (3) 

i j 
‘ji = f i JO ’ 

dji = cji (->’ - “ji (5) 

P In Eq. (4) the column means a normal ordering of a , a, which allows to compute 

easily’ how J? acts on (pi> . Formally we can also write: 

T 
[ 

m 
=:exp - c 

$(n) 

n=l n 
(l-3? - (1 + X(n) 

il 
: , Z(n) = atn) J;; 

where the power n has the same formal meaning as in Eq. (3). 
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In fact we can easily check that: 

RIPi> = J dX ~(“iPi) Qeexp 
( 

C F@) (xiPi) t@,/J;; a 1 0) 
n ) 

(6) 

when in the last step we have used the invariance property’ dx $(xipi) = d% #(xiFi)e 

Guided by the equivalence of Fig. la and Fig. lc, we define the %visted” 

propagator ER requiring that 

A r+l, N-1 = <qj 1 D(R, n2)j Pi> = <qj 1 ‘Rtas “In) 1 Pi> 

An alternative form of the twisted propagator is provided by twisting the q- 

momenta, i. e., 

Comparing with Eq. (6) we find: 

s,(a,a+,II) =D(R,I?)Q(II,a+,a); zL =D$a,aT,-R) (8) 

Notice that the identification of “D with a propagator rests crucially on the fact that 

Q depends only on II and the operators a?, a,. 

Direct computation shows that 

T2 = 1; T ea ‘pT 

which implies 

Q2(ll, a’, a) = 1 (9) 

as expected. 

Let us discuss shortly the two different forms ER and sL obtained for the 

twisted propagators. It is known 192 that the amplitude Ar+l s+l can be written 
9 
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in two different forms: 

A r+l, s+l =<qjlDlij,>=<~jIDIPi) (10) 

The equivalence of the two forms is related to the existence of Ward-like identities 

for the coupling of the resonances to the external particles. ’ In our formalism 

these identities can be expressed as 

<gj I D I Pi > = < Q1 I D I Pi> = <qj 1 Q’(-II) DQ(ll)lFi> 

Therefore the equivalence of the two forms (10) is translated into the statement that 

the two (different ) operators D and Q+(-II) DS?(iI) have the same matrix elements 

between the external states <qj I and I Fi > . Using the definitions (8) of the twisted 

propagators snd Eq. (9) also the two twisted propagators ER and sL will have the 
I 

same matrix elements. 

The twisting operator 52 enables us to pass from an ordering of the external 

lines of a tree’diagram to all the others. The ‘operator &? can be used more than 

once, still allowing a clear interpretation: in particular we can use it twice in the 

form suggested in Figs. 2a and 2b, in order to obtain what can be called a “twisted 

vertex”: 

~(II,II’) =$2(P) V(k) Qt(-II) = enoa ’ TTt e-IIr* a 
(11) 

In order to write TTT in a compact form, it is convenient to work with the coherent 

states in Eq. (2). Then 

T?I@> = Ip >, with sn = (-p 2 P.c 
i=n i in 

Following Ref. 8 we define now: 

(12) 

(13) 

* 
We use for the vertex the form V(k) = e a?.k eaak 

s where k is the incoming momentum. 
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The following identities are easily checked 

(14) 

Using (15) and the completeness of the coherent states, we can write the compact 

form for V: 
e-IIfea 

(16) 

It is amusing to see explicitly on some simple examples how the %visted,, vertex 

works: let us consider the three forms of the five-point function represented by 

Figs. 2c, d, and e, which in our formalism are: 

A !!jc =<o 

AEid =<o 

1 V(p3) WP,+P~?, RI V(P2) WP,+P& W %p1,+pl+p5) lo> 

1 V(P,) D((P,+P~~, R) %P,~-P,, -p3-p4) D((~,+P,~, R) VP,) IO> * 

A5e = <6”(-~4-~5,-~4)D((~4+~5~, R) V(P~)D((P~+P~~, R) v(p2)16> (17) 

We expect all the three amplitudes to be equal to the usual 

A5 = <O IVPZ) WP~+P,& R) WP,) D((P,+P,~, RI V(p4)b> 

The equality of A5, A5c and A5e is trivial, if we note that 

T(Pl, PlfP5)lO > = VPl) 10 

0 1 V(-P4-P5t -P,) = <o I V(p,) 

To compute A5d we introduce the standard integral representation for the D: 

A5d = / 

dx dy x-(P3’P4)-1 (l-xjl y-‘pl’p2’-1 
(1-d 

“Pl R +(pl+p2)” a 
<O/e x e 

‘0 R a p3 
Y e lo> 
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when, for the sake of simplicity, we have assumed a(O) = 0, and we have absorbed 

a factor &? in the definition of the momenta, as in Ref. 1, We easily obtain 

using the standard commutation relations’: 

A5b = J dxdyx 
-P3* P4-1 -P3*P1-1 y-P1*P2-1 

P-x) 
-P3* P4-l 

(1-Y) 
‘P3’P3 

(1-X-Y) 
..’ 

The identification of (l-x) and (l-y) with u4 and u5 of Bardakci, Ruegg and Virasoro’ 

yields the desired result. 

We now consider the problem of the general three-resonance vertices W, 

S&to8 has factorized W out of the tree graph of Fig, 3a, which is clearly non- 

symmetric, We want to obtain the symmetric vertex~starting from the graph 3b. 

For this purpose we write the process corresponding to the configuration of Fig. 30 

as <ki,qil Qt(-P1) D (Pi,R) lFi> * Following the procedure of Sciuto,8 we carry 

out a factorization of the resonances in the variable Pi and perform the change of 

variables which allows W to pass to the configukation 3b. As a result of this 

straightforward procedure we find that the three-resonances vertex %, which we 

factor out of 3b, is given by the W of Sciuto multiplied on the right by Q’(-Pl), 

namely 

When the identities (15) have been used to perform the last step, we received that, 

as in (9, a and c are sets of commuting operators each acting on the states carrying 

the correspondent label, In terms of the three commuting operators a, b t t ,c , which 
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act on h,h, and v , respectively, 8 we can write % in a form that exhibits the cyclic 

symmetry: 

t t t iii’(Pl,P2,P3,a,b,c 

(19) 

where at the last step we have used the reality of the matrix elements and of the 

external states e The fact that @ = W&?” represents a new vertex with cyclic 

symmetry can be understood in a symbolic way as suggested in Fig. 3d. The dots 

show8 how the external lines should be joined to the resonances, Analogously we 

expect that 

0 (20) 

represents itself a cyclic vertex (see Fig, 3e), but with the opposite ordering. In 

fact direct calculation yields: 

~(Pl,P2,P3,A,he,v) =<A,A’,YIexp 

The explicit knowledge of the general three-particle vertices can be very important 

for the construction of a Lagrangian, by means of which it could be possible to re- 

produce the results of the duality theory in a field-theoretical form.alism, The al- 

ways incumbent ghost of double-counting and the additional complication forced by 

the existence of several different vertices, identified graphically in Ref, 8 and in 

Fig. 3d, e by the position of the dots, look however, like non-trivial difficulties to 

be faced inthe realization of this program, 

Another very interesting application of the twisting operator is the calculation 

of non-planar closed loops from factorization, in analogy to the planar case. 10 
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The main questions to be answered are the following: 

1. Does the singularity structure of the non-planar loops obtained by 

factorization exhibit duality, as in the planar case? 

2. If this is the case, is also here the multiplicative function F(xi), 

independent of the kinematical variables, badly behaved at some 

point of the integration volume? 

The explicit calculation of the four-points non-planar loops is now being performed, 

and will be the subject of a forthcoming paper, 

One of LIS, L. Caneschi, would like to thank the theoretical group at Lawrence 

Radiation Laboratory for the hospitality extended to him during the summer. 
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FIGURE CM?‘J.‘IONS 

1. Graphical interpretation of the ?wisted propagator. I1 

2. Graphical intepretation of the twisted vertex (a,b) and three different 

equivalent forms of the five point amplitude in the ordering (12345) @, d,e). 

3. Factorization of the non-symmetric (a) and symmetric (b) three-resonance 

vertices, (c) the three diagrams that can be transformed into (b) [graphical 

interpretation of Eqs. (19(d)) and (21(e))]. 

. 



(a) (b) (cl -’ 
143881 

Fig. 1 
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