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ABSTRACT 

The formalism necessary to analyze production of vector mesons with 

polarized photons (yp-+pV) is presented in detail. The decay angular dis- 

tribution of the vector mesons is parameterized by the density matrices 

P o, (Y = 0,1,2,3. Restrictions on the numerical values of the density 

matrix elements are derived. From the symmetry properties of the 

helicity amplitudes, it is shown that at high energies the combinations 

to leading order in energy receive only contributions 

from natural (unnatural) parity exchange in the t-channel. It is shown that 

this is true in any coordinate system which can be reached from the vector 

meson helicity system by a rotation around the normal to the production 

plane. The values of the density matrices as predicted by various models: 

elementary 0 f. exchange, spin independence, helicity conservation, are 

given. 

(To be submitted to Nucl. Phys. ) 
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I. INTRODUCTION 

In view of current experiments at DESYl and SLAC’ on the production of 

vector mesons by polarized photons 

y+‘N-V+ N (1) 

we investigate which information on the production amplitudes can be obtained 

from the decay distributions of the vector mesons. Our aim is to provide the 

theoretical tools necessary for a maximal exploitation of experiments with 

polarized photons, where the target nucleon is unpolarized and the polarization 

of the recoiling nucleon is not detected. Part of the material presented here 

can be found at various places in the literature 3,4,5,6,7 and, to some extent, 

is an application of the general work on polarization experiments by Cohen- 

Tannoudji et al. * -- 

After a rather pedestrian excursion into the spin problem of reaction (1) , 

we shall write the decay angular distribution of the vector mesons in terms of 

their sp.in density matrices. This will show explicitly that experiments of the 

type discussed here yield at most 18 real and independent bilinear forms of the 

12 complex helicity amplitudes. From the common decay modes @-2~,0--33~, 

Cp --+l@), however only 11 of these bilinears can be measured. The range of 

their values is not unlimited but restricted by a set of inequalities. 

With linearly polarized photons, at high energies 8 out of 12 measurable bi- 

linears can be separated into contributions from natural and unnatural parity ex- 

change in the t-channel. Experiments with circularly polarized photons do not 

yield any information on the nature of the t-channel exchanges. To leading 

order in energy no interference terms’between natural and unnatural parity ex- 

changes in the t-channel can be observed in these experiments. 
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Finally, the predictions of various models (Jp = Ok exchange, splu lnde- 

pendence, helicity conservation) for the spin density matrix of the vccI.or meson 

are given. 

II. FORMALISM j 

In this section the formalism for describing the polarization of the* I)Jloton 

(r) and the vector meson (V) in reaction (1) is developed. It will be ati~irrmed that 

the target nucleon is unpolarized and that the polarization of the recoil iug nucleon 

is not observed. 

A. Notations 

The four-momenta of the incoming photon and the outgoing vector Il\oson in 

the CMS will be denoted by k and q. We use the corresponding three-luomenturn 

vectors k and q to define a right-handed coordinate system: N N 
k 

E=& 

The polarization states of the photon and the vector meson are exprosr;c*(l in 

terms of their spin space density matrices p( 9 and p(V). These den:;il.y lnatrices 

are connected by the production amplitudes T 

PO = T P(Y) T’ 

which we write in the CMS helicity representation of Jacob and Wick’): 
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The h’s denote the helicities of the respective particles of reaction (1); N is the 

normalization factor: 

The normalization of the amplitudes T can be chosen such that the production 

cross section for unpolarized photons is given by 

The decay distribution of the vector meson will be discussed in its helicity 

system: The z direction is chosen opposite to the direction of the outgoing nucleon 

in the V rest system (i. e. , equal to the direction of flight of the vector meson in 

the overall c. m. system). The y direction is the normal to the production plane, 

defined by the cross product k x q of the three-momenta of the vector meson and h 
the photon. The x direction is given by x,= z x z. The decay angles 0, Cp are de- 

fined as the polar and azimuthal angles of the unit vector 5 which, in case of a 

two-particle decay of the vector meson, denotes the direction of flight of one of 

the decay particles in the V rest frame. (For a three-particle decay, zis equal 

to the normal to the decay plane in the V rest frame.) 

cos 6 = n l z 

- N 

The Gottfried-Jackson system and the Adair system which will be used in con- 

nection with the predictions of various models differ from the hclicity system only 

in the choice of the z axis. In the Gottfried-Jackson system, the z axis is equal 
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to the direction of flight of the incoming photon in the V rest frame. Jn the 

Adair system the z axis is equal to the directio.n of flight of the incoming photon 
. ’ 

in the c. m. system. 

B. General Decay Angular .Distribution of V--, 2 Pseudoscalar Mesons and 

V--, 3 Pseudoscalar Mesons 

The decay angular distribution of the vector meson in its rest frame reads: 

d coy @d# a,v(cos 6, Cp) = M p(V)M+ 

where M is the decay amplitude: 

C6,#IM(XV> =C (71 

Note that we consider V decays into spinless particles only. The quantity 1 C I2 

is proportional to the V decay width. 10 Due to rotation invariance C is independent 

of AV . Because we consider a normalized decay angular distribution, we have set 

C equal to one. The Wigner rotation functions D are given by (sign convention of 

Rose”) : 

Die (4,8, -#) = - 1 sin 8 e”’ 
A 

Die (6 8, -+) = CPS 6 @I 

Dtlo($, 0, -$) = L Sin 

G. 

eei’ 

With the help of Eq. (‘I), the decay distribution (6) can bc writtcn: 

W(cos 8, cp) = 2% I+* ($,6,-N p(v) xv0 l (4Jv&-$4 A& Dh;” (9 
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Using the fact that p(V) is hermitian P(V) 

> 

hvhb = P*(V)~~+~ , see Eq. (3) and 

Eq. (12) below one obtains from (8) and (9): 

W(cos 6 hp(v) 
) c 
= sn !j ~ll+p-l-l) . sin’e + pooc0s2~ 

-I- i (-Re plo + Re pmlo) sin 28 cos + 

k 
--L (ITS plo + Im pwlo) sin 28 sin cp 

- Re plml sin26 cos 2$ t Im plml 

where on the r. h. s. the label V has been omitted from the p(V), . This general 

form of W will be simplified in subsection E by using the symmetries of p(V) which 

follow from the properties of p(r) and T. 

C. Density Matrix of the Photon 

The density matrix p pure (r) of pure photon states can be constructed from the 

photon wave function 1 y > in the helicity basis. 

where 

I y’ +Iy =a h =+i>+a_lhy=-l> 

The result is: 

In the case of circular polarization and A?=+l, -1, one obtains: 
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For linearly polarized photons Eq. (4) reads: 

(14) 

where @ is the angle between the polarization vector of the photon, g= (cos Q, , 

sin @, 0), and the production plane (x, z plane) (note: our definition of @ differs 

by a sign from that of Ref. 4). The density matrix is: 

(15) 

For elliptically polarized photons, Eq. (11) reads; 

(16) ly, = J2tai+b7 1 -(a+b) .-@I Ay=+ 1 > + (a-b)e’@~j= -l >I 

where a and b are the lengths of the principal axes of the ellipse and @ is the 

azimuthal angle of the principal axis a. The corresponding density matrix is 

given by: 
l+ZaG e-2i’(l-2a2, 

P Pure&) 

ezi’(l-2a2) i-2aAZ 

(17) 

with a, b normalized to a2 + b2 = 1 , Obviously the cases of circularly or linearly 

polarized photons can be obtained by specializing Eq. (17) to a = f. l/6 or a = 1 

respectively. 

On the other hand, it follows from Eqs. (13)) (15)) (17) that $Ure(r) for el- 

liptically polarized photons can be written as a linear combination of the density 

matrices for photons of linear and circular polarization. Therefore, experiments 

with elliptical polarization do not yield more information on the helicity amplitudes 
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than a set of experiments with linear and, circular polarization. The elliptical 

case will not be pursued any further. 

We generalize these results to the case of partially polarized photons and 

put them into a standard form by writing p(Ty) as a linear combination of the 

matrices I, Ui (i = 1, 2, 3)) which form a complete set in the space of 2 x 2 

hermitian matrices: 

P(Y) =f I+P l Q (, 
“Y w-9 

I is the 2 x 2 unit matrix, oi are the three Pauli matrices. The length Py of the 

three-vector gr is equal to the degree of polarization. The direction of gr de- 

pends on the kind of polarization, e. g. (from Eqs. (13)) (15)) : 

P “y= ppo, kl) 

P 
“Y 

= PY(-cos 24), -sin 2@, 0) 

for circular polarization with h y = f 1 and for linear polarization respectively, 

where the degree of polarization is denoted by P 
Y’ 

05Py51. 

D. Symmetry Properties of the Helicity Amplitudes 

The symmetry properties of the helicity amplitudes imply symmetry rela- 

tions for the density matrix p(V). With our choice of coordinate system parity 

conservation leads for reaction (1) to’: 

T(Q*)-h -A = (-1) 
(A&‘) -(hfhN) 

V Nt’ -hr-“N N” ‘$N 

with @* being the CMS production angle. If only natural CP = (-1) “) or only un- 

natural parity (P = -(-l)J) exchanges in the t-channel contribute, one has to lead- 

ing order in the energy of the incoming photon the additional symmetry8: 

w*LhVhN,, -lyh = f. t-11 
%+ 

w*1, A 
V N+?N 

= T (-1) xv 
TtQ*lh h 

V N”‘yhN 

(21) 

where the upper (lower) sign applies to natural (unnatural) parity exchanges. 
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Let TN(TU) be that part of the helicity amplitude which receives contribu- 

tions only from natural (unnatural) parity exchanges in the bohannel. 

T=TN+Tu 

Using Eq. (20) one can project ‘out TN, T” : 

W) 

’ E. i Standard Decomposition ‘of p(V) .-- 

The density matrix p(V) can be written in a for.m showing explicitly the de- 

pendence on the polarization vector P . Defining 10 
“Y 

(p”,p”, = T(+ I, $ aCY) T+, Q! = 1,2,3 

we find from\Eqs. (2) and (18) 
3 

PM=PO+ 
G 1= 

PsyYPQ (25) 

The four hermitian matrices pa, a! = 0, 1,2,3 read explicitly: 

0 1 
p+&. = 2N 

P1 
v 

; =&- 

3 1 
phvh; = -57 c 

,A T 
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Parity conservation (Eq. (20)) reduces the number of independent matrix 

elements 

P*u’ = t-9 
h-A’ CY 

P&p ) Qf=Osl 

and 
h-i’ a 

PLY,’ = -w .P -A-A’ ’ cr=2,3 , (28) 

From these equations,and the hermiticity of the pa(cy = 0,. . .3) follows that p(Iml, 

pi l are real and pfml, pisl purely imaginary. Because the decay distribution 

W in Eq. (10) is linear in p(V), the representation Eq. (25) may be used to de- 

compose W as well: 

~(~0s 6 6~) = WO(cos s, #$ + (29) 
*1 

where Wa! (LY = 0 , . . .3) is defined by Eq. (10) with p replaced by pa : 

~~(~0s e,+j = W(COS 8, $,p”, , (Y= 0,. . .3 (30) 

Because of the symmetries of the PQ! (Eqs. (27)) (28)) , the Wo reduce to: 

w"(cOse,* =$ 
( 

f (I -pio) + $ ~3~:~ -I) c~~2 e 

- (2 Re pyo sin 28 cos cp 

- py 1 sin20 cos 2#1 
> 

wl(cos 0, cp) = -& & sin20 .t pio cos2 8 -42 pto sin 28 c0s cp 

-& sin20 cos 2+) 

W2(~os 0, $) = 2 (+J2 Im pfo sin ze sin $ + Im pfml sin20 sin 2$) 

W’(cos 6, $) = $n (+J2 Im pFo sin 28 sin I$ + Im piml sin’e sin 2~4) 

(31) 
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Because p2, p3 have the same symmetries the structures of W 
2 3 , W are the 

same. W”, W1 differ only insofar as for our choice of normalization tr ij” = 1, 

whereas there is no trace condition for pl. For easy reference we list here 

the explicit forms of the decay angular distributions for the various photon 

polarizations by inserting Er of Eq. (19) into Eq. (31): 

1. Unpolarized photons 

From P 
“Y 

=0, onehas 

wmqcos &$) = w” (cos 19,#) (32) 

2. Circular polarization of helicity hy = k 1: 

vv;t (cos 8, cp) = w” (cos 6, $) f. Py w3 @OS 8, #9 (33) 

3. Linear polarization 

WL(cos 8, $l, cp) = w” (cos t9,$) - Py cos 2 @ W1@os % $4 

(34) 
- Py sin 2 Q, W2(cos 8, $) 

The Eqs, (27)) (28) hold in any coordinate system that can be reached from the 

helicity system by a rotation R around the normal to the production plane, due 

to the symmetry properties of the rotation matrices d(R). We sketch the proof, 

e.g., for PO. In the rotated system, p” is given by: 

The following calculation shows the symmetry property Eq. (27) to hold in the 

rotated coordinate system: 



= (-l)m-m’ 2 dm-,tn) Pypmpt d-ptml 0 
P cz’ 

= (-l)m-m’ Fom m, q. e. d. 

Hence, the structures of the decay angular distributions given by Eq. (32) re- 

main unchanged under such a rotation. 

F. Restrictions on the Values of the Density Matrix Elements 

When extracting the density matrix elements from experimental data by 

means of fits, one should keep in mind that their numerical values are re- 

stricted by the following inequalities: 

I I Pg 
2 0 

s P;x PX’Xf o! = 0,1,2,3 

.3 
detp(V) = n pip i=l’ 

3 
Trp(V) = c 

.i= 1 
cli 1 O 

. 

cdet R(V), = cLlcl2 + C”lCl3 -!- cI2@3 2 O 
i 

(35) 

(36) 

(37) 

PI 

where the pi, i = 1,2,3, are the eigenvalues of p(V), and R(V)* denotes the .- 

adjoint of p (VJik (the matrix obtained by deleting the ith row and the &th column 

of PO). Equations (36)-(38) lead to the conditions 

Equation (35) is obtained by applying the Schwarz inequality to the bilinear ex- 

pression in the helicity amplitudes for the p c1! (Eqs. (26)). Equations (36) -(38) 

are the necessary and sufficient conditions for positive definiteness of p(V) which 

is a consequence of the defining Eq. (3). The inequalities following from Eqs. 

(35)) (36) for the set of ‘measurable parameters are given in Table II. The results 

for p” have been obtained before, 13 
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III. SEPARATION OF NATURAL AND UNNATURAL 

PARITY EXCHANGE CONTRIBUTIONS 

How much information can we gain on reaction (1) from experiments with 

polarized photons, unpolarized target and recoil polarization not being detected? 

This question can now be answered by simple parameter counting;: The results of 

unpol these experiments can be described in terms of p(V) and da ,the production 

cross section with unpolarized photons. From the standard decompositon of p(V) 

intop(y, we find that p(V) is described by 17 independent functions, of tihich eleven 

can actually be measured from the common decay modes p -+ 2 F ,o-+ 31r, cp -+ti 

(see Table I). Hence one measures altogether 12 independent quantities (one for 

dcunPo 3 . On the other hand, reaction (1) is described by’ 12 independent complex 

amplitudes, i.e., 23 real functions. Nevertheless experiments with linearly 

polarized photons provide an important new insight into the production process of 

reaction (1) because they allow to measure the contributions of natural and unnatural 

parity exchange in the t-channel to the matrix elements of Re p”, Re p', as will be 

shown in the following. However, experiments with circularly polarized photons do 

not yield any information on the parity of the t-channel exchanges when the polariza- 

tion of the recoiling nucleon is not measured, 

At high energies the density matrix elements of pa(V), (a! = 0, 1,2,3) can be 

written as a sum of two terms which receive contributions from natural or un- 

natural parity exchanges in the t-channel. These two terms are themselves linear 

combinations of the pa (the label V will be omitted from now on). The separation 

is achieved by using the symmetry property (23). As an example we outline the 

proof for p”, Inserting Eq. (22) into the definition of p ’ (Eq. (26)) one finds: 

0 1 
PAX’ = 2N + TU* 

h’hN’, ‘$N 
I 
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The interference term between natural and unnatural parity exchanges vanishes 

in the limit of high energies: 

N” hyhN 
+ (-1)’ T 

-+ -AyAN > 

1 =- 
2 

I 
PR’ - (-1) 

A-A’ 0 
P-A-h’ 

I 

= 0 

Here Eqs. (23) and (27) were used. For p” one obtains therefore: 

P”=P +P 
O(N) O(v) 

(41) 

(42) 

(43) 

For the contributions p O(N) and p O(v) of natural and unnatural parity exchanges to 

the .density matrix p”, one gets by a calculation similar to that of Eq. (41): 
N 0 ou 1 

PAA’ =-y (P>, T (-l? P:,,) (44) 
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Defining p analogous to p ‘@(~q. (43)) one can show that: 

P1 = pm + pl(Q 

P3 = pw9 + p3w 

P2 = p2N +P 
2(u) 

(45) 

(46) 

(47) 

Like the symmetries following from parity conservation the relations (43)-(47) 

hold in all coordinate systems that can be reached from the helicity system by a 

rotation around the normal of the production plane. 

From Table I it is evident that all elements of p” and p1 which are measurable 

in the type of experiments discussed here can be split into their natural and un- 

natural parity contributions, as listed in Table RI. This separation is not pos- 

sible for p2 and p3 because relations (46)) (47) connect measurable elements of 

p2 with unmeasurable elements of p3 and vice versa. It is worth noting that the 

(Lorentz invariant) eigenvalue (p~l+p~-l) of p NW can be directly decomposed into 

its two t-channel parity parts by an experiment with linearly polarized photons 

measuring W at the angles 8 = n/2, $I = n/2, @J = 0, n/2 (see Ref. 1): 

T E 
Pr - 1) WL(O, x/2, 77/2) + (P + 1) WL(O, Z/2,0) 

all Pr + 1) WLP, w/2, Tq -t- (Pr - 1) WLP, 7090) 
(48) 

p;p + PI-1 
O(v) 

= owl + plml Pll 
O(N) 
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N U The asymmetry Pa (parity asymmetry) in the contributions c , c of natural 

and unnatural parity exchanges to the total cross section is given by (Eq. (44)) : 

N U 
p/ fJN - “v = zpl 1 

(r +r l-l -00 (49) 

For completeness we also give the quantity c of Ref. 1 in terms of the density 

matrix elements: 

c = 5, - =1 1 WL(WA,e) - v++o,n/z, 0) =- 
O-11 + a1 pY wL(O, v2,7vZ) f .WL(O,n/z, 0) 

1 1 
= p11+ Pl-1 

p;1 +p;-1 

(50) 

IV. MODEL PREDICTIONS FOR THE DENSITY MATRIX ELEMENTS 

In this section we review the predictions of various models for reaction (1). 

Roughly speaking, these models may be divided into two classes: 

(1) t-channel exchange models of elementary or reggeized particles; 

(2) Models inspired by the idea that vector-meson photoproduction pro- 

ceeds via diffraction: the spin independence model (SW) l4 and the 

helicity conserving model (HCM) . 

The Jp = 0 f exchange models and SIM and HCM have in common that in a reference 

frame characteristic to the particular model, they predict that 

(a) the matrices p”, p ‘, p2, p3 are independent of photon energy and 

production angle; 

1 2 (b) p”, p3 are diagonal, p , p antidiagonal. 
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These properties are a consequence of the simple spin structure of the CMS 

production amplitudes in these models: 

TmJON,, mrmN = tmNmysmN,mN *mvmy 

The m’s are the spin projections in a reference system appropriate to the models, 

i. e., : 

for elementary or reggeized particle system the t-channel cm helicity 

system. The vector-meson decay is analyzed in its Gottfried-Jackson 

system (GJ) ; 

for SIM the s-channel cm system with quantization axis along the 

direction of the photon. The vector meson decay is analyzed in its 

Adair system (A); 

for HCM the s-channel cm helicity system. The vector meson decay is 

analyzed in its helicity system (I-l). 

trices in these coordinate systems read: The density ma 

pl= (; -g i) p2’ (; g -,) (51) 

For Jp = O+(O’, exchange one has a = for SIM one has a = i . 

In the spirit of the diffraction idea we assume only natural parity exchange con- 

tributions for HCM and therefore set a = 5 . 
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The density matrices given above in the characteristic systems of the 

models can be transformed into the other systems by rotations around the 

normal to the production plane: 

P A = dltaA,~l PB dltaA-~)+ 

The rotation angles o!A*B are: 

(52) 

(53) 

where @* is the production angle and /z? the velocity of the vector meson both 

evaluated in the ems. 

With the simple form of the density matrices kg. (51)) in mind, one can ask 

for conditions under which the density matrix p” can be diagonalized by a rotation 

through some angle CY around the normal to the production plane: 

(54) 

Evaluating Eq. (54) one finds that such an angle a! exists if: 

ww 

Fb) 
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The values of a! and a0 are 
PP 

tgo!-- 4-l 

Re P& 

(56) 

0 aoo = 1 - Y& + ~~-1) 

In order that p1 can be antidiagonalized by the same rotation Ry(@, the following 

conditions have to be satisfied .in addition: 

Pi0 + 3P;l + Pi-1 

1 - YP(11 -t- Py-1) 
p”10 

11 1 
PI-l= PI1 + PI-1 - PY-1 l 

1 - 3& + P;-+ 

The elements a1 
-w 

of p’ in its antidiagonalized form are: 

(574 

Wb) 

1 1 
al-l = a-11 = PI1 l +P;-1 

(58) 
1 

a00 = P& + 2P:l 

The antidiagonalize p2 by the same rotation requires 

I-f0 1 4-l SE- 

hPB_1 2 Re p;() 
(59) 

The elements of the antidiagonalized matrix are: 

2 Im ale1 = - Im aBll 
2 ;hp;o/=?yz (60) 

2 
aoO = 0 



In order to diagonalize at the same time p3 requires the two measurable matrix 

elements to be zero: 

3 3 
Im PI-1 = m Pl() = 0 ’ (61) 
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TABLE I 

The form of the density matrices p”,p1,p2,p3, making use of hermiticity and 

parity conservation. The underlined density matrix elements are measurable , 

from the decay angular distributions. The lower half of the matrices is obtained 

by hermitian conjugation. 

po = 

pl = 

p2L- 

p3= 

i 
$ tl-P;o) 

( 
1 

Pll 

I 
61 

Re bio+ i Im pi0 

Re Pfg +iImpfo 

0 

Re P& + i Im pyo 

0 

Re py-1 

-(Re pyo - i Im 

~~(1 -Pgo) 

1 
-w PlO 

- 1 

- i Im pie) 

61 

2 
i Im PI-1 

2 
@e PlO - i 

Re pfo- iIm pto 
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TABLE II 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. . 

9. 

10. 

11. 

12. 

Restrictions on the density matrix elements 

05p;os1 

0 I 1 Pl- 5 ; (1 - P()o) 

02 lo 
w P1($ s 7 PO0 (2 - Pi() - Re Pi-1 1 

1 I I Pll S 2 L (1 - Pig) 

It would be too tedious to write down inequality 13. 



, 

TABLE III 

Separation of natural and unnatural parity exchanges in the t-channel. 
The ex- 

pressions with the upper (lower) sign give the measurable natural (unnatural) 

parity contributions to the density matrix. 

Re Pig r Re pto 

f(l -P&g kP;-l 


