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ABSTRACT

We developed a method for expanding the absorptive part of the
sidewise dispersion relation for the nucleon Fou radius. We assume
that a threshold expansion is valid and we are able to obtain the exact

first order terms in this expansion in the limit of the pion mass going
| to zero.

We are able to prove that the first order terms in this expansion
come solely from the m-N intermediate state. Thus, the expénsion
provides justification for the retention of only the 77~N intermediate
state in a first atterﬂpt at describing the radius, as in Drell and
Silverman.

Furthermore, the expansion provides a handhold for attempting
to estimate the corrections to the first order term coming from the
27r-N and higher intermediate states.

It must be emphasized that we are not providing justification for the
assumption of threshold dominance. We are trying to follow that as-
sumption to its logical conclusion. That is, if the threshold dominance
idea is good, then a threshold expansion provides a logical way to cal-
cﬁlate low-energy parameters. We have provided suéh an expansion

for the sz radius.
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- A THRESHOLD THEOREM FOR RADIUS OF

THE F,, NUCLEON FORM FACTOR

A. Introduction

In this paper we develo§ a method for expandihg the absorptive part of the
sidewise dispersion relation’ for the nucleon Fo_ radius. We assume that a thrés-—
hold expansion is valid and we are able to obtain the exact first order terms in this
expansion, in the limit of the pion mass going to zero.

- We are able to prove that the first order terms in this expansion come solely
from the 77-N intermediate state. Thus the expansion provides justification for
the retention of only the mw-N intermediate state in a first attempt at describing
the radius as in Drell and Silverman. 2

Furthermore, the expansion.provides a handhold for attempting to estimate
the corrections to the first order term coming frorp the 277-N and higher inter-
mediate states.

We now repeat the proceeding in a more mathematical way.

The sidewise dispersion relation1 for the F,_ nucleon form factor is

2v

d(W?)ABS FZV(lz,Wz) (
, 1)
w2-M?

where M is the nucleon mass, p is the pion mass, and 1 is the 4-momentum of the

2 1
FZV(I ) Mz) =
(M )2

electromagnetic current.

The radius3 is the slope at 12=0, so the dispersion relation for the radius is

o0

d(Wz)ABS FéV(O,WZ)
p) ’ (2)

2

‘ 1
Fy (0, M%) = ;
(M-+u)

W2—M

where the prime denotes differentiation with respect t0‘12.
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We show that C_,C ,Cz, vanish and we {ind C

0’71

intermediate state.

3 is given entirely by the m-N

It must be emphasized that we are not providing justification for the assumption
of threshold dominance. We are trying to follow that assumption to its logical con-
clusion. That is, if the threshold dominance idea is gdod, then a threshold ex-
pansion provides a logical way to calculate low-energy parameters. We have pro-
vided suchv an expansion for the F2v radius. 4

*The method of expanding the absorptive part depends crucially on the limit
p —0. The details of the expansion may be expressed simply as follows. We first

find the leading terms in the absorptive part as u —0. We then expand these lead-

2_p2
MZ ,
Drell and Silvexjman2 provided a hint leading to the method of isolating the

ing terms in powers of

most important contribution as y—0. In their analysis, which retained only the
ﬁ'—N intermediate state (Fig. 1), it was observed that the dominant contribution as
u—0 comes‘ from the pion-pole term of the time-reversed electroproduction am-
plitude. The explanation is simply that this term is most singular in the pion mass.
The algebraic reason is seen as follows. The pion propagator in Fig. 2 carries
the 4-momentum 1 of the electromagnetic current. When we differentiate with re~
spect to 12 to find the radius, we musl differentiate the propagator, which gives us

a term more singular in the pion mass than any of the other terms,

o) S = 2, at threshold. @)
db” (-1 -p J2., &
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Thus, the obvious question arises: Can we usc an argument based on this
__observation to pick out the leading terms, as p—0, in the contribution to the
absorptive part from higher mass intermediate states? We are able to answer
this question in the affirmative by using PCAC and current algebra to isolate, at
threshold, the pion pole terms which carry the 4-momentum 1 of the electromag-
netic current.. These terms give the most singular contribution to the absorptive
part of the radius as p —0. In this manner, we isolate the dominant terms at

wo-M

threshold as u —0. We then expand these terms in ——s— to obtain the announced
- o M° '

expansion. ’

In Part 1. B, we undertake .the explanation of the graphical methods employed
to handle the multi-pion, nucleon intermediate state. ’

In Part I. C, we apply the graphical /fechniques to an analysis of the relevant
matrix elements needed for the proof to the threshold theorem. C1 discusses the
matrix element of the electromagnetic current and C2 discusses the matrix ele- |
ment of the nucleon source. We complete the proof of the theorem in Part I. D.

Concluding remarks are contained in Part L E.

B. Development of Graphical Procedures

This section undertakes the explanation of the graphical methods employed
in the discussion of the multi-pion, nucleon intermediate state. The graphs func-
tion as numonics for complicated analytical expressions much the same way as
Feynman graphs function in Q. E.D. We use the graphs first to avoid cum-
bersome analytic expreésions and second, to help the reader develop an intui-
tion for the manner in which we handle the multi-pion, nucleon intermediate state.
The graphs we define are essentially identical to those defined in Abarbanel and

. 5
Nussinov.




The basic object which we want to represent graphically is the Fourier trans-

form of the matrix element of the time-ordered product of a given set of operators.

-igex. -ig,* -
j] daty Tl g (xl)Qz(x2>h> (5)

is such an object.

For example,

li> is some initial state
> is some final state
Qi(xi) is some local operator carrying momentum'qi
The graphical representation of this object would be that shown in Fig, 3. The
two heavy 1ines are the initial and final states and the two wavy lines are the op-

erators Ql(xl) and Qz(xz). The blob represents our ignorance of what is going on

in the interaction.

Our discussion will contain four different kinds of operators.

A+ (x)~—==—-- The non-strangeness changing, strong-interaction (6)

axial vector current.

a-a“AZ (x)--The divergence of 6. (7)
V‘é(x) ——————— The non-strangeness changing, strong-interaction (8)

vector current.

EM(X) ------ The strong-interaction electromagnetic current. (9)

The graphical elements for these operators are shown in Table I. It will be clear

from the graph whether VZ(X) or J*

EM(X) should be associated with the solid line.




Some operators will arise by using the following SU(2) current commutation

relations.
0 Ho o Ho o4
(x50 A, (%)), xp)] =i ¢ v 2 (x,)8" (x, x,) (10)
10 20 al 1 o, 2 ozlarzoz3 oq 2 12 | |
x. -x, A% x.) Vuz(x | =i A2 st x ) 11
¥¥10720 e, 1) Ve, 2] €u @ 00,5200 F170 (11)
~ K 52 s A2 st 0
810720 [P, *1)> EM(xz):I“l %, 30, F2)0 %) (12)

To represent this graphically we define the elements in Table II. Thé lower-
most leg will enter the blob. Again, it will be clear from the graph whether the
solid line is V’&(x) or j;.:M(X).

Many soft-pion techniques take advantage of PCAC to relate the pion field to

the divergence of the non-strangeness changing, axial vector current; that is through
a8y =l o () (13)
(T’ T a

where ¢ (x) is the piop interpolating field and f_ is the pion decay constant. The
derivative is then removed from the time-ordered product and the resulting ex-
pression is examined in various low energy limits.

We will depend strongly 6n the graphical techniques to expand the matrix
elements of products of Doz 's; that is, we will give a graphical algorithm for pull-
ing the derivatives out of the time-ordered product. We will find that by pulling
the derivatives off of the Da'S, we expand our original graph into a set of graphs,
each of which is a simple arrangement of chains of axial and vector currents.

To make the preceeding statement clear, we next illustrate the use of the

graphs in expanding the matrix elements of the Da's. We will expand the following




expression,
g4 4 719X -lgyX u v ,
ﬂixldxze e (flTauAal(Xl)BVAQZ(XZ)IO - (14)

which is represented graphically in Fig. 4. The first step is fo take the derivative
of the first operator outside of the time-ordered product. When this is done, we
obtain two terms. One term is just the derivative acting on the whole matrix element
and the other term is an equal-time commutdtor coming from the action of the de-
rivative on the theta function of the time-ordered product. Explicitly, | expression

(14) equals

4 4 l9°%) -ldyex, ’ v :
ﬂdxldxze e ap<f!Aa1(X1)aquz2(x2)h>

(19)

-iq.+x. ~ig,°x '
_.[[ d%ﬁd%‘ze Ple 23("10"‘20)<ka [Agl(xl)’avAva (XZ)]Ii>

2

It would serve us well at this point to remark that we will neglect all com-
mutators of the type arising in the second part of expression (1'5)‘ This commutator
is the well-known ';singa" term. We neglect this term because BNA” -4 p,z and we
will ultimately be interested in the limit p—0.  As long as there is no pion pole
in the o field, this o-term will go to zero faster than the singular terms which we
show to exist in this limit, So,ineglecting the o-term, we are left with just the
first term in expression (15, We now perform an integration by parts, changing
the derivative to a momentum. This is justified as long as the matrix elements

of the operators do not’grow as X,t—-«. The result then is that

4 4 X -ldyex, " v .
'/]:lxldx2e e <fIT8“Aa1(x1)aV A ozz(xz) 1>

: . . (16)
. 4 4 "HpTXy HlAyX, .
zlqlu./_-/‘dxldxze e <f'TAZI(X1)au AZZ("Z”D
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The graphs which correspond to Eq. (16) is shown in Fig. 5. We see two con-
ventions implicit in Fig. 5.

1. We will assume all currents flow into the blob.

2. An axial current connected to a blob is assumed to be dotted

We now proceed in the same manner to remove the derivative from the second

current. This time however, the equal-time commutator is non-negligible. Using

R R T
_/];ixldxze (flTaﬂA“ (%103, I\ (x2)|1)
-iq - x. -ig,-X )
= iqy ja, fﬁx dige L te 2<fITA‘;1<x1>A;2(x2>I1> (17)

g U)X, .
-1q]1u aye o f dxoe <f|V’;3(X2)I1>

Equation (17) is represented graphically in Fig. 6. We note the féllowing conven-
tions.

1. There is a negative sign for each equal-time commutator.

2. The indices on the anti-symmetric epsilon are represented clockwise

on the graph.

3. The solid line is V"é(x),not j;]M(X)' J%M(x) can only appear when it is

in the matrix element to begin with.

What we need to know is how to get the graphs without writing the analytic
expressions. This is done by simply changing the symbol for the divergence into
an axial and adding the symbols for the various equal-timc commutators which
arise from the other operators in the matrix element. To insure correct order-

ing of the ¢, Jk symbols, we make the convention that we attach the symbol repre-

senting A (x) into the left side of the other two operators in the vertiex.
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We now work out a second exampl.e to illustrate the graphicalb method.
Figure 7 shows a step-by-step reduction of a graph into a sum of graphs by the
method stated above. In Fig. 7, we leave off the lines representing the initial
and final states to simplify the graphs. |

The analytic expression for this reduction is-

g 4 ~lagrx -igyex, S RN -
/] dx dx,e e It ulA a1<x1>a“2Aa2<x2>ng<o>u>

: 4 4 7l9% -igyex, By P2 ,
= i O
1qm11q2“2[/dxldx2e e (fITAal(xl)Aaz(xz)J”EM( D

. i 4 ~i(q1+q2).xl “‘1 ‘ ]
-1qm11 ea2a1a3fdxle (flTVa3(xl)J‘]‘3M(0)|l)

o g Xy Mg
- 1q2p21€a13a3ﬁx26 (fITAaz(xz)Aas(O)h)

..1q X 7]
L 4 171 1 n .
- lqlullea23a3 j;ixle (flTAal(xl)Aa3(0)|1>

+ie,, 13a3i6a2a3a4<f'V‘&4<°>“> ) (18)
There are two more things to be mentioned before leaving this section. Since
we are going to be dealing with pions, via PCAC, we will want the amplitude to be
symmetrized in the pion indices. This allows us to drop the current labels in the
graphs. We now just write out the expression for a particular graph,assuming
some convention for the current labels, then we symmetrize the expression and

multiply it by the number of times that graph was repeated in the reduction. The

set of graphs in Fig. 7 would then be shown as in Fig. 8.




Finally, we remove the ekxplicit pion poles from the single axial currents by

defining a new operator, which has no pion poles, via the relation ,6
Boooatl_s 2 v
Al =atoidi s, A" (19)

By using thié relation, we can eliminate the type of graph where A" enters the
blob and replace it by A% doing so, it is found that the matrix element con-
taining the divergence of the eliminated axial current is multiplied by the factor
(1—q2/;,¢2). That is, the graphs of Fig. 8 would be changed to those of Fig. 9. The
prime on the wiggle indicates A'. The result of the replacement is to add a prime
to all single wiggley lines and to multiply the divergences by (1—qi2 /uz) , where 9
is the. momentum of the respective divergence.

We can now use the reduction formula and PCAC to relate the divergences to
pion in-states. The rules for writing out the graphs are summarized as follows:
1. Successively change each divergence to an axial plus commutators.

2. Put primes on all single wiggley lines and put factors of (1-—qiz/u2) for
each divergence,
3. Put a factor (—1)n on each graph where n is the number of vertices in
the graph. _ v
4, Put factors of ioﬂ on the axials which have not been used to commute
something. |
5. Symmetrize in the isospin indices.
A short cut to step one is to just list the different ways of combining the currents
into chains and then multiply each possibility by its repetition number R.
(N) (N-Cl) (N—Cl-Cz) ‘
C1 C, Cs o 20)
R1 X Ry X R cee

R =
3




where

N =total number of original axials in matrix element
Ci =number of axials in chain of type i

Ri =number of chains of type i.

C. Analysis of the Absorptive Part

Now we turh to the task of examining in detail the absorptive part of the F2v
form factor. We will use the graphical many soft—pioh method to discover the
dominant contributioné to the absorptive part. The sense in which we use the
word Adominant was mentioned in the introduction and will be made explicit in the

following. Roughly, we want to think of the absorptive part as being expanded

2 2 .2
simultaneously in the two parameters lL—Q— and w "?EVI . Itisin this way that we

M M
will obtain a threshold expansion for the absorptive part as “2_‘_ 0.

The FZ nucleon form factor satisfies an un-subtracted sidewise dispersion
relation. 1
2(1 M) = f ——QQDABSF(l W2y 21)
—M
(v )

12 is the invariant mass of the photon and Wz' is the invariant mass of the off-mass-
shell nucleon.

The absorptive part of the dispersion relation is given by7

2 2 Py 4.4
ABS F (1" ,W") =1/2 Z , \/-1\-/1—2 ,(271)°8 (p+1-p, )
s=1 n

X ¢ps | Ty (O PL> <1, B [71(0)]07 Vi(wz)U(p,S)

(22)
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Zreprescnts both the 1ntermed1ate state sum and the correspondmg phase Sspace,
n(O) =y(0)(+/ ~-M)where Y{0) is=a nucleon field operator, and vi is a projection

operator which projects out the F, part. This cxpression for the absorptive

2
part becomes clearer when we look at Fig. 10.

The absorptive part is given by the product of two matrix elements. We see
the off-shell nucleon (solid line) enter a strong interactién blob and emerge into
an intermediate state [n). The intérmediate state then goes into another blob and
turns into an off-shell photon and a nucleon. The total absorptive part is then
given by summing over all possible intermediate states and projecting»out the
part belonging to Fz. |

The lowest mass intermediate state which can contribute is that containing
one pion and one nucleon. The next most important states are those obtained by -
adding more pions. Adding four pions brings us up to a threshold of ~1500 MeV
where resonances such as those in Table III, begin to make contributions to the
absorptive part.

We remind the reader at this point that the object of this work is to follow the
threshold dominance idea to its logical conclusion. If the threshold dominance idea
is valid, then it should be best implemented by providing an expansion about the
threshold. We provide a method for determining the coefficient of the leading
term and for estimating thé higher order terms of this expansion. If the numerical
results obtained from this expansion are in wild disagreement with experiment,
this would lead us to suspect that threshold dominance doesn't apply here and that
contributions from resonances and higher intermediate states farther along the
cut must be taken into account,

We will be working from the point of view that the resonant contributions are

really enhancements of some many-pion, nucicon state and it is only the contribution

- 11 -




to bthe threshold expansion as u2.—~0 which wili interest us. Thus, we will be
considering only states with one nucleon and n pions,

The first step toward the threshold expansion is to examine each of the matrix
elements in the absorptive part. We do this by expanding the matrix element ac-
cording to the graphicél method in Part I. B. For example, we would apply the
graphicql expansion to the matrix elemer{ts represented in Fig, 11 for the one~-
pion, nucleon intermediate siate and to thosé represented in Fig. 12 for the two-
pion, nucleon intermediate state. |

After we expand the matrix elements according to the graphical description ,
we will examine thé graphs to determine which graphs give the most singular
(in uz)contribution to thé radius at threshold. We will then make a threshold
expansion of those ﬁxost singular graphs.

Through the graphical description we are able to deal with the case of n pions
almost as easily as with the cases of one or two pions. This results from the fact
that there are basically only four different types of chains which enter into the
strong-interaction blob of the graphs. .We can examine each of these in detail
near threshold and actually determine their singularity structure as p,z—— 0.

In the following two sub-sections we will work first with the matrix element
of the electromagnetic current and Secbnd with the matrix element of the nucleon
source. Before embarking on this however, we must remark that we are making
an expansion in powers of WE———Q—-— and that we will set u2—~0 everyplace where it
doesn't result in a singularit;lyf In particular, this means that threshold is at M2
and that the q].“—»o as we approach threshold, (all four components). Therefore
we wil1 set qm = 0 everywhere except in those graphs where the singularity

occurs.
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1. Electromagnetic current matrix elemenp

In this section, we study the matrix elements of the electromagnetic current,

(ps|J’u'EM(0) Iks',qlozl. g (23)

We show that certain typés of graphs dominate the graphical expansion as yz——o. ,
Our search for the dominant graphs was strongly moéivated by the clue given by
Drell and Silverman. 2 This clue indicatcd that the strongest singularities would
occur in those graphs which had an-;xial current carrying the electromagnetic
" momentum into the blob. That is, the dominant gi'aphs would have a c¢hain which
started with the electromagnetic current and ended with an axial current connected to
the biob, (seé Fig. 13 for an example). We show explicitly that it is only the above
type of chainwhich canlead to strong singularities in the pion mass at threshold.

Suppose we start with the matrix element shown in Fig. 14. When we perform
the graphical expansion of the graph in Fig. 14, we obtain a sum of graphs, each
of which is a blob with various chains attached, (see Part I. B on graphical expan-
sion). The important fact_to be noted is that there are only four different types of
chains. These are classified as follows:

A, . Chain without the electromagnetic current, ending in a vector.

B. Chain without the eléctromagnetic current, ending in an axial.

C. Chain containing the electromagnetic current, ending in a vector.

D. Chain containing the electromagnetic current, ending in an axial,
- Examples of these four types of chains afe shown in Fig. 15.

Every graph in thc graphical expansion is just a blob with various combinations
of the above types of chains attached. The chapter on graphical expansion explains
the details of the expansion. We need be concerned only as far as knowing what
the general term looks like. Each blob \ﬁll conlain one chain of either type C or

D. The remainder of the chains will be made of combinations of types A and B.

-18 -




What we propose to do is to examine the behavior of the above chains as we
near threshold to sée whether singularities in the pion mass oceur, ‘We first con-
sider chains of type A. We suppose that a chain of type A is attached to a blob
along with other unspecified types of chaing, (see Fig. 16),

The analytic expression for such a blob can be written as,

eiz'q.-x .
A =q_jli/d§ dre 1° (ps[TAZ(x)éiks') (24)

wﬁére the q,, are the momentums of the axials connected to the chain‘, %, js the
momentum of the axial which hasn't commuted anything, b represents all other
operators in the time-ordered product, and the dR represents all other exponential
factors and space-time integrals for the operators in 6 We have omitted the

eijk symbols and factors which are not essential:tp our argument.

We want to examine this expression when uz——-vo nears the threshold, which
means that all four components of _qm—wo. In this case the entire expression
vanishes except for contributions from nucleon pole terms,

The contribution frorﬁ the pole term in the qi“-mo limit is that calculated by

attaching the chain to the external nucleon 1eg,8 (see Fig, 17). In this limit:

. A _ﬁ(p,s)[}'“)%géra[p +M]6,

(25)

6'(}6 + My y5gATaU(k,s’) |

+ i_q_l“l dR

A
where O' is essentially the time~ordered product of the operators 6 We see from
this that A is finite in this limit and that the chain of type A cannot lead to singu-

. s s 3 (3 2 2 A
larities in the pion mass. Any singularities must oceur in Q'.
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The analysis of chains of type B proceeds similarly to the analysis of chains
of type A, with the exception that the form factors are changed from axial form

factors to vector form factors, and the y, is omitted;

-i2q. x
B= qju_[d;lc dR e 1 (pslTV"&(x)(Slks‘) (26)

with the same conventions as before. In the limit ”2 =0, qiu——O, B becomes

B /‘d T, 8)H B, )E + Myd!
B -1q.“ R _ZP'Z’qi

27

. f Ok + My*F 7 UGk, 5")
+1qu1 ‘dR 2k'2qi

Again, gs in A, this is finite as qm~0 gnd the only place ksirigularities can
occur is in 6'. The analysis of chains C and D differs slightly from that of A and
B. We will assume that all of the chains of types A and B have already been ana-
‘lyzed before proceeding with the analysis of Ckand D. Since each chain of type A
or B is attached to the extefnal nucleon legs as we approach threshold, the resyu»lt
after the analyses of all A and B chains is that C or D is sandwiched directly
between nucleons. This is shown symbolically in Fig. 18.

The contribution of a C or D type chain then comes down .to its matrix ele-
ment between nucleons. Type C gives the vector form factors of the nucleon and

type D gives the axial vector form factors of the nucleon. Itis easyto see that the type




C chain is non-singular as uz—-,o because there are no pion poles in the vector
form factors .9 There is hoWever, a pion pole in the induced pseudo-scalar form
factor which is of the type we would expect to‘be important from the clue in Drell
and Silverman. 2 This pion pole will carry the morpentum Eqi + 1 where the 9
are the momenta. entering the chain.

This will have the form

1 1
2 2 g, —0 2.2
k- (qi +1) q-lﬂ N

o (28)

p-l

which will give -1—4— when we differentiate to find the radius.

We have an‘:tlyzed the matrix element of >the electromagnetic current by analyz-
ing separately each of the 4 possible types of chains which can be attached to the
strong interaction blob coming from the graphical expansion. Of these chains,
only that of type D, an axial current entering fhe blob and carrying the electro-
magnetic momentum 1, can contribute a sihgularity as uz—-o. Since these can be
only one chain of type D attached to any particular blob, the order of the singularity
cannot be greater than —%—1- . The contributions from the chains A, B, and C are
finite as uz-—-O at thres{:old and are easily calculated as discussed in the preceding.
The upshot is that we will keep only those graphs in the expénsion which contain
chains of type D. In Fig. 19? we show the expansion of the 1,2, and 3 pion cases
in terms of graphs, and underline the dominant graphs,

As we approach the threshold in the pz = 0 limit, the underlined graphs simplifj
further to the graphs shown in Fig. 20, where the A, B, C, and D type chains
are attached as indicated from the preceding analysis.

We might mention at this point that if we considered a pure “2 = 0 theory, the

radius would in fact be infinite duc to the graphs which had a pion pole carrying

the electromagnetic momentum.w That is, the underlined graphs above would behave
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—15 at threshold instead of —5—1—-2 Thus in a pure u2= 0 theory, the under-

1 1" -p
lined graphs would indeed dominate the others, in fact, the finiteness of the other

like

graphs would make them negligible compared to those underlined. When we give
the pion a finite non-zero mass, we are increasing the importance of the neglected
graphs compared to those underlined. This‘importance is measured then by the
size of the pion mass relative to the nucleon mass, which is the expansion param-
eter in this problem.

2. Matrix element of the nucleon source

Now, we vturn to the matrix element of the nucleon source.

<ksl’q1a1’ . ,qnoznﬁ(O)IO> 29)

Cur first concern is to determine whether of not this matrix element can be

singular in the pion mass as we near threshold. If we attempt to apply the graphi-

cal analysis of the previous sections to the above matrix element, the following

. unknown commutator arises.

84 o) [AS )Ty (30)
If we assume that this commutator vanishes outside the light-cone so as to
be consistent with microscopic causality, then Eq. (30) must be proportional to
a 4-dimensional delta function or derivatives of such a delta function. It must
also be proportional to a field which can create and destroy a nucleon. The sim-

plest expression which has the correct transformation properties and is consis-

tent with the above requirements is

4 —_—
O™ (x-y W) ygT | (31)
We will use the following relation, as a model, although the analysis of Eq. (29)

doesn't depend on this particular model. We choose this form for the sake of
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convenience.
- 4 _ | _
8(xyY ) l;&ﬁ)’,(x),w(y)] =8 (x-yWAx)y 7, (32)

We could replace the l7/-(x) on the right by some arbitrary function which trans-
forms like J(x) and which can create and destroy a nucleon. We could also add
terms which are proportional to derivatives of 84(X-y). Noné of these changes

in themselves could make the matrix element singular as uz——O. The key assump-
tion we have made is that the matrix element of the commutator itself does not
blow up in the u2=0 limit.

This assumption is very reasonable in view of the fact that the terms which
arise because of the above equal-time commutators only contribute additions to
the on-shell matrix element, proportional to some power of —W—%IE— . This fact
follows by setting the off-shell invariant mass equal to Mz, and using the reduc-
tion formula fo get rid of the nucleon field operator by changing it to a nucleon in-
state. The absence of the field operator prevents any terms from arising in the
graphical reduction which éontain the above commutator. Thus, as the off-shell

2 to Mz, the contributions from the graphs containing

nucleon mass goes from W
commutators vanish independently of the pion mass. Therefore, these terms
can't be singular in the pion mass.

Now, if we apply the graphical techniques to Eq. (29), using the model (Eq.
(32)), we will end up with a sum of graphs, each of which is of the general type -
shown in Fig. 21. That is, the matrix elements represented by the graphs will
be the time-ordered product of a nucleon field with a number of chains of types
A and B, sandwiched between a final nuclebnlk;s‘) and the vacuum.

We examine these chains exactly as we did the similar chains in the preceding
section. The chains come out of the time-ordered product and are attached to the

external nucleon leg. Their contribution is finite and non-singular as qm——o and

-18 -




u2~o. The matrix element left after the removal of all of the chain is the matrix

element of the nucleon source connectinglks®) to the vacuum. This final matrix
element is just the wave function and does not have any pion pbles. Therefore,
there is no possibility here of a pion pole singularity and all we must be concerned

with is the expansion of Eq. (29) in w—%—-"%—z .
M

D. Completion of Proof

We have studied the two matrix elements and have determined the following
program: _
> ’ ) . 3
1. With regard to (psla’%M(O)lks Q& qnozn), we will keep only those
graphs of the graphical expansion which are most singular in the pion

mass, i.e., terms which contain a chain of type D. These singular

w2-M>

graphs will be expanded in powers of ——;{2— .
2. With regard to (ks 'qla 1 qnozn]n (0)1 0>, we have shown that we obtain

no pion mass singularities, therefore, all we need to do is expand this
: 2—M2
in powers of 5 -
M
3. We will evaluate the phase space integral at threshold, assuming the

matrix elements to be constant at their threshold value. The threshold
behavior of the phase space for 1 massive and n massless particles can

be calculatedu' and the result is that the phase space behaves like

2_M2 2n-1
—5— . This behavior of phase space is crucial in our final argu-
M 2 2\2
ment. We can count on an extra factor of <W——;ZM—> for each additional
M
pion,

By combining 1,2, and 3 above, we can show that the ieading contribution to
the threshold expansion of the absorptive part of the radius comes from only the

m-N intermediate state. This result is obtained by merely counting powers of

the threshold expansion parameter.




For the intermediate state with one pion and a nucleon, the product of the
2 .2

—5— . This, multiplied by the appropri-

M 2 :
ate phase space gives a total of three powers of YV-—-:-%-/[—Z .12
M

matrix elements gives two powers of -

- For the intermediate state with two pions and a nucleon, the product of the
i wi-M® 13 .,
matrix elements gives at least one power of ——-—-—2—— .~ The phase space gives
M

three powers which yields a total of four powers, or at least one more than the

one pion, nucleon state gives. o o
‘The phase space with three pions is already five powers of v _ZM , SO we

M .
do not have to calculate the product of the matrix clements. This information is

summarized in Table IV.
So web'see, this result; the lowest order term in the threshold expansion of the
absorbtive part of the radius of FZV’ in the uz——o limit, comes entirely from the

m-N state.

E. .Conclusion
The theorem proves that the -N intermediate state is the major contributor

in the calculation of the Fiv radius with the sidewise dispersion relation. This
fact has been, of course, conjectured, aSsumed, hoped for, and used with success
since the advent of the sidewise dispersion rela.tion.14 However, thewords ""major
contributor' remained vague and uncjualified , somehow meaning that we did
need to consider the intermediate states containing more pions. The proof of this
theorem now provides a precise statement of the meaning of the words "majoi‘
contributor.' This precise statément arises from the analysis of the céntr’ibution
of zthe ;arious intermediate states to the terms of an expansion in the parameter
E—:ZM— as i/ M—0, |

MThé utility of this statement is not completely clear because u/M ~1/17,

which means that corrections of order 15% may come by just considering the

- 20 -




next terms in u/M. Aiso, we have no guarantee that the threshold expansion
converges., As with most expansions in physics, we must calculate the expansion
coefficients to determine whether or not the expansion is useful.

The results of Drell and 'Silverman2 indicate that the threshold expansion for
the Foy radiusl does convérge rapidly and that the m-N intermediate state gives
most of the radius.

The question arises as to why We can't make a similar tfxeorem for the cal-
culation of the anomalous moment. We probably could produce such a theorem

but results show that the contributions from the 8 resonances make

1 20d Py
significant contributions to the anomalous moment wl_lich means the threshold ex~
pansion would converge very slowly and would be ofglittle utility.

We take the opportunity here to mention that we tried to use the formalism
developed here to understand the large radii of the K3 form factors implied by the
work of Probir Roy.15 We failed to provide any dynamical reason for the large
radii and we conclude that if it exists, it must be attributed to a subtraction

constant.
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 APPENDIX A

The on-shell vertex function, j“u (p,p +1), is defined by

<P 513 (Olp + 1,8 D=Tip,s) Hp,p + U +1,8") - (33)

‘The reduction formula is used to analyt‘iga'uyrcontinue the vertex function in
2 - ~ .
the (mass) of the initial nucleon. 1 The most general form for the off-shell vertex,
which transforms like a vector und_,ef pi‘oper Lorentz transformations and is re-

stricted by the D_i.rzi,c equation on the final spinor is 16

v I io 1V
Tp.s),@.p +1) = 0,5) [Y Fow’, 1) - w1

2,2 \
+1 Fg(w 1)]>< F‘;{;M

io 1¥
[}’FI(W 1%)- e 2(w‘°“1)+1 F (W’ 1)}
R e

The projection operators v (W ), are defined as follows,

2MET(p, ) Hp,p +1>v *Whu.s) = - ¥ w,1%) (35)

For the purposes of this paper, we need to know only v (W ), which is

derived in reference

V5+(W2)=<é ';glv["'M} [ya (W )___E..,._.,._a/ (W )+1 Ol (W )]

ic 1V
e [y £ W) - S py W “?‘Wz’] o

2M

« and B are given in T‘éble V.
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APPENDIX B

In Appendix B, we discuss the contribution to the absorﬁtive part from the
one-pion, nucleon 1ntermed1ate state. We show this contmbutmn glves three
powers of W—%—-ZM—Z as stated in Part I. D above.

Using the graphical methods developed in Part I. B, we quickly work out the
following expressiohs for the needed matrix elements. We start with the electro-
magnetic matrix element and use the reduction formula on the pion,‘ plus PCAC,

to obtain

2
sl e Oks’ ,qa) —1/£,,( £ -3 ) d%/z_x

v
CpsITI (003 A” (x)lksD
(37)
Then we apply the graphical analysis to the right-hand side of Eq. (37), keep-

ing only the pion-pole te‘rm, to obtain the following

? — €3 !
Cos| T (0)lks', gary —ﬁé@sm‘g(owks >

or

2 2Mg>
M A) . (@1 = ,
= € XU(p,s)Y.T ,Uk,s")
3 2q.E E < 2 2
@3F Y\ T/ y2eg o F

(38)
We use the reduction formula in the following form to obtain an expression

for the matrix element of the nucleon source, near threshold, i.e., WZ——MZ.

—1(2")484(k+q—p—1)<ks'qal”ﬁ(0)10>\/£E LAZSS R E<l»s ,qa(p+l,s>U(p+l,s)
p+l

2M
' (39)
Using

. dx igex

<ks',qaipt+l, =i 7—5_.——-—(ks IJ (x)|p-|-1,s) 40)
q
we obtain 0 :
Cks', qain(0)|0) = -ig [ M U(k,s') Y7 - (41
’ T 2q0Ek Sy ) y5 o ( )
-23 -




Putting these two matrix elements in the expression for the absorptive part

of F, we obtain

2’

ABS T (W2, 12y -1 \/E aRad@m) s (pHlk-q) . Y CMgA>
21 2 VM (2”)6 faSﬁ 2qOEpEk £

x—{8 g / ) xm (¢+M) ), J

p-(q-1)

g~

XTRT 47 Py | | (42)

The last trace is to project us onto either the isovector or isoscalar part.
By doing the isospin trace, we see that there is no contribution to the isoscalar
part in this 6rder. To do the remaining trace we refer to Appendix A where the
explicit forms of the projection operators are written out.

In doing the trace, we keep in mind that we are only concerned with finding
out thevorder of the leading term. The calculation of these traces is straight-
forward but long and tedious.

We present the results of the traces in Table VI. Table VI contains six rows
each labeledbyan o or a 8. These «'s and B's correspond to those in the pro-
jection operator vi+ and thus label the contribution from those corresponding
terms in the projection operator. The bracket labeled "angles'" signifies a func-

tion which depends on the angles to be integrated over, but which is independent

W‘?‘—M2
of > -
M
The results in Table VI show that the first order contribution cancels and so
2 .,2
.the product of the matrix elements is of second order in had -12,\4 as stated in Part
: . ' M~ .2 .2
1.D. The phase space integral gives us another power of 5 2M -, Thus the
2 M
.. . W -M
contribution to the absorptive part is of order three in 5
M
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APPENDIX C

In Appendix C, we discuss the contribution to the absorptive part from the
two pion, nucleon intermediate state. We show that this gives greater than or
equal to four powers of VX-Z--IZVI—%- as stated in Part 1.D.

We will follow closely the analysis contamed in Appendix B, leaving out some
of the pedagogical in steps included there.

Using the graphs, we can immediately isolate the dominate pafts of the elec-

tromagnetic current matrix element; i.e., those graphs which have a pion pole

carrying the electromagnetic momentum. The result is,

, o .
| AR ¥
<ps|J“ mONks'sq 0,900 = - 3,3(2 Iy /2. “q )2 5% 4q; 0% E By
_ Yo7 gy +Md, Vo o,

XU(p,s) :
2k 9y

dl }'5 T o 1(ﬁ—ql+M) )’5 TB

4 Uk,s'

+ terms with T2 L (43)

Similarly to the method in Appendix B, we obtain the following

ks',q,a.,q,0,17(0)I0) = XU(k,s') -
171°7°272 f?r 4q10<120Ek ? 2k q,

)
: 1 M
+ie — et o U(k’s‘)d T
gy B Cﬁf) \/ “10%20% 18

+ terms with 1—-2 (44)




We will omit writing out the total expression for the absorptive part because
it is long and cumbersome é.nd it does not serve to elucidate anything. The iso-
spin traces yieid the samevrésulté as in the single pion case. There is no con-
tribution to the‘isbsfcaiar part of the F form factor in this order. The state-
ment which was made in Part I. D requires that we obtain at least one power of
W—2—-21\-4—2- from the product of the matrlx elements. We can see that this is a fact
in 1\t/lIxe following way. If we count powers of q; in the traces to be done, we see

that there is always one power. When we do the phase space integral at thres-

" hold, all the q;'s are set to zero by the delta fuhction, and the contribution to

the absorptive part vanishes. As we move away from threshold Wzv# M2, we

can have a non-zero contribution but it must be proportional to at least the first
2 2

W -M

power of —— .

M

The phase space for 1 massive and two massless particles gives three

w2-m?

powers of -—-—2-—- Combmmg these results we get at least four powers of
w2 MZ

M

as stated.
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APPENDIX D

In Appendix D, we prove the followmg statement. The phase space for 1
2n-1
massive and n massless particles goes like WMM at threshold, where W

17

is the total c. m. energy of the system. We follow the method of Stapp.
We first make some definitions.
n d3k d3qi
e = - PRI, E)
i=1

i

n
=k+ 3 §; = Total momentum in c. m. frame
i=1

ol

E = Total ¢.m. energy - (45)

The df) and dI” are defined as follows: First, make a Lorentz transformation

to a frame where -121 + ?ji = (0. The superscript indicates that we have made one

Lorentz transformation.

Define \/4;; +k \/ = energy of the massive particle and the
first massless particle in their c.m.

frame.
k=4
Now, we make a second L.T. to a frame where 'Ez + aﬁ + Q‘; = (), and define the

c.m, energy of these three particles in the second frame.

/ 2 .2 42 > _ =2
“”25 ,//(1+k22+ k22 s k22=q2 47
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‘Likewise, frame k is detined by K + 55 =0,
| i=1

(48)
M, & E =total e.m, energy of all particles.
Out new integration variables are
iy dB (3 variables)
it) angles of the'k,, @n variabies)
i) Mli(ﬁ variables).

This is 4 totdl of 8n + 3 variables, or the correct number. We now definie

d{) = angle differentials of the kii

The limits on the integrals over the.#are established by using the defirtition

./i{k»ilk _ -1>M

(49)

So

i=Y By , E;

5

x[lao, [Tan, [
jmp Gy el
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In order to make the threshold dependence clear, we define new variables

M
= EEEM
Then
o 44 a®pdr 3
ﬂ ik 84(k+zq-Q) f thf 5"(B)S(E-W)
. E_
i=1 k Ei v
n n-2 n
1 1-n 1-3 n,
1 i1 7, n-1
I dnﬁf dnlf dnz..:/dnn D) f_]kﬁ
=1 v i=1
0 0 0
(51)
. n
We now need to see how n k depends on E'.
1=1

~ Solving explicitly for kkk

- k-1
(E! )(E'n +2E'2 n, +2M)
<E‘2‘, n, +M>
=1

we see that each kkk giveé us an additional power of E'. When we count the total

number of powers of E', we get n-1 powers from the differentials and n powers

: _wr\2n-1
from the k., . The total is then (E')zn-l. Since E' =W-M, we have WMM

Q.E.D.
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TABLE I

GRAPHICAL ELEMENTS FOR THE CURRENTS

do o §
Da(x) 7% :
V"; (x) /
) /
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TABLE I

GRAPHICAL ELEMENTS ARISING FROM CURRENT COMMUTATORS

€a1a2a3 ag (x2)8 &%)

A ie ? (x,)6 (x, -x,)
1 ozoz23a )

! 2 i€ A“Z( )84( X,)
i X, )0 (X, =
al3oz3 oq 2 172

- 35




TABLE III

RESONANCES CONTIRUBTING TO THE ABSORPTIVE PART

N' (1470) 1/2 (1/2% P,
N (1550) 1/2 (1/27) 814

N' (1710) 1/2 (1/27) 814

N'' (1750) 1/2 (1/2*)1311
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TABLE IV

9 2

POWERS OF W-LZM—-
M
INT. STATE | MATRIX | PHASE | nyray
ELEMENT | SPACE
N 2 1 3
2N >1 3 >4
37-N 5 >5
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TABLE V

PROJECTION OPERATOR COEFFICIENTS

. a _2 . .
maw? 1% 1w+ 3 1*ow?-n?y- 2 w22y

3 _o =2 4 2
Meaw? %) et vP i wiom?)-2 (WP om®) |

-2
(4W2|l|2) W2 )(-31 M 2,

& | maw?i?) Wl d fose Wity

By M(4W2|TI ) (W -M )[012 2]

-2
,ei* M2aw?n?)  wi-m?) pwi-m?y

P——— N e
L
Q R _ ‘
co D .NQN Ll
S+ + +
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TABLE VI

CONTRIBUTIONS TO THE ABSORPTIVE PART COMING
FROM THE m-N INTERMEDIATE STATE

/9 h 4 58 / f 2\\
2+ (wa_ )( 3M"l°)( (W -M‘))
N _ — 1+1/4 ——
1 v/ \aw*im®) M
2 2/ .52
4| (R e
M W 11 /
2o | _wlnP Vs
o2 - -2 (angles)
M/ \ewii

2
ﬁ§+ 2 ) (3M1 ) (angles)
2W (1
52+ )2 ( am 1 )
8 M2 16W2ill
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FIG. 1--The m-N intermediate state contribution to the absorptive part,
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FIG. 2--The pion-pole term of the time- FIG. 3--Graphical representation
reversed electroproduction am- of Equation (5).
plitude, .
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FIG. 4--Graphical representation of Equation (14). 1288A1
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FIG. 7--Graphical reduction co_rresponding to Equation (18).
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FIG. 11--The 7-N intermediate state contribution to the absorptive part,

FIG. 12--The 7-N intermediate state contribution to the absorptive pai't.
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FIG. 13--An example of a dominant graph.
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FIG. 14--A typical graph to which the graphical analysis is applied.
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