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ABSTRACT 

We developed a method for expanding the absorptive part of the 

sidewise dispersion relation for the nucleon F 2v radius. We assume 

that a threshold expansion is valid and we are able to obtain the exact 

first order terms in this expansion in the limit of the pion mass goi.ng 

to zero. 

We are able to prove that the first order terms in this expansion 

come solely from the or-N intermediate state. Thus, the expansion 

provides justification for the retention of only the Z-N intermediate 

state in a first attempt at describing the radius, as in Drell and 

Silverman. 

Furthermore, the expansion provides a handhold for attempting 

to estimate the corrections to the first order term coming from the 

2n-N and higher intermediate states. 

It must be emphasized that we are not providing justification for the 

assumption of threshold dominance. We are trying to follow that as- 

sumption to its logical conclusion, That is, if the threshold dominance 

idea is good, then a threshold expansion provides a logical way to cal- 

culate low -energy parameters. We have provided such an expansion 

for the I;lzv radius. 
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A THRESHOLD THEOREM FOR RADIUS OF 

THE F2v NUCLEON FORM FACTOR 

A. Jntroduc tion 

In this paper we develop a method for expanding the absorptive part of the 

sidewise dispersion relation’ for the nucleon ,FZv radius. We assume that a thres- 

hold expansion is valid and we are able to obtain the exact first order terms in this 

expansion, in the limit of the pion mass going to zero, 

We are able to prove that the first order terms in this expansion come solely 

from the n-N intermediate state. Thus, the expansion provides justification for 

the retention of only the n-N intermediate state in a first attempt at describing 

the radius as in Drell and Silverman. 2 

Furthermore, the expansion provides a handhold for attempting to estimate 

the corrections to the first order term coming from the 27r-N and higher inter- 

mediate states. 

We now repeat the proceeding in a more mathematical way. 

The sidewise dispersion relation1 for the F2v nucleon form factor is 

00 

F2,(12,M2) =+ 
/ 

d(W2)ABS FZv(12 ,W2) 
, (1) 

(MW j2 
W2-M2 

where M is the nucleon mass, p is the pion mass, and 1 is the (l-momentum of the 

electromagnetic current. . 

The radius3 is the slope at l2 =0, so the dispersion relation for the radius is co 
J d(W 2 )ABS F&(O,W 2 

Fhv(O, M2) =f 
) 

, (2) 
W-d 

W2-M2 

where the prime denotes differentiation with respect to 12. 
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2 2 
In the limit of p-- 0, we expand ADS F12v(0,W2) in powers of W%& . 

M 

ABS F;,(0,W2) =g Cn 

n=30 
(3) 

We show that Co, Cl, C2, vanish and WC find C3 is, given entirely by the 7r-N 

intermediate state. 

It must be emphasized that we are not prvviding justification for the assumption 

of threshold dominance. We are trying to follow that assumption to its logical con- 

clusion. That is, if the threshold dominance idea is good, then a threshold ex- 

pansion provides a logical way to calculate low-energy parameters. We have pro- 

vided such an expansion for the FZv radius. 
4 

’ The method of expanding the absorptive part depends crucially on the limit 

p -0. The details of the expansion may be expressed simply as follows. We first 

find the leading terms in the absorptive part as p -0. We then expand these lead- 

ing terms in powers of W2-M2 

M2 
. 

Drell and Silverman2 provided a hint leading to the method of isolating the 

most important contribution as p - 0. In their analysis, which retained only the 

n-N intermediate state (Fig. 1)) it was observed that the dominant contribution as 

P -0 comes from the pion-pole term of the time-reversed electroproduction am- 

plitude. The explanation is simply that this term is most singular in the pion mass. 

The algebraic reason is seen as follows. The pion propagator in Fig. 2 carries 

the 4-momentum 1 of the electromagnetic current. When we differentiate with re- 

spect to 1 2 to find the radius, we must differentiate the propagator, which gives us 

a term more singular in the pion mass than any of the other terms, 

-2 - , at threshold. (4) 
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Thus, the obvious question arises : Can we use an argument based on this 

. - - . observation to pick out the leading terms, as p-+0, in the contribution to the 

absorptive part from higher mass intermediate states? We are able to answer 1 
this question in the affirmative by using PCAC and current algebra to isolate, at 

threshold, the pion pole terms which carry the 4-momentum 1 of the electromag- 

netic current.. These terms give the most singular contribution to the absorptive 

part of the radius as p - 0. In this manner, we isolate the dominant terms at 

threshold as p - 0. We then expand these terms in. w2 -iy2 to obtain the announced 

expansion. 

In Part I. B, we undertake the explanation of the graphical methods employed 

to handle the multi-pion, nucleon intermediate state. 

In Part I. C, we apply the graphical techniques to an analysis of the relevant 

matrix elements needed for the proof to the threshold theorem. Cl discusses the 

matrix element of the electromagnetic current and C2 discusses the matrix ele- 

ment of the nucleon source. We complete the proof of the theorem in Part I. D. 

Concluding remarks are contained in Part I. E. 

B. Development of Graphical Procedures 

This section undertakes the explanation of the graphical methods employed 

in the discussion of the multi-pion, nucleon intermediate state. The graphs func- 

tion as numonics for complicated analytical expressions much the same way as 

Feynman graphs function in Q. E. D. We use the graphs first to avoid cum- 

bersome analytic expressions and second, to help the reader develop an intui- 

tion for the manner in which we handle the multi-pion, nucleon intermediate state. 

The graphs we define are essentially identical to those defined in Abarbanel and 

Nussinov.5 



The basic object which we want to represent graphically is the Fourier trans- 

form of the matrix element of the time-ordered product of a given set of operators. 

For example, 

xle-iq2*x2 
<f~TQl(xl)Q2tx2)ti> (5) 

is such an object. 

Ii> is some initial state 

If> is some final state 

Qi(xi) is some local operator carrying momentum qi 

The graphical representation of this object would be that shown in Fig, 3, The 

two heavy lines are the initial and final states and the two wavy lines are the op- 

erators &,(x1) and Q2(x2). The blob represents our ignorance of what is going on 

in the interaction. 

Our discussion will contain four different kinds of operators. 

A;(x)----- The non-strangeness changing, strong-interaction (6) 

axial vector current. 

Do&$AL(x)--The divergence of 6. (7) 

Qx) ------- The non-strangeness changing, strong-interaction (8) 

vector current. 

electromagnetic current, (9) 

The graphical elements for these operators are shown in Table I. It will be clear 

from the graph whether c(x) or GM(x) should be associated with the solid line. 
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Some operators will arise by using the following SU(2) current commutation 

relations. 

6(X 1o-x2o) E\ 
p2 

; (x ),A 
CL2 

1 l o2 
(x2! = i ca! Q! QI V 

12 3 @3 
(x2)64(5-x2) (10) 

SF ct2 tx 1, Jam CL2 
1 l 1 =i e * 1 3o 3 Aa 3 (x2)64(xl-x2) 

(11) 

(12) 

To represent this graphically we define the elements in Table II. The lower- 

most leg will enter the blob. Again, it will be clear from the graph whether the 

solid line is v(l,(x) or yEEM( 

Many soft-pion techniques take advantage of PCAC to relate the pion field to 

the divergence of the non-strangeness changing, axial vector current; that is through 

where e,(x) is the pion interpolating field and f, is the pion decay constant. The 

derivative is then removed from the time-ordered product and the resulting ex- 

pression is examined in various low energy limits. 

We will depend strongly on the graphical techniques to expand the matrix 

elements of products of Do’s ; that is, we will give a graphical algorithm for pull- 

ing the derivatives out of the time-ordered product. We will find that by pulling 

the derivatives off of the Do’s, we expand our original graph into a set of graphs, 

each of which is a simple arrangement of chains of axial and vector currents. 

To make the preceeding statement clear, we next illustrate the use of the 

graphs in expanding the matrix elements of the IlO ‘s. We will expand the following 



expression, . 
““’ xle-lq 2 ’ x 2<f ~Tiy$,ltxl) avA;2tx2)li) (14) 

which is represented graphically in Fig. 4. The first step is to take the derivative 

of the first operator outside of the time-ordered product. When this is done, we 

obtain two terms. One term is just the derivative acting on the whole matrix element 

and the other term is an equal-time commutator coming from the action of the de- 

rivative on the theta function of the time-ordered product. Explicitly, expression 

(14) equals 

e-i~Ple-iq2~x2 
$<fiA: (x )a Au 

llV a2 
(x2)li> 

(15) 

@l)9avAv 
o2 

lx,) ii> 1 
It would serve us well at this point to remark that we will neglect all com- 

mutators of the type arising in the second part of expression(l5). This commutator 

is the well-known *%&ma” term. We neglect this term because aPAP Oc p2 and we 

will ultimately be interested in the limit p -0. As long as there is no pion pole 

in the CJ field, this o-term will go to zero faster than the singular terms which we 

show to exist in this limit. So, neglecting the o-term, we are left with just the 

first term in expression (15). We now perform an integration by parts, changing 

the derivative to a momentum. This is justified as long as the matrix elements 

of the operators do not grow as ~,t-~. The result then is that 

/J = iq 
w 

clZld2i2e 
-iqI*xle-iq2’ x2 

<flT$1(X,)av~~,e2) Ii> 
(16) 
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The graphs which correspond to Eq. (16) is shown in Fig. 5, We see two con- 

ventions implicit in Fig. 5. 

1. We will assume all currents flow into the blob, 

2. An axial current connected to a blob is assumed to be dotted 

with iq 
P’ 

its momentum. 

We now proceed in the same manner to remove the derivative from the second 

current. This time however, the equal-time commutat.or is non-negligible. Using 

the commutation relation (lo), we obtain the following expression 

ss 
d$ d$ 

1 2 
e-iql’xle-iq2’ 3 

<flT~A~l(xl)a~Al&2(x2)li> 

. 

-1(q1ta2)’ x2<f IPa3(x2) Ii> 

Equation (17) is represented graphically in Fig. 6. We note the following conven- 

tions. 

1. There is a negative sign for each equal-time commutator. 

2. The indices on the anti-symmetric epsilon are represented clockwise 

on the graph. 

3. The solid line is v$x),not y,,(x). fEM(x) can only appear when it is 

in the matrix element to begin with. 

What we need to know is how to get the graphs without writing the analytic 

expressions. This is done by simply changing the symbol for the divergence into 

an axial and adding the symbols for the various equal-time: commutators which 

arise from the other operators in the matrix elcmcnt. To insure correct order- 

ing of the 6.. 
1Jk 

symbols, we make the convention that WC :~ttach the symbol repre- 

senting A:(x) into the left side of the other two operators in the vertex. 
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We now work out a second example to illustrate the graphical method. 

Figure 7 shows a step-by-step reduction of a graph into a sum of graphs by the 

method stated above. In Fig. 7, we leave off the lines representing the ,initial 

and final states to simplify the graphs. 

The analytic expression for this reduction is- 

d$ e-iql’ 5,-Q2 l x2 5 
1 2 <fITaplAa tx >a pa 

1 1 fl2 
Aa2~~2&,,&W> 

s 
4 

-iq@liEa2”la3 dxle 
-i(9p2 ).x1 

There are two more things to be mentioned before leaving this section. Since 

we are going to be dealing with pions , via PCAC, we will want the amplitude to be 

symmetrized in the pion indices, This allows us to drop the current labels in the 

graphs. We now just write out the expression for a particular graph,assuming 

some convention for the current labels, then we symmetrize the expression and 

multiply it by the number of times that graph was repeated in the reduction. The 

set of graphs in Fig. 7 would then be shown as in Fig. 8. 
. 
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Finally, we remove the explicit pion poles from the single axial currents by 

defining a new operator, which has no pion poles, via the relation ,6 

Act = o-A; -i#/p2 a,, A”, (19) 

By using this relation, we can eliminate the type of graph where A’ enters the 

blob and replace it by Alp. In doing so, it is found that the matrix element con- 

taining the divergence of the eliminated axial current is multiplied by the factor 

(1-q2/p2). That is, the graphs of Fig. 8 would be changed to those of Fig. 9. The 

prime on the wiggle indicates A’. The result of the replacement is to add a prime 

to all single wiggley lines and to multiply the divergences by (1-q: /p2) , where qi 

is the momentum of the respective divergence. 

We can now use the reduction formula and PCAC to relate the divergences to 

pion in-states. The rules for writing out the graphs are summarized as follows: 

1. Successively change each divergence to an axial plus commutators. 

2. Put primes on all single wiggley lines and put factors of (l-qf/p2) for 

each divergence. 

3. Put a factor (-l)n on each graph where n is the number of vertices in 

the graph. i 

4. Put factors of i$ on the axials which have not been used to commute 

something. 

5. Symmetrize in the isospin indices. 

A short cut to step one is to just list the different ways of combining the currents 

into chains and then multiply each possibility by its repetition number R. 
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where 

N = total number of original axials in matrix element 

‘i = number of axinls in chain of type i 

Ri = number of chains of type i, 

C. Analysis of the Absorptive Part 

Now we turn to the task of examining in detail the absorptive part of the F2v 

form factor. We will use the graphical many soft-pion method to discover the 

dominant contributions to the absorptive part. The sense in which we use the 

word -dominant was mentioned in the introduction and will be made explicit in the 

following. Roughly, we want to think of the absorptive part as being expanded 

simultaneously in the two parameters -$- and w2-F2 e It is in this way that we 
M 2 

will obtain a threshold expansion for the absorptive part as ~1 - 0. 

The F2 nucleon form factor satisfies an un-subtracted sidewise dispersion 

relation. 1 

O” F2(12,M2) =+ J d(W2) 

_ w2-M2 
ABS F2(12 ,W2) (21) 

l2 is the invariant mass of the photon and W2 is the invariant mass of the off-mass- 

shell nucleon. 

The absorptive part of the dispersion relation i.s given by7 

(22) 
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zrepresents both the intermediate state sum and the corresponding phase space, 
n 

q(O) =$(O)(ld+Y-M)where 3;(O) is Q nucleon field operator, and vi is a projection 

operator which project; out the F2 part. This cxprcssion for the absorptive 

part becomes clearer when we look at Fig, 10. 

The absorptive part is given by the product of two matrix elements. We see 

the off-shell nucleon (solid line) enter a strong interaction blob and emerge into 

an intermediate state In). The intermediate state then goes into another blob and 

turns into an off-shell photon and a nucleon. The total absorptive part is then 

given by summing over all possible intermediate states and projecting out the 

part belonging to F2. 

The lowest mass intermediate state which can contribute is that containing 

one pion and one nucleon, The next most important states are those obtained by 

adding more pions, Adding four pions brings us up to a threshold of ~1500 MeV 

where resonances such as those in Table III, begin to make contributions to the 

absorptive part. 

We remind the reader at this point that the object of this work is to follow the 

threshold dominance idea to its logical conclusion. If the threshold dominance idea 

is valid, then it should be best implemented by providing an expansion about the 

threshold. We provide a method for determining the coefficient of the leading 

term and for estimating the higher order terms of this expansion. If the numerical 

results obtained from this expansion are in wild disagreement with experiment, 

this would lead us to suspect that threshold dominance doesn’t apply here and that 

contributions from resonances and higher intermediate states farther along the 

cut must be taken into account. 

We will be working from the point of view that lhc resonant contributions are 

really enhancements of some many-pion, nucleon st:~ tc and it is only the contribution 
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to the threshold expansion as ~~-0 which will interest us. Thus, we will be 

considering only states with one nucleon and n pions. 

The first step toward the threshold expansion is to examine each of the matrix 

elements in the absorptive part. We do this by expanding the matrix element ac- 

cording to the graphical method in Part I. ‘B. For example, we would apply the 

graphical expansion to the matrix elements represented in Fig. 11 for the one- 

pion, nucleon intermediate state and to those represented in Fig. 12 for the two- 

pion, nucleon intermediate state. 

After we expand the matrix elements according to the graphical description , 

we will examine the graphs to determine which graphs give the most singular 

(in r-r2) contribution to the radius at threshold. We will then make a threshold 

expansion of those most singular graphs. 

Through the graphical description we are able to deal with the case of n pions 

almost as easily as with the cases of one or two pions. This results from the fact 

that there are basically only four different types of chains which enter into the 

strong-interaction blob of the graphs. We can examine each of these in detail 
2 

near threshold and actually determine their singularity structure as ~1 - 0. 

In the following two sub-sections we will work first with the matrix element 

of the electromagnetic current and second with the matrix element of the nucleon 

source. Before embarking on this however, we must remark that we are making 
w2-M? an expansion in powers of .- and that we will set p2--0 everyplace where it 

M 
doesn’t result in a singularity. In particular, this means that threshold is at M2 

and that the q. -0 as we approach threshold, (all four components). Therefore 
w 

we will set q. 
w 

= 0 everywhere except in those graphs where the singularity 

occurs, 



1. Electromagnetic current matrix element 

In this section, we study the matrix elements of the electromagnetic current. 

@slp&,+o) Iks’,ql”l* l *Ban> (23) 

We show that certain types of graphs dominate the graphical expansion as p2 - 0. 

Our search for the dominant graphs was strongly motivated by the clue given by 

Drell and Silverman. 
2 

This clue indicated that the strongest singularities would 

occur in those graphs which had an axial current carrying the electromagnetic 

momentum into the blob. That is, the ,dominant graphs would have a chain which 

startedwith the electromagnetic current and endedwith an axial current connected to 

the blob, (see Fig. 13 for an example). We show explicitly that it is only the above 

type of chainwhich can lead to strong singularities in the pion mass at threshold. 

Suppose we start with the matrix element shown in Fig. 14. When we perform 

the graphical expansion of the graph in Fig. 14, we obtain a sum of graphs, each 

of which is a blob with various chains attached, (see Part I. B on graphical expan- 

sion). The important fact to be noted is that there are only four different types of 

chains. These are classified as follows: 

A, Chain without the electromagnetic current, ending in a vector. 

B. Chain without the electromagnetic current, ending in an axial. 

C. Chain containing the electromagnetic current, ending in a vector. 

D. Chain containing the electromagnetic current, ending in an axial. 

Examples of these four types of chains are shown in Fig. 15. 

Every graph in the graphical expansion is just a blob with various combinations 

of the above types of chains attached. The chapter on graphical expansion explains 

the details of the expansion. We need be conccrncd only as far as knowing what 

the general term looks like. Each blob will contain one chain of either type C or 

D. The remainder of the chains will be made of combinations of types A and 13. 
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What we propose to do is to examine the.behavior of the above chains as we 

near threshold to see whether singularities in the pion mass occur, We first con- 

sider chains of type A. We suppose that a chain of type A is attached to a blob 

along with other unspecified types of chains, (see Fig. 16) 

The analytic expression for such a blob can be written as) 

/ 

-sTq.* x 
A = Q, &dRe i’ <ps 1 TA;(x)biks ‘> Gw 

where the qb are the momentums of the axials connected to the ohain) q. is the 
Y 

momentum of the axial which hasn’t commuted anything, 8 represents all other . I 

operators in the time-ordered product, and the dR represents all other exponential 

factors and space-time integrals for the operators in 6. We have omitted the 

c 
ijk symbols and factors which are not essential to our argument. 

We want to examine this expression when pa-“0 nears the threshold, which 

means that all four components of q. -0. 
w 

In this case the entire expression 

vanishes except for contributions from nucleon pole terms, 

The contribution from the pole term in the q. -0 limit is that calculated by . 
w 

attaching the chain to the external nucleon leg, 6 (see Fig, 17). In this limit: 

where s1 is essentially the time-ordered product of the operators . 6 We see from 

this that A is finite In this limit and that the chain of type A cannot lead to singu- 

larities in the pion mass. Any singularities must occur in aI. 
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The analysis of chains of type B proceeds similarly to the analysis of chains 

of type A, with the exception that the form factors are changed from axial form 

factors to vector form factors, and the y5 is omitted; 

J -iXqi l x 
B =q. 

JP 
d$ dRe (ps 1 T$!$x)&ks’> 

with the same conventions as before. In the limit p 2 = 0, q. -CO, B becomes 
Ic1 

B = iq. 
JY 

U((P,s)(Y@F l~,)(pl + MIS’ 

-2P’~qi 

(27) 

+ iq. 
Jc1 

6(K + M)?FIQJ(W) 
2k*Xqi - 

Again, as in A, this is finite as -0 qQ and the only place singularities can 

occur is in 8l. The analysis of chains C and D differs slightly from that of A and 

B. We will assume that all of the chains of types A and B have already been ana- 

lyzed before proceeding with the analysis of C and D. Since each chain of type A 

or I3 is attached to the external nucleon legs as we approach threshold, the result 

after the analyses of all A and B chains is that C or D is sandwiched-directly 

between nucleons. This is shown symbolically in Fig. 18. 

The contribution of a C or D type chain then comes down to its matrix ele- 

ment between nucleons. Type C gives the vector form factors of the nucleon and 

type D gives the axial vector form fat tors of the nucleon. It is easy to see that the type 
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C chain is non-singular as p2 --.O because there are no pion poles in the vector 

form fat tors l There is however, a pion pole in the induced pseudo-scalar form 

factor which is of the type we would expect to be important from the clue in Drell 

and Silverman. 2 This pion pole will carry the momentum sqi -I- 1 where the qi 

are the momenta. enteringtthe chain. 

This will have the form 

Oc 2 
1 1 

p - (qi + 1)2 qp jL2-12 
(28) 

which will give 1 
P4 

when we differentiate to find the radius. 

We have analyzed the matrix element of the electromagnetic current by analyz- 

ing separately each of the 4 possible types of chains which can be attached to the 

strong interaction blob coming from the graphical expansion. Of these chains, 

only that of type D, an axial current entering the blob and carrying the electro- 

magnetic momentum 1, can contribute a singularity as ~~-0. Since these can be 

only one chain of type D attached to any particular blob, the order of the singularity 

cannot be, greater than % . The contributions from the chains A, B, and C are 

finite as p2 
I-J 

-0 at threshold and are easily calculated as discussed in the preceding. 

The upshot is that we will keep only those graphs in the expansion which contain 

chains of type D. In Fig. 19, we show the expansion of the 1,2, and 3 pion cases 

in terms of graphs, and underline the dominant graphs. 

As we approach the threshold in the p2 = 0 limit, the underlined graphs simplify 

further to the graphs shown in Fig. 20, where the A, B, C, and D type chains 

are attached as indicated from the preceding analysis. 

We might mention at this point that if we considered a pure p2 = 0 theory, the 

radius would in fact be infinite due to Iho graphs which had a pion pole carrying 

the elcc tromagnetic 10 momentum. That is, 1110 underlined graphs above would behave 
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like 1. 
l2 

at threshold instead of e-$--2* Thus in a pure p2= 0 theory, the under- 
1 -fi \ 

lined graphs would indeed dominate the others, in fact, the finiteness of the other 

graphs would make them negligible compared to those underlined. When we give 

the pion a finite non-zero mass, we are increasing the importance of the neglected 

graphs compared to those underlined. This/importance is measured then by the 

size of the pion mass relative to the nucleon mass, which is the expansion param- 

eter in this problem. 

2. Matrix element of the nucleon source 

Now, we turn to the matrix element of the nucleon source. 

<ks’,qlcyl l . . ~+,~,lsi(O)lO> ’ 
, (29) 

Our first concern is to determine whether or not this matrix element can be 

singular in the pion mass as we near threshold. If we attempt to apply the graphi- 

cal analysis of the previous sections to the above matrix element, the following 

unknown commutator arises. 

(30) 

If we assume that this commutator vanishes outside the light-cone so as to 

be consistent with microscopic causality, then Eq. (30) must be proportional to 

a 4-dimensional delta function or derivatives of such a delta function. It must 

also be proportional to a field which can create and destroy a nucleon. The sim- 

plest expression which has the correct transformation properties and is consis- 

tent with the above requirements is 

~4(x-Y)i%) Y& 

We will use the following relation, as a model, although the analysis of Eq. (29) 

doesn’t depend on this particular model. We choose this form for the sake of 
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convenience. 

~(xo-yo) A&&Y) = a4(x-~)&x)yg 7Q! [ 1. (32) 

We could replace the G(x) on the right by some arbitrary function which trans- 

forms like F(x) and which can create and destroy a nucleon. We could also add 

terms which are proportional to derivatives of 64(x-y). None of these changes 

in themselves could make the matrix element singular as 1*2_0. The key assump- 

tion we have made is that the matrix element of the commutator itself does not 

blow up in the p2 =O limit. 

This assumption is very reasonable in view of the fact that the terms which 

arise because of the above equal-time commutators only contribute additions to 

w2-MT the on-shell matrix element,proportional to some power of ~- . This fact 
M 

follows by setting the off-shell invariant mass equal to M2, and using the reduc- 

tion formula to get rid of the nucleon field operator by changing it to a nucleon in- 

state. The absence of the field operator prevents any terms from arising in the 

graphical reduction which contain the above commutator. Thus, as the off-shell 

nucleon mass goes from W2 to M2, the co,ntributions from the graphs containing 

commutators vanish independently of the pion mass. Therefore, these terms 

can’t be singular in the pion mass. 

Now, if we apply the graphical techniques to Eq. (29), using the model (Eq. 

(32))) we will end up with a sum of graphs, each of which is of the general type 

shown in Fig. 2 1. That is, the matrix elements represented by the graphs will 

be the time-ordered product of a nucleon field with a number of chains of types 

A and B, sandwiched between a final nucleonlk, sl> and the vacuum. 

We.examine these chains exactly as we did the similar chains in the preceding 

section. The chains come out of the time-ordered product and are attached to the 

external nucleon leg. Their contribution is finite and non-singular as q. -0 and 
v 
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P2 -0. The matrix element left after the removal of all of the chain is the matrix 

element of the nucleon source connectinglks> to the vacuum. This final matrix 

element is just the wave function and does not have any pion poles. Therefore, 

there is no possibility here of a pion pole singularity and all we must be concerned 

w2-M? with is the expansion of Eq. (29) in 7 . * 
M 

D. Completion of Proof 

We have studied the two matrix elements and have determined the following 

I program : 

1. With regard to <psIfEM(0)/kslqlal.. . qncrn., we will keep only those 

graphs of the graphical expansion which are most singular in the pion 

mass, i. e. , terms which contain a chain of type D. These singular 

graphs will be expanded in powers of w2-M2 

--ii!-’ 
2. With regard to (kslqllyl. . . qnadq (0)) 0>, we have shown that we obtain 

no pion mass singularities, therefore, all we need to do is expand this 
W2 M2 in powers of - . 

M2 
3. We will evaluate the phase space integral at threshold, assuming the 

matrix elements to be constant at their threshold value. The threshold 

behavior of the phase space for 1 massive and n massless particles can 

and the result is that the phase space behaves like 

This behavior of phase space is crucial in our final argu- 

ment. We can count on an extra factor of for each additional 

pion. 

By combining 1,2, and 3 above, we can show that the ieading contribution to 

the threshold expansion of the absorptive part of the radius comes from only the 

T-N intermediate state. This result is obtained by merely counting powers of 

the threshold expansion parameter. 
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For the intermediate state with one pion and a nucleon, the product of the 

w2 M2 matrix elements gives two powers of .A. . 
ML 

This, multiplied by the appropri- 

w2-I2 12 ate phase space gives a total of three powers of 2 , 
M 

For the intermediate state with two pions and a nucleon, the product of the * 9 ,r) 
W”-My 13 matrix elements gives at least one power of 7 . The phase space gives ..c 

IV1 
three powers which yields a total of four powers, or at least one more than the 

one pion, nucleon state gives. 

.The phase space with three pions is already five powers of W2 M2 2 , sowe 
M 

do not have to calculate the product of the matrix elements. This information is 

summarized in Table IV. 

So we see this result; the lowest order term in the threshold expansion of the 

absorbtive part of the radius of F2v, in the p2-- 0 limit, comes entirely from the 

n-N state. 

E. Conclusion 

The theorem proves that the n-N intermediate state is the major contributor 

in the calculation of the Fzv radius with the sidewise dispersion relation. This 

fact has been, of course, conjectured, assumed, hoped for, and used with success 

since the advent of the sidewise dispersion relation. 14 However, the words “major 

contributor!’ remained vague and unqualified, somehow meaning that we did 

need to consider the intermediate states containing more pions. The proof of this 

theorem now provides a precise statement of the meaning of the words “major 

contributor. It This precise statement arises from the analysis of the contribution 

of the various intermediate states to the terms of an expansion in the parameter 
w2 M2 
--Z_ as p/M--O. 

M 
The utility of this statement is not completely clear because p/M N l/7, 

which means that corrections of order 15(& may come by just considering the 
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next terms in p/M. Also, we have no guarantee that the threshold expansion 

converges. As with most expansions in physics, we must calculate the expansion 

coefficients to determine .whether or not the expansion is useful, 

The results of Drell and Silverman’ indicate that the threshold expansion for 

the F2v radius does converge rapidly and that the 1~-N intermediate state gives 

most of the radius. 

The question arises as to why we can’t make a similar theorem for the cal- 

culation of the anomalous moment. r We probably could produce such a theorem 

but results show that the contributions from the Sll and Pll resonances make 

significant contributions to the anomalous moment which means the threshold ex- 

pansion would converge very slowly and would be of little utility. 

We take the opportunity here to mention that we tried to use the formalism 

developed here to understand the large radii of the ~~~ form factors implied by the 

work of Probir Roy. 15 We failed to provide any dynamical reason for the large 

radii and we conclude that if it exists, it must be attributed to a subtraction 

constant. 



APPENDIX A 

The on-shell vertex function, rB(p ,p e l), is defined by 

(PSSIYEM(0)~P + l,s%E(P,s)~‘(P,p -I- l)U(p + 1,s’) l 
(33) 

/ 

The rmhction formula is used to analytically continue the vertex function in 

the (mass)2 of the initial nucleon. ’ The most general form ‘for the off-shell vertex, 

which transforms like a vector under proper Lorentz transformations and is re- 

stricted by the Dfrac equation on the final spinor is 16 

+ l&W2,12) 1 
ia 1’ 
-&F;(~,12)+l/&W2,+) 1 

(34) 

. 

The projection operators :*(W2), are defined as follows ) 

~M~&Ls)~&L~ + 1)~~ if(W2)U(p,~) = - F; (W2,12) (35) 

For the purposes of this paper, we need to know only v ;+(W2), which is 

derived in reference 

Q! and .p are given in Table V. 
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APPENDIX 13 

In Appendix B, we discuss the contribution to the absorptive part from the 

one-pion, nucleon intermediate state. We show this contribution gives three 

W2-M2 powers of .---2-- as stated in Part I. D above. 
M, 

Using the graphical methods developed in Part I. B, we quickly work out the 

following expressions for the needed matrix elements. We start with the electro- 

magnetic matrix element and use the reduction formula on the pion, plus PCAC, 

to obtain 

Then we apply the graphical analysis to the right-hand side of Eq. (3’7), keep- 

ing only the pion-pole term, to obtain the following 

or 

= %3p /skw ~Xfi(p~s)yS~&J(k,s’) ’ 

(38) 

We use the reduction formula in the following form to obtain an expression 

for the matrix element of the nucleon source, near threshold, i.e. , W2-M2. 

-i(2fl)484(k+q-p-l)& Wpj( O)lo> 

Using 

<ks’,qa!Ip+l,s> = i 

we obtain 

w -:+s I, q~~lp+l, ~>Qp+l , S) 

R (39) 

<ks’IJn,(x)I1,+ 1,s) (40) 

<ks’,qcul~(O)(O>= -ig, (41) 
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Putting these two matrix elements in the expression for the absorptive part 

of F2, we obtain 

ABSF$V2,12) =+ 

XTRT r P 
PQI (42) 

The last trace is to project us onto either the isovector or isoscalar part. 

By doing the isospin trace, we see that there is no contribution to the isoscalar 

part in this order. To do the remaining trace we refer to Appendix A where the 

explicit forms of the projection operators are written out, 

In doing the trace, we keep in mind that we are only concerned with finding 

out the order of the leading term. The calculation of these traces is straight- 

forward but long and tedious. 

We present the results of the traces in Table VI. Table VI contains six rows 

each labeled by an Q! or a fi. These Q’S and /3’s correspond to those in the pro- 

jection operator v 
2+ 
P 

and thus label the contribution from those corresponding 

terms in the projection operator. The bracket labeled rtanglestt signifies a func- 

tion which depends on the angles to be integrated over, but which is independent 

of W2-M2 

M2 
. 

The results in Table VI show that the first order contribution cancels and so 

the product of the matrix elements is of second order in W2 M2 - 
M2 

as stated in Part 
2 2 

- I.D. Theph ase space integral gives us another power of 

contribution to the absorptive part is of order three in 

,,-,,“,~ . Thus the 

M2 
. 
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APPENDIX C 

In Appendix C, we discuss the contribution to the absorptive part from the 

two pion, nucleon intermediate state. We show that this gives greater than or 

W2 M2 equal to four powers of ,* as stated in Part I.D. 
M 

We will follow closely the analysis contajned in Appendix B, leaving out some 

of the pedagogical in steps included there, 

Using the graphs, we can immediately isolate the dominate parts of the elec- 

tromagnetic current matrix element; i. e. , those graphs which have a pion pole 

carrying the electromagnetic momentum. The result is, 

mP,s) 
Y5ral 

Q&k! 
+ 

p4,+WY5Tg 
-2P* 91 1 Wk, s’) 

+ terms with l-2 (43) 

Similarly to the method in Appendix B, we obtain the following 

+ terms with l- 2 
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We will omit writing out the total expression for the absorptive part because 

it is long and cumbersome and it does not serve to elucidate anything. The iso- 

spin traces yield the same results as in the single pion case’. There is no con- 

tribution to the~iso&&w part of the F2 form factor in this order. The state- 

ment which was made in Part I. D requires that we obtain at least one power of 

W2 M2 ,e from the product of the matrix elements. We can see that this is a fact 
M 

in the following way. If we count powers of qi in the traces to be done, we see 

that there is always one power. When we do the phase space integral at thres- 

hold; all the qi’s are set to zero by the delta function, and the contribution to 

the absorptive part vanishes. As we move away from threshold W2$ M2, we 

can have a non-zero contribution but it must be proportional to at least the first 
w2 M2 power of ,--+- . 

M 
The phase space for 1 massive and two massless particles gives three 

w2-2 powers of 2. Combining these results, we get at least four powers of 

w2-2 
M 

M2 
as stated. 
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APPENDIX D 

In Appendix D, we prove the following statement. The phase space for 1 

massive and n massless particles goes like at threshold, where W 
,n 

is the total c. m. energy of the system. We follow the method of Stapp. ” 

We first make some definitions. 

&?dnKkI~(sl,r, E) 

= Total momentum in c. m. frame 

E = Total c. m. energy (45) 

The dS2 and K are defined as follows: First, make a Lorentz transformation 

to a frame where %l+ <: = 0. The superscript indicates that we have made one 

Lcrentz transformation. 

Define = energy of the massive particle and the 

first massless particle in their c. m. 

frame. 

Now, we make a second L. T. to a frame where E2 + 421 f ?ji = 0, and define the 

c. m. energy of these three particles in the second frame. 

- 27 - 
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‘Ukwire, ff&&e k is defined by gk + h’ lk = 0, 
i=l, i 

L”1;1& E = total c. m, energy of all pWti&si 

i) d$ (3 variables) 

ii) &ngles bf thezE (26 trairiabies) 

iii) &N{tl variables). 

dQ @ tingle differentiais of the k ii 

P (Q, p, k) is Work&d Out by fiailitig the $acabian of this t&msfoP&ntztioti of Fiariable@, 



In order to make the threshold dependence clear, we define new variables 
Jpq-1 

n .1 1 E’ 
, E’=E-M 

Then 

qi-Q) = J 
d3PdE 3 - 
E 6 UWWW) 

(51) 
n 

We now need to see how i=l kii depends on E ‘. l-i 

Solving explicitly for kkk 

c k-l 

Sk 

(E1nk) 
= 

Ink + 2E1&ni + 2 
, (52) 

we see that each kkk gives us an additional power of Et. When we count the total 

number of powers of E ‘, we get n-l powers from the differentials 

from the kGG. The total is then (Et) 2n-1 . Since E1 = W-M, we , 

Q. E. D. 
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TABLE II 

GRAPHICAL ELEMENTS AftISING FROM CURRENT COMMUTATORS 

14vr’ 1 2 iE 

1 2 

Y it5 p2 

3 

a13ru3Aa3(x2)~~(xl-x2) 
, 



TABLE III 

RESONANCh CONTIJWBTING TO THE ABSORPTIVE PART 

N’ 0470) l/2 (l/2+) PII 

N (1550) l/2 (1/Y) sll 

N’ (1710) l/2 (l/2-)sll 

N” (1750) l/2 (1/2+)~11 



TABLE IV 

INT. STATE MATRIX "IASE TOTAL 
ELEMENT SPACE 

n-N 2 1 3 

27T-N 21 3 24 

3 Ir-N 5 15 



TABLE V 

PROJECTION OPERATOR COl?FFICIENTS 

M(4W 2-2-2 4 2 3 4 2 2 3 2 2 111 ) [61 M -I- z 1 (W -M )- z 1 (W I 
. 

M3(4w21i,2)-2 [414+812M2+412(W2-M2)-2(W2-M’)2] 

(4W2 (i12j-2(W2-M2)(-312M2) 

M(4W2 nj2)-2(W2-M2) [; 14-3/212(W2-M2j 

2-2 2 M(4W2fll ) (W -M2)b12M2] 
I 

M2(4W2ji,2)-2(W2-M2) [-3(W2-M2)] 
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TABLE VI 

CONTRIBUTIONS TO THE ABSORJ?TNE PART COMING 
FROM THE r-N INTERMEDIATE STATE 
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FIG. l--The 

c 
I 

n-N intermediate state contribution to the absorptive part, 

q ‘\ 
J 

I 
\. 
I -A--- 

k P 

i 

FIG. 2--The pion-pole term of the time- 
reversed elec troproduc tion am- 
plitude. 

FIG, 3--Graphical representation 
of Equation (6). 

FIG. C--Graphical representation of Equation (14). 128BAI 
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FIG. 7--Graphical reduction corresponding to Equation (18). 
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FIG. 11--The n-N intermediate state contribution to the absorptive part. 
I) 

FIG. la--The %N intermediate state contribution to the absorptive part. 

DESIRED TYPE 
OF CHAIN 

FIG. 13--An example of a dominant graph. 

iims 

/ FIG. 14--A typical graph to which the graphical analysis is applied. 

- 44 - 



;r 45 - 

a 



I) 
4 

-0
 

iu
 

U
2 =

0 

FI
G

. 
17

--S
ym

bo
lic

 
re

pr
es

en
ta

tio
n 

of
 E

qu
at

io
n 

25
. 

AN
AL

YS
IS

 
O

F 
A 

an
d 

B 
C

H
AI

N
S 

FI
G

. 
IS

--S
yb

ho
lic

 
re

pr
es

en
ta

tio
n 

of
 t

he
 m

at
rix

 
el

em
en

ts
 

af
te

r 
th

e 
an

al
ys

es
 

of
 c

ha
in

s 
of

 t
yp

es
 A

 a
nd

 B
. 

.$
z@

w
 



+ 

+ z + 

D 
II P II 

+ 
Pb + t 

\ 

aTIP 
II 

+ 

-47 - 



+ 

+ 

+ 

II II 

! I 

- 48 - 



L 

x 


