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i, 
1. Introduction 

A simple way to establish the compositeness of a sub-microscopic 

object is to break up the object and look for the constituents in the debris. 

A somewhat refined way of doing this is to scatter a known particle with ’ 

known interactions on the object of interest and observe the results of 

such scatterings. In particular, if we were to systematically scatter electrons 

of various energies on the object and just observe the energy and angle of 

the scattered electrons, we can determine the instantaneous charge distri- 

bution within the object and hence lfobserve” the constituents without actually 

looking directly for them in the debris. 

As an example, we have in figure 1 the results of scattering 

400 keV electrons off of Aluminum and Cold atoms at various angles. 1) 

The tfchanuel number” is directly proportional to the final electron energy. 

Looking at the right side of the graphs we see the -elastic peak (which also 

includes excitations to the discrete atomic levels) and then, as we go to the 

left (lower final electron energies) we have a steep rise and plateau corre- 

sponding to electrons and photons being knocked out of the atom. For 

laboratory angles less than 90’ (e. g. , 40’ in figure 1) one can see a “quasi- 
, 

elastic peak” which is due to the incident electrons scattering off the 

constituent electrons of the atom. 

Similar studies have been conducted on nuclei. In figure 2 we 

2) have the spectum of final electron energies arising from scattering 

electrons on C 
I2 . Again one sees the elastic peak to the right, to the 

left of that the excitation of discrete levels, and finally a large quasi- 

elastic peak due to electron scattering off of the constituent nucleons within 

the nucleus. 
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In both these cases while things look very good qualitatively, the 

detailed quantitative analysis of the electron scattering data is not so simple. 

In the atomic case, even though we know what the constituents are and the 

forces between them, no one has yet been able to make a satisfactory calcu- 

lation of the spectra shown in figure 1 (in particular, the large magnitude of 

the large angle data is unexplained). Tn the nuclear physics case, we think 

we know what the constituents are, if not the forces, and fairly rough 

calculations based on a Fermi gas model fit the quasi-elastic peak rather 

well. 3, 

Now for the nucleon, the main subject of this talk, we know 

neither what the constituents are nor what the forces are, even though I 

would guess that most high energy theorists do believe that the nucleon is 

composite in one sense or another. Our lack of understanding of strong 

interaction dynamics will of course prevent us from doing much in the way 

of quantitative predictions, especially since, as we have just seen, even in 

cases where we know what is going on it is sometimes difficult to do detailed / 

calculations. At least to start with our plan of attack for extracting infor- 

mation on the composite structure of the nucleon through electron scattering 

should then try and use either aspects of the data which are independent of 

the strong interaction dynamics (such as the rough position and shape of a 

quasi-elastic peak), pr which involve only general aspects of strong 

interaction processes which are fairly well understood (such as the high 

energy behavior of total cross sections). Let us then turn to the experi- 

mental data to see what it tells us. 
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2. Kinematics and the Experimental Data 

We are interested here in exploring the data and its consequences 

for the process shown in figure 3: an electron of energy E scatters off a 

nucleon (of four-momentum P) at an angle 0 and with final energy Et , 

producing the final state n by means of the exchange of a photon (of four- 

momentum q). Since we know the interaction at the electron-photon vertex 

and the photon propagator, we may take these factors out of the data and 

study what is happening at the lower vertex. Here, if we don’ t observe 

the details of the final badronic state (i. e. , if we. average over initial 

proton spin and sum over all final hadronic states) then everything must 

be a function of just the two Lorentz scalar variables 4) 

= 4EE’ sin2(6/2) 

and ’ 

Y =q 
0 

=-q*P/MN=E-E’, (2) 

the photon (mass)2 and energy in the laboratory. The invariant mass, W 

of the final hadronic state is related to v and q2 by 

$ - MN2+ q2 

v= . 

2MN 
(3) 
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From a theoretical point of view we are measuring the quantity 

(an average over nucleon spin is understood) 

w =.A IJv c <PI J (em)(O) In,<ni JVtem)(0) I P1(2n)36(4)@n-p-q) 
4’lrCY n p 

: 
I : 

which, by Lorentz and gauge invariance can be written as 5) 

(.Pv zJ$/lvfN. (5) 

, 

The quantity WclV is just (l/47r2 a) times the imaginary part of the virtual forward 
A 

Compton scattering amplitude for photons of mass’ = -q2. In terms of WI 

and W2 the experimentally measured double differential cross- section is 

2 [ 2wl(u,42) sin2(e/2, + w2 (v,q2) cos2(S/2)] l 

Roughly, at small angles one measures W2; at large angles WI. 

One other set of kinematic quantities has come into common use: .., 

these are the transverse and longitudinal cross- sections aT and as due to 

Rand!) In terms of these 

d2c d K E’( -- 
dS2’dE’ =F q2 E 

&) (‘rT+‘c;) (7) 



where 

K=u - q2/2MN 

and 

E= 
1 

1+ 
, 

so that Or: e 5 1. On comparison with Eq. (6) we have the relations 7) 
i 

At q2 = 0, c T(~ , q2)--(rT(v , 0), the total photoabsorption cross 

section on protons of photons with energy ,v ; this has been measured from 

threshold to almost 20 GeV in a series of beautiful experiments 8) in the 

past year (see figure 4). The quantity os (u , q2) must vanish at q2 = 0 

because of kinematic constraints. 

The results of experiments are then to be summarized in terms 

of the amplitudes WI and W2 (or alternately u T and crs ) as they depend on 

,Y and q2. A kinematic map of this new laud which we want to explore, the 

v - q2 plane, is shown in figure 5. The lines at fixed W correspond to 

fixed hadronic missing mass. No measurement can be made to the left of 

the line W = 0.94 GeV/ c2 = M N, which corresponds to elastic scattering; 
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measurements along this line correspond to the usual measurements of the 

.nucleon form factors, some of which are now known out to q2 = 25 GeV? 

The line q2 = 0 corresponds to the measurement of the total photoabsorption 

cross section, which is now known out to almost Y = 20 GeV. It is then the 

large region bounded by these two lines which we now wish to explore. The 

lines in figure 5 at fixed values of 2 MNp/q2, as we shall shortly see, are 

very useful in discussing the shape of the data. 

In figure 6 we see the lines along which experimental data was “- 

taken in the recent SLAC experiments. The results of the 6’ and 10’ 

measurements 9) are reported to this conference, while the larger angle 

10) data exists in preliminary form . Where two fixed 9 lines cross at a 

given value of Y and q2, one can separate W 1 and W2 or c T and CT s , exactly 

as one can separate GM2 and GE2 for the case of elastic scattering. 

A typical result of such a series of measurements at a fixed angle 

and incident energy is shown in figure 7a for E = 10.0 GeV and 8 = 6’. Of 

little interest to theorists, but of much trouble for experimentalists, is the 

fact that such a set of data must be r adiatively corrected to give the spectrum 

shown in figure 7b. While a nuisance, the problem of doing the radiative 

corrections is well understood and now seems to be well under control. In 

figure 8 we see three other spectra at increasing energies and angles (and 
; 

therefore increasing q2). From the collected set of such spectra the 

following general features have emerged: 

(l) As q2 increases the prominent resonance bumps rapidly go 

away, more or less like the nucleon form factor squared. 

(2) What is left is a smooth spectrum which is large, i. e. , at 

fixed q2, on integrating the spectrum over v we get a result which is the 
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same order of magnitude as the Mott cross section due to scattering of 

electrons by a point proton. 

(3) For a fixed missing mass W1 2BeV, the cross section falls 

off rather slowly in q2, roughly like l/q2 rather than the I/ q8 of the nucleon 

form factors squared. 

(4) From the preliminary SLAC large angle data 11) and from the 

results of Albrecht et al. , 11) 
-- who have combined the’SLAC small angle and 

the DESY large angle data we now have the first separations of os and (T 
T 

(or WI and W2). Very conservatively, it appears’ that in the region out to 

v = 10 GeV and out to q2 = 5 Ge? that R = os/cT < 1. If anything, from 

the DESY analysis the ratio R seems to go down somewhat between 

q2 =. 8 GeV2 and q2 = 2.0 .GeV2, where it is consistent with zero. 12) h 

general, for q2Zl. 5 Ge v2 
n 

it appears R < 0.5, is consistent within the present 

errors with zero, and does not depend strongly on any variable (neither 
‘2 

; 
v nor q nor v/ q2). 

3. Point-like Constituents - The Parton Model 

The large magnitude of the inelastic cross sections leads one to 

consider models where. the proton is composed of point-like constituents. The 

key means of implementing such a model is to view the proton p the infinite 

momentum frame of reference where the proton is Lorentz contracted into a 

thin pancake and the .motion of the constituents is slowed down to a standstill 

by time- dilation. In such a frame, and with q2 large (compared to MN2 or 

any transverse moment squared), the electron can be viewed as scattering 

instantaneously and incoherently off the individual, point- like constituents. 13)s 14) 
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We thus can treat the constituents as tffreefl during the interaction and thereby 

hopefully avoid, at least partly, our ignorance of strong interaction dynamics. 

In somewhat more detailed form, the assumptions 15) are (see 

figure 9) 

(1) The nucleon consists of a number (N) of point-like constituents 

(partons) which can be treated as free particles in the infinite 

momentum frame. 

(2) The partons have negligible transverse momenta (compared to 

J- 
q2) and, as P-00, the if th parton has (neglecting masses and 

transverse momenta) a fraction xi of the total momentum of the 

proton 

py = x,pu. 

(3) In the infinite momentum frame the electron-. scatters 

(9) 

instantaneously off the point-like parton leaving it with the same -U&T 

mass and charge. 

A small calculation then shows that the contribution of a single parton 

(with a fraction x of the longitudinal momentum) to W2(“, q2) is: 

w,(‘)(v, q2) = Qi26 (V - q2 /2M$ 

Qi2 x 
=- 

V 
6 (x - q2/2MNv). 

(10) 
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Thus ZJ W2 for a distribution of partons is given by 

N 1 
7’w20hC12) =$P(N)(q Q~,,fdxfN(x)G(l 

1= 0 
- q2/2MNx) 

= C P(N)( CQf )flN(x) 
N i=l x = q2/2MNV 

= F(x = q2/2MNV), 

N 2 where P(N) is the probability of N partons occurring, (x Qi )N is the sum of 
i=l 

the squares of the charges of the N partons, and fN(x) gives the distribution 

of longitudinal momentum of the partons. The quantity uW2 (V , q2) = F(x) is - 
then predicted to be a function of just one variable, x = q2/2Mv for large 

q2 and,v , and the shape of F(x)/x gives a weighted average of fN(x), the 

Thus P W2 (V , q2) X distribution of longitudinal momenta among the partons. 

should be a so- called lluniversal functionff of q2/ 2Mv, something originally 

2-.~ predicted for v W2 and WI as v and q using more formal means by 

Bjorken. 16) This behavior of v W2 can also be seen from the fact that we“ 

have put no internal mass scale in our calculations of I/ W2, so it should 

be If scale invariant, It i. e l , 
a function of only the ratio 2qe P/q2 = 2MNv/q2 

of dot products of the external momenta. 

Furthermore by normalization, 

1 
fN(xi)%i = ‘2 (12) 
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and, assuming a symmetric distribution of momenta among the partons, 

1 

s xifN(xi)dxi = I./ N, 
0 

so that we have the sum rules 17) 

00 1 

dv W2(“, q2) = $ $ F(x) =t P(N$ Q; 
0 N i=l 

and 

00 

42 

1 

J 
dv 

2M 
No 

y w2w12, = 
J 

EQ? 
dxF(x) = c P(N) i=l ,’ 

0 
N 

(13) 

(14) 

05) 

relating moments of the data to the sum of the squares of the charges of the 

partons and the average charge squared of the partons. 

The obvious way to test if uW2 is only a function of 2MNv/q2 is to 

plot each of the data points versus o = 2MN v/q2 and see if one gets a single 

I1 universal curve It. In figures 10 and 11 we have such plots 18) for vW2 taken 

from the SLAC 6’ and 10’ data, respectively. Since these plots were made 

before it was established that R = os/oT is small, the two extreme cases 

R = 03 (figures lob and lla) and R = 0 (figures 1Oc and llb) were used for each 

data point to calculate vW2 from the measured values of d2fP/dfifdEf, Clearly, 

for R = 0 one has a very striking f~universal curve” for both the 6’ and 10’ 

data (figure 10a shows the results of the E = 7.0 GeV, B = 6’ run separately 
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since it contains points at very small values of q2 where there is no chance 

of having a lluniversal curvefV). 

This is seen again in figure 12 where both the 6’ and 10’ data 

(taking only points with q2? 1.0 GeV2 and assuming R = 0) are plotted on the 

same graph versus x = q22MNv, which makes it easier to 11 see” the point 

at v = ~0. 

Finally in figures 13 and 14 we have vW2 and WI plotted versus 

2MNv/q2 on a linear scale (assuming R = 0). Starting at the right hand side 

of the graphs and going to the left, the q2 values of the plotted points are 0.5, 

0.7, 0.4; 0.75, 1.0; 1.6, 1.4, 1.2, 1.0, 0.6; and 1.3, 2.0, 1.7 and 1.0 Gev2 

respectively. Thus points with values of q2 differing by more than a factor 

of two consistently lie on the same universal curve if R = 0. In addition: 

(l) If we assume, for example, R 1 1 for all the 6’ and 10’ data 

points, then we get a great scatter of the data when plotted versus v/q2, i. e. , 

there is no universal curve for the values of q2 reached in the 6’ and 10’ data 

unless CS/cT is small. 

(2) If R = 0, then vW2 reaches a peak value at w = 2MNv/q2 fi: 5 

and then decreases at larger values of w. This fall off at large w still appears 

to be true if we only take points with q2Z 1 Ge VT Note however that we.,only 

have a separation of as and aT at relatively low values of v/q2, and the 

“universal curve” could be much flatter 19) if R = 1 for some of the points at 

small values of q2 and large values of v/c;“. (See also the discussion in the 

next section. ) 

(3) The values of the integrals /i o5 F(x)dx and /~.,,(F(x)/x)dx . 

are = 0.17 and 0.7, respectively, for the data shown in figure 12 (again 

assuming R = 0). While almost any reasonable extrapolation of the data to 
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x = 0 gives Ji F(x)dx = 0.18, the integral Ji (F(x)/x)dx diverges logarith- 

mically if F(0) # 0 and its value is therefore very sensitive to the lower limit 

of the integral. 

Putting details aside, let me emphasize again that the most re- 

markable feature of all this is the ttuniversaltt or If scale-invarianP 

character of the data. Even for very non-asymptotic data points with 

0.5 Gev25 q2 5 1.0 GeV2 one already finds good agreement with a ltuniversal 

curvet ; this is better than we have any right to expect theoretically for such 

small values of q2. 

To illustrate what happens when one takes the parton model very 

seriously in a quantitative sense, I have chosen two extreme cases. First, 

let us say the proton is composed of three quarks with a symmetric, phase 

space distribution of momenta. Then we have 

F(x) = vW2(J’,q2) = xf3(x) = 2x(1-x), 06) 

3 
which gives si F(x)dx = c Qi/3 = i (b + $ + $), = k and has a “quasi- 

i=l 
elastic peak” at x = l/2; it is clearly too big to fit the data (see figure 15). 

The second model is the opposite extreme: an infinite sea of quark-antiquark 

pairs with average (charge) 2 = ;(; +b +$) =.$ =J;F(x)dx. Note that”) 

any SU(3) triplet has charges Z, Z, and Z + 1, so that the average charge 

squared is Z2 + 2 ;Z+Zg, with the minimum for Z = -k, which is the 

usual quark model. Therefore Ji F(x)dx 1 $ for a sea of SU(3) triplet- 

21) antitriplet pairs with a symmetric momentum distribution . The experi- 

2 mental value of liF(x)dx appears to be temptingly close to 5 M 0.22. Now 
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if we again assume a phase space distribution of momenta, P(N) = l/N(N-1) 

for N=2,4,6 ,..., then we get F(x) = (2/9h2)/(2-x) which also does not fit 

the data well as it stands (see figure 15). The important point to realize here 

though is that with any finite number of constituents one gets a “quasi-elastic 

peak” and F(0) = 0; only with an infinite number of constituents (P(N) N l/N2, 

does one obtain F(0) # 0 and therefore vW2 - const. # 0 as v - 00. 

In the second model, by changing the ~momentum distribution and/or 

by starting with N = 3 or N = 4 one can obtain a much better fit to the data; in 

particular the latter change will make F(l) = 0. However, I leave it to the 

15) audience to read the rules of the game in the paper of Bjorken and Paschos 

and then to make their own fit to the data; perhaps with a little bit of qq sea, 

a touch of qGq<, a pinch of three quarks, etc., you too can fit the data. 

4. Diffraction Models 

Rather than avoiding strong interaction dynamics, another theoretical 

path is to use to good advantage our knowledge of certain general features of 

purely hadronic high energy scattering amplitudes 22) . Instead of emphasizing 

vW2 and W1, we note that for large v and fixed q2, 

‘.. 

vw2 cc q2(uT + “s) 

w1 a vo- 
T’ 

07) 

and focus attention on the total cross sections cT and as. It appears that 

hadronic total cross sections are composed of two parts: first, the contribution 

of ftordinaryft t-channel Regge poles (like p , A2, PI, . . . ) giving contributions 

to total cross sections which go to zero as v - 00, and which are related 
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through finite energy sum rules to the resonances at low energy; and second, 

the Pomeron or diffraction scattering, which gives constant total cross 

sections as v - 00 and is related to ttbackgroundtt at low energies 23) . 

Now if we look at the electron scattering data we see that the pro- 

minent resonances are rapidly going away as q2 increases, and therefore, if 

we believe the above connection, so must be the ffordinaryff Regge trajectories. 

This leaves us with the Pomeron as q2 gets large, so that we expect cT and c S 
for large v to become more and more flat as q2 increases. At any fixed value 

of q2. 24) Eq. (17) shows that vW2 should also become more and more flat , and, 

for each value of q2, go to a non-zero constant value as v - 06. 

In figures 16, 17, and 18 we attempt to test this by plotting vW2 from 

the 6’ and 10’ data as a function of v at q2 = 0.75, 1.0, and 2.0 GeV2 for the 

two values of R, R= 0 and R = 0.5. At q2= 0.75 CeV2, vW2 appears to be 

falling as v increases, even if R = 0.5, while at q2 =2.0 Gev2, vW2 appears 

to be flat as a function of energy if R = 0 and rising if R = 0.5. One must be 

very careful, however, in making such comparisons, because if we do have a 

ftuniversal curvet the data point at v = 14 GeV, q2 = 2.0 GeV2 in figure 18 

should really be compared with one at v = 7 Gev for q2 = 1.0 GeV2 and one at 

v = 5 GeV for q2 = 0.75 GeV2. If we do that we see that we would have ex- 

petted vW2 = 0.3 0 at v = 14 GeV and q2 = 2.0 GeV2, something which is quite 

consistent with the data shown in figure 18. Thus, while figures 16, 17 and 18 

are at least consistent with vW2 getting flatter as q2 increases, the present 

data is also quite consistent with a fall-off in vW2 at large v/q2. Unfortunately , 

I do not think we can definitely choose between these two possibilities with the 

present experimental data. 



An immediate testable prediction of the diffraction model for 

electroproduction is that “W2 for the proton and neutron should be the same. 

In general, what is not predicted, at least at first, is the q2 dependence of 

the total cross sections. In other words, ‘1 scale invariance” must be put in 

by hand if we want it. If we assume scale invariance, then the q2 dependence 

comes out trivially; for if Y W2 (v,q2) is actually a function of only z~/q~ and 

goes to a constant independent of v as v - 00, then the constant must be 

independent of q2 also 25) . A very interesting way of getting the scale in- 

variance for such a Pomeron model is to associate the diffraction with the 

infinite sea of 4s pairs in a parton model which we discussed previously 26) . 

A particularly intriguing feature of making such an association is that the 

magnitude of the cross section, which is essentially geometrical in the 
i 

Pomeron model (roughly related to the geometrical size of the proton), is 

connected to the average charge squared of the quarks in the parton model! 

A very specific type of diffraction model is obtained by using vector 

dominance2 7, .28) . In particular, Sakural has proposed a model where the q2 

dependence of the total cross sections is given by 

and 

%p,q2) = CJ-~(K, s2 =O) t 0w 

where K = V - q2/2M N = (W2- M’$/(2M ) N and 5 (K) is the ratio of the vector 

meson - nucleon (presumably dominantly rho-nucleon) total cross sections 
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for vector mesons with polarization vectors respectively parallel and per- 

pendicular (i. e. , helicity 0 and helicity f 1) to their direction of motion. 

Since we expect 5 M 1 at high energies, such a theory predicts very large 

values of R = os/uT at large values of q2. Note that the factor of q2 in the 

numerator of Eq. (18b) is essential to fit the slow fall-off of the 6’ and 10’ 

data with q2 (aT + as N l/q2). This is because aT in Eq. (18a) falls off like 

l/q4, so the extra factor of q2 in Eq. (18b) is what assures that US falls off 

like l/q2 and therefore that aT + os falls off like l/q2, permitting a rough 

fit to the small angle data. 

All this is of course very easy to confront with experiment, and 

the preliminary large angle data from SLAC 11) show that both R and oT pre- 

dicted by the vector dominance model are in disagreement with experiment. 

In particular, the data show that R is small and does not grow rapidly with q2 

as Eq. (18b) would say. Moreover, given a value of R one can calculate u T 
and os separately, and one then finds that it is uT which is falling slowly 

with q2 (roughly like l/q2) and is chiefly responsible for the character of the 

data, in disagreement with Eq. (l8a). So the preliminary large angle data 

very definitely rules out the vector dominance model as an explanation of the 

data and one can only hope that nobody is too emotionally attached to such 

theories . 

5. Field Theory Models 

An instructive thing to do, especially if you are a theorist, is to 

consider what happens to various more familiar models or theories when they 

are considered in the new limit of fixed v/q2 with Y and q2 - ~0. A particular 
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case is virtual photons interacting withnucleons in the field theory consisting 

of nucleons and pions with y5 coupling, which has been considered in great 

29) detail by Drell, Levy and Yan . They must assume that there exists a 

region where q2 and 2MNv are larger than the transverse momenta of all the 

particles involved in the theory, but given this assumption, by considering all 

graphs in each order of perturbation theory they can derive a parton model 

and show that the structure functions Wl and vW2 should depend on v/q2 only. 

The partons in this model are the pions and nucleon making up the proton. It 

turns out that the interacting partons, i. e. , the free, point-like consistuents 

which interact with the electromagnetic current in each order of perturbation 

theory and to leading order in logarithms of 2MNv/q2, are the bare nucleons 

i making up the proton and not the pions in the pion cloud. The net result of all 

this is that one is left with a sum of ladder graphs with pions as rungs and 

nucleons as sides for the forward (virtual) Compton amplitude and hence for 

the structure functions WI and vW2 at large values of 2MNv/q2. As is well 

known, such sums of ladder diagrams yield Regge behavior. Here the value 

of the Regge spin, or(O), depends on the strong coupling constant and the trans- 

verse momentum cut-off. With reasonable values for these parameters one 

can obtain a fit to the large v/q2 data points. 

A somewhat related study was made by Abarbanel, Coldberger and 

Treiman3 O) who first noted that the relevant variable which must be large in 

order to make Regge expansions, which is cosOt, turns out to be approximately 

proportional to in the case of virtual forward Compton scattering. This 

quantity is already fairly large for many of the present SLAC data points, and 

for fixed v/q2, v/ r q2+ 00 as v and q2-+ 00. Thus we would expect the Regge 
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representation to be a better and better description as we go to the limit 

where we expect scaling to hold. One, at first sight, worrisome aspect of 

this is that the forward amplitude for virtual Compton scattering will not 

scale, i. e. be a function of v/q2, unless the Regge residue function, p (q2) 

is very ‘1 smart” . This has been investigated by the above authors in a model 

consisting of a sum of ladder graphs made out of scalar particles and it is 

found that S(q2) is (or really, almost is) 11 smart” enough to give the right 

function of q2 to make the whole amplitude scale 31) . 

A very different aspect of field theory has been emphasized by Cheng 

and Wu in connection with their recent monumental calculations of the high 

energy behavior of scattering amplitudes in quantum electrodynamics 32) , By 

summing all diagrams up through sixth order in Compton scattering they found 

expressions for the total cross section which go to constant values as the 

energy, v , goes to infinity. Other authors have since shown how to generalize 

their result of constant total cross sections to all orders by summing all the 

s-channel ladder diagrams with photon (i. e., vector meson) exchanges 33) . 

If they extend their results to q2 # 0, then they find that34) vW2 and q2u go to 

constants as v - 00, qZ fixed, but they do not scale, and in fact contain terms 

like I.n(q2/X2) where h2 is the vector meson mass. Thus for reasonable values 

of h2 one would have expected to see rather large violations of scaling in the 

SLAC data. 

6. Related Processes and Tmplications 

One of the very pleasant aspects of the subject of this talk is that it 

is not a dead-end, disconnected from the rest of physics, but has many 
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experimental and theoretical implications for other parts of high energy 

physics. In the remainder of this talk I would like to quickly discuss some 

of these related questions in both their experimental and theoretical aspects. 

A. If one has a total cross section which is large and which falls-off 

slowly in q2, then some of its parts should exhibit the same behavior. Clearly 

we expect some channels, e. g. single pion production, to fall rapidly as q2 

increases. But what about p production? In models which explain the 

electroproduction data discussed above by means of diffraction or Pomeron 

exchange, one might well expect diffractive electroproduction of p mesons to 

have a similar slow fall-off in q2. An interesting possibility is that the angular 

distribution of p production becomes broader as q2 increases, resulting in a 

slowly falling integrated cross section for y -t p - p” + p even though the for- 

ward differential cross section is decreasing fairly rapidly as q2 increases. 

In various parton or diffraction theories one can also make predictions about 

the percentage of strange particles produced, the,charged to neutral ratio for 

S = 0 mesons produced, the longitudinal momentum distribution of the final 

mesons or baryons, etc. 35) . 

B. Bjorken and Paschos 15) have studied the process y + p - y + 

71anything1V, i. e, inelastic Compton scattering of photons from protons, within 

the parton model. They find that for inelastic scattering at large momentum 

transfers, 

(d::Ef)yp = &’ (d:::E’)ep <LQ2 > ’ 

i i 

(19) 
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which, if measurable, might permit one to tell fractional from integrally 

charged partons. 

C. Electron-positron annihilation processes offer another place 

where the point-l&e behavior of constituents of the proton might manifest 

itself. In particular, the process e++ e--c proton + 1lanythingII (see figure 19) 

has structure functions WI and v2 which are related by the substitution rule 

to the structure functions WI and W2 in inelastic electron scattering: 

and 
w2 (v,q2) = 

-w,c-v,s2, l 

w-3 

Although diffraction models of inelastic electron, scattering in general say 

little about such processes, within the parton model, and using the same 

assumptions as for inelastic electron scattering, Drell, Levy and Yan 2g) have 

shown that El and w2 should also become universal functions of 2Mv/q2 for 

large q2 and 2Mv. This leads one to expect large, i. e. point-like, cross 

sections for e++ e- - p + “anything1~ and a total cross section for this process 

which varies as l/q2, just as do those for a point particle (e. g. , 

u(e++ em-- /J+ + I-L- ) = (I/3) (47r$)/q2). 

D, Obviously, if we have a property of the matrix elements of the 

vector current, then one is incEned to look for similar properties of the 

matrix elements of the axial-vector current. This can be done in the case 

we are interested in by doing high energy neutrino and anti-neutrino inelastic 

36) scattering . For such processes, not only do we have the structure functions 

W?) and Wf) which now get contributions from both the vector and axial-vector 

(*) currents, but also a structure function W3 which arises from the interference 
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between the vector and axial-vector currents. We have for (F) +p -(+) + 

“anything” in an obvious notation: 

,$iEI = ~9 k sin2(i) Wf)(v,q2) 4 cos2(l) W,$+(v,q2) 

T E+E’ 

MN 
sin2 (i) W(*)(v 3 ’ q2)l . 

(29 

In a parton model we again expect Wl, vW2, and vW3 to scale at 

large v and q2, i. e. to be functions of v/q2, and that the total cross section 

for (i) +P-+) + ~~anythingtf should, in the same limit, exhibit the 

point-like behavior 

fJ= 
G2 
R(MN-W* (22) 

Further, in the parton model W3 provides a measure of the number of baryon 

minus the number of anti-baryon partons. The present CERN heavy liquid 

bubble. chamber results 37) are at least consistent with all this, particularl;y 

Eq. (22), but it is to early to draw strong detailed conclusions. 

Note that in the diffraction model one expects W3 and Wi (-)- ,(+) i to 

go to zero for large values of 2MNv/q2, since all these quantities are propor- 

tional to amplitudes arising from the exchange of negative charge conjugation 

trajectories (not the Pomeron) in a Regge analysis. The CERN heavy liquid 

bubble chamber results 37) are consistent in magnitude (and consistent with 

W3 = 0) with the diffraction model, but I again think it is too early to draw 

any strong conclusions favoring one model or the other from the present data. 

E. Must of what we have been saying can be rephrased in the lan- 

guage of current commutators. In fact, much effort has gone into studying 

how various limits of the virtual Compton amplitudes and/or sum rules over 
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the electroproduction data can be (at least formally) related to equal time 

commutators of the electromagnetic current with itself and with its time 

derivatives38). One can even take the point of view that certain integrals 

over moments of W 1 and W define experimentally the value of certain com- 2- 

mutators. One of course then hopes that these same commutators can also i 

be calculated in some simple theoretical model and thereby compared with 

experiment. 

A case inpoint is the commutator of a space component with its time 

derivative, which when calculated in a naive way is completely different 

for the quark model and for the algebra of fields. When the connection3g) 

is made back to experiment, this leads to the conclusion that for fixed ,v/q2 

andq2- 00, us/uT should vanish in the quark model while oT/us should 

vanish in the algebra of fields case. This is, of course, subject to direct 

experimental test and also agrees nicely with the parton model result that 

one expects us/uT to vanish in the same limit for spin- 4 constituents while 

aT/us should vanish for spin-0 constituents; it therefore seems to put the 

parton results on a much firmer, more model independent basis. However, 

it was shown by Adler and Tung 40) and by Jackiw and 41) Preparata , who 

explicitly constructed the Compton scattering amplitudes (whose imaginary 

part is the electroproduction structure functions) in perturbation theory for 

renormalizable field theories, that by taking the Bjorken limit one gets com- 

mutators for two space components of the current which do not agree with 

the naive ones. In other words, in perturbation theory the commutator de- 

fined by taking appropriate limits of the Compton amplitude does not agree 

with the naive one if we are dealing with two space components of the current 

(but does agree if at least one of the currents is the time component of a 
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current). It seems that we learn once more that the very singular parts 

(such as the equal’time commutator of two space components of the vector 

current) of even “smooth*’ field theories are rather subtle and they can 

neither be dealt with in a naive manner, nor unambiguously subjected to 

experimental test. 

F., Bjorken first noticed 4) that the sum rule 

03 

f 
(-) t-f-) dv p5 (w2) - w2 tw2) = 1 , 

0 1 (23) 

derived by Adler 43) for inelastic neutrino scattering from the commutator of 

two time components of the weak current, leads to the inequality for inelastic 

electron scattering 

$/2M i 
2 dy W2,tv,s2, + oci,(v,q2)-1 2 8 

N , 

(24) 

because 

wi-’ (v,q2) - W$+)(v,cf ) 5 w(-) 2 (v,q2) f WF)(v,q2, = 2 W2,~(v,q2, + W2,PGq2) O 
II 1 

From the present data Svmdv W 
-. 

2P 
(v,q2) 2 $ for vm M 3q2 and 

IVmdv W2,(v,q2) 2 i for vm M 7q2. Unfortunately this may not tell us much 

since in using Eq. (25) to go from the equality, Eq. (23) (which corresponds 
cl! (O)-2 

to C = - 1 in the t-channel so that we expect Wi-)(v,d, - Wf)(v,q2) - v p ), 

to the inequality, Eq. (24) (which corresponds to C = + 1 in the t-channel where 
%W- 2 

we expect Pomeron exchange and W2- v r = l/v ), we go from a convergent 
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integral to a divergent one. Thus the Bjorken inequality can be satisfied by 

the diffraction contribution while the Adler equality itslef is violated 44) . 

Formally one can construct explicit solutions for the weak ampli- 

tudes which obey the Adler sum rule and do not conflict with the electroproduction 

data. For example, if we take v/q2 = 2.5 as the top of the rise in vWzp(v,q2) 

then at large q2 the function 

v~~-)(v,q2) -vw~)(v,& = & 
J 
.%d. e&2.5) 

V 
q 

is scale invariant and has the properties: 

(a) vw-’ 2 (+) (v,q ) - VW2 (v,q2) 5 2vw2p(v,q2) 5 2[“wzp+ vW2n 1 
(therefore consistent with experiment even if Wzn,= 0), and 

@) 

and 

- w’)](v,q2) = 1 , 

(26) 

at fixed q2 as v 
\ 

- 9 which corresponds to aP (0) = 4 D There has also been 

much activity during the year in constructing explicit virtual Compton scat- 

45) tering amplitudes of the Veneziano sort . Although not of much flpracticalfl 

use because of the narrow resonance assumption inherent in such models, 
1 

they at least demonstrate the possibility of explicitly constructing amplitudes 

which obey the usual requirements of crossing, Regge behavior, current con- 

servation, etc. , as well as current algebra conditions and scaling. In any of 
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46) these cases though, one expects a sizable part of vwzp to be non-diffractive 

and decreasing as v- ~0. 

G. From the work of Cottingham47) there has been for some time 

now an expression for the neutron-proton mass difference in terms of dif- 

ferences of the electroproduction structure functions for the proton and neutron, 

integrated over v and q2. As is well known, the elastic contribution to the 

mass difference gives a result of the wrong sign. .48) More recently, Hararl 

has shown that for the neutron-proton mass difference the dispersion relation 

for the virtual Compton amplitude 5(v,q2) of Cottingham in general requires a 

subtraction, which at least explains our lack of success in calculating the mass 

difference using the contributions of low lying states to the dispersion integral. 

In general one cannot determine such a real subtraction constant in 

a dispersion relation just from a knowledge of the imaginary part (given by 

the electroproduction data in this case). However, if one assumes that the 

high energy behavior of the real and imaginary parts of the amplitude is 

that given by pure (and only one trajectory with a! 5 0 in this case) Regge 

asymptotic behavior (presumably due to A2 exchange in this case), then one 

can write sum rules which relate the subtraction to the Regge residue function 

and integrals over the electroproduction data. In the absence of neutron 

electroproduction data, one uses resonance saturation and finite energy sum 

rules to get the same thing. Recent analyses are rather discouraging - it 

still seems that even the correct sign does not come out of the calculations 49) . 

One can test the method of determining the subtraction constant in 

the case of the forward Compton amplitude for real photons. Here we already 

know the subtraction constant exactly - it is the Thomson limit,( and the 

b 
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imaginary part of the amplitude is given through the optical theorem by the 

recently measured total photoabsorption cross sections 8) . It has been sus- 

pected before that there may be a fixed pole at (IV = 0 contributing to this 

amplitude, i. e. ,, a real, non-zero constant term at high energies 50), but 

previous measurements of uT( yp) were not complete or accurate enough to 

show this conclusively. Such an extra real constant is just what could ruin 

our attempt to determine the subtraction constant, since it ruins the ratio of 

real to imaginary part predicted by pure Regge asymptotic behavior (which 

we have assumed in order to get the subtraction constant). From a re- 

evaluation5’) of the relevant sum rule and the dispersion relation using the 

total cross sections recently obtained from extrapolation of electron scat- 

tering, it appears that there is an extra (besides what Regge would predict), 

real, constant part in the Compton amplitude at high energies consistent in 

magnitude with the magnitude of the Thomson limit 52) . In other words, it 

appears that the method of determining the subtraction constant discussed 

above fails for the case of real Compton scattering. A similar53) extra, 

real constant in the asymptotic virtual Compton amplitude could very well 

be responsible for the ruination of our attempts to calculate the neutron- Y 

proton mass difference. 

7. Conclusion 

Finally, what will the immediate future tell us. As the previous 

discussion indicates, we still have two quite different viewpoints which can be 

used to explain the present data. Within the parton model these might be 

roughly labelled as those involving dominantly a small number of interacting 
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partons (e. g. , three quarks) and those involving dominantly an infinite 

number of partons (e. g. , a sea of quark-antiquark pairs). Looked at from 

a t-channel point of view in virtual Compton scattering, the first possibility 

corresponds to flordinarylr exchanges (like PI, p , AZ, . . . ) being responsible 

for most of the cross section, while the second corresponds to Pomeron 

exchange. In the-first case the Adler sum rule has a good chance of being 

right, while in the second case it is very likely wrong. 

The most obvious experimental distinction between the two (besides 

neutrino experiments) can be made by observing if vW2 goes down for large 

values of v/q2 (favoring the first model) or is flat (favoring the second). To 

establish this we want data for large.values of v/q2 for the largest q2 pos- 

sible, so that we are in the scaling limit. In addition one needs a separation 

of uT and us as far out in v/q2 as possible - something which is very dif- 

ficult experimentally. More likely, a real choice between the two models 

will first come from doing electroproduction off neutrons. From the first 

kind of model one expects in general sizable differences with respect to the 

proton, while in the second model the neutron and proton should be the same. 

Both of these experiments will be done within the next year at SLAC. 

Looking back at the discussion of high energy electroproduction in 

the last electron-photon conference, I am amazed at how far we have come 

in exploring the v - q2 plane experimentally. What was essentially a wilderness 

has now been rather completely mapped in a qualitative way, and in many cases 

we even know rather fine quantitative details of the landscape. One can only 

hope that by the time of the next conference there will be similar progress 

in understanding e the landscape in the v - q2 plane has the particular form 

which has been so beautifully mapped out experimentally in the past two years. 
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Figure 1 - 

Figure 2 - 

Figure 3 - Kinematics of inelastic electron-nucleon scattering. 

Figure 4 - The total photoabsorption cross section, cT(yp) measured in recent 

8) experiments . 

Figure 5 - 

Figure 6 - 

Figure 7 - 

Figure 8 - 

Figure 9 - 

Figure 10 - 

Figure 11 - 

Figure Captions 

Inelastic electron scattering from Aluminum and Cold atoms 1) . The 

incident energy is 400 keV and the final electron energy is directly 

proportional to the channel number. 

Inelastic scattering of 194 MeV electrons at 135’ form the C 12 

nucleus2). 

A kinematic map of the v - q2 plane. 

Fixed 8 lines in the v - q2 plane along which data was taken in the 

recent SLAC experiments. 

The spectrum 9) at 8 = 6’, E = 10.0 CeV (a) before and (b) after 

radiative corrections. The ratio of the radiatively corrected to the 

uncorrected cross section is shown in (c). 

Radiatively corrected spectra 9) at increasing energies and angles: 

(a) 6 = 6’, E = 7 GeV; (b) 6 = 6’, E = 16 GeV; (c) 6 = loo, E = 17.7 GeV. 

Kinematics of inelastic electron scattering in the parton model 15) . 

Plotk8) of VW2 versus w = 2MNv/q2 for (a) the 6 = 6’, E=7CeV“ 

data if R = 0 or ~0; (b) the 6 = 6’ data, except for the E = 7 GeV spectrum, 

for R = 03; (c) the 8 = 6’ data, except for the E = 7 CeV spectrum, for 

R = 0. 

Plotsls) of vW2 versus o = 2MNv/q2 for (a) the 6 = 10’ data for R = 03; 

(b) the 0 = 10’ data for R = 0. 



Figure 12 - 

Figure 13 - 

Figure 14 - 

Figure 15 - 

Figure 16 - 

Figure 17 - 

Figure 18 - 

Figure 19 - 
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Plot of VW from both the 8 = 6’ and 10’ data versus x = q2/2Mv 

assuming R = 0 and taking data points with q2? 1 GeV2 only. 

vW2 versus 2MNv/q2 from the 6 = 6’ and 10’ data assuming R = 0 

and taking data points with W L 2.0 GeV only. 

WI versus 2MNv/q2 from the 0 = 6’ and 10’ data assuming R = 0 

and taking data points with W 2 2.0 GeV only. 

F(x) = vW2 versus x = q2/2MNv for two llextreme?l cases of the 

parton model. The open circles indicate roughly the position of the 

“universal curve” indicated by the 0 = 6’ and 10’ data if R = 0. 

vW2 plotted versus v for the 8 = 6’ and 10’ data points with 

q2 = 0.75 f 0.075 Geg. Note that the zero point of the scale for 

vW2 lies off the figure. 

vW2 plotted versus v for the 0 = 6’ and 10’ data points with 

q2 = 1.0 f 0.1 GeV2. 

vW2 plotted versus v for the 8 = 6’ and 10’ data points with 

q2 = 2.0 rt 0.2 Gev2. 

Kinematics of electron-positron annihilation into a proton plus 

11 anything” . 
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