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ABSTRACT

The Faddeev formulation of the quantum mechanical three-body
problem iinmediately confronts us with the quéstion of whether we know the
two—particle wave function inside the range of forces. Since there is good
reason to believe, on generai grounds, lthat the exchange of a pair of pseudb-
scalar pions between two nucleons will yield a non-local interaction of range
ﬁ/2mﬂ_c, this question must be answered before further progress can be made
on the three-nucleon problem. Existing calculations reveal that the gross
features of the vthree—nucleon system can be explained by the non-local single
nucleon exchange mechanism, and that so far only the binding energy of the
triton and the doublet n-d scattering length can be shown to be sensitive to
the detailed physical assumptions about the two-nucleon interaction used in
the calculation., It is shown that the three-—pa‘rticle continuum state always
containg a long-range non-local effect even when fhe interactions between pairs
are strictly local and of finite range. It is conjectured that this long-range
effect might offer an experimental tool for ineasﬁring the two-particle wave

function inside the range of forces.

t at the Birmingham Conference on the Three-Body Problem in Nuclear and
Particle Physics, July 8-10, 1969.

* Work performed under the auspices of the U. S. Atomic Energy Commission.




It is a great pleasure to be back in Birmingham again, and to recall
my first year hére in 1950 as a Fulbright student. At that time I was hoping to
extend the phenomenologicai analysis of :"high energy' (32 and 350 MeV) proton-
proton scattering that Christian and I had made into the relativistic domain.
Like manyv another physicist before and sinceﬁ, I found no clean way in which to
anchor relativistic quantum mechanics in the non-relativistic limit, and had to
turn to other p'roblems. Recently, interest in the three-body problem has
forced me to re-examine this problem, and has led me to what I believe is a
clue to the requirements for the non—rélativistic limit of any strong interaction
quantum dynaxhics. Quife simply, Inow believe that any theory of a finite
number of strongly interacting particles will require a non-local description
of the interaction, even though the external energies of the separated particles
are small compared to their reét energies. If this ;s true, the atteinﬁt toderive
a "local potential” description of nuclear forces has been a mistake of serious
dimensions, and may have beena major source of the confusion characterized by
Goldberger1 with the phrase "Scarcely ever has the world of physics owed so
little to so many".

That the strbng interactions are basically non-local is by no means
a novel idea, and there are many ways to arrive at it. However, study of the
physics needed to solve any problem involving three strongly interacting par-
ticles brings out the underlying non-locality of the interactions in an interesting
way. Iassume that at this conference and this date, there is no point in deriving
the Faddeev equations, and that I can go immediately to the driving terms and
kernels which, for a single angular momentum state of a single interacting

pair, depend on the two-particle t matrices tﬁ(p, q;z) in the three-particle




Hilbert space. It is also presumably well kmlown2 that it is unnecessary to
start with the full dependehce on all three vari?.blés, since a knowledge of the
half off-shell tch,q;q2/2u) - l(q,p;q2/2].l.) allows both the full t and the inter-
action term Vl(p, Q) = Vl(q,p) to be computed from the Low equation t(z) =
V + VG(z)V. The physical significance of this half off-shell t matrix is that
it contains both the scattering phase shift 62 [tl’(k,k;kz/Zu) = exp(iél) sin 6£/k]
~ and the behavior of the two-particle wave function inside the range of forces.
Explicitly, if Wl(kr) is the wave fuﬁction which approaches n!l(kr) - ctg 61 j 2(kr)
asymptotically, 1:hen3 » | (
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Since two-particle scattering experiments only provide information on Bﬂ(k)
(and only over a finite range of enérgies.at that), the structure of the three-
body problem forces us to ask the question of what we know about the wave
function inside the range of forces. Attempts have been made to avoid the
question by arbitrarily d#suming that if some model for the interaction is
fitted to the phase shift, and the wave function then computed from that model,
the off-shell effects will be unimportant. But this has been proved false.
Local models fitted identically either to the same phase shift or to the same
bound-state wave funétion as a separable model give several MeV differences
in the binding calculated for the symmetric S state of the triton4. The locality

of non-locality of the nuclear force is thus a matter of practical significance

and not just of theoretical interest.




Direct experimental information on the non-locality of strong inter-
actions is hard to come by. Insofar as the electromagnetic and weak charges
and currents follow the strongly interacti;lg particle distribution, electro-
magnetic and weak form factors of bound two—pa_rticle systems do provide a
measure of the type we are seeking. However, thé way to connect the charge-
current to the matter distribution is unéeriain for reasons that involve the
- same physical question of non-locality in the strong interactions, so precise
interpretation of these resuits is frustra_ted. In particular, the inc'lio::ai:ion5
that the non-local Feshbach-Lomon wave function for the deuteron gives a
better fit to the low energy e-d scattering data than the local Partovi wave
functién is controversial because of these (and other) uncertainties. In other
instances as well, uncertainties in the theoretical interpretation set in at just
about the same level as the effects expected from local-nonlocal differences.

Although information from elastic scattering in a single two-particle
state gives no way to discriminate local from non-local interactions, if we
assume (arbitrarily) that the same interaction is responsible for scattering in
several different angular momentum states some progress is possible. The
only case I know of with‘sufficient data to make the test is that of the singlet~
even two-nucleon states.- Since this system has no bound states, the Gelfand-
Levitan theorem asserts that knowledge of the 1S0 phase shift at all energies
would uniquely determine the local potential responsible also for scattering in
1D2, 1G4. ... sStates. Of course, phase shifts above 400 MeV are not reliable
(or even real), but we do know that the longest rangé interaction in the system
is due to one pion exchange (OPE). Fixing this, and fitting the intermediate

range attraction and short range repulsion to the scattering length, effective




range, and zero in the phase shift near 250 MeV, we find6 that the 1D2 and

IG 4 phase shiftsv are in fact uniquely predicted over the same energy range,
as illustrated in fig. 1. Thus the lack of knbwledge of whether to use an in-
finitely repulsive hard core, or a soft (Yukawa) core with the w mass, does
not prevent a prediction of these higher phases fxiom knowledge of the 1SO

. phase, E the interaction is local. The figure also shows that this prediction
fails at several energies by sevéral standard deviations, conclusively dis-
proving the assumption of locality for the singlet-even two-nucleon interaction,
One might distrust this simple calcﬁlation, but after two years of strenuous
efforts to find a local potential with an OPE tail which would fit both ') and!D,
phases, Reid7 was forced to conclude that it is impossible. But disproof of
locality dies not tell us much about the structure of the non-locality. For in-
stance, the sign and épproximate magnitude of the discrepancy shown here is
predicted as a velocity-dependent effect of vector meson exchange, but this
explanation is obviously not unique.

Turning to theory, we encounter either controversy or lack of clarity
in the available results. The successful extraction of the local e2/r potential
from quantum eleétrodyharhics (once the infréred and untraviolet problems
were manipulated away) étirnulated the search for similar results in meson
theory. The corresponding approximation in meson théory does give the
longest~range part of the potential (OPEP), and if the pion were scalar, the
fact that tz /Hc = 0.08 might have allowed a useful local approximation for nuclear
forces; after all, non-local effects in QED (vacuum polarization, anomalous
magnetic moment, Lamb shift, ...) come in only in order (ez/ﬁ ¢)? and higher,

and can be ignored for many problems. However, the emission and absorption




of two pseudoscalar pions goes primarily through nucleon-antinucleon states,
and brings in &= (2Mn/m,n_ )2 £2 = 14.64 as the basic coupling constant. This
means that in any region lesé than H/Zmﬂ’_c from a nucleon, we are likely to
find the nucleon in this nuéleon;-antinucleon pair, and since this is indistinguish-
able from the original nucleon, it is impossibl;a to localize a nucleon within
. ﬁ/2m7rc = 0,7 fm The conclusion ééems .inescapable én general grounds, and
tells us immediately that the two—ﬁucleon interaction must be intrinsically non-
local over regions of this size. A number of theoretical calculations have tried
to show this over the years, the latest I know of being that of Hussein Partovis.
Starting with Breit and Bouricius, the non-local boundary condition modél has,
with various refinements, been the basis of successful phenbmenologies. Yet
somehow, the idea that any theory of the strong interactions should start
(rather than end) with a non-local framework has not won wide acceptance. To
speculate on why this idea has been resisted would take us too far away from
our task at hand. |

Regardless of whether or not fhe elementary particle interactions
are non-local, any three- (and a fotiriori any multi- ) particle quantum mechani-
cal strongly interacting system will exhibit significant non-local effects. This
is easy to show for the specific case of the three-nucleon system, since it has
by now been amply demonstré.ted that the basic driving mechanism for that
system is the noﬂ-local single nucleon exchange process. The superficially’
apparent cause of this non-—loc;ality for this specific mechanism is the large
size of the deuteron coupled with the identity of two of the particles. However,
a simple example developed below shows that for any system with local two-

particle interactions of strictly finite range, and whether or not there is a two-




particle bound state or identity of particles, ‘there must be a long-range non-
local effect of this type. That analysis will also illustrate how three-body
continuum final states might be used as a tt)!bl for measuring non-locality in
the two-particle subsysfems, but unforfunately th_e last part of the analysis is
still incomplete. | . '
Rathei' than give a historical account of the growing awareness of
the dominant importance of single nucleon exchange in the three-nucleon system,
I will start with my current understanding of the situation — which has been
derived primarily from useful discussions with A. C. Phillips — and bring in
references to earlier work at the points hwere they seem most relevant. The
most stri‘king qualitative feature of low energy n-d scattering is the strong
energy variation of the doublet effective range function k ctg 0y just above
dlastic scattering threshold. The experimental situation a couple of years ago9
is illustrated in fig. 2, and the latest data bearing on this point will be dis~
cussed by Seagrave later in this conference. Phenomenologically, this behavior
can be accurately described by a pole in-k ctg 62 (a zero in T) lying just below
elastic scattering threshold; the possible existence of this pole was pointed out

long ago by Gammel, Baker and Delveslo

. Ifsucha phenomenological model
is properly fitted to the friton pole, 2y, and the effective range parameter
whichgives approximately the right variation tq k ctg_62 above threshold, then
a ghost pole appears in T between the triton pole and threshold. No simple
potential model will reproduce this behavior. If a potential is used which
gives the correct binding energy to the triton (treated as an n-d bound state)
and a virtual state above elastic threshold adjusted so as to give a zero in T

just below threshold, then a, had the wrong sign. It has sometimes been
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assumed, by myself as well as

necessary zero between a bound and a virtual state, and that this interpretation
was supported by the existence of two boﬁnd states of three bosons, the upper

one of which would become virtual and the inclusion of spin. That this "ex-

dict for a2 .

All vthese facts, and much more, fall into place when we examine
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As noted by Phillips and Barton™, by Reinerlz, and by Blankenbecler, Gold-

litude whi
berger and Halpern13, by far the nearest singularity to elastic threshold is
singlé nucleon exchange. For the quartet state, this corresponds to a long-
range repulsive interaction (due to the exclusion principle acting between the
two neutrons), and can be approximated by the simple effective range formula
using a repulsive pole near threshold and a short range (large negative kz)

pole to account for the effective range. Following Phillips and Bartonu, we

use the deuteron binding energy as the unit, by taking z = E/¢ q- 3k2/ 4Me g;

the single nucleon éxchange cut then lies between z = -3 and -1/3, and breakup
threshold at z =+ 1. F1tt1ng the quartet scattering length and effective range,
the repulsive pole falls at z = - 0.5, near to the beginning of the single nucleon
exchange cut, which begins to demonstrate the reasonableness of the model.
Since the single nucleon cut in the doublet state is attractive and of half the
magnitude of that in the quartet state (as a consequence of the exchange

nature of the force and the symmetry of the wave function), the next step is to
approximate the cut by a pole at the same position as in the quartet state but -

with a positive residue of half the magnitude (this is the ""ghost'" pole mentioned




earlier), put in the triton pole, and adjust fhe position of the short-range pole
to fit 295 the rapid energy vai'iation of k ctg 62 is then reproduced.

Rather than approximating the single nucleon exchange cut between
z =-3 and z = -1/3 by a single pole,’ it is also possible to include it exactly
if some assumption is made about the d-(n,p) vertex. The residue at the deuteron
pole in the two-nucleon t mafrix, which determines the strength of this cut, is
} just the squaré of the as ympfotic normalization of the deuteron wave function.
For forces of zero range, N2 = -2y =-2Me d/ﬁz, and in the shape-independent
approximation N2 = =291 -'yvrt), where ft =2( -1/'yat)/'y is the triplet effective
range. The latter approximation is still in a sense zero range, since it gives
no momentum dependehce to‘ the vertex; for instance, the Hulthén Wave function
and the Yamaguchi separablebpotential wave function would give an additional
(ﬁz + k2)"2 structure to the vertex. Ignoring this structure, Barton and Phillips14
find that thg solution of the N/D equations for the quartet state, using only single
nucleon exchange and elastic unitarity, gives a 4= 6.3 fm as compared with the
experimental value of 6.13 + 0.04 fm which will be reported by Seagrave here.
This works for the quartet state primarily because the single nucleon exchange
interaction is repulsive. For the doublet state, the long range attractive inter-
action due to single nucleon exchangé concentrates the wave function at shorter
range and makes the calculaﬁon sensitive to shorter range forces, a sensi-
tivity which is excaberated by the pole in k ctn 62. Therefore, for the doublet
state, the experimental value of a, is used as a subtraction constant. This in
effect introduces a zero range interaction to mock up the rest of the complicated
cuts on the left and the inelasticity corrections on the right and leads to rea-

sonable agreement with the rather poorly known 2S phase shifts below breakup
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threshold.  Having a simple analytic approximation for k ctg 62, Barton and
PhillipsM_ can easily show that for valué_s of a, near that given by experiment,
the prediction is independent of 2, except in the immediate neighborhood of
threshold (z < 0.05); iﬁ other words, single nucleon exchange predicts the
doublet: ' effective rangé" as accurately as it does the _quartet parameters.
This rhodel also predicts a triton pole at -6.42 MeV rather than at the experi-
mental position of - 8.48 MeV. Exact agreement is hardly to be expected since
the model here treats the triton as a bound state of the n-d system, while the
actual triton is primarily in a symmetric-S state of rather different structure
than the wave function implied by this N/D calculation; fufther, the triton pole
lies below the energy range for which the model is valid. It may be of interest,
however, that in the simple pole calculation reported above, the residue of the
triton pole — which is precisely the asymptotic normalization of the neutron
in the n-d decomposition of the triton wave function, corresponds closely to
the value for this normalization computed from the separable models discussed
below. |

A much more elaborate, numerical N/D calculation has been carried
through by Avishai, Ebenhfih, and Reinerls, who include two-nucleon exchange,
through it the virtual sihglet state, the Yamaguchi vertex correction, and the
effect of the inelastic breakup cut as given by a model for the quartet state,
and by "experiment" for the doublet state. Since a number of simplifying
assumptions went into the "experimental" phase shift analysis which produced
the inelasticity and with which the calculation is compared, the significance of
the global agreement of the results with experiment up to 25 MeV is a little

hard to interpret. It does seem that the gross features of low energy n-d
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scattering can be reproduced by this type of on-shell model independent of
more detailed dynamical considerations, once the sensitive parameter a9 is
given the'e:q)erimental value. However, thé complexity of the calculation is
comparable to that of calculations made with sepgrable interactions; the latter
require no arbitrary inelasticity corrections, but have less. flexibility in the
choice of driving terms.

For a system of three identical bosons, the ''single nucleon" exchange
cut has twice the strength of that in the doublet state discussed above. Barton
and Phillipskl.4 show that this gives an immediate and simple explanation of the
first exc;ited of this system found by Osborn using local potentials. Their N/D
calculation shows that this state necessarily appears at that interaction strength
which produces a bound pair. Since it is a direct consequence of particle ex-

change, it must occur in the local model of Osborn16

of Aaron, Amado, and Yam17, as indeed it does. Why Ba.nder18 found instead

, or in the separable model

a ghost state is still not clear; it may be that he mistook the branch point at the
start of the single particle exchange cut for a pole, since his conclusion was
based on numerical calculations rather than analytic formulae.

i, instead of uéing the single nucleon exchange diagram as the
driving term in an N/D calculation, if is used to formulate an integral equation
for the T matrix, one obtains the Amado19 model. If the freedom to treat the
deuteron as partly an elementary particle in that model is not exploited, this
becomes identical to the separable potential model pioneered by Sitenko and
Kh:a.rchenko?'0 and by Mitrazl. Since Amado will discuss the successes of this
model in more detail later in this conference, Iwill ohly note here that it gives

a reasonably accurate representation of the higher partial waves as well as the




S waves. Inthe zero range approximation, this model was already correctly
formulated by Skornyakov and Ter-Matr’ciJrosyan22 in 1956. They show that it
gives 5.9 fm for a 4; it has ﬁot been sufficiently appreciated that in fact a 4 is
determined to 10% knowing only the binding energy of the deuteron. | In the
doublet state, the zero range approximation gives infinite binding to the triton,

23, which helpéd to obscure the funda-

as pointed out in the thirties by Thomas
mental signifiéance of their result. So far as the higher partial waves go, in
1953 Christian and Gza.mmelz4 showed that the loose structure of the deuteron
allows them to be calculated to reasonable accuracy in the Born approximation,
which again amounts to computing theﬁl from single nucleon exchange; hence

if the S phases are treated phenomenologically (e.g. by an effective range
eﬁcpansion), tixe n-d differential cross section can be accurately reproduced in
this way. More recently, Purrington and Gammel25 have shown that if the S
and D phases are fitted phenomenologically, and all others taken from single
nucleon exchange (Born approximation), the n-d polarization and differential
cross section can both be explained at 9.3 MeV.

The conclusion to which this work converges is that all the gross
features of n-d elastic scattering and polarization at low energy are readily
understood in terms of single nucleon exchange; when ‘supplemented by
the impulse approximation, ‘ this understanding can be extended into the higher
energy region. ‘This is a great theoretical triumph, but has the melancholy
corrolary that theorists will have to work very hard to get much more infor-

mation about three-body dynamics from the three-nucleon system. The only

aspects of the system which have so far been shown to be at all sensitive to

the details of the physical assumptions behind the calculations are the two
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numbers €, and a,, which does not give us much theoretical leverage. This
sensitivity is clearly bi'ought out by the type of plot instituted by Phillipsze,
as illustrated in fig. 4. We éee that it is- necessary for accurate calculations
of € and a, to know both the n-p singlet effecti_ve range and the percentage D
state in the deuteron to high precision if these uncertainties are not to vitiate
any calculation. Fortunétely, it appears likely that the charge-independent
prediction :p =2,73 = 0.03 F is now in agreement with emerimentz, although
continued e:cperimental scrutiny of that problem is still called for. But the
percentage D state is only known indirectly.. Models such as the Hamada-
Johnston or Yale potentials which have the one pion exchange potential plus
shortér range phenomenological attraction outside an infinite repulsive core
give about 7%- D state. Models such as that of Lomon and Feshbach, which
are quite similar to the hard core models outside about 1 fm but replace the
strong attraction from 0.48 - 0.7 fm plus hard core at 0.48 fm by ;'m energy in-
dependent boundary condition at 0.7 fm, require '6n1y‘ab9ut 41% D state. The
latter models seem to be in better agreement with low energy e-d scattering5,
but this is controversial. _ |

The HamadafJ ohnston potential raises almost insuperable obstacles
to accurate vafiationél calcul.ations, of €4 and only after herculean efforts ex-
tending over a decade have Delves, Blatt, Pask and Davie:s27 succeeded in
arriving at a cohvincing result of 6.7 + 1.0 MeV as compared to the experi-
mental value of 8.48 MeV. Unfortunately, ‘no other model which gives a com-~
parable fit to the n-p and p-p elastic scattering data has been given this much

attention. We therefore cannot know whether to ascribe the discrepancy to the

neglect of three-body forces, to the Hamada-Johnston potential having too much
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tensor force (too high percentage D state), or to the local potential plus hard
core wave function being unrealistic because of an intrinsic non-locality in the
nuclear force. That the lafter is a serious possibility is illustrated by com-~
parison of the extremely non-local (separable) Yamaguchi model with equi-
valent local potentials by van Wageningen's - époup4. If one requires equiva-
lence by making the phase shift the same at all energies, € " shifts by a couple
of MeV one wé.y, while requiring equivalence by fitting the same deuteron wave
function shifts in a comparable amount the other way.b Work on these compari-
sons is becoming easier. For,instancé, Fiedeldeyzs, using the method of
Chadan, has shown how td construct second rank separable potentials which

fit both the wave function and the phase shift, and that this ties down the off-
shell behaviof pretty closely, at least in his example. Malfleit and 'I‘jon29 have
found a rapidly convergent series for computing both €, and the wave function
for local potentials including short-fange repulsion. Bray.sshaw30 has found a
way to remove the singularity from the continuum problem without contour
deformation. Kim31 has a new numerical method that looks simpler than either
two-dimensional Faddeev or variational calculations. Many of these advances
in technique will be reported later in the conference. But the fact remains that
none of these improvements by themselves,except possibly that of Brayshaw,
will increase our knowledgé of the three-nucleon system oné iota. The time is -
past when simple model calculations of €, and and a, are useful. Only if these
are used for the starting point of a calculation of theoretically viable models

of the nuclear force, and the effects of physical uncertainties in those models
on the calcﬁlations are carefully explored, can progress be made on this aspect

of the problem; that is hard work, but almost anything less is by now meaningless.




1

theoretical consesus on the non-local structure of the muclear force, and suf-
ficiently precise understanding of that structure to incorporate it into three-
nucleon calculations, it behooves us to look for an experimental method to
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mechanism is already a non-local effect in the n-d system, considered as a
two-body system, since the identity of the two neutrons in the system prevents
our distinguishing which is the incident particle and which is the bound particle
at distances of the order of the duetsron radius. But we have seen above that
this effect is both well understood and sufficient to explain most of the features
of the n-d system. However, there is a more general lohg-range non-locality
in the three-particle continuum final state, which might give us a new handle
on the problem, and which I now demonstrate.

- Since the effect occurs even in the simplest three-particle system —
that of three identical bosons interacting with finite range local potentials in
states of zero relative angular momentum — and the reduction of the general
problem in configurations space has already been givenz, I turn immediately

to the J=0 state of that system, which obeys the simple equatlon

[, 33 F2- wm]U(y,a) =Wy fd/,,,;)_ﬁ Uty
rW(X)fde U(Fma Fge 6)
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were known and of short range, we could solve the problem immediately by

constructing the Green's function for the A.left hand side in the usual way from
the complete set u p(x) sin qy (where uI!)' + p2 b =Wx)u, u (0) =0, andu_=
the right. However, we can see immediately that, since U is of order unity

asymptotically, the source term falls off only like 1/y, and the integral will

The origin.of this singularity is illustrafed in fig. 6. Since the source term
is an outgoing circular wave from the other two Faddeev channels (here identi-
cal to the initial channel), the amplitude falls off only like 1/y, and so long as
the remaining pair with relative coordinate x are within the range of forces,
a scattering can occur to the final continuum state. Thus there is a long-
range (non-local) effect in any three-particle quantum mechanical system,
even though the pairwise forces are local and Qf finite range. Note also that
this effect will persist if the par_ticles are distinguishable. Further, this
effect is a probe of the two-particle wave function within the range of forces
using directly the strong interaction wave function which we wish to explore.
Hence a practical scheme for exploiting this effect in any three-body system
will provide the tool we seek.
The analysis of this system can be taken one step further. If the
interaction W(x) = 0 for X >R, then the source term exists in the infinite
strip illustrated in fig. 7a. However, if we examine the region in which we
need to know U(x,y) in order to compute this source term, we find it is given

by the diagonal strip illustrated in fig. 7b. The overlap region (fig. 7c) is




forces. If we assume the wave function known within this region, then in the
remaindér of fig. 7b the particles are free and on-shell, and can be expanded

1
in terms of the complete set exp (i(px+ 6p)) sin (z -pz)'ﬁy, and the coeffi-

this state. Thus T(p) can be expressed in terms of a one-variable integral
equation with an inhomogeneous term coming from the overlab region in fig. 7c
and the initial inh\cmogeneour
are on-shell, so this formulation does eiiminate all multiple scattering singu-
larities. Unfortunately, closer examination reveals that the kernel still con-
tains the three-particle branch cut in z, so more work is required before an
explicit method for inverting this equation can be devéloped.* However, if
this can be done, the method gives immediately an integral équation for U(x,y) |
in the finite region of fig. 7c. Further, even without a solution in that region,
any parametrization of this interior U (or its value on the boundary) will yield
immediately an expansion of the three-particle T matrix in terms of two~
particle off-shell t matrices. Thus it will give a phenomenology, applicable
for instance to overlap_piﬁg resonances in the Dalitz plot, comparable to the
phase-shift analysis of two-particle final states. It would also give the correct
three-body generalization of the Watson-Migdal final state formalism for short-
range production mechanisms.

I hope someone will soon be able to turn the crank on this problem

the final notch and produce this phenomenology; it could provide the tool we
need for exploring strong interaction wave functions within the range of forces.
* It has now proved possible to demonstrate the compactness of the kernel and

hence to guarantee that at least a numerical inversion is possible; cf.
SLAC-PUB-668 (submitted to Phys. Rev. Letters).
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FIGURE CAPTIONS

Proof of the failure of the locality assumﬁtion for the singlet-even nucleon-
nucleon state (from ref. 2). ‘

Low energy behavior of n~d 2S scattéring (from ref. 9).

Singularity structure of the n-d elastic amplitude and thé simple pole
approximations to it.

Comparison of calculations of € and ‘;’12 as given by A. C. Phillips, Nuclear
Physics A107 (1968) 209; V. F. Kharchenko, N. M. Petrov and S. A. Storozhenko,
Nuclear Physics Al106 (1968) 464; and G. L. Schrenk and A. N. Mitra, preprint
and Brela Symposium. The much more extensive results obtained by the
second group in the reference cited and in the earlier publication by A. G.
Sitenko, V. F. Kharchenko and N. M. Petrov, Physics Letters 21 (1966) 54
have mostly been omitted in order not to confuse the plot. They use only 4%

D state, and are slighﬂy éhifted from Phillips' results (open circle, solid
circle, open triangle) because of the slightly different value for ay, as is
illustrated for r g = 2.7 fm by the open square labeled lt' Values for other
values of ry also agree with Phillips if shifted by about the same amount. The
value labeled 3 ¢ is obtained 'by these authors by cubing the Yamaguchi form
factor in the central but not the tensor parts of the interaction. Results from
Schrenk and Mitra are not directly comparable, since they include a second
rank singlet potential fitted by Naqvi and Gupta. The (C + T)Y points use the
same (Yamaguchi) triplet interaction as Phillips 4% D state points. The '

(C + T)N points use the Naqvi triplet parameters, omitting the L-S term. The

designation of the singlet model used (N, Gl’ G'1 R G'l' , G'z, G2, G3) refers to
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parameters taken from Nagqvi and Gupta by Schrenk and Mitra, and occurs in
the same order along both dotted curves; for clarity the points are labeled

only along the (C + T)N curve (from ref. 2).

Domain of integratioh fdr the source term in the equal-mass three body

problem.

Origin of the iong-range non-local effect in any thre-e—body' system (see text).
Domains where (a) there is a long-range source term, (b) the wave function
need be known to compute this term, and (c) the overlap, whiph is also the

region in which all three particles are within the range of forces.
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