STUDY OF THE REACTION $\gamma p \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} p$

ABOVE 4.5 GEV AND EVIDENCE FOR A πA_{1} ENHANCEMENT*
M. Davier, ** I. Derado, *** D. C. Fries, \dagger F. F. Liu, R. F. Mozley, A. Odian, J. Park, W. P. Swanson, F. Villa, and D. Yount $\dagger \dagger$

Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

ABSTRACT

We have studied the reaction $\gamma p \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} p$ between 4.5 and 18 GeV . About 75% of these events contain the resonances Δ^{++}and ρ^{0}. Evidence is presented for a πA_{1} enhancement with $\mathrm{M}=1.55 \pm 0.04 \mathrm{GeV}$ and $\Gamma=0.26 \pm 0.11 \mathrm{GeV}$. Comparison is made with the $\pi^{+} \pi^{-}$mass distribution in the reaction $\gamma p \rightarrow \pi^{+} \pi^{-} p$.
(Submitted to the International Symposium on Electron and Photon Interactions at High Energies, Daresbury, September 1969.)

[^0]In a multibody photoproduction experiment done with the 2.2 -meter SLAC streamer chamber in an 18 GeV bremsstrahlung beam, 663 events of the type:

$$
\begin{equation*}
\gamma \mathrm{p} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \mathrm{p} \tag{1}
\end{equation*}
$$

have been measured and analyzed. The geometrical and kinematical analysis is described elsewhere. ${ }^{1}$

Reaction (1) is interesting as it could reveal the existence of new vector mesons of higher mass decaying into 4π rather than into 2π. In order to study this problem we selected 518 events with photon energies above 4.5 GeV . About 75% of reaction (1) goes into well-known resonances; we observe the following channels:

$$
\begin{align*}
& \gamma p \rightarrow \pi^{+} \pi^{-} \pi^{-} \Delta^{++} \tag{2}\\
& \gamma p \rightarrow \pi^{+} \pi^{-} \rho^{o} p \tag{3}\\
& \gamma p \rightarrow \pi^{-} \rho^{o} \Delta^{++} \tag{4}\\
& \gamma p \rightarrow A_{1}^{ \pm} \pi^{\mp} p \tag{5}
\end{align*}
$$

To obtain cross sections we fitted each channel with an incoherent superposition of peripheral phase-space ${ }^{2}$ and a Breit-Wigner form for the resonance. ${ }^{3}$ For the Δ^{++}and ρ^{0} we used:

$$
\begin{aligned}
\mathrm{BW}(\mathrm{~m}) & =\frac{\mathrm{m}}{\mathrm{q}} \frac{\Gamma(\mathrm{~m})}{\left(\mathrm{m}^{2}-\mathrm{m}_{0}^{2}\right)^{2}+\mathrm{m}^{2} \Gamma^{2}(\mathrm{~m})} \\
\Gamma(\mathrm{m}) & =\Gamma_{0}\left(\frac{\mathrm{q}}{\mathrm{q}_{0}}\right)^{3} \mathrm{R}
\end{aligned}
$$

where $q\left(q_{0}\right)$ is the center-of-mass momentum at the mass $m\left(m_{0}\right)$ and

$$
\begin{array}{ll}
R=\frac{2.2 m_{\pi}^{2}+q_{0}^{2}}{2.2 m_{\pi}^{2}+q^{2}} & \text { for } \Delta^{++} \\
R=\frac{2 q_{0}^{2}}{q_{0}^{2}+q^{2}} \quad \text { for } \rho^{0}
\end{array}
$$

The experimental data and fitted curves are shown in Fig. 1 and Fig. 2a, b; the corresponding cross sections are given in Table 1.
$2 p \rightarrow \pi^{+} \pi^{-} \pi^{-} \Delta^{++}$
The 3π mass plot in the reaction $\gamma p \rightarrow \pi^{+} \pi^{-} \pi^{-} \Delta^{++}$does not show any significant structure in the A_{1} and A_{2} mass region. The reaction $\gamma p \rightarrow A_{2}^{-} \Delta^{++}$has been observed at 5.25 GeV , with a cross section of $0.7 \pm 0.3 \mu \mathrm{~b} .^{4}$ From our data we can set a limit of $0.2 \mu \mathrm{~b}$ averaged between 4.5 and 18 GeV .
$2 p \rightarrow \pi^{-} \rho^{0} \Delta^{++}$
We have also studied the systematics of the quasi-three-body reaction (4). At these high energies one might expect diffraction dissociation producing highmass isobars decaying into $\pi \Delta$:

$$
\begin{equation*}
\gamma p \rightarrow \rho^{0} N_{I}^{*}=\frac{1}{2} \tag{6}
\end{equation*}
$$

Since we do not observe Δ° production, we can state that not more than 30% of reaction (4) proceeds through this type of diffraction dissociation.

To study the possibility of other mechanisms, we displayed our data in a longitudinal phase-space diagram. ${ }^{5}$ Figure 3a shows the polar diagram of
longitudinal center-of-mass momenta and Fig. 3 b shows the radial projection. The striking effect is the accumulation of events in the region where π^{-}has a small longitudinal momentum and $\rho^{0}\left(\Delta^{++}\right)$a large forward (backward) longitudinal momentum. The plot indicates that the π^{-}is connected with the Δ^{++}in less than 20% of the cases, and thus is consistent with the 30% limit mentioned above.

The momentum transfer distributions fitted to the form $A e^{-B\left|t-t_{\text {min }}\right|}$ give the following numbers:

$$
\begin{aligned}
& \mathrm{B}=6.7 \pm 1.5 \mathrm{GeV}^{-2} \text { proton to } \Delta^{++} \\
& \mathrm{B}=3.7 \pm 0.4 \mathrm{GeV}^{-2} \text { photon to } \rho^{0} \\
& \mathrm{~B}=1.0 \pm 0.4 \mathrm{GeV}^{-2} \text { photon to } \pi^{-}
\end{aligned}
$$

$y \mathrm{p} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \mathrm{p}$
The unselected 4π mass plot shows no significant structure apart from a possible excess near 1.5 GeV mass (Fig. 4a). This shoulder is enhanced when events which contain a Δ^{++}are removed ($\left.1.16<M_{\left(p \pi^{+}\right)}<1.32 \mathrm{GeV}\right)$. This is to be expected if the effect is connected with the 4π above (Fig. 4 b); it should be noticed that the Δ^{++}cut does not distort the 4π mass phase space appreciably because the background under the Δ^{++}peak (see Fig. 1) is small.

With the same Δ^{++}cut, the 3π mass spectrum shows a pronounced peak near the A_{1} mass (Fig. 5a); this peak is enhanced by requiring that two of the 3π are in the ρ^{o} mass band (Fig. 5b). A less significant peak is seen at the A_{2} mass. Although the former peak has not yet been studied in detail, we tentatively identify it as the A_{1} because of its mass and apparent $\rho \pi$ decay.

In order to determine where the A_{1} signal came from, we studied the 3π mass spectrum for different 4π mass regions (Fig. 6a,b,c). A strong A_{1} peak appears when the 4π mass lies between 1.4 and 1.8 GeV . This selection of $M(4 \pi)$ appears to contain all A_{1} observed in our sample. On the plot containing
both positive and negative 3π combinations, the width of the A_{1} appears broader than the accepted value. In Fig. 7, where the positive and negative combinations are plotted separately, we see that each charge state has a width consistent with 80 MeV , but the masses are shifted relative to each other. This shift would seem to account for the apparently large width. The mass of the peak of the combined plot (Fig. 4c), is about 1115 MeV . Figure 4 c represents the 4π mass plot with the 3π mass in the A_{1} band ($1.015-1.215 \mathrm{GeV}$) and shows evidence for a broad peak.

To understand the background and possible reflections through the various cuts, we generated Monte-Carlo events according to the reactions (1), (2), (3), (4) and (5), using observed momentum transfer distributions. The Monte-Carlo distributions fit the experimental plots well (Figs. 1, 2, 4, 5, 6) so that we feel confident that we understand the background in the 4π spectrum. Furthermore, this background describes the data well when cuts are made in control regions, below and above the A_{1}. Assuming that the enhancement corresponds to a single resonance, the fitted mass and width are:

$$
\begin{aligned}
& \mathrm{M}=1.55 \pm 0.04 \mathrm{GeV} \\
& \Gamma=0.26 \pm 0.11 \mathrm{GeV}
\end{aligned}
$$

In Table 2 we show results of fitting the momentum transfer distributions from the photon to the A_{1} and to the 4π enhancement. We also give the forwardbackward asymmetry of π and A_{1} in the πA_{1} helicity frame which is consistent with uniformity.

To see if the same effect is present in 2π decay, we consider the reaction

$$
\begin{equation*}
\gamma p \rightarrow \pi^{+} \pi^{-} p \tag{7}
\end{equation*}
$$

Figure 8 shows the $\pi^{+} \pi^{-}$mass plot where we combine our data together with DESY ${ }^{6}$ and SLAC ${ }^{4}$ bubble chamber data above 5 GeV . An enhancement similar to the one observed in the πA_{1} channel, although less significant, is observed with the following parameters:

$$
\begin{aligned}
& \mathrm{M}=1.54 \pm 0.02 \mathrm{GeV} \\
& \Gamma=0.24 \pm 0.08 \mathrm{GeV}
\end{aligned}
$$

If we examine lower energy data at $4.3 \mathrm{GeV}^{7}$ and recently available data at $4.7 \mathrm{GeV}^{8}$ no effect is observed; however, problems of Δ^{++}reflection are more severe in the lower energy region.

If we were to interpret the two effects as coming from the same resonance, we find the following branching ratios:

$$
\begin{array}{ll}
\pi^{+} \pi^{-} & 0.6 \pm 0.25 \\
\pi A_{1} & 0.4 \pm 0.25
\end{array}
$$

giving a cross section for both channels of $1.1 \pm 0.5 \mu \mathrm{~b}$.
The Veneziano model ${ }^{9}$ predicts the existence of new $I=1$ vector mesons at masses around $1.25\left(\rho^{\prime}\right)$ and $1.65 \mathrm{GeV}\left(\rho^{\prime \prime}\right)$. If we fix the ρ^{\prime} mass at 1.25 GeV , we can derive from our data an upper limit of the cross section

$$
\sigma\left(\gamma p \rightarrow \rho^{\prime} p\right)
$$

as a function of the total width $\Gamma_{\rho^{\prime}}$ (Fig. 9). It is worth mentioning that $\Gamma_{\rho^{\prime}}$, might be as large as a few hundred MeV , due to a large $\pi \mathrm{A}_{1}$ decay width. ${ }^{10}$

It is not easy to interpret our 1.55 GeV enhancement in the present Veneziano scheme, both because of the mass and of the decay width in 2π.

ACKNOWLEDGEMENTS

The work reported here was participated in by a large number of people other than those mentioned on the title page. In particular, L. Schwarcz directed many phases of the construction. Among those whose help has also been of great value are the following: M. Aleksandrov, D. Blanchard, B. Boyd, J. Brandt, R. Chamberlin, R. Ching, N. Cooper, D. Danielson, H. Ebrahimi, B. Hirsch, D. Lebet, V. Lee, R. Leedy, E. Maninger, D. Maue, E. McNerney, A. Omahen, F. Plunder, T. Pulliam, W. Quiett, P. Saunders, M. Schlesinger, G. Schultz, F. Shuster, J. Siebe, G. Tao, P. Thingstad, W. Wadley, and S. Weller.

In addition it is a pleasure to thank the accelerator and computer operating groups and the machine shops for their assistance.

1. M. Davier, I. Derado, D. Drickey, D. Fries, R. Mozley, A. Odian, F. Villa, and D. Yount, Report No. SLAC-PUB-613, Stanford Linear Accelerator Center, Stanford University, Stanford, California (1969) (to be published).
2. Observed t distributions were used in generating the background curves.
3. J. D. Jackson, Nuovo Cimento 34, 1644 (1964).
4. J. Ballam et al., Report No. SLAC-PUB-625, Stanford Linear Accelerator Center, Stanford University, Stanford, California (1969).
5. L. Van Hove, Phys. Letters 28B, 429 (1969).
6. A.B.B.H.H.M. Collaboration, Phys. Rev. 175, 1669 (1968).
7. Y. Eisenberg et al., Phys. Rev. Letters 22, 699 (1969).
8. SLAC, Tufts, U.C., Berkeley Collaboration, submitted to the International Symposium on Electron and Photon Interactions at High Energies, Daresbury (1969).
9. G. Veneziano, Nuovo Cimento 57A, 190 (1968); and private communication.
10. P. H. Frampton, Stanford Linear Accelerator Center, Stanford University, Stanford, California, private communication.

CROSS SECTIONS FOR VARIOUS CHANNELS

Channel	$4<\mathrm{E} \gamma<8 \mathrm{GeV}$ $\sigma(\mu \mathrm{b})$	$8<\mathrm{E} \gamma<18 \mathrm{GeV}$ $\sigma(\mu \mathrm{b})$
$\gamma p \rightarrow \pi^{+} \pi^{-} \pi^{-} \Delta^{++}$	1.4 ± 0.5	1.0 ± 0.2
$\rho^{0} \pi^{+} \pi^{-} \mathrm{p}$	1.3 ± 0.6	0.5 ± 0.2
$\rho^{0} \pi^{-} \Delta^{++}$	1.4 ± 0.4	0.32 ± 0.08

These cross sections are the result of a preliminary analysis. An additional 20% uncertainty in absolute value of all channels may exist.

Momentum transfer distribution fitted to $A e^{-B\left|t-t_{m i n}\right|}$.

$$
\mathrm{B}\left(\mathrm{GeV}^{2}\right)
$$

Photon to 3π system	
A_{1}	Background
1.7 ± 0.3	2.6 ± 0.2

Photon to 4π system	
$\pi \mathrm{A}_{1}$	Background
5.8 ± 0.4	3.8 ± 0.1

Forward-backward asymmetry in $\pi \mathrm{A}_{1}$ helicity system.

$\pi \mathrm{A}_{1}$	Background
-0.06 ± 0.12	$+0.30 \pm 0.14$

LIST OF FIGURES

1. $\mathrm{p} \pi^{+}$mass distribution, 2 comb/event.
2. $\pi \pi$ mass distributions
a. All events, 4 comb/event
b. Events with $\Delta^{++}, 4$ comb/event.
3. a. Longitudinal phase-space plot $p_{L} \not p_{\gamma}$
b. Radial projection of Fig. 3a. The plot is made by defining $x=y=0$ at the center of the hexagon. Then $\mathrm{y}=\mathrm{p}(\rho) / \mathrm{p}_{\gamma^{\prime}}, \mathrm{x}=\left(\mathrm{p}\left(\Delta^{++}\right)-\mathrm{p}\left(\pi^{-}\right)\right) /(\sqrt{3} \mathrm{p})$, where $p(\rho), p\left(\Delta^{++}\right), p\left(\pi^{-}\right)$and p_{γ} are longitudinal components of c.m. momenta. The angular origin $\omega=0$ is defined by the dashed line of Fig. 3a.
4. 4π mass distributions
a. All events
b. Events with Δ^{++}removed
c. Events with Δ^{++}removed $+M(3 \pi)$ in A_{1} mass band (1.00 to 1.16 GeV).
5. 3π mass distributions
a. Events with Δ^{++}removed
b. Events with Δ^{++}removed $+\mathrm{M}(2 \pi)$ in ρ° mass band (0.66 to 0.84 GeV)
6. 3π mass distributions (events with Δ^{++}removed)
a. $\quad 1.0<\mathrm{M}_{(4 \pi)}<1.4 \mathrm{GeV}$
b. $\quad 1.4<\mathrm{M}_{(4 \pi)}<1.8 \mathrm{GeV}$
c. $1.8<\mathrm{M}_{(4 \pi)}<2.2 \mathrm{GeV}$.
7. 3π mass distributions (events with Δ^{++}removed) $\pi^{+} \pi^{+} \pi^{-}$and $\pi^{+} \pi^{-} \pi^{-}$are plotted separately.
8. 2π mass distribution in reaction $\gamma p \rightarrow \pi^{+} \pi-p$

DESY, 127 events $^{6} \quad 5<\mathrm{E} \gamma<5.8 \mathrm{GeV}$
SLAC HBC, 538 events $^{7} \quad \mathrm{E} \boldsymbol{\gamma}=5.25 \mathrm{GeV}$
SLAC streamer chamber (this experiment), 968 events $4.5<\mathrm{E} \gamma<18 \mathrm{GeV}$.
9. Upper limit on $\sigma\left(\gamma p \rightarrow \rho^{\prime} \mathrm{p}\right)$ for $\mathrm{M}\left(\rho^{\prime}\right)=1.25 \mathrm{GeV}$ as a function of $\Gamma_{\rho^{\prime}}$. (4.5<E $<18 \mathrm{GeV}$).

Fig. 1

Fig. 2a

Fig. 2b

$$
\begin{gathered}
\gamma p \rightarrow \rho^{\circ} \pi^{-} \Delta^{++} \\
4.5<E \gamma<18 \mathrm{GeV}
\end{gathered}
$$

$$
\text { LONGITUDINAL MOMENTA } \frac{P_{L}}{P_{\gamma}}
$$

Fig. Ba

Fig. 3b

Fig. 4a

Fig. 4b, c

Fig. $5 \mathrm{a}, \mathrm{b}$

Fig. 6a,b,c

Fig. 7a,b,c

Fig. 8

Fig. 9

[^0]: *Work supported by the U.S. Atomic Energy Commission.
 ${ }^{* *}$ Now at Laboratoire de l'Accelerateur Lineaire, Orsay France.
 Now at Max Planck Institut f. Physik and Astrophysik, Munich, Germany.
 $\dagger_{\text {Now }}$ at Kernforschungs Zentrum, Karlsruhe, Germany.
 $\dagger \dagger$ Now at University of Hawaii, Honolulu, Hawaii.

