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ABSTRACT 

A statistical model for the production of multibody hadronic states 

by e+e- annihilation is discussed, We associate the secondary hadron 

momentum distributions for colliding beam processes with the exponen- 

tially falling transverse-momentum distributions in hadron-hadron col- 

lisions, The consequence of this picture is that at high energies hadron 

multiplicity rises linearly with center-of-mass energy unlike the log s 

behavior for the multiplicity of secondaries in hadron-hadron collisions. 

If the total annihilat:ion cross section is assumed to have a power fall- 

off rvs-m, the n-pion cross sections follow a Poisson distribution with 

the most probable multiplicity n, = &/<E,> + 3-m and <ET>-375 MeV. An 

alternate statistical model based on jets is also briefly discussed. The 

storage rings now .being constructed or envisaged should easily distin- 

guish between the various possibilities. 
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I. INTRODUCTION 

In the next few years, electron-positron storage rings will be developed capable 

of producing hadron systems of total mass js up to -6 CeV or higher. Aside from 

predictions for the energy dependence of tho total annihilation cross section into 

hadrons, 192 there has been little discussion concerning the composition, multi- 

plicity, and other properties expected for the multibody hadron final states. 3 

It is not so clear what to expect, even qualitatively. The process e++ e- * hadrons 

at high energy differs from almost all other hadron processes inasmuch as (within 

the one-photon-exchange approximation) the hadrons are produced via the decay 

of an arbitrarily heavy virtual photon. One picture of such a decay would be that 

the virtual photon decays into an intermediate state consisting of a virtual pair 

of “bare” constituent partons (such as a bare quark-antiquark pair) which subse- 

quently decay in some way into hddrons-mainly pions. If this were the case, one 

could anticipate anisotropy and the existence of an axis in the distribution of had- 

ron products; in other words the hadrons “remember” the direction along which the 

bare constituents were emitted. Under these circumstances, the transverse mo- 

menta pL of the secondaries relative to the axis for a given event would be no 

more than a few hundred MeV, while the longitudinal momenta could be much 

larger. In other words the momentum distributions and the (slow) increase of 

multiplicity with energy would be much l.ike the situation in ordinary hadron- 

hadron collisions. 

The observation of such “jets” in colliding-beam processes would be most 

spectacular. It is notour intention here to study such a possibility further. In- 

stead, we consider the case in which there are no high hadron momenta in the - 

final state. Because all directions are equivalent in the center-of-mass frame, 

we associate the secondary hadron momentum distributions for colliding beam 
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processes with the transverse-momentum distributions in hadron-hadron colli- 

sions . These fall off exponentially and are characterized by a mean momentum 

of a few hundred MeV. The most immediate consequence of this picture is that 

the hadron multiplicity rises linearly iyith center-of-mass energy, quite unlike 

the case in hadron-hadron collisons. For example, given this picture we predict 

that at an energy of N 1.5 GeV/lepton ( 6 = 3 GeV), states containing 8 to 10 

pions will be most prevalent; at -3 GeV/le@on typical hadron states are expected 

to contain on the order of 15-20 pions; at 6 GeV/lepton the number is 30-40 pions. 

II, THE STATISTICAL MODEL 

A striking phenomenological feature of high energy hadron collisions is the 

fact that the distribution of transverse momenta of the secondaries is quite well 

represented by an exponential law5: 

PI -- 
N(P$ dpI CC Pi e 

b 
dq (1) 

with b = I/2 <pl> x 150-206 MeV/c depending upon the mass of the secondary0 

For pions, <p,> w 300 MeV/c. The relation (1) has been checked over a range 

of transverse momentum from -10 MeV/c to 1.5 GeV/c, The approximate con- 

stancy of <p,> with energy has been checked for incident nucleon energies ex- 

tending from a few GeV to cosmic-ray energies of w104-lo5 GeV. The longitu- 

dinal momentum distribution is much broader; as a consequence of the slow in- 

crease of multiplicity with energy, the energy per secondary increases as the 

center-of-mass energy increases. 

In going over to electron-positron collisions we take the same exponential 

form (I), with pl replaced by 1 p 1 and l/2 dp: 
nm 

= pldpl replaced by the invariant 
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phase- space d3p/E 

’ -4 ’ d3 
N(g) d3p oc e- b -# (2) 

If we choose b1 such that <p,> remains unchanged from its value in hadron- 

hadron processes, we find, for pions 

2b = (Pl) 

N- ; b’ 

. 
P oh x3 (x2 + m2b12)-1’2e-x 

2 S m& x2 (x2 + m2/bt2)-1’2e-x 
0 

(3) 

This factor in brackets, for reasonable b’, is nearly unity and gives 

br e 1.2b zz 175 MeV. An immediate result is that if, as we expect to be the 

case, pions dominate the secondaries, the mean energy of a pion is 

<E?,> = 2b’ 

2f 375 MeV 
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By equipartition this leads to a crude estimltte of multiplicity 

In the following, we try to improve and refine this estimate, 

III. ANNIHILATION INTO n PIONS 

The differential cross section for annihilation into n pions may be written as 

1 dan = m 

with the hadron matrix element dv given by 

ti” = ~<O~jEL(O)~n><n~j”(O)~O> (2r)484 (Pn- q) n” d3pi 
i=l 2Ei(2~)3 

(6) 

(7) 

The statistical assumption that we adopt is that in the center-of-mass frame 

&pv = a,t&? - 8’ q2J e 
-Fa Igil n d3pi 

t2d~4tPn-s) n 
i=l 2Ei(2n)3 

(8) 

with an a slowly varying func tion of q2 and a=2/<B> We then find for don, the expression 

2 2 
don = Sy an (9) 

We discuss in the appendix the relationship of this form with the single-pion 

momentum distribution (2). Clearly the essentially uncorrelated distribution 

(9) should only be expected to have validity, if at all, for large n. We shall only 

apply the results consequent from (9) for n 14, All correlation effects, isospin 

requirements, Bose-statistics, and effects associated with higher mass particles 

(K, N, i?, Y, y) have been neglected. In a statistical model such as this, we 
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expect the K/7r ratio -10 -1 and the p/r ratio -10 -2 , of the order of the ratio 

in hadron-hadron collisions. We also expect the 2-body and quasi-two-body 

final states to be a very small fraction of the total yield. For example, the 

cross section for e+ + e- -p + p can be estimated from the dipole fit to the elec- 

tromagnetic form factor to decrease as ws -5 . 

Returning to the cross section (9), we carry out the integrals over the pion 

phase- space, The pion mass makes only a minor modification to the kinematics, 

and we neglect it here; then all the phase-space integrals can be performed,, In- 

troducing a Fourier-transform on the & (Pn-q) we get 

n 87r202 Q = - an 
s2 

n 
e-ap 1 

87r2a2 
= - S an J d3x dt e -it& 

j4n2 Ea-L)2 +x2jn 

8n202 =- a 
S 

dt e 
-i tJs 2r2(2n-4): 

n (4n2p (n-l)! (n-2): [2(a-itfi 2n-3 

To! 
2 sn-2 -a Js 

=-a e 
S n (16x2)n-2(n-l)! (n-2): 

2~ snm3 esa h 
n (10) 

Therefore, as a functionof s thecross section for producing npions follows a dis- 

tribution which is sharply peaked about the value 

afiz2n-6 (11) 
(provided an varies slowly with s). Thus 

nz3-t ’ z3-t L J- ’ 
<ET> 375 MeV (12) 

-6- 



which for large n is in agreeement with our original estimate (5), We also see 

that as long as an indeed varies slowly with s, it is sufficient to set it equal to 

its value at the s for which an attains its maximum, Eq. (11). 

Various dynamical models have predicted the asymptotic behavior of the 

total annihilation cross section. The most optimistic quark-model estimate 

gives’ 

S-+00 I atott s) -s-l 

while the gauge-field algebra gives the prediction2 

(13) 

atot < s-2(log s) -1 
S-m 

and probably 

atot N s-3 . 

(14) 

(15) 

It is interesting to combine such behaviors with the statistical-model forms. 

If, for large s, 

SmQ..ot( s) - constant (16) 

then the cn in (10) can be estimated. If we set 

m’ 
s atot( s) = constant = c (17) 

we get, from (lo), 

?i ‘ns 
n+m-3 m =S otote 4 =c e aJs wc (e a&+ e-aJs ) = zc 5 ti (18) 

k+) t2”)! 

Equating coefficients we have (6) 

a2n +2m-6 
C n = 2c (2n + Zm-C)! (19) 
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and finally, for the cross section to produce n pions, with the aid of (10) 

2n +2m-6 - a(s 
c-r n 

=grn(a Js) 
S (2n “+ 2m-6): 

(20) 

Notice the distribution of multiplicity nn for a given 

with An, 

s is a Poisson distribution 

IV, CONCLUSIONS 

The two models we have discussed, ‘rjetrr and ‘lstatisticallY are most likely 

extreme limiting cases, with the truth somewhere in between. The most im- 

mediate experimental distinction between them, apart from the qualitative “visual” 

difference, 7 * is the energy dependence of the mean multiplicity, which we compare 

in Fig. 1 for p-p and r-nucleon collisions’ (supposed to roughly represent the 

case of the rrjetr’ model) and for e+ - e- collisions in the statistical model, ac- 

cording to Eq. (12) predicting nlr % 3 &/CieV. The storage rings now being con- 

structed or envisaged should easily distinguish between the two extreme cases. 

For the statistical model, our conclusions are summarized in Eq. (20), 

From that equation, it can be deduced that with otot -smrn (s+~), then at energy 

J- s, the most probable multiplicity is 

with <E,)x375 MeV. The multiplicity at this ,,& falls off rapidly for larger and 

smaller nr, with width AnX - Jr+ Likewise the cross section for fixed nn falls 

off rapidly for energies If- s larger and smaller than the optimum given above by 

(111, again with A( ,,&) N @$&%p% 0 In Figs. 2a and 2b we plot the partial 

cross sections for m = 1 and 2, 

Most of the anticipatory interest in colliding beam experiments has resided in 

2-body channels (study of vertex functions) and the possibilities of relatively clean 
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resonancespectroscopy. Yet it is quite probable that the bulk of the events will 

not fall into these categories. In a new phenomenon such as this, where even 

qualitative properties are a matter of speculation, it would be a surprise if 

careful study of the more common complicated events did not reveal important 

and fundamental facts regarding hadron dynamics, It is with this in mind that 

this study was carried out. 
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APPENDIX 

SINGLE PARTICLE DISTRIBUTIONS 

Let us consider a simple factorizable representation for the distribution of 

transverse momentum of secondaries in hadron-hadron collisions, 

dN = d2pl.. l d2pn f$). o 0 fcP,) s2Qpi) (A* 1) 

where f (p) is a peaked function of the magnitude of the transverse momentum. 

The resulting single particle distribution is 

-j-f- =f(pI) 
J 

2 
s2 

21 l E n-1 

e f (k) 
1 Gw 1 

The Fourier transform 

y(x) = J d2k e 
ik, l ?5 

f (k) 

is maximum at x = 0; for small x 

2ix)S J ! d2k f(k) 1 + ik, l z- 

ST(O) [1- + x2<k2>] 

(A. 2) 

(A. 3) 

(A* 4) 

The important range of integration in (A. 2) is small x, so that when F(x) is raised 

to a large power it can be approximated by a Gaussian: 

ip. 0 x 2 
dN Fl *- 

- cK f(P$ 
d2Pl J d2x e e cx mp 

- (n-I)<k2> 
(A* 5) 

Suppose 

then 

f (P) =.-P/b , 2b =<k> =.3 BeV 

<k2> = Gb2 z .I35 Bev2 

(A. f-9 

(A. 7) 
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and 

dN Tote 
-6.5 pI 

dpl 
(A. 8) 

with pl in (BeV), For a typical multiplicity n w.5, the distribution remains ex- 

ponential until the Gaussian takes over at pl - 4 BeV. Thus f(pI) can be identified 

experimentally with the single particle distribution. 

For the annihilation process into n particles we made the ansatz 

dN = 
d3pl d3pn 
- . . . - 

% pn 
(A. 9) 

Let us consider the single particle distribution for the annihilation processes 

where the incident energy is averaged over an interval’which includes the major 

contribution to the cross section o n. pen, ignoring mass corrections T 

l- -I (A. 10) 

Again the Gaussian is ineffective and f(pI)/p 
1 

can be experimentally identified with 

a single particle distribution. It might be noted that if f(p) is a pure exponential, 

then in Eq. (A. 9), I 

ml)* l 0 fQn) =e 

- a$+. . . +p,) -aq 
=e 

0 

t  
(A. 11) 

Thus dN/d3p is independent of a (and <p>) and is only determined by phase-space. 

For &-near the maximum of on(s) it follows that the single particle distribution from 

pure phase-space must reduce back to the single-particle distribution exp [-ap]. 
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FIGTJRE CAPTIONS 

Charged hadron multiplicity given by the statistical model for e+ e- annihilation 

compared to the observed multiplicity for p-nucleon and r-nucleon scattering, 

The experimental points are from the data compilation of Ref. 8. 

The annihilation cross sections into n >,4 pions and total cross section ac- 

cording to the statistical model assuming for high energies 

The curves are given as functions of x = &/<Er>and also energy/lepton for 

a typical value <ET>= 375 MeV. 
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