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ABSTRACT 

We examine the question whether local relativistic quantum field theory 

can account for the observed asymptotic behavior of the electromagnetic 

form factor of the proton. Particular attention is devoted to the theory of 

pions and nucleons interacting via isospin-symmetric pseudoscalar coupling, 

with minimal coupling to the electromagnetic field. New techniques are 

developed for calculating and summing all asymptotically dominant contri- 

butions to vertex functions and to propagators from all orders  of perturba- 

tion theory. The results indicate that summing Feynman graphs in local 

quantum field theory is unlikely to provide an explanation of the observed 

rapid decrease of the form factor at large momentum transfers. 
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I. INTRODUCTION 

A question of great interest in high energy physics is whether quantum field 

theory will ever have any calculational value in  the realm of strong interactions. 

It seems unlikely that a simple field theory can be used in the region where 

processes are  dominated by resonances. However, in the asymptotic region 

where the momenta involved are much larger than any of the masses  and where 

c ros s  sections vary smoothly with the momenta, one might hope that a field- 

theoretic approach would have some value. In this region, the small distance 

structure of hadrons, which seems to be much simpler than the long range reso- 

nance structure, is evidently being probed. 

Some examples of this  smooth asymptotic behavior a re  the large s, small t 

behavior of scattering amplitudes predicted by Regge theory; the high-energy, 

large-momentum-transfer behavior of two-body hadronic processes’; the behavior 
2 of the inelastic electron-proton scattering structure functions W1 and W2 ; and 

the rapidly decreasing behavior of the electromagnetic form factor of the nucleon 
2 for large spacelike q . The simplest of these things to analyze is the form factor 

since one can then deal with at most three-point functions and the kinematics 

are quite easy to handle. In this paper, we will examine the possibility of using 

field theory to exl’lain the asymptotic behavior of the nucleon electromagnetic 

form factor. 

During the last decade, a series of beautiful experiments on elastic electron- 

proton scattering, beginning with the work of Hofstadter and collaborators and 

extending to the recent SLAC results, 

electromagnetic form factor of the proton up to momentum transfers of 

-q2% 25 (GeV/cf. These experiments have shown that the magnetic Sachs form 

factor G 

has allowed the determination of the 

P 4 
M decreases  asymptotically at least as fast as - l / q  . If the scaling law 
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G = G / K  , which has been verified experinlentally for  -q 5 3 (GeV/c) , con- 

tinues to hold at least approximately for large -q2, then we can conclude that the 

proton's Dirac form factor also decreases  the same way for  large -q2, that is 

E': ,., l/q . The rapid decrease of the electromagnetic form factors is r ich in 

physical implications, and it begs for deep theoretical understanding. 

4 

4 

This understanding has been sought in a number of different directions. 

will be helpful to summarize here those that have some bearing on our field 

It 

theoretic approach and we will do this in Section 11, under the following rubrics: 

(a) resonance fits, (b) composite models, (c) bootstrap models, (d) statistical 

theories, and (e) related analyses of field theory, 

Let u s  state more specifically what we mean by a field theoretic approach. 

The only solutions which now exist  to realistic field theories are perturbative 

solutions to renormalizable theories. The renornializable field theory which first 

comes to mind to describe the electromagnetic form factor of the nucleon is the 

isospin-symmetric pion-nucleon theory with the usual pseudoscalar y coupling 6 
5 

with minimal electroinagnetic coupling. The pion self-coupling te rm is included 

in (I. l), as usual, to compensate for the logarithmic divergence of T-T scattering 

graphs. It is this field theory that we shall analyze in detail in this paper. Our 

analysis will also lead us  to several general conclusions about the use of field 

theory in the asymptotic region. 

Our approach will be to attempt to dcrivc the Iargc q2 behavior of the form 

factor by summing the complete leading asymptotic te rm from cnch order 

of perturbation theory. The hope is that the sum will converge - o r  that it 

can be continued to a menniiigful expression - for asymptotic values of q . 2 

We develop a simple itcrntivc mctllod for detcrniining the le'ding asymptotic 

behavior of vertex and self-energy graphs and for summing arbi t rary 
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sets of thesc graphs over all orders .  The scheme is simplified by the usc of 

Ward's identity to calculate the self-energy graphs at each stage, thereby avoiding 

complications associatcd with overlapping divergences. 

In Section III, we prescnt thc results of calculating the leading logarithmic 

contributions for all vertex and self-energy graphs in f irst  (lowest) order per- 

turbation theory and all vertex graphs in second order perturbation theory. 

(In this section and throughout the rest of the paper, most of the explicit calcula- 

tions are relegated to appendices.) 

The results of Section I11 suggest two things. Firs t  of all, the asymptotically leading 

logarithmic contributions in each order come from the ultraviolet region of integration 

independently of which legs of the vertex function are takcn off mass shell. This 

is a result of the p-wave 

fact, it can be shown 

coupling, which suppresses the infrared region. In 5 
7 that there are no infrared divergences in this 

theory in the limit rnn-+0. These results will be contrasted in the discussion 

section with those from theories which emphasize the infrared region. 

The other thing suggested by these low order results i s  that the leading con- 

tribution to the vertex from any graph which has a leading contribution in i t s  order 

of perturbation theory c'an be determined iteratively in terms of its vertex and 

self-energy subgraphs. We emphasize that our techniques have no relation to 

those of Tiktopolous, 8 who was investigating a theory where the leading contribu- 

tions come from the infrrnrcd region of integration. 

The machinery for calculating the leading lograithinic contributions of ladder 

graphs in any order of perturbation theory is set up in Section IV. The sum of 

leading logarithms in thc ladder graphs for thc isoscalar elcctroniagnetic form 

factor is found to have the very interesting asymptotic form 
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2 using the value (g /4n) X 15 for thc renormalized strong interaction coupling con- 

stant. However, the importance of this  result is made very doubtful by the fact 

that the isovector form factor sums to a growing exponential, and also that when 

we include - all graphs which give a leading contribution in each order,  which is 

done in Section V, a much less interesting form results. The proton's Dirac 

form factor then sums to 

Similar very unphysical results of summing the leading logarithmic contribu- 

tions in each order appear also in the propagators and in the y-N and n-N vertex 

functions with either one, two, or  three legs asymptotic. These results for the 

completely (three legs) asymptotic n-N vertex and the asymptotic propagators were 
9 f i rs t  obtained by Landau and collaborators by solving, to leading logarithmic 

accuracy, a set  of approximate integral equations, and by Bogoliubov and collabora- 

tors" using the renormalization group. These methods are reviewed in Section 

II .E.  

The leading logarithmic contributions to the neutron's Dirac form factor cancel 

in each order of perturbation theory. This is due to the fact that these te rms ,  

which go like g2n log"(-q /m ), come from the ultraviolet region of integration 

and that since there is no elementary neutron-y coupling, the sum of all neutron-y 

vertex graphs in each order contains no leading logarithmic divergence. 

2 2  

The above results show that i f  physically sensible results are  to emerge 

from summing over all orders of perturbation theory, 

order must be included. This possibility is investigated in Section VI. It is found 

that the unphysical behavior remains when next-to-leading logs (gzn logn-'( -q /ni2)) 

are summed, indicating that a suin of all logs in all o rders  will also be plagued 

nonleading logs in each 

2 
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. with these problems. We conclude by discussing other renormalizable field 

theories and by making several general observations about the use of perturbative 

sums in field theory for investigating asymptotic behavior. 

In Appendix A ,  we give the parametric integral notation used in doing the cal- 

culations in this paper. Appendix B contains some second order calculations. 

The general proof of the iteration scheme for ladder graphs is given in Appendix C .  

We treat the nth order ladder graph explicitly and then point out how to treat an 

arbitrary graph. 

II. PREVIOUS APPROACHES 

We will not attempt to review all previous theoretical work on the asymptotic 

behavior of form factors - for that, we refer the reader to the several excellent 

review articles. 

poses of comparison o r  contrast with our field theoretical approach. 

5 Rather, we will discuss several diverse approaches for pur- 

A. Resonance Fits 

Resonance approximations generally start from the dispersion relation for the 

form factor in a narrow resonance approximation. Evidently a cancellation must 

occur among the resonances in order to be consistent with F(q2) decreasing 
2 asymptotically faster than l /q . Such a cancellation is difficult o r  impossible to 

arrange, using known resonances. Thus resonance fits have not shed much light 

on the reasons for the rapid decrease of the form factor. It would indeed have 

been surprising were the dispersion expression for the form factor in the asymp- 

totic region to be dominated by one o r  a few resonances near threshold. Perhaps 

the recent attempt by Jengo and Remiddill and others to take into account some 

of the cut contribution in a resonance approximation by including the poles 
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associated with the J = 1 daughters of all the Regge recurrences of the p ,  a la 

Veneziano, is a reasonable direction in which to extend resonances models. 

B. Composite Models 

It has long been supposed that some sort  of composite structure is responsible 

for the rapid decrease of form factors. It is not difficult to understand that a large 

momentum transfer -q should more readily disintegrate such a composite system, 2 

2 the larger -q is. 

Drel l ,  Finn, and Goldhaber" have examined nonrelativistic potential 

is well defined 2 models, and have shown that if the function g(r) = r I rl, (r)l 

r = 0 and is well-behaved at infinity, then asymptotically 

theory 

for 

1) 

Since I J, (0) l 2  is zero o r  finite for any but pathological potentials, g(0) = 0 and con- 

sequently F(q2) - l/q4. One can obtain faster decrease by arranging to have the 

higher derivatives of g vanish; indeed, F(q ) falls off asymptotically faster than 2 

any inverse power if all the even derivatives of g(r) vanish at the origin. The 

potential V(r) = V /r can lead to exponential decrease for certain values of Vo; 

and, in general, if V(r) - r -2(1+p) as r-0, then F (q5  decreases like 

exp (-qp/(p+l)) t imes inverse powers of q and an oscillating factor. It turns out 

that F - e - fi fits the large -q proton form factor data fairly well, a fact 

which gives us  little theoretical insight but from which we draw the moral that the 

2 
0 

2 

data cannot yet distinguish between inverse power and fractional exponential 

asymptotic behavior. 

More recently: Ball and Zachariasen" constructed a simple relativistic 
4 composite model which gives the asymptotic behavior F - l/q times one o r  two 

powers of log(-q ) . Their iiiodcl is represented in Fig. 1; they solve the linear 2 
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inkgral equation Fig. l b  to obtain the asymptotic behavior of f; t h i s  is  then sub- 

stituted into Fig. la to determine the asymptotic bchavior of the form factor. The 
4 2 

origin of the l /q  dependence can be visualized simply: one power of l/q arises 

from the Feynnian propagator of the constituent which absorbs the photon, and 

the other comes from the exchange of a (scalar) meson between the constituents. 

Very similar results have also been derived from essentially the same model on 

the somewhat f i rmer  basis of the Bethe-Salpekr equation in ladder approximation 

by Ciafaloni and Menotti" and by Amati -- et al. In addition, these authors found 

that if a composite particle is formed by combining two particles in a P-state 

instead of an S-state, then asymptotically the form factor acquires another factor 

of l/q ; similarly, higher-spin composite particles acquire additional factors of 

l/q . Ciafaloni and Menotti14 emphasize that the asymptotic behavior of the form 

2 

2 

factor in a composite model is also dependent upon the nature of the particle 

exchanged and its coupling to the constituents; the results mentioned above were 

obtained assuming scalar exchange with linear scalar coupling in Fig. Ib. 

Menotti" further observes that the spins assumed for the constituents can have 

a considerable influence on the asymptotic behavior of the form factor in a com- 

posite model. 

Besides the model dependence of the sor t  we have just mentioned, there is a 

somewhat deeper difficulty with composite models. In general, i f  we construct 

a dynamical model in which a hadron is regarded as being made up of constituents, 

whether observable or fictitious, there is little reason to suppose that the number 

of these constituents is two, three, o r  any particular finite number for that 

matter.  However, as Stack" has observed in 3 nonrclativistic model and as 

Aniati, Jengo e t  -- x i . ,  

16 

found relativistically also, thc asymptotic behavior of t h e  

form factor in a compositc model depends strongly on the nunibcr of constitucnts, 

with cxtra  factors of l/q for each additional constituent. This obscrvation has 2 
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led to the proposal of infinitely composite models with faster-than-polynomial 

decrease of the form factor. Two species of such models will be discussed here, 

ttbootstraptt models in the next subsection, and Watistical" models in the one 

after that. 

In some sense, the quantum theory of local, interacting fields, which we 

examine in this paper, is an alternative to an infinitely composite model. Before 

discussing our work, we review, in Section II.E, the previous field-theoretic 

treatments of form factors. 

C.  Bootstrap and Infinitely Composite Models 

Stackl'l investigated a particular nonrelativistic model in which the proton is 

regarded as a bound state of a proton and an infinite number of pions. For poten- 

tials of the Coulomb o r  Yukawa form, Stack was able to show that the form factor 

decreases exponentially for large momentum transfers: F(q) - e-aq. He then 

argued that the precise features of his  model did not matter in obtaining expo- 

nential fall-off; rather it is the assumption of infinite compositeness which was 

crucial. 

A more sophisticated bootstrap model along somewhat different lines has 

been developed by Harte. 

in which there is only one species of particle, self-coupled with a C#.I interaction. 

H a r k  considers nonlinear equations of the sort  represented in Fig. 2, and imposes 

a "crossing-symmetric bootstrap" condition by requiring that the asymptotic 

behavior of the hadron vertex function r, which is assumed as an input to the 

equations in Fig. 2, be reproduced on the r h s  of this equation. Harte gives 
2 2 arguments that asymptotically the electromagnetic form factor F(q ) - T ( q  ) , up 

to a polynomial factor. The simplest nonrelativistic and relativistic models gave 

T(q2) - (q2f e-' @, but further consideration led to the conclusion that the 

For simplicity, let us  discuss the case of a theory 
3 
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integral equation implicit in Fig. 2 is actually consistent with morc general 

asymptotic behavior. Specifically, if r is assumed to have the asymptotic form 

when one or  more of the variables q2,p2,p" approach infinity, where p is poly- 

nomial, then this will be a solution if 

and 

(11.3) 

(11.4) 

It should be understood that although (11.2) is the only form of asymptotic solution 

which Harte was able to find, he has not been able to prove that this solution is 

unique. 

D. Statistical Theories 

An interesting example of a statistical approach is provided by the work of 

Kastrup" and Mack. 2o They constructed a model for meson production in high- 

momentum-transfer collisions involving hadrons, in analogy with electromagnetic 

bremsstrahlung. Such a model is suggested by the fact that most nucleon-nucleon 

collisions are quasi-elastic. The secondaries are mostly pions (about 80%), with 

the ratio between pions and kaons, the energy of the secondary mesons in the cm 

frame (usually 5 1 GeV), and the average transverse momentum of the secondaries 

( = 0 . 3  GeV/c) all approximately independent of the energy of the primaries.  

If it is assumed that recoil  is negligible in the emission of the secondary soft 

particles, and if  coinplications of spin, isospin, and parity arc also ignored, then 

the sccondarics a re  emitted independently and with a Poisson distribution. For 
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e lec tron-proton 

where ;; (s, t) is 

scattering with the emission of n secondary soft mesons, 

-n - 
n n -n tot d u  (s,t) =- n! e d u  (s,t), n=O,l, ..., 

the average number of secondaries at given s and t, and 

5) 

03 

dutot = E  dvn  , 
n=O 

2 Combining (11.5) with the Rosenbluth formula (for n=O), they obtain for s>>-t>>m the 

result 

(11.6) 

If ;; can now be calculated on the basis of a dynamical hypothesis of some 
20 sort ,  then the asymptotic behavior of G G  can be obtained. Mack 

a "partially conserved dilation current"'' in order to derive an expression for 

now assumes 

1 dcr ; thus attaching a soft meson to all nucleon lines in  all Feynman graphs for 

the form factor, he also uses  a sor t  of generalized Ward identity. After some 

further approximations, a nonlinear differential equation is obtained which has the 

asymptotic solution 

P 2 
~ ~ ( t )  - exp [-Alog (-a til , 

3 which fits the data at least as well as any other parameterization. 

Although both the statistical and the dynamical assumptions underlying the 

model of Kastrup and Mack a re  doubtless oversimplified, the basic ideas seem 

rather attractive. Much more probably remains to be learned from statistical o r  

bremsstrahlung models of scattering with large momentum transfer. 

E .  Field Theory : 

There are  few field theoretic approaches which deal directly with the electro- 

magnetic form factors. However, there have been several treatments of off-shell 
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. 
vertex functions and propagators which attempt to go beyond low-order perturbation 

theory in the asymptotic region. Since these relate closely to our work, we shall 

also discuss them here. 

It is useful to distinguish between field theories on the basis of the regions in 

the Feynman integrations which are responsible for the leading asymptotic con- 

tributions. We say that the leading logarithms originate in the ultraviolet region 

of integration if  the leading asymptotic logarithms resulting from Feynman inte- 

grals which a r e  cut off (or regularized), and not renormalized, contain the 

ratio of the asymptotic variable -q and the ultraviolet cutoff. Otherwise, the 

asymptotic logarithms will contain the ratio of -q and nonasymptotic scalars,  

for example masses  o r  infrared cutoffs. It is possible to show that the pseudo- 

2 

2 

7 

scalar n-N theory has no infrared divergences as mT-O, and no asymptotic 

logarithms arising from the infrared region. 

Sudakov, 21 and more recently Cassandro and Cini22 and Jackiw, 23 have con- 

sidered a theory in which the leading asymptotic logarithms can arise from the 

infrared region of integration, namely spinor electrodynamics with a photon of 

mass  p # 0. Assuming that the external momenta satisfy the inequalities 

2 2 
lS21 >> Ip2 , lpt21 >> m = (fermion mass) , 

Sudakov was able to show that in all orders  of perturbation theory, the terms with 

the greatest number of large logarithmic factors are those in which all the virtual 

photon lines overlap the point of emission of the external photon q - i. e . ,  ladder 

and crossed-ladder graphs (see Fig. 3) .  Furthermore, all ladders and crossed- 

ladders with the same number of rungs contribute equally. The sum of all leading 

logs of order e2n was found by Sudakov to be 
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clearly, this is an exponential series, with the result  

(11.9) 

Cassandro and Cini22 attempted to  evaluate the sum of leading logarithmic 

t e rms  for the physically more interesting kinematics 

(II. 10) 

8 using the methods developed by Tiktopolous and others for determining the leading 

asymptotic behavior of Feynman graphs. JackiwB4 noted a counting e r r o r  in the 

calculation of Cassandro and Cini, and by an independent analysis of the asymp- 

totic behavior of the relevant graphs - which are the same as those analyzed by 

Sudakov - he was able to give arguments which make quite plausible the result  

for the asymptotic region (11.10). This form of asymptotic behavior seems to f i t  

the data on electromagnetic form factors as well as any. Interestingly enough, 

(11.11) has the same form as Eq. (II.?, derived by Mack on the basis of what 

appears at first to be a rather  different model. A common feature of both models, 

however, is their emphasis upon the infrared region of boson momenta. This is 

expressed in the massive QED model through the infrared dominance of the inte- 

grations, and in the Mack model by the bremsstrahlung-like treatment of the inelastic 

amplitude, which is related to the elastic aniplitude through a statistical hypothesis. 

In the period 1954-6, Landau and collaborators9 sought to determine the 

asymptotic behavior of Feynman propagators and vertex functions in quantum 

electrodynainics and in pseudoscalar n-N theory (we will confine our attention to 

the n-N case). They were able to  show that the approximate integral equation for 
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2 2  2 
the n-N vertex r,(q , p  ,p'  ) represented in Fig. 4, together with Dyson's 

equations for the pion and nucleon propagators, corresponds to  the sum pf the 

asymptotically leading logarithmic te rms  from all  Feynman graphs for the vertex. 

It was then possible to solve this system of equations in the asymptotic region 

where the Lorentz invariant arguments of f5,  S, and D are all  much larger 

than the square of the nucleon o r  pion mass.  Essentially the same resul ts  were 

also obtained by Bogoliubov and collaborators lo using the renormalization group. 

The expressions obtained are most easily written if we dcfine a quantity 
n 

Q(k2) = 1 - - 
32n 

2 where g is the unrenormalized strong coupling constant, and A an ultraviolet 

cutoff point (or, in Bogoliubov's formulation, g o  is an intermediate-renormalized 

coupling constant, and A is the corresponding normalization point). Then, for 

the symmetric pseudoscalar nN theory, 

0 

2 

where 

(n. 12) 

(11.13) 

and according to Landau -- et al .  ,' i f  I q21, lp21 and lpT21 are of the same order ,  or two 
'-. 

of them are much greater than the third, then kZ is equal to the greatest of the squares.  

These formulas clearly possess difficulties for -k sufficiently large that Q(k ) i 0. 

Using the Kallen-Lehmann representation to force the correct analytic behavior, 

as suggested by Redinond, 24' 25 allows removal of the ghost poles and cuts at 

2 2 

Q(li 2 ) = 0; but it does not clarify the interpretation of Eq. (11.12) for large -I< 2 . 
Of course,  the restriction (11.13) on the exteriial momenta makes the physical 

significance of the rcsul ts  (II. 12) somewhat uncertain in any case.  Such a 
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restriction to asymptotic momenta seems to be a feature of Landau's method and 

of treatments based on the renormalization group. 

It will become clear that the restriction (11.13) is not necessary to sum the 

leading asymptotic te rms  over all orders .  We shall be able to sum over all orders  

of renormalized perturbation theory for the case of the asymptotic form factor 

(two legs on mass shell). 

A replaced by the nucleon mass  m2 and g replaced by the renormalized coupling 

constant g). 

The result  is (I. 3) (similar to (XI. 12) except with 
2 

0 

In all these cases with the r, n-N theory, the leading contributions come 

from the ultraviolet integration region and in each case the sum of leading logs 

does not produce reasonable asymptotic behavior nor correct analytic behavior. 

In the case of massive QED, a kinematic region (11.8) or (11.10)) can be found 

where the leading terms are infrared and a reasonable asymptotic behavior (II. 11) 

apparently results. Note that for the asymptotic propagators and the completely 

( 

asymptotic vertex functions ( -p2 = -pt2 = -q2 >> p2, m? in QED, the ultraviolet 

region dominates and the sum of leading terms again has unreasonable asymptotic 

behavior. We shall return to these points in Section VI. 

111. LOW ORDER RESULTS 

In this section we will present several first  and second order results which 

should illustrate the general features of our iterative method of summing over all 

orders.  A useful graphical notation will also be introduced. 

We begin by considering the proton-? vertex to first  order in g2, which we 

denote by A (p, p'). The two graphs are shown in Fig. 5 and the resulting 
1.21 
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amplitude i s  

Once the usual renormalization subtraction at $ = $' = m, q = 0 is carried out, the 

leading contribution as -q2--m with the fermion legs on the mass shell can easily 

be extracted. The calculation of the second term (111. 1), corresponding to the 

graph 5b, is carr ied out in Appendix A .  It is found that apart from the isotopic 

factor of two, the two graphs give the same leading asymptotic contribution to the 

renormalized first order  vertex function 26 

where 
2 

321r 
G = % x  0.6 . 

Thus through first order,  the Dirac form factor of the proton is 

(UI. 2) 

(111.3) 

3G log(-q2/m2) + . . . . (III. 4) 
2 F ( q ) = l -  

IP 

The calculation of Appendix A shows that the leading contribution (111.2) comes 

from the ultraviolet region of integration and that its form is independent of which 

legs are taken asymptotic. By this we mean that if any of its legs a r e  taken 

asymptotic, then 

N 

Ah1(p, p') = - 3 yP G log (-k2/mT (111.5) 

2 2 where lk21is the largest of (pq, Ipr land Iq 1. This form-invariance will be seen 

to hold in all orders  'and is a very important aspect of our iterative scheme for 

summing over all orders .  
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A similar calculation shows that the two graphs of Fig. 6 which contribute 

to the neutron factor in first order  give leading asymptotic contributions which 

exactly cancel each other. Since there is no zeroth order "bare" coupling of the 

photon to the neutron, the neutron form factor remains zero through first  order 

in our approximation of keeping only the leading asymptotic terms.  Two other 

first order amplitudes which are calculated in the same way and which we will 

need later are the charged pion form factor F, 27 and the pion-nucleon vertex r,. 
The relevant graphs are shown in Fig. 7, and the results of extracting the leading 

asymptotic te rms  are 

and 

It is found that the pion? vertex and the pion-nucleon vertex also have the same 

asymptotic form independently of which legs are taken asymptotic. 

The iterative method which we develop here is based on the fact that, since 

the dominant contribution comes from the ultraviolet integration region, the 

asymptotic value of an n-th order vertex (or self-energy) graph can be determined 

in t e rms  of the asymptotic value of its vertex and self-energy subgraphs. In order 

to illustrate this by examining the second order proton form factor graphs, we 

will need the asymptotic form of the first order pion and nucleon self-energy 

graphs shown in Fig. 8. Both mass and wave function renormalization subtractions 

must be made and the leading asymptotic contribution comes from the ultraviolet 

region of integration. In the asymptotic region the completc renormalized iiucleon 

and pion self-energies take the form 

Q) 

n n=l  
(III. 8) 
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and 

The f i rs t  order (n=1) results are 

and 

El = 3 

nl=O. 

(III. 9) 

(111 . l o )  

(III. 11) 

4 We next consider the second order (i.e., g ) contributions to the proton-y 

vertex and start by examining the uncrossed ladder graph of Fig. 9a where only 

s 's are exchanged. The details of the calculation are given in Appendix B and 

we simply give the result and important points of the calculation here. The mass  
0 

of the pion may again be set equal to zero  and the dominant te rm comes from the 

ultraviolet integration region. Both the second order vertex subgraph and the 

graph as a whole are logarithmically divergent and must be subtracted. Each 

subtraction gives rise to one logarithm in the asymptotic region; and with the 

proton legs on the mass shell, the leading te rm is 

2 2 2  
yj4 G~ 2! log (-q /m ) . 

This result along with (111.2) suggests that the ladder graphs for a theory with only 

7~ 's and protons give r ise  to an exponential series.  We shall confirm this  to all 

orders  in the next section. It is again found that the above form is independent of 

which legs a re  taken asymptotic. Thus, for example, suppose we take q = 0 and 

-p = -pf2 >>m2. ' Then the leading term is 

0 

2 

2 2 2  G~ L log (-p /in ) . yj4 2! 
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Another second order graph is the crossed ladder of Fig. 9b. This graph 

contains only one overall logarithmic divergence and the single necessary sub- 

traction leads to a single asymptotic logarithm which comes from the ultraviolet 

region of integration. 

The general rule for determining the number of asymptotic logarithms can 

now be conjectured: the leading asymptotic behavior of a vertex o r  self-energy 

graph is log (-k / m 3  where n is the number of primitive divergences in the 

graph and thus the number of subtractions which must be made. (I k21 is the maxi- 

mum of Ipy, Ipt2land lq21.) This will be verified to all orders  in the next sections. 

n 2  

In order  to elucidate the general methods of the next section, we will complete 

the second order calculation 01 the proton-y vertex and relate it to the first order 

vertex and self-energy results. The above rule immediately tells us  that the 

leading log" (-k /m ) contributions to the asymptotic vertex in n-th order come 

only from uncrossed ladders and uncrossed ladders with vertex and self-energy 

2 2  

corrections. All such second order proton-y vertex graphs are listed in Fig. 10 

using the graphical notation already introduced. The ladder graph which we have 

already calculated is contained in Fig. loa. 

The sum of leading te rms  in each order in the asymptotic proton form factor 

can be written in the form 
00 

1 + C p n G" logn(-q2/m? , 
n=l  FIP= (In. 12) 

where, from (ID. 4), p1 = - 3 .  We have explicitly calculated the contribution of 

each of the graphs of Fig. 10 to p2. Besides the ladder graph calculation, we 

also present in Appendix B the details of the calculation of the graph of Fig. 10d, 

which includes a fekmion self-energy subgraph. The contribution of each of the 

graphs of Fig. 10 to p2 is listed under the graph itself. Thus the complete second 
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order coefficient is 

which verifies the result (I. 3) 

We can now explain these 

(In. 13) - -21 
p 2 - 2 1  

through second order in G = g 2 2  / 3 2 n  . 
results in a way which will make it clear that the 

leading te rms  in each order  can be obtained iteratively. The discussion 

which follows will be supplemented below by a more careful treatment. 

We consider first the contribution of Fig. 10d which is explicitly calculated 

in Appendix B. This graph is formed by inserting a second order self-energy 

subgraph into the second order vertex graph of Fig. 5a. The leading asymptotic 

contribution of this second order vertex graph can be reduced to the form 

2 2  = - G  log(-q /m ) . 
X 

(111.14) 

1 

Now since it is the ultraviolet integration region which dominates, we can deter- 

mine the contribution of Fig. 10d by inserting the (spacelike) asymptotic value of 

the second order fermion self-energy into the left-hand side of (111.14). Using 

which is just the contribution of Fig. 10d to the asymptotic Dirac form factor. 

The contribution of each of the graphs of Fig. 10 can be related to the asymp- 

totic contributions of second order graphs in the same way. Thus consider the 

graph of Fig. 10h. The second order  vertex subgraph with one pion leg and one 

nucleon leg talcen asymptotic has the same forin as (III. 7). It i s  -2y5G log(-Ic /m ) . 
Inserting this into the second order graph gives 

2 2  

1 
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which is the contribution of Fig. 10h to the asymptotic Dirac form factor. We 

will make extensive use of these techniques for determining asymptotic behavior 

in treating the general case in the next section. 

The calculation of the second order  neutron-y vertex proceeds in the same 

way. It is found that for this case the leading contributions from each order  sum 

to zero. This cancellation can be understood by the following argument. The 

leading logarithmic t e rm in the unrenormalized amplitude corresponding to some 

second order neutron-? vertex graph g has the form 
n 

ng 2 2! log2 (A2/-q2) , 

where n g is some constant coefficient. After the necessary subtractions have 2 

been made, the leading asymptotic behavior of the renormalized amplitude will 

n 
be 

Now since there is no bare neutron-? coupling to be renormalized, we know that 

the leading logarithmically divergent te rms  in each order in the unrenormxlized 

amplitudes must sum to zero and hence the leading asymptotic te rms  in the 

renormalized vertex also sum to zero. 

An analysis similar to that for the nucleon-? vertex gives the second order 

asymptotic pion-? and nucleon-pion vertices. The sum of leading te rms  in the 

pion-? vertex taking only the y momentum asymptotic and keeping the pion legs 

on mass shell is 

where 

(III. 17) 

(III. 18) 
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The sum of leading t e rms  in the nucleon-pion vertex with only the pion leg asymp- 

totic and the nucleons on mass  shell is 
r 1 

The first and second order  coefficients are 

v = -2 1 
-1 6 v =- 

2 2! 
(111.20) 

The second order  asymptotic self-energies, which will be needed to calculate 

the third order vertex functions, can be calculated in the same way. However, a 

simpler procedure which avoids dealing with the overlapping divergences in the 

self-energy graphs, is to relate the self-energies via the Ward identity to the 

proton-y and pion-y vertices. We will use this technique to all orders  in G in 

Section V.  

IV. SUMMATION OF LADDER GRAPHS 

The second order resul ts  o€ the previous section have indicated that the 

exact leading contribution f rom Feynman graphs of any order  can be determined 

iteratively. In this section, we will develop this method for uncrossed ladder 

graph contributions to the nucleon and pion electromagnetic forin factors. 

For simplicity we first consider a theory of protons and neutral pions so  that 

the n-th order  graph is given by Fig. 11. The leading term in each order  will 

give a contribution to the nucleon elcctromagnetic form factors proportional to  

. It has been shown in the previous section that through second order in G ,  

2 2 
yP 
with -q >> m and b = 6' = m,  the ladder graphs give 

1 2 2  1 2 2 2 2  
21 

2 r (q yb=df=lh) = y  -Glog(-q /m ) + - G log (-4 /m ) + ... . (IV.l)  
P P 
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This certainly suggests an exponential ser ies ,  and in order lo confirm this  we 

examine the n-th order  ladder graph. We denote the n-th order term in this 

series by r 2 
(q ). In Appendix C it will be shown that r is given by 

Cl9n Clsn 

(IV. 2) 

whichconfirms the exponential character of the ser ies  and shows that the sum of 

leading contributions from the ladder graphs for the r0-p theory with -q >>m is 2 2 

This is not an unreasonable result since it says that the form factor drops off 

faster asymptotically as the coupling strength increases. 

The above analysis is easily extended to the complete isospin-symmetric 

theory. The n-th order ladder graph contributions to the proton-?, neutron-? 

and pion-? vertices are shown in Fig. 12 in ternis of the (n-1)-th order ladder 

graphs. The first order (n=1) graphs in this set  of graphical equations a r e  identi- 

cal to the first order  graphs in the complete ser ies .  They are given in Figs. 5,  

6 and 7. Apart from isotopic spin factors,  thc leading contribution from any n-th 

order  ladder graph can again be shown to be of the forni (IV.2) by an analysis 

similar to that of Appendix C. The only divergences are the n vertex subgraphs 

and each subtraction gives rise to one power of the log. 

Another type of logarithmic divergence which might seem to enter into the 

ladder graphs is the "box" subgraph of Fig. 13a. The logarithinically divergent 

part  of this subgraph is  pure s-wave since it contains no nioincntum dependcnce. 

It corresponds to a graph of the type of Fig. 13b and hence niust vanish since it 

couples to thc photon which is  spin one. Thus no special subtraction is necessary 

for this subgraph, and it gives r ise  to no additioml :rsyJnptotic logarithms. 
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Carrying out the sum over  all orders  is therefore simply a matter of counting 

and keeping track of isotopic factors. We write the serics in the form 

00 

n 1  
FIP( ladder) n=O 

00 

n 1  
(S2) = An(-G) - n! 

n=O 1 N( ladde r) 

A A A  A h  where po = n = A = 1. The coefficients p 0 0  n' n' 

relations which are exhibited graphically in Fig. 

n 

logn( -q2/m 2, (IV. 4) 

I\ and n obey simple recursion 

12. The relations are 
n 

(IV. 5) 

These recursion relations can be solved quite easily. The result for the iso- 

A scalar  combination fin + nn is 

(IV. 6)  

which leads to the result  (I. 2) for the isoscalar form factor. The isovector com- 

bination is 

where 
A h  t = p  - n  . n n n  

Then t satisfies the recursion relation n 

(IV. 8) 

t = -t + 32 t n 11-1 n-2 (IV. 9) 
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with 

to = 1, t 1 = 3  . (IV. 10) 

This recursion relation is easily solved by converting (IV. 9) to a differential 

equation. The result is the sum of a growing and a falling exponential term. The 

dominant asymptotically growing te rm is 

where A 5.18 is the positive root of 

2 A + A - 3 2 = 0 .  

(IV. 11) 

(IV. 12) 

The recursion relation and the solution for the pion form factor are essentially the 

same. The fact that the isovector and pion form factors do not fall asymptotically 

in the ladder approximation makes the significance of the physically more reason- 

able form (I. 2) for the isoscalar form factor quite doubtful. In the next section 

we will show that the sum of - all leading contributions to the form factor in every 

order of perturbation theory for the pseudoscalar n-N theory also behaves very 

unphysically . 

V. THE GENERAL ITERATION SCHEME 

The iterative scheme for performing the complete summation involves the 

fermion and pion self-energies. In order to avoid calculating these functions, 

which requires dealing with overlapping divergences, we will relate them to the 

proton-? and pion-? vertices via the Ward identity. 

A useful form of the Ward identity is 
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2 2 If we considcr only the lcading asymptotic (-p >>ni ) t e rm in each order  of per-  

turbation theory, we can use expression (111.8) in the right-hand side of (V. 1). 

The asymptotic form of the left-hand side of (V. 1) is thc same ads that of the form 

factor 

where the p are the same coefficients that appear in (111.12). This form invari- 

ance (of the leading te rm in each order) under taking various legs asymptotic holds for  

each graph which contributes a leading logarithm. We show this explicitly for the 

two second order graphs which are calculated in Appendix B and the general case 

is treated in the same way. The important point is that in our formalism, the 

te rms  which give a leading asymptotic logarithm contain momentum dependence 

only in the logarithmic factor in the parametric integral. This factor arises from 

the overall subtraction by use of (A.  13).  

n 

Inserting (111.8) and (V.  2) into (V. 1) gives 

cn = -Pn 

so that the proton self-energy to a given order  is known a s  soon as the proton-y 

vertcx (with any set of legs asymptotic) is known to that order .  By isotopic spin 

symmetry, the neutron self-energy has the same form and the same set of expan- 

sion coefficients cn. A similar analysis for the pion self-energy and pion-y 

vertex shows that 

nn = -7T n '  

The suiii over all orders of perturbation theory of - all leading :Lsyiiiptol ic con- 

tributions is lxtscd on thc smne ideas as the sum over lnddcr graphs which was 

done in the prececding section. A s  wc esplaincd in Scction HI, lending asjrmptotic 

t e rms  conic only from uncrossctl laddcBr graphs with lcacling :jcll.-cncl*gy and TNN 
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vertex insertions. Leading vertex insertions are again ladder graphs with leading 

vertex and self-energy insertions. Leading self-energy insertions are obtained 

via Eq. (V. 3) and (V. 4) from leading form factor expressions. Thus we can 

derive an iteration scheme analogous to (IV. 5). It is illustrated in Figs. 14 and 

15. 

Before describing this iteration scheme in more detail, it will be helpful to 

summarize our notation. The sums of all leading asymptotic te rms  in each order 

for the various vertices a r e  written as follows (z P log(-q /m ),q being the four- 

momentum of the leg of the vertex graph with the largest spacelike four-momentum) : 

2 2  

2 (q )=v(z) = vn(Gz)” . 
n=O ‘ ~ N N  

It will also be useful to have a notation for the sum of the leading logarithmic te rms  

in each order of perturbation theory in the renorinalized fermion and boson 

propagators: 
00 

2 ‘ 2  2 2  
-id3F(p) z sn G” logn(-p /m ) z s(log(-p /m )) 

n= 0 

M 

All of the coefficients with subscript zero (po, no, . . .) equal unity. 
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Finally, we will find it desirable to have a notation for the "rung functions, 'I 

sds,, SSSn, and mn. These are illustrated in Fig. 14, and defined by the 

following equations 

- 
s d s n =  -E 'nl 'n2 dn3 'n4 S n5 

5 - 
Cn.=n-1 
1 '  

- 
SSSn =-8c s v s v s 

nl "2 "3 "4 "5 5 
Cn.=n-1 
1 '  

d s d n = -  d v s v n n n n d n  * 
5 1 2 3 4 5  - 
Cn.=n-1 
1 '  

These quantities describe the effect of adding to a ladder graph another rung, 

including self-energy and vertex insertions. The factors in front of the summation 

signs are required by the spinor and isospin algebra. 

A proton form factor graph which contributes a leading log" te rm in 

order  Gn can evidently be obtained by attaching a rung with no self energy o r  vertex 

insertions to a proton form factor graph giving a leading G n-1 n-1 log term,  by 

attaching a rung with a single-leading-log vertex o r  self-cnergy insertion to a 

leading Gn-2 logn-' proton form factor graph, and so on. Taking into account 

also the possibility that in the proton form factor graph the photon may have hit a 

neutron o r  pion line, we obtain the following exprcssion for the cocfficieiit p in n 

(V. 5) 

- - - 2 c ( s d s .  p 4- 2 sds .  n + 2 d s d  7r ) . 
1 n-i 1 n-i i n-i i=l pn 11 

(V. 8a) 

- 28 - 



The factor of 2 in the neutron contribution is the usual isospin factor. 

all factor of l /n  arises from the integration over the loop created by adding an 

The over- 

extra rung: 

1 2 2  n- 1 log x dx = - logn( -g /m ) . J-q2’m2 1 X n 

The following expressions are obtained in the same way: 

- 
n = L  2 ( 2 s d s  p + sds. n -2dsd i  7 ~ ~ - ~ )  

i n-i 1 n-i n n  i=l 

- 
r = L  2 (SSS.~  

i=l 
- s s s  n ) 

1 n-i i n-i n n  

i=l n n  

(V. 8b) 

(V. 8c) 

These formulas are the generalizations of Eqs. (IV.5). The factor of 2 in (V.9) 

arises from the replacement of the y coupling to the photon by the -y5 coupling 

to the pion in the FwNN graph. 
c1 

Finally, using (V. 3) and (V. 4), which express the simple relationship between 

the proton and pion self energy and electromagnetic vertex leading asymptotic 

expansion coefficients, we can derive simple expressions for the propagators. * 

We insert  the expansions (111.8) and (V.  6) into the identity 

and find s = 1, and, for n 2 1, 0 
n n 

(V. loa) 
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The result  for the pion is entirely analogous: 

do = 1, 

n (V . lob) 

We now have a complete set of equations which, starting with the first-order 

resul ts  obtained in Section 111, iteratively determine all of the coefficients pn, 

n ‘IT , etc. Either by hand o r  more easily by the use of a digital computer 

one can determine enough of these coefficients to see the general pattern and 

determine the sum of the series expressions (111.8), (III.9) , and (V.5) for the 

self energies and form factors. 

28 
n’ n 

Another method of obtaining these results,  one which is hopefully more 

enlightening as well as more rigorous, will be presented here. It consists in 

converting the iteration equations written above into a set of integral and func- 

tional equations, which are then readily solved. 

Let u s  first note that by explicit calculation n = n = n = 0, and that a 0 1 2  

simple physical argument (given below Eq. (III. 16)) - as well as straight- 

forward application of the iteration equations o r  of the method to be explained 

shortly - leads to the conclusion that n. = 0 for all i. If we use this fact then 

we can replace Eqs. (V. 8) by the simpler set of equations 

1 

n 

n 
7r n = L  11 Z K . p  1 n-i ’ 

5 i=l 

(V. 8’a) 

(V. 8%) 

- 
t,hcn we no longer requirc dsd, cilhcr.  
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We will discuss first the sclf-cncrgy Eqs. (V. 10). 

these iteration equations are equivalent to the equations 

(L, 

-1 
= P(Z) 

n=l  

00 

It is easy to verify that 

(V. 11) 

These equations are but a succinct way of stating the result  of extending the Ward 

identity by using the form-invariance of the leading logarithmic contributions to 

the form factors when different legs o r  combinations of legs are asymptotic. 

The reduction of Eqs. (V. 7) to a set of functional equations is again trivial. 

Defining 

(V. 12) 

we have 

We finally consider the Eqs.  (V. 8') and (V. 9) for the vertex functions. In 

(V. 8'a) and (V. 9) we have exlxessecl the power se r i e s  coefficients p and v in n n 
- 

t e rms  of sds - our aim is to express the functions p(z) and v(z) in te rms  of $(z). 

It is easy to verify that the solutions are 
n '  

(V. 14) 
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Similarly, Eq. (V.8'b) expresses n(z) in te rms  of O(z) and p(z): 

z 
n(z) = 1 - G$ O(z) p(z) dz . 

0 

(V. 15) 

This completes our set of functional equations. Note that these equations express 

directly the integral equations implied by Figs. 14 and 15. For example, the 

integration 
2 2  

dx 
X 

dz = f -' 'm 
0 1 

adds another "fully dressed" rung to the ladder vertex graph. 

In order to solve these equations, we eliminate all the other functions in 

favor of q!~ ,  thereby obtaining an equation for q5 : 

2 
I,!J = s(zf V(Z)  d(z) 

= [.- (-3 G[' ~+hd+]-~ [.xp (-2 G[' q5d9l2 [1 - G l Z  6p  dz1-l . 

Noting that the logarithmic derivative of each factor is a function only of q 5 ,  the 

last factor giving 

we find that 

' * = l O G $ .  Z+h dz (V. 16) 

Since the f i rs t  terms in the power ser ies  for S ,  d,  and v a r e  all unity, $(O) = 1; 

consequently we can integrate (V. 16) to obtain the reniarltably simple form 
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The other fuiictions are now readily obtained. The sums of all leading logarithmic 

contributions to the form factors a re  

and for the propagators 

(V. 18) 

(V. 19) 

A s  we have already pointed out in Section II.E, these results are s imilar  to certain 

results obtained by use of the renormalization groupP' ''In particular, they unfor- 

tunately share their deficiencies, including a logarithmic "ghost cut'lfor large q < 0 

and unphysical asymptotic behavior. 

2 

VI. DISC USSION 

Our investigation has shown that i f  reasonable asymptotic behavior is to be 

obtained by summing logarithmically growing te rms  in each order of perturbation 

theory, either we must look for a different field theory for which the sum of leading 

terms in each order does give a falling form factor (possibly of the form (11.1")) 

o r ,  if we persist  in investigating thc y r - N  theory, we must face the difficult 

task of including in the sum non-leading logarithms in each order. 

of both of these possibilities is facilitated by f i rs t  reviewing the connection be- 

tween our suiniiiation techiiiyues and the renormalization group methods discussed 

in Section 11. E .  

5 
A discussion 
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In applying the renormalization group approach to determine the asymptotic 

behavior of vertex functions, one is restricted to the completely asymptotic region 

and, as we have shown using the (-p =-p' =-q >>m ) in considering rTNN, 2 2 2  2 

Ward identity, the determination of the asymptotic behavior of electromagnetic 
2 12 2 

vertex functions is restricted to the region q =O, -p = -p = m . Our results 

show that in the r5 theory, the renormalization group result for the leading 

asymptotic logarithms holds also in the form factor region $ = $' = m, -q >>m . 2 2 

A .  Summing Non-Leading Terms 

For the case of the completely asymptotic vertex or asymptotic propagator, 

renormalization group methods can be employed to determine the sum of next-to- 

leading 1ogarithi:is. It turns out that the unphysical results obtained by summing 

the leading te rms  persist  when non-leading te rms  are included. 

For example, suppose we consider the asymptotic photon propagator in QED. 

By renormalization group techniques, lo it can be shown that the sum of leading 

logs gives 

(VI. 1) 

2 which has a logarithmic ghost pole for  large spacelilce q . When next-to-leading 

logarithms are included, one finds 10 

q Dh(q  ) = 1 - - 4n , - , [ E  m 

which again has an analytic behavior inconsistent with the IGillen-Lehinan repre- 

sentation of the propagator. We have found that similar results are obtained 

if all logarithms up to the nth-to-leading order are summed, for any finite 11. 
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5 One finds similar although slightly more complicated results for the y 

n-N theory. In this case,  the function $ (cf. Eq. (V. 13)) is the "invariant 

charge" 

in QED, and the sum of next-to-leading logarithmic contributions to $ closely 

resembles (VI. 2). The vertex function and propagators including next-to-leading 

logs are then obtained from $ by a quadrature. lo Their behavior is no more 

reasonable than that of the leading-log results (V. 18) and (V. 19). Again, inclu- 

10 of the theory, corresponding to the numerator of the photon propagator 

sion of lower-order logarithmic contributions gives no indication of improving 

matters.  

The above conclusions about the effect of including non-leading contributions 

apply to the completely asymptotic region which is accessible by renormalization 

group methods. We must next inquire whether these unpleasant results persist  

in the form factor region, with the legs of the vertex functions taken on the mass  

shell. We have begun an investigation of this question by calculating the singly 

logarithmic te rm from several second order graphs. In each case we find that 
2 2 2  the coefficient of G log (-q /m ) in the Dirac form factor is different from the 

2 coefficient of G log (-p2/rn3in the completely asymptotic vertex. However, in 

each case these te rms  come from the ultraviolet region of integration and we 

expect that the next-to-leading logs in the form factor will exhibit the same sor t  

of behavior as the next-to-leading logs in the completely asymptotic vertex. 

We have considered in some detail the next-to-leading logarithmic contri- 

butions to the sum of ladder graphs discussed in Section IV. Although the sum 

of ladder graphs is not particularly significnnt, it is combinatorically simpler 

than the sum of all graphs; and we hope that our discussjon of this case may be 

illustrativc . For siinplicity, we avoid the coniplicatioiis of isospin and consider 

the r0-p theory, for which the sum of leading logarithms is given by (IV. 2). The 
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2 2  
general expression, including non-leading terms,  has the form (z = log -4 /m ) 

m n 
n m  (q2) = B G z + O(l/q) nm F1( ladder) n=O m=O 

(VI. 2) 

= L1(z) + L2(z) + 

where, using the resul ts  of Section IV, 

ca 

trn = (-1y/n! , L 1 = c  BrnG n n  z , 
n=O 

(VI. 3) 
06 

Gn Zn-l  
L 2 = c  Q n, n-1 9 n=l 

etc. 

It is simplest to consider first the completely asymptotic vertex 

(q2, p2y pt2) (the same remarks  will also apply to the "Ward-identity vertex" 

(0, p2, p2$ since the iteration method requires knowledge of the n-rung 
Fl(ladder) 

F1( ladder) 
vertex function with the fermion 1egs.asymptotic 

vertex function. We let 

in determining the (n+l) :rung 

2 2 ,2 2 2 !I' Gnzm = L i ( z ) + L i ( z )  + e - ., 
n=O m=O nm ((4 ,P , P  1 = 1( ladder) 

2 2  2 where here z = log -k /in , I k I=  max( lp21y l ~ ' ~ ( ,  lq21). Note that the "form- 

invariance" we have stressed previously applies only to leading te rms ,  unfortun- 

ately; thus Qh = Qnn, but Pi - + Qn n-1' 

It is necessary to calculate a new quantity before beginning the iteration, the 

next-to-leading logarithmic contribution from the graph of Fig. 93, which is 

denoted by 1il. It turns out that all the te rms  in L i  but thc first come from 

inserting Icading-log rungs either above or below the rungs which give this 
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next-to-leading two-rung result .  Since there are thus two ways of constructing 

the three-rung graph (either the top two or  the bottom two rungs could have 

corresponded to the original two-rung next-to-leading term),  three ways for the 

four-rung graph, and so on, the result is 

(VI. 4) 

We have verified the arguments which led to (VI.4) by a calculation similar to 

that given in Appendix C . Entirely analogous reasoning leads to the following 

expression for 

L 2 = l  G 10 

the sum of next-to-leading contributions to the form factor: 

The results (VI. 4) and (VI. 5) cast  further doubt on the significance of the 

leading logarithm expressions (I. 2) or  (IV. 3) ,  and give us  no reason for optimism 

regarding the improvement of the results of Section V by the inclusion of non- 

leading terms.  The sums of next-to-leading te rms  (VI. 4) and (VI. 5) a r e  larger 

by a factor of log -q /m than the sums of leading te rms ,  and in addition they 
2 contain constant te rms  which survive in the limit -q - w .  (It tu rns  out that 

Pl0 = 0; however, the difference tZ1-fb1 does not vanish.) 

B. Other Field Theories 

2 2  

Any field theory with pseudoscalar coupling will exhibit thc same type of 

asymptotic Ixhavior as the model considered in this papcr. Thus, enlarging the 

algebraic structure to SU( 3 ) ,  for csample, will not chnngc any of our co~iclusions. 
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The same is t rue of models which include scalar particles coupled to the fermions 

such as the linear u-model. 

come from the ultraviolet integration region and give rise to essentially the same 

type of asymptotic behavior as in the purely pseudoscalar theory. 

The logarithmically increasing t e rms  in such theories 

We have pointed out in Section I1 that there does exist  a renormalizable 

field theory, namely spinor electrodynamics with a massive photon, for which 

the leading asymptotic logarithms in the form factor come from the infrared 

integration region and for which these logarithms sum to the not unreasonable 

result  (11.17). It is our contention, however, that this is very misleading. What 

is being done in summing these dominant infrared logarithms is to take from this 

field theory its low energy o r  statistical properties while ignoring the high energy 

or  short  distance properties of the theory. When there are no infrared logarithms 

present, the dominant ultraviolet logarithms come from the t e rms  in the parametric 

integrand containing only Xij numerator factors. However, even when the infrared 

logarithms, which come from t e rms  containing Y. numerator factors,  are dominant, 

the pure X.. t e r m s  are still present and thus the ultraviolet logarithms are still 
11 

present. Our formalism can then be applied to sum these ultraviolet logs. Even 

when the infrared logarithms dominate in each order  of perturbation theory, the 

ultraviolet logarithms are expected to sum to give the unreasonable type of asymptotic 

behavior found in the pseudoscalar meson theory. 

1 

C. Conclusions 

A s  we have seen, both experimental evidence and theoretical argumcnts 

seem to militate against the sor t s  of results obtained by summing asymptotically 

leading logarithms arising from the ultraviolct region in Feynman intcgrals We 

emphasize that this conclusion applies not only to the ultraviolet-doiiiinatecl y5 
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n-N theory to which we have devoted most of our attention in the above discussion, 

but also to QED, to the sigma model, and to any other field thcory containing 

ultraviolct divergences. Although our calculations have been confined to the con- 

sideration of the asyinptotic behavior of propagators and vertex functions, we feel 

it to be likely that s imilar  s t r ic tures  apply to those calculations of any scattering 

amplitude which involve summation of leading logs in perturbation theory. 

Confronted with this situation, there appear to be four possible alternatives: 

1. Consider a field theory with no ultraviolet divergences. Unfortunately, 

the only example of such a super-renormalizable field theory in Minkowslti four- 
Y space, the theory of a scalar $ field self-coupled with a $ interaction, has certain 

formal deficiencies. However, even apart  from these deficiencies and from the 

fact that the omission of fermions in this theory prevents it from even approxi- 

mating a description of reality, there is reason to suppose that the $ theory 3 

cannot explain the observed rapid asymptotic decrease of the elastic form factor. 

This plausibility argument is based on a theorem of Weiiiberg (cf. Section 19.14 

of Bjorken and Drell ), which relates  the asymptotic behavior of a graph to the 

divergence of its internal loops; specifically, if  G is a fully asymptotic vertex 

6 

(VI. 6) 

where ac is the largest degree of divergencc of various sets of connected 
3 lines in G - for the $ theory cyG I -1 - and ,!IG is determined by more compli- 

cated considerations. 7' Now consider the graphs contributing to the elastic 

form factor. The zeroth order  graph (with no loops) contributes a constant, which 

we can regard ns bcing unity; thc loops which are par t  of all higher-order graphs 

arc all coiivergcnt (except for thc self-energy insertions, which are taken care  of 

by mass renorinalizntioii) . Thus t.lic Fcynman graph cxpnnsioii for the form factor 
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corresponds to  a series, evcry tc rm of which but the f i rs t  is asymptotically 

rapidly falling. 

the series will sum to a constant as q -w. 

Barring a reinarlrablc canccllation, it secins most likely that 

2 

2. Attempt to modify the large-momentum behavior of conventional field 

theory. This can probably not bc true without tampering with the locality proper- 

ties of the theory, and there seems to exist no cntirely satisfactory way of doing 

this. Nevertheless, this approach probably deserves intensive investigation. An 

interesting effort along these lines is the recent treatment by Drell, Levy, and 

Yan of deep inelastic electron-proton scattering. 2 

3. Abandon field theory. We have discussed in Section I1 several  non-field- 

theoretic attempts to account for the asymptotic behavior of the form factor. 

Composite models probably have a kernel of truth in them, but seem rather  ad hoc 

and model-dependent. The self-consistent, or bootstrap, model of Harte, l8 and 

the statistical model of Mack 19' 2o are both guided in par t  by field theoretic ideas, 

but lack the serious deficiencies which appear to be associated with the ultraviolet 

region in field theory. (Loop integrals in Harte's model a r e  dominated by the 

low-p region on account of his ansatz (11.3a).) Thus we must regard such 2 

approaches as promising. 

An unfortunate correlative of the adoption of the previous two approaches is the 

abandonment of the long-standing hope that the measurement of thc form factor a t  

large momentum transfer will enable us to probe the very fine scale structure of 

the nucleon. This hope is not quashed by the final approach we would like to 

suggest. 

4. Abandon thc attempt to sum leading te rms  in perturbation theory, or 

abandon pcrturb:\tion theory altogether . It is possible that by summing - all of the 

teriiis in Eq. (VI. Z), for example, and not jus t  leading o r  next-to-leading 
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logarithms, we would have obtained satisfactory results.  However, our exaniina- 

tion of the structure of such sunis makes us  regard this as an unlikely possibility. 

If field theory really can say anything about asymptotic behavior, we feel it is 

more likely that it will do so only through the use of some tcchniquc which avoids 

the perturbation expansion. Redmond, 24 Bogoliubov, 25 and others havc given 

interesting arguments that the S matrix has an essential singularity when the 

coupling constant vanishes, and that the perturbation series is at best anasymptotic 

expansion. Wc would like to adopt this last  explanation for our difficulties with 

perturbation sums. The difficulty, of course,  is that in field theory no calcula- 

tional alternative to the perturbation expansion as yet exists. 
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APPENDIX A 

PARAMETRIC INTEGRAL NOTATION 

A l l  of the perturbation theory amplitudes in this paper are calculated by 

expressing them directly in t e rms  of integrals over Feynman parameters ,  using 

methods developed by Nakanishi" and others. A method of performing renor-  

malization subtractions using the parametric integral formalism will also be 

employed. These techniques are considerably simpler than the straightforward 

application of Feynman rules.  

particularly for graphs with multiple internal renormalization - and the identifi- 

cation and extraction of asymptotically leading te rms .  

31 

6 They greatly facilitate the subtraction procedure - 

(G) 
I In this Appendix we give the parametric integral form of the amplitude W 

corresponding to the arbi t rary Feyninan graph G. The subscript "I" signifies 

that the expression given is "intermediate renormalized" in that any internal 

subtractions required a r e  performed with the Lorentz scalars  (squared four- 

momenta) characterizing propcagators and the triplet of scalars  characterizing 

vertex functions all taken equal to zero. It will become apparent when various 

first and second order graphs are computed that the choice of renormalization 

point is irrelevLmt in determining the leading asymptotic behavior. 

It is necessary to assign a direction to  all internal lines of the general graph 

G so that electrical, baryonic, e tc . ,  charge flows continuously through the graph. 

The internal lines a re  numbered in any convenient fashion. 

all  factors of i associated with propagators and 

then has the forin 

The amplitude, including 

associated with loop integrals, 
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whore 

n = number of loops in G 

N = number of internal lines in G 

and zf is a renormalization operator which will be described in detail below, U 

and E are parametric functions, and the operator JV is a product of the usual 

numerator factors (bi + m) for  fermion propagators, - 

-iey for  photon-fermion vertices, -ie(fii + b.) for photon-boson vertices, and 

g T 

tion with respect to auxilliary Lorentz four-vectors Q .  which are then set equal 

to zero): 

A 
for photon propagators, 

gP 

P JP 

a 3  J 
yr for fermion-meson vertices, where the operators f i .  involve differentia- 

J 

A 1 p.  = - 
j ixj 

Let u s  first suppose that the graph G does not require any internal subtractions. 

Then &?can be set equal to unity, and the parametric functions have the form 

x ... x v ’  u =  c 
{VI, Y V n 1  v1 n 

where the braces  {. . .) indicate that the sum is over all sets vl, . . , v such n 

is a set of independent integration momenta, and 
n 

k.k.Q:Q. X.. -E x.(m 2 - i c )  , ( A . 4 )  
i i  E = V +  kQ * Y . - -  

1 ’  1 4 i , j c G  1 J 1  J 1 J  i r ~  i cG 

A 
where, as long as no subtractions a r e  required, we can take xi = xi for all i. Thus 

E involves several  inore parametric functions, V,  Y and X... The first of these, 
i’ 1J 

the only one which nced be evaluated if  all the lines of G are spinless, has the form 

(A. 5) 
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where all the external momenta k (r = 1, . . . , n) of the graph G a r e  regarded as 

directed inward, 32 and gS is the U function of the vacuum graph Grs formed 

from G by connecting the legs r and s and ignoring all other legs, with the direc- 

tion of this new loop (labeled 0 in Fig. 16) chosen so as to enter the subgraph G 

with leg r ,  and with the paramcter xo set  equal to zero at the end 

r 

33 
As  an example, consider the first-order vertex graph drawn in Fig. 17. 

There are three independent integration momenta, so 

u = x  + x  + x  - 1 2 3 '  

referring to Fig. 17b, we calculate 

= x  (x +x,) . 3 1  wpp = x (x + x  +xo) + xo(x1+x2) ' [ 3 1  2 I, 0 =o 

For a form-factor graph, such as Fig. 17 with p2 = pq2 = m2, it is convenient 

to express  V in the form 
n 

where 

2 
N a l ~ ~ n i s h i ~ ~  gave a method for evaluating Wq directly: 

2 
Wq = WC(AB) (Pk(AB)) 

k 

where the sum is o h  all paths Pk connecting the nodes A and 13 (where p and -p' 

enter the graph) but not passing through node C (where ci enters thc graph), and 
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Wc(AB)(Pk) is the W function for the graph obtained by shrinking all the lines 

along the path Pk to a point, and connecting that point to C (see Fig. 18). For 

the first-order vertex graph of Fig. 17, the resulting diagram is Fig. 17c, and 

2 
wg = x x  1 2  

In general, it will be necessary to evaluate some of the Yi and X . .  functions. 
1J 

rs Let us f i rs t  define the parametric functions U 

circuit of lines in G: 

and Wc , where C is a closed C 

with no vi E C 

where the sum is over all sets vl.. . v corresponding to independent integra- n - l  

tion momenta, such that none of the v. in the se t  belongs to the set of lines com- 
1 

prising the circuit C;  and, corresponding to (A. 6), 

C=pJc) 3 
Grs xo=o 

(A. 10) 

Then 

where the sum runs over all circuits C in G which include the lines i and j ,  and 

s 

circuit C ,  and negative if  they a r e  antiparallel. (These s 

use we make of the directions assigned to the internal lines.) Similarly, recalling 

is a sign factor which i s  positive if  the directions of i and j a r e  parallel along 
C 

factors a re  the only C 

that G has I) external lines, 

1-1 
(A. 11) 

r=l 
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and 

s dr k 
c c '  CcC(0, i) 1 

In the graph illustrated in Fig. 17  there is only one loop; for this  case,  we 

must se t  U = 1. Then C 

Straightforward evaluation of the Y ' s  gives 

1 Y1 = v [-(x2 + x3) P + X2P'] 

1 
y 3 = -  u [-XIP - XZP']  a 

31 
We can now write the integral for the Feynman graph Fig. 17 explicitly: 

The t e r m A  does not diverge at the lower limit of integration, so fo r  it we can 
PY 

set p = 0 and insert the identity 

(A. 12) 
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into the integral. Changing variables x.- x /A (i  = 1,2,3) and doing the A integral, 

we obtain 
i i  

dxldx2dx3 6(1 - x -x -x ) (Y1+Y2) (m-$ ) - 17)- (-ie)F2 p 1 2 3  3 
2 2 2  2 ALy 16n 0 x1x2q - x3M - ( 1-x3) mn 

2 It is not difficult to verify that this integral is asymptotically constant as q - w .  

Note also that there is no infrared divergence if we set mT = 0. 

PX 
In working out the te rm A , we could use the standard subtraction procedure 

34 to be explained below. But we will instead use the identity 

- eibh, = log ;  b (A. 13) 

along with (A .  12), and obtain 

'I 1 2 3  1 2 3  [ '; 2 2 

2 2 2  
3 -x x q + x  m +( l -x  ) m  

x3 M + (1-x3) mn 
dx dx dx S ( 1 - x  -X -X ) log ~ ( 1 7 ) -  (-ie)2g2 

2 16n 

2 
_ -  - (-le)2g2 log 5 + O(1) . 

3 2n2 m 

2 Thus this is the dominant term as q -UJ, and it arises from the asymptotic region 

of integration in momentum space, o r  the neighborhood of the origin in parametric 

space. Again note that there is no infrared divergence if mr  = 0. 

Let u s  now introduce the general renormalization procedure. Previously we 

assumed that the graph G did not require renormalization; and when it turned out 

that the graph (Fig. 17) used as an illustration actually does require a subtraction, 

we made it in the usual way. Now we suppose th:d G requires renormalization, 
31 and introduce the nbtation 

S. = divergent subgraph of G (possibly S. = G) 

d .  = degree of divergence O T  S 

1 1 

1 i 
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n. = number of independent circuits in S 
1 i 

S’ = set of all divergent subgraphs S. of G. 
1 

For each divergent subgraph S. we introduce an auxiliary parameter 4 . .  For 

each Si in turn we then examine the parametric function U (defined, on the as- 
1 1 

sumption that no subtractions are required, by Eq. (A .3 ) ) ;  each te rm in U which 

is of order n. + m in Xk, where XkcSi, i s  multiplied by tfm. The same rule is 
1 

rs applied to Wrs, Uc, and Wc . We next define 

(A. 14) 

where 9’ is the subset of 9’ whose members contain the line k; all these functions 

are then inserted into Eq. (A. 4) .  

k 

Finally, we define the subtraction operator d required in Eq. (A. 1): 35 

(A. 15) 

Let us  illustrate these formulas with an example, the double rung ladder 

graph pictured in Fig. 19. Including the rules for subtractions, we apply formulas 

( A . 3 ) ,  (A.5) ,  e tc . ,  and find 

2 u = (x +x +x ) (x +x +x ) + 6 x (x +x ) 
2 3 5  1 4 6  5 2 3  

- 
u x 1 2  = u x 1 3  = ux34  - x5 

= x  + x  + x  ux14 2 3 5 

1 u x 2 3 - 2  - (x 1 + x  4 + x ) + x ,  G J 
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2 2 2 
wq = x  x (x +x +x ) + 4 x x (x +x +x + 1 4 2  3 5 2 3  1 4  6 4 x5) 

2 
+ ( ~ 2 x 4  + X1X3) X 5  

I 2 
wpp = (x1+x4) (x2+x3+x5) X6 + 5 (x2+x3) X5X6 

Here < is the parameter corresponding to the divergent subgraph composed of 

lines 2, 3, and 5, for which d = 0, n = 1. 
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APPENDIX B 

CALCULATION O F  SOME SECOND ORDER VERTEX GRAPHS 

2 2 We first  calculate the leading asymptotic t e rm (-q >> m , $ = $' = m) from 

the double rung ladder graph of Fig. 9a. The relevant parametric functions a r e  

given by (A. 16) using the labeling of Fig. 9a. When the JP operator in (A. 1) acts 

on the exponential, it produces three types of terms:  one term containing a 

factor ti - m in the numerator for each fermion line, several t e rms  containing 

two factors of f i  - m and one factor of Xjk, and several t e rms  containing two 

factors of Xjk. A simple analysis shows that it is only a term of the latter type, 

involving the factor X14X23, that gives rise to the leading log (-q /m? term.  

The reason for this is that the leading asymptotic t e rm comes from the ultra- 

2 2  

violet integration region and it is only the X 

subtractions and inserting a cutoff A , behaves like log2 A2. Thus it is only th i s  

t e rm which behaves like log (-q /m ) after the renormalization subtractions. 

X 14 23 term which, in the absence of 

2 

2 2 2  

The dominant asymptotic t e rm is 

1 

2 
Wg 2 

x log (. - 5 
m (xl+ . . .+ x4) U - W  

The overall subtraction at $ = b' = m y  q = 0 has bcen performed using (A .  13) while 

the internal subtraction is effected by thc ,$ operation at the point p = p' = m, q = 0. 

The choice of subtraction point does iiot affect the leading logarithmic contribution. 

We have taken tho liinit in --* 0 siiice we are iiilcrcstcd only in the leading tcrin. 
7r 
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It is important to realize that the above results depend very critically on the 

coupling. In a theory such as massive QED, the te rms  containing factors of 

ti - m would be infrared divergent if the photon mass  were taken to zero and in 

fact these te rms  would give rise to an asymptotic log4( -45 behavior coming from 

y5 

2 2  the infrared integration region, which would dominate the ultraviolet log (-q ) 

factor coming from the X14X23 term.  

Without the subtraction using the { operation, the integral (B. 1) would diverge 

logarithmically in the subintegration x x x 

come at the origin of parameter space. The subtraction ( 4  = 0) te rm would be 

logarithmically divergent in  the variables x x x were it not for the presence of 

the logarithm. Since the logarithm cuts off an otherwise logarithmically divergent 

This ultraviolet divergence would 2 3 5' 

1 4 6  

2 2 2  integral, we shall see that a log (-q /m ) asymptotic behavior results. The above 

considerations show that the leading te rm comes from the integration region 

x1,x4,x6 << (B* 2) 

of the subtraction (( = 0) term.36 We insert the factor 

(Be 3) 

and rescale xl, x4, xG- Ax1, Ax4, Ax6. Then the leading te rm will come from the  

integration region A << 1. Thus 

M 

dxl. .  . dx6 6 (1 -x  -x -x ) 6(1 -x  -x -x ) 1 4 6  .2 3 5 
~ ( " ) ( q 2 , ~ = ~ ' = i n )  z 4G 

P 

(B* 4) 
x x  1 4  2 E<< 1 

( X l +  ... +X4)  - x  (x +x4) m 6 1  
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Doing the A integration gives 

m 

x(9a)(q2, 6 =$' = m) rz 2G 2 log2( -q2/m2) J-dxldx4dx6 6( 1 - x1-x4-x6) 

0 
I.1 yI.1 

J dx2dx3dx5 S(I - x -x -x 2 3 5  
0 

which is the result stated in Section III. 

Regardless of which leg is taken asymptotic, the dominant te rm will be the 

one containing the factor X14X23. The general form of this te rm is 

00 . . . dx S(1 -xl  -. . . - x 6 ) 1 1 d t d  t2 X14X23 7 1 
6 at 

with V defined by (A .  5). Since momentum dependence is found only in the argument 

of the logarithm, it can easily be seen that the leading term is independent of which 

legs a re  taken asymptotic. Thus for the kinematic region -p = -pf2 >>m , q = 0 - 2 2 

which is the region in  which the vertex can be related to the asymptotic propagator 

using the Ward identity - the leading term i s  

2 2 2  G' L log (-p /m y/..l 2! . 

We next consider the graph of Fig. 10d with the fermion self-energy subgraph. We 

reproduce and label this graph in Fig. 19. An analysis similar to the above shows 
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that the leading asymptotic term is 

1 a 2 2 x5(x3+x5) X(”)(q2,d=# =m) z 1 dxl . . . dx6 S ( l  -xl - . . . -x6) 
de (st) 4 u4 CL 

0 0 

2 
Wq 

m (xl+ ...+ x4) U - W  

where 

u = t2 x x + ( X  +x ) (x +x +x +x ) 3 5  3 5  1 2 4 6  

1 

wpp = x [<2 x2x5 -t (x3+x5) (XI  + x2 + x4;1 6 

The internal mass and wave function subtractions are performed at the origin of 

momentum space using the 4 operations. 

We use the fact that 

and again find that the doniinant asymptotic t e rm comes from the subtraction 

( 4  = 0) te rm and from the integration region x3, x5 -x 1. We find 

_ -  - G 2  log2(-q2//m2) 
yP 

(B. 10) 

When an isotopic fjctor of thrce is included for thc isosy.,iii-syiiiiiictric theory, we 

get thc rcsult indicated in Fig. 10d. It is again found that this form (B.10) holds 

in any asymptotic rcgion. 
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APPENDIX C 

We will f i r s t  prove the relation(1V. 2) using the notation and techniques of 

2 N 

Appendix A .  We express  the renormalized amplitude f (q ,$=$ '=m)  cor- 
P ,  n 

responding to the nth ordcr  ladder graph of Fig. 11 by using the operator zd 
defined by A .  15 to perform the internal subtractions. The only te rm which will 

give rise to a leading logn(-q /m? contribution for q >> m2 is the one which, 2 2 

without the subtractions, would be logarithmically divergent in each of the n 

vertex subgraphs. This t e rm contains only the n numerator factors 

X 
x.y. 1 

2 2 trivial and for -q >> m , 

, i = 1 , 2 ,  . . . n, and no factors of Y.. For this te rm,  the Dirac algebra is 
1 1  

03 n n 
c , n ( q 2 , d = d ' = m )  e (2G)" e / (  i=l n dxidyidz$ 8(l - i=l 

- 0  

n 2 
2 n 

1 

u (Xi+ Yi) - wpp n n i=l 

th The subscript n on the parametric functions indicates that they refer to  the n 

order  ladder graph. We have explicitly performed the overall subtraction at 

q = 0, 6 =6' = m  using the relations ( A .  12) and (A.  13). The operator E! effects 

only the internal subtractioiis (at  the point p =p' = q  -0). 

n 

The parametric functions are defined according to Appendix A with the sub- 

traction paramcter (. assigned to the vertex subgraph composcd of the lines 

labeled xi, yi, 

1 

z ~ + ~ ,  . . . xll,yn, zn. For each of tlicse graphs, d .  = 0 
1 
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and thus 

Let us consider the subgraph x y z 

is now finite due to the subtraction involving the parameter 6 By the same 

arguments as in Appendix 13, it can be seen that the leading asymptotic te rm 

will come from the integration region 

The integration over these parameters  n n n' 

n' 

Xi ,Yi ,Zi  << 1 Y i=l ... n-1 

of the subtraction (6 4) term.  36 By using the properties of the parametric 

functions, 31 it can be shown that 
n 

u ( 6  =O) = ( x  + y  +z ) un n n  n n n  - 

( 6  =O) = x  i=l, . . . , n-1 , Xxiyi,n n xiyi, n-1 ' 

We realize the restriction (C.  3) by inscrting into (C. 1) the €actor 

( C .  5) 



and rescaling x yi’ z i - -  Axi9 wis Azi9 i=l, . . . , n-1. We then restr ic t  the A inte- 

gration such that X << 1. Using ( C .  4) , we find 
i’ 

n n n  
“ 2  
P r (q ,$=$‘=m) = dxndyndzn 6 ( l  - x -y -Z ) 

0 

2 Wq2 n-1 log 1 - A 2 q 
n 

i=l 

m c (Xi+Yi) - wpp’ n-1 ‘n-1 

with E<< 1. 

The A integration gives 

while 
0 

co 
m 

1 J dxndyndzn 6 (1  - x -y -Z ) = - 

0 
n n n  2 ’  

Inserting these results into (C. 6) and coinparing with (C. l), we have the expression 

for f 1 2  2 (q ) but with the logarithm replaced by -- log . 
This technique can be continued. The next step is to subtract the innermost 

P’n-1 

P’ n-1 2! 

vertex subgraph of the reduced graph corresponding to f 

will be the integral for r 
p ,  11-2 

(q 2 ). The result  

(q 2 ) but with thc logarithm factor replaced by 
1 3  - log . Clearly the final resul t  will be exactly (IV.2) 31 

(IV. 2) 
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The general iteration scheme (V. 8) relies on results s imilar  to those for 

the ladder graph. It must be shown that for an arbitrary vertex graph which 

contributes a lcading logarithmic factor in its order  of perturbation theory, the 

amplitude has a form similar  to (IV. 2). The proof is carr ied out just as for 

the ladder graph by working from the inside out. One s tar ts  with the parametric 

integral representation of the amplitude with only the overall subtraction per-  

formed explicitly. The form will be s imilar  to (C. 1). The subtractions for the 

innermost vertex o r  self-energy subgraphs (those which do not themselves contain 

such subgraphs) can be carr ied out in any order using the above method. In the 

case of overlapping vertex subgraphs, the subtractions can be performed in 

either order .  Once these subgraphs have been dealt with, the remaining ampli- 

tude will correspond to the graph formed by shrinking all of these innermost 

graphs to a point except that the single log will be replaced by log"" multiplied 

by factors arising from the Dirac algebra where n i s  the number of innermost 

graphs. This procedure can then be continued as with the ladder graphs to give 

the results (V. 5) with the spinor and isotopic factors kept track of by (V. 8). 
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p of the virtual photons tends to zero) are exactly cancelled by the infrared 

divergences of the c r o s s  section for the same process, but with the emission 

of very low energy real photons. The details of this cancellation were spelled 

out by D .  R. Yennie, S. C.  Frautshi, and H. Suura, Ann. Phys. (N.Y.)  - 13, 

379 (1961). In Y 

in the c ross  section for a process involving emission of pions since the infra- 

r e d  region is supressed by the p-wave coupling: 

7. 

T-N theory, however, there is no divergence as mn- 0 5 

Hence, since the physically observable c ross  section must be finite, there can 

be no infrared divergence associated with virtual pions either. 
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This conclusion can also be obtained directly. It is straightforward to show - 

see the appendices - that lowest order  graphs are not infrared divergent as 

m,--O. We now inductively assume that an amplitude A(p,p',  . . .), cor- 

responding to a graph with n-1 virtual pions, is not infrared divergent, and 

form the amplitude A' associated with a graph containing an additional virtual 

pion. By an argument of Yennie et al . ,  it follows that if a given Feynman 

amplitude is not infrared divergent as m,-0, then the only way a meson 

line can be added to it in order to produce an infrared divergence is to have 

both ends of the meson line end on external lines of the corresponding 

Feynman graph. We obviously need not consider self-energy insertions on 

external legs. The amplitude A '  will thus have the form 

-- 

which is not divergent as m,-0. This completes the inductive proof. 
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Quark theorists would of course make a special case for three constituents, 

but the quark model does not seem to have had any particular success in 

explaining the rapid asymptotic decrease of the proton's electromagnetic 

form factor. The quark theory of form factors seems largely to have 

exercised itself - and perhaps exhausted itself - in dealing with the question 

of the statistics of the quarks as reflected in the symmetry of the wave func- 

tion. (Cf. footnote 5.) 
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26. 

27. 

28. 

29. 

30. 

31. 

32 

33. 

The 

The 

notation d' =$ = m  indicates, as usual, that the renormalized vertex 

is regarded as sandwiched between Dirac spinors ;(PI) and u(p), 

on-mass-shell pion form factor is defined by the equation 

Off the mass shell we add another te rm proportional to q . 
In using a digital computer to do the iteration indicated by the equations 

(V. 7) - (V. lo), it is most convenient to include a factor of n! with each of 

the coefficients s 

See Refs. 9 and 10. Results analogous to Eqs. (V.18) and (V.19) have also 

been obtained for the TO-p theory. Defining Q = 1 - 10 G log( -q /m ), we 

P 

- 
d sds,, e tc . ,  so that they are all integers. nYvn* n 

2 2  

N. Nakanishi, Prog. Theor. Physics (Tokyo), Supplement 18, 1 (1961). 
T. Appelquist, Ann. Phys. (N.Y.)  

The reader should consult this paper for further explanations and for deri-  

vations of the formulas quoted without proof in this Appendix. 

It must be emphasized that the directions of momenta assigned to external 

lines need bear no relation at all to the directions assigned to the internal 

lines. The actual values of the external momenta are irrelevant in computing 

the parametric functions U, W, etc. 

This graph is ultraviolet divergent and requires a subtraction. For the time 

being we can regard the integral (A .  1) to be regularized by changing the lower 

limit of integration from 0 to a small  number p > 0. In the parametric 

formalisin, ultraviolet divergences always appear at the lower liinit of inte- 

gration, and th is  i s  a general method of regularizing them. 
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34. We generally use this identity in doing the outermost, o r  "overall, sub- 

traction. In evaluating the general vertex graph, the use of (A. 13) allows 
2 2 2  u s  to subtract on mass  shell (p =pT2 = M , q =0) instead of at the origin of 

2 momentum space (p2 = pt2 = q = 0). 

35. The efficacy of this operator is based on the identity 

36. In practice, the integral over the subtraction parameter 4 is usually replaced 

by the formula quoted in footnote 35. We refer to f(0) + f'(0) + . . . as the 

"subtraction te rms .  ' I  

I 

I 
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FIGURE CAPTIONS 

1. Form factor model of Ball and Zachariasen (Ref. 13). Note the absence of an 

inhomogeneous contact te rm in (b), the presence of which would correspond 

to an elementary "core" within the particle represented by the double line 

and would change the asymptotic behavior from F(q ) - l/q 2 4 2 
to F(q2) - l /q . 

2. Bootstrap model for the form factor. 

3. Graphs contributing leading logarithms to the electromagnetic form factor 

4. 

5. 

6.  

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

in massive QED: ladders and crossed-ladders. 

Integral equation used by Landau and collaborators (Ref. 9) in conjunc- 

tion with Dyson's equations for the propagators D 

tion of the asymptotic behavior of r5, DF, and SF. 

First order  proton-? vertex graphs. 

First order neutron-? vertex graphs. 

First order  n-y and N-n vertex graphs. 

First order  self-energy graphs. 

Second order ladder and crossed-ladder proton-? vertex graphs. 

Al l  second order  proton-? vertex graphs. The number under each graph is 

the contribution of that graph (times a common factor (G /2 ) log(-q /m 1). 

The nth order vertex ladder graph. 

The n order  ladder graphs. 

Third order  ladder graph with fermion "box" subgraph. 

The "rung functions" sdsn, sss 

onto a vertex graph another rung with log 

(and a single lugarithm from thc divergent loop integral for the new rung). Thus 

the sum ranges over a l l  partitions n1+n2+n3+n4+n5 = n-1. 

and S for  the determina- F F 

2 2 2  

th 

- - -  
and dsd,, which describe the effect of adding 

self-energy and vertex corrections 
n' 

n-1 
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15. The iteration equations for determining the nth order leading contribution 

to the various vertex functions. 

Calculation of the parametric function Wrs. 

Calculation of a first-order vertex graph. 
2 

Method of calculating Wq . 
Second order  vertex graph with fermion self-energy insertion. 

16. 

17. 

18. 

19. 

- 65 - 



,*,P' 

r 

r 
n ' ' P  

A 
r 

A 
Fig 1 

Fig. 2 



I 
I 
I 

+ 

Fig. 3 

+m + A) 

/y +r5A DF 

I395A2 

Fig. 4 



A 
Fig. 5 

1395A3 

Fig. 6 



I 
I 
I 

A 
I 
I 
I 
I 

Fig. 7 

T O  T +  .+. 0+-. 'Fa-' = -+- 

P n 

1395A4 

Fig. 8 



P A 
Fiq. 9 + A  + 

0 
(b) + A  + 

Fig. 10 



Fig. 11 

Fig. 12 

1395A6 

(b) 1395A7 

Fig. 13 



I I 
I I 

I 
I I 
I I 
I 

I 

! I 

I I 
I I 
I I 
I 
I I 

I 
I 

57 
I 
I 

I 
I 
I I 

I 
I 
I 

@-@-@ 
1395AB 

Fig 14 



6 7T n-i 

I \ 

I 
I 
I 

A 

1 i = l  

i = I  

i= l  

I 
I 

sds 

+ 

+ 

"n- i  

n 

'n-i 

ddd i 
7T++ I 

I I -  

p t  

1395A9 

Fig. 15 



0 

Fig. 16 

( b )  (C)  
1395Al0 

Fig. 17 



Fig. 18 

1395All 

Fig. 19 


	Fig
	Fig



