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ABSTRACT 

A unified treatment of the three processes: (I) lepton + proton-lepton t 

hadrons, (IDpro ton + proton-c lepton pair + hadrons , (III)lepton pair-- hadrons is 

presented. Our dynamical model is an off-mass-shell bootstrap theory of the 

hadrons. We show that the model predicts slow q2 (photon mass squared) varia- 

tion of the differential cross sections for processes I and II in spite of the fact that 

the model requires the elastic and quasi-elastic hadronic form factors to de- 
2 

crease faster than any power in q . The cross section for process III, however, 

is predicted to decrease rapidly in q2 and to violate the scaling law observed for 

process I. More detailed predictions of multiplicities and angular distributions 

of the final states are made, as well as the surprising predictions that for large 

q2s the ratio 

gpp -pp + lepton pair) 
/ 

*p-ppn+ lepton pair) 

dq2 dq2 

for process II and the ratio 

o(lepton pair- pp)/o(lepton pair-r’ + real photon) 

for process III should both approach zero. The latter ratio should be comparable 

to 1 for q2 -6Be . ? 
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I’; INTRODUCTION 

An exciting new realm of high energy physics has been opened with the 

advent of experimental access to the deep inelastic region in electron-proton 

scattering. ’ Future experiments involving virtual photons and hadrons in regions 

which are kinematically inaccessible in electron-proton scattering, such as lepton 

pair production in proton-proton scattering or lepton pair annihilation into had- 

rons, can be expected to provide still further information about the strong inter- 

actions. The purpose of this article is to give a unified treatment of these proc- 

esses within the framework of an off-mass-shell bootstrap theory. 2 The hadrons 

in our bootstrap are described as infinitely composite particles and in Ref. 2 we 

derived within the model a tree theorem for the asymptotic form of the n-particle 

scattering amplitudes satisfying exact unitarity and crossing symmetry. This 

theory has been successful in correlating the elastic nucleon form factors at 

large momentum transfers and wide angle elastic proton-proton scattering. 3 

We shall study here the three processes shown in Fig. 1. Figure la shows 

the inelastic electron-proton scattering process which involves the scattering of 

a virtual space-like photon off a proton; Fig. lb illustrates proton-proton scat- 

tering with the production of a time-like photon which subsequently creates a 

lepton pair; and Fig. lc shows lepton pair annihilation into a time-like photon 

which subsequently “decays” into the final state hadrons. We shall refer to 

these three processes as process I, II and III, respectively. 

Among the features of these processes that we shall be interested in here 
n 

are the q’: dependence of the differential cross sections, the multiplicities of 

final state hadrons and the angular distributions. We shall also discuss briefly 

the scaling law4 which, for process I, states that v W2 and WI are functions 

only of the dimensionless variable o = 2MN v/Q2 where v is the energy of the 
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photon in the lab system, p= Jq* is the mass of the photon, MN is the 

nucleon mass, and the Wi are the structure functions for the process. 

Of primary interest to us here is the following question: ‘Why is the differ- 

ential cross section for process I slowly varying in 2 Q in the deep inelastic region’ 

whereas the elastic nucleon form factor is quite rapidly decreasing? 5 ” We show 

here that our bootstrap theory provides a natural answer to this question, and 
n 

furthermore allows us to predict the Q” dependence of processes II and III, as well 

as the expected multiplicities and the angular distributions of the final statehadrons. 

II. THE DYNAMICAL MODEL 

The result from the bootstrap model of Ref. 2 that we shall use over and over 

here is an explicit expression for the lVertex!t shown in Fig. 2 in the asymptotic 

limit lq2/,m. In this figure, q2 is the square of the mass of the virtual photon 

and the lines with total momenta p and p’ =p + q may refer to single particle or 

multiparticle states. If the lines p and p’ refer to single-particle states, then 

the bootstrap modelpredicts that the vertex function I’(q2,p2,p12) is given, for 

large q2, by 

where 

- -09 G12) s (q 1% q2 2 l/2 

g(s2) q2-m 
) 

2 
q-a, 

(1) 

(2) 

and 
g(O) = 0, (3) 

and a is a universal constant independent of the types of particles coupling at the 

vertex. In Ref. 2 we gave further arguments to suggest that for q2-m, 

m2)-+l ) 
2 l/4 

(4) 
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but we shall only assume Eqs. (l), (2), and (3) here, Equations (1) 

that for on-shell hadrons, the vertex function decreases faster than 

and (2) imply 

any power in 

q2* Equation (3), which is crucial to our model, implies that the vertex connecting 

a high mass photon to a line of zero virtual mass or a real massless particle does 
2 not decrease faster than any power in q . In other words, a massless particle 

must appear as an elementary, or point-like particle, in the sense that its form 

factor is not rapidly decreasing. Equation (1) is derived in Ref. 2 up to a possible 

multiplicative term with power dependence on the invariant variables. 

For the case in which p and p1 refer to multiparticle states, the q2 dependence 

of the amplitude for the process shown in Fig. 2 is given by the composite-tree 

graph theorem of Ref. 2, which we now summarize. First replace the diagram 

in Fig. 2 with the sum of all tree graphs which are topologically possible with 

trilinear couplings in such a way that only stable hadron states appear as ex- 

ternal lines. Then replace each vertex in each graph by the vertex function in 

Eq. (1). In the limit q2b CO, the tree theorem states that this prescription gives 

the correct q2 dependence of the process. 

This result, which is shown in Ref. 2 to be true more generally for all n- 

particle scattering amplitudes follows from crossing symmetry and exact unitarity 

through the use of off-mass-shell equations which enforce the latter condition via 

the Landau-Cutkosky rules. One consequence of this theorem is a result for the 

elastic proton-proton scattering amplitude: For large IsI , I tl , and lul , the tree 

theorems relates the scattering amplitude A(s) t,u) to the sum of the squares of 

the nucleon form factor in the s, t, aid u channels, each of the three terms being 

a contribution from one of the three tree graphs that can be drawn for a two- 

body scattering process. This justification and refinement of the Wu-Yang idea 

is shown in Ref. 3 to be in excellent agreement with the wide-angle p-p scattering 

data. 
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We emphasize that the tree graphs employed here are Feynman graphs 

but rather convenient devices for keeping track of the variables in a many par- 

ticle amplitude. The internal lines do not correspond to single particle states 

but simply to the generalized momentum transfers which are topologically per- 

mitted in a many particle amplitude. 

In order to apply the above results to the virtual-photon processes, we make 

use of the tree theorem and Eqs. (1), (2), and (3) to conclude that if in the tree 

decomposition of the process under consideration, there is a graph in which a 

line with zero virtual mass connects to the photon vertex then the contribution 

of that graph to the differential cross section does not decrease rapidly in q 2 

2 and thus, for large q , may give the dominant contribution. If, on the other hand, 

no zero mass line can connect to the photon vertex because of kinematical re- 

strictions, then the differential cross section must decrease faster than any 

power in q2. An example of a process in which the latter situation occurs is, 

of course, just elastic electron-pro ton scattering. In the following three sections 

we treat each of the three processes shown in Fig. 1 from the point of view outlined 

above. 

III. DEEP INELASTIC ELECTRON-PROTON SCATTERING 

We begin the analysis of process I by making the tree graph decomposition 

shown in Fig. 3a. The heavy lines do not refer to single particle states but to 

states of definite momentum with an unspecified number of particles, whereas 

the external straight lines refer to initial and final state stable hadrons. 

Let us next determine the contribution of each of these tree graphs to the 

differential cross section 

d20 E’ 47r02 -=-I__ 
dq2dv E q4 

28 26 
W2(s2 9 v ) cos 3 + 2Wl(q2, v )sin 2 1 (5) 
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where E and E’ are the initial 

tering angle, v = E-E1 and q2 

and final electron energies, 8 is the electron scat- 

2 the invariant photon mass squared. 
7 

We introduce the c. m. energy, of the %p system, ,/s, which is related to 

v and q2 by 

s =2MNv -Q2+M; (6) 

where Q2 = -q2. Then the contribution coming from the first tree graph on the 

right-hand side in Fig. 3a, to the structure functions WI and W2, has a Q2 de- 

pendence of the form 

W,(Q2,s) -e -2ag(q2)g@ tg (Mi) (7) 

since in this tree graph a line with four momentum squared equal to s couples 

directly to the photon vertex. Now s is large in the deep inelastic region char- 

acterized by w = Sv > 1 and Q2-m, and therefore this contribution clearly 

9 falls off rapidly in Q because of Eq. (2) and is expected.to be negligible. 

Consider next all tree graphs of the form of the second term on the right- 

hand side of Fig. 3a, that is all tree graphs characterized by a peripheral 

mechanism for particle production. The most general such tree graph is shown 

in Fig. 3b; the two vertices indicated by open circles can be further decomposed 

into trees but that is unnecessary for our purposes. We label the invariant mass 

of the top cluster of hadrons closest to the photon vertex by M2 and the invariant 

mass of the other cluster by Ml. 

We next determine whether this decomposition can be made in such a way 

that the invariant momentum transfer, t, between the photon and the top cluster 

of hadrons in the tree graph can vanish in the physical region. To determine 

this we calculate the boundary, to, of the physical region in t, which can easily 

be shown to be 2 2 
t MN Ml em-- 
0 u o-l (8) 
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in the limit of large Q2 andw > 1. Clearly the condition that t = 0 lies in the 

physical region is equivalent to the condition to 2 0 and this imposes the constraint 

2 
M2 0-l 

M1s N %i- (9) 

Let us first assume this constraint is satisfied. Then t = 0 lies in the 

physical region and these tree graphs will give a contribution to 
3 

-?F- dq dvdt 
2 

which, according to the tree theorem, will have a Q dependence of the form 

mi(q2,v ,t) = Fe -Wq2 )g(t )+‘I;) (10) 

where the mi(q2, v , t) are related to d30-/dq2dv dt in the same way that the 

Wi(q2, v ) are related to d20/dq2dv , and where F is an undetermined function of 

v and t. Since the point t = 0 lies in the physical region, an application of Eq. (3) 

gives us the result that the structure functions t 
wi(q2,v) = s max 

t0 

dtWi@2,v, t) (11) 

are slowly varying6 in Q2. 

Thus we can explain the rapid (faster than any inverse power) decrease of 

the elastic nucleon form factor, for which there is no decomposition correspond- 

ing to Fig. 3b, and at the same time understand the slow Q2 dependence of the 

structure functions for process I, in the deep inelastic region. The mechanism 

which allows the behavior is the peripheral contribution of Fig. 3b coupled with 

Eqs. (l), (2), and (3) which state that the form factor of a massless particle 

does not decrease exponentially. This result is thus related to the suggestion 

of Harari’ that the Pomeron exchange contribution to virtual Compton scattering 
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might produce the slow Q2 dependence of the Wi, However, we have here a dynam- 

ical origin for this behavior in Eqs. (l), (2)) and (3) whereas in the Regge ex- 

change model one has, in addition, to invoke scaling, Our model, unfortunately, 

says nothing about scaling for process I, although it is not inconsistent with the 

scaling law. 

More detailed information about process I can be obtained from Eq. (8) or 

Eq. (9). The most obvious restriction is that the condition to 2 0 forces Mt to be 

less than N I? so that the outgoing proton must be observed coming from the upper 

vertex. Therefore, since the dominant contribution comes from t (v 0, the proton 

must be observed going nearly forward relative to the incident photon, in the c. m. 

sys tern and the lab system. 

For an arbitrary final state in the configuration depicted in Fig. 3b, the co- 

sine of the lab angle, 8 
L’ 

between the incident photon and the outgoing mesons 

with invariant mass Ml emitted at the lower vertex is given, at t = 0, by 

cos oL = MNgl;$i:) .. (i2) 

Hence, for particular final state, Eq. (12) provides a value of cos flL about which 

the meson production rate must be strongly peaked because of the expected ex- 

ponential decrease away from t = 0. Taking Q2, MNv .>M;, 2 1 =Mq, 
2 2 M2= N and w z 2 MNv /Q2 = 2, as an example, we obtain a value 

cos eL = 0 w-9 

So if one selects data corresponding to o = 2, a strong peaking of the pion angular 

distribution about 90’ is expected. In addition,for this particular case of a ?rN 

final state, the magnitude of the pion lab momentum, sill, is expected to peak at 

IQ N MN/2 since the momentum transfer, tl can be written 

t = M”, + M;-2MN (14) 
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The outgoing proton is expected to emerge in the forward direction with a lab 

momentum TN y Y, I I 

Equation (9) forces further restrictions on the multiplicities of the produced 

particles. As the multiplicities of final state particles produced at the lower 

vertex increase, 2 1 must increase, until for large enough MF, t0 becomes nega- 

tive and the amplitude decreases rapidly in Q2. For example, the condition that 

there be a significant p + 27r final state with the two pions resulting from p- 

production at the lower vertex is, from Eq. (9), 

(15) 

Similarly, the condition for strange particle production, for example, a CK final 

state, is 

2MNv 2 
Of- 2 N 

Q2 M;- M; 
= 1.40 (16) 

For values of o smaller than 2. 75 and 1.40, the amplitudes for p and K produc- 

tion, respectively, should be quite small for large Q2 although there is still the 

possibility for them to be produced at the upper vertex. 

Finally, we see from Eq. (8) that for o sufficiently close to 1, even the 

minimum possible value Mt = Mt, forces to to be negative and the amplitude 

for all final states must be rapidly decreasing in Q2 for large Q2. This predicted 

precipitous decrease of the Wi occurs for 

which implies, by Eq. (6), 

2M;v 
s>s =- 0 MN 

(17) 

(18) 
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Now in order for this effect to be observable above the resonances, which should 

also give use to rapidly decreasing structure functions for large Q2, we require 

so > s R (19) 

where sR characterizes the upper end of the resonance-dominated region in the 

variable s. Note, further, that in the region characterized by Eq. (17) and 

Eq. (18) the scaling law must break down because the exponential in Eq. (1) does 

not scale. 

This breakdown of scaling and rapid decrease of the differential cross 

section in Q2 occurs in a region characterized by a value of s which grows with 

y , whereas scaling would break down in the region s < SR if only the resonance 

contribution destroyed the scaling law. Approximating SR by 4Mi, we obtain 

2M3 
v 2-g 

Mlr 
WV 

so that this effect is unfortunately not observable at presently available energies. 

The process er -e f hadrons offers an even more dramatic (although no ’ .- 

more practical! ) example of this effect. For this process, Eq. (9) is replaced 

by4SM;p+) so that no final state is compatible with a t = 0 line connecting 

to th,e photon vertex and thus, for all values of o, the differential cross section 
2 

is rapidly decreasing in Q and violates the scaling law. Thus our model is in 

fundamental disagreement with the model of Ref. 7 in which the Pomeron ex- 

change contribution to virtual Compton scattering off pions would result in a 

differential cross section for the process er-e + hadrons which would be es- 

sentially similar to that for ep -e + hadrons. 

IV. VIRTUAL PHOTON PRODUCTION IN pp SCATTERING 

The preceding discussion is easily extended to process II. As before, we 

decompose the diagram in Fig. lb into the tree graphs in Fig. 4a. The first 
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tree graph on the right-hand side of Fig. 4a is clearly negligible at large s 

because it will decrease faster than any power in s. Let us look next at the 

second and third tree graphs in the figure. 

These tree graphs are of the general form of the graph illustrated in Fig, 4b, 

in which the photon is emitted along with a group of hadrons at the top vertex 

labeled with an invariant mass M2, and a group of hadrons is emitted at the 

lower vertex, with invariant mass Ml. The open circles in Fig. 4b can, of 

course, be further decomposed into tree graphs. For example, the second 

graph on the right-hand side of Fig. 4a can be considered to be of this form with 

=q2 , and all the hadrons emitted at the lower vertex, 

We define t to be the momentum transfer between one of the protons and the 

group of particles labeled with invariant mass Ml in the figure. In analogy with 

, the arguments of the preceding sections, then, we can expect the cross section 

to be a slowly varying function of q2 for t = 0. 

As before we define t = to to be the edge of the physical region, and find, for 

sufficiently large s and large q2, that 
M? M2 

to+-& (21) 

where 
S c =m 
2 G-w 

M2 
The quantity c , which’ must satisfy c 2 1, is clearly playing the same 

role here as did the variable 0 in Eq. (8). If My 2 M2 
N’ 

to is always 
2. negative and the cross section must be rapidly decreasing in q . If Mi is suffi- 

ciently small, then to 2 0 and the differential cross section should be slowly 

2 varying in q . The photon propagator will give rise to a l/q4 dependence of the 

differential cross sections, and the experimental indications6 are that no other 

appreciable q2 dependence should be present. Thus the photon and the two 
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protons must emerge, together, at the top vertex and a particle or p.articles with 

invariant mass Iv+ 1 s M$i. e. , mesons) must emerge from the other, The photon 

and the nucleons will be observed going in one direction in the c. m. system and 

the lighter particle or group of particles emerging in the opposite direction. 

More interesting is the observation that at least one meson must.be emitted 

along with the photon and two protons in the final state. This prediction is a 

consequence of the fact that the process pp-ypp cannot occur, for q2 2 Mi, in a 

tree configuration with a line of zero virtual mass connecting to the photon. 

Therefore the ratio 

d20. 

dRdq2 6 

--Tic- 
d0dq2 I 

(23) 

I PP -YPPT 

must go to zero faster than any power of q2. 

Finally, interesting statements can be made about the values of q2, for fixed 

s, at which the production of particular final states is inhibited because their 

presence does not allow t = 0 to be in the physical region. For the case s = 60 

(Be6 one can easily show from Eqs. (21) and (22) that p-production at the 

lower vertex in Fig. 5b is inhibited for q2 > 8 BeV2, K production is inhibited 

for q2 2 23 BeV2 and I production (and therefore the measured differential cross 
. 

section for p + p ky + anything) is inhibited for q2 2 33.3 Be 3 , Since the maxi- 

mum q2 available at s = 60 BeV2 is q2 = 34.5 BeV2, the suppression of the dif- 

ferential cross section will not be observed except at the very end of the q2 

spectrum. 
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V. LEPTON-ANTILEPTON ANNIHILATION INTO HADRONS 

Turning finally to process III, we can make the tree graph decomposition 

shown in Fig. 5a. It is clear that no tree graph can be drawn, for the case in 

which only hadrons occur in the final state, such that a line of zero virtual mass 

connects to the photon vertex. The closest we can come to this occurrence is 

shown in the first tree graph on the right in Fig, 5a in which a single ?r is pro- 

duced at the photon vertex. 

Since the pion mass is non-zero, however, we expect this contribution to 

the total cross section UT(q2), to decrease faster than any power in q2. This is, 

of course, only true if the time like, as well as the space like, elastic form 

factor is decreasing faster than any power of q2, but we have shown in Ref. 3, 

that if the bootstrap model is accepted, then this, in fact, must be the case. 

Since the two-pion state is the lighest hadronic state that can be produced, we 

expect, from Eq. (3), the cross section for 27r production to be larger than that 

for any other particular final hadron state. Furthermore, if the multiplicities 

of final state particles do not increase faster than any power of q2, it follows 

that uT(q2), itself, should fall off rapidly in q2. 

If we restrict process III to those events in which a proton is observed 

among the final state products, then, in analogy to the variable o, in process I, 

one can define a variable 0 = 2q* p/q2 where q is the photon momentum and p is the 

proton momentum. Then it is a natural question to ask whether there is a scaling 
_-.. - 

law for structure functions for process III in terms of the dimensionless varia- 

ble 0. Here we claim the answer is no, as the exponential function in Eq. (1) 

does not scale. This prediction is in contrast to a result in perturbation theory, 

of a field theoretic model 8 of pseudoscalar mesons and nucleons, which predicts 

a very similar behavior for the differential cross sections for processes I and III, 
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Finally, we note that everything that has been said about the three processes 

assumed that we were working to the lowest order in electromagnetism, For 
, 

processes I and II there is no reason to believe this is not valid, but for process 

III, this may not be the case. In particular, we observe that the cross section 

for the process 1’m- -hadrons + Y, with a real photon emitted in the final state, 

may eventually dominate the cross section for production of purely hadronic 

final states. This can be understood in terms of the tree graph in Fig. 5b, in 

which a zero mass photon connects directly to the virtual photon vertex and thus, 

by Eq. (3), kills the rapidly decreasing dependence in q2. Thus we predict that 

the ratio 
&12) I m+n- e hadrons (24) 

2 
u(q )I I+l---hadrons + y 

should go to zero faster than any power in q2. This prediction relies, of course, 

on the assumption that Eqs. (l), (2), and (3) properly describe the hadron -Y-Y 

vertex, for which there is as yet no experimental evidence. A rough estimate 

of the q2 value for which the ratio in Eq. (24) should be of order 1 can be obtained 

for the particular case 

r _ u(s2)[,+,- --pj=i 
2 

dq 1 p+p- -fly 
I 

(25) 

We estimate the numerator by assuming that at large q2 the time-like and space- 

like proton form factors are comparable; we estimate the denominator by using 

the experimental 7~ decay rate, which should be a good approximation, even for 

one photon for off-mass-shell, because of Eq. (3) and the fact that the other 

photon is on the mass-shell. This leads to the value q2 = 6 BeV2 for which r 

in Eq. (25) should be comparable to 1. For q2 S 6 BeV2 we predict, then, a 

surprisingly large rate for production of final state photons compared to the rate 

for production of a proton-antiproton pair. 
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VI. SUMMARY 

We have presented a unified model, based on the bootstrap theory of Ref. 2, 

for three hadronic processes involving high mass virtual photons. Our analysis 

of these processes is based on the connection, implicit in Eqs. (l), (2), and (3), 

between slowly varying form factors and internal lines of tree graphs with zero 

virtual mass. The dominant contributions at large q2 arise from those tree 

graphs in which a zero mass internal line can connect correctly to the photon 

vertex. Thus a peripheral mechanism is established for these processes and a 

number of interesting predictions are shown to follow, 

For the elastic scattering process 1-p -f-p, the theory predicts hadronic 

form factors which decrease faster than any power in q2 according to Eqs. (1) 

and (2). For process I, hp-I*+ hadrons we predict slow q2 dependence of the 

structure functions in the deep inelastic region provided the internal line in the 

tree graph in Fig. 3b can have vanishing virtual mass in the physical region. 

This constrains the particles emitted backward in the c. m. system to have in- 

variant mass restricted by Eq. (9), and this constraint requires the proton to 

be emitted forward relative to the incident photon, and, for a given value of 

o= 2MNv/Q2, restricts the multiplicities of the final state particles. 

For process II, pp-I+l- + hadrons, we also predict an essentially flat q2 

dependence from the photon vertex because of the peripheral graph in Fig. 4b. 

However, this graph can only contribute, in the physical region, with t = 0, if 

the invariant mass of one of the two groups of particles is less than a nucleon 

mass, thus requiring the presence of mesons in the final state and leading to the 

strong prediction that the ratio of the cross section for production of a lepton 

pair and proton pair over the cross section for production of a lepton pair, Ia 

proton pair and a meson should go to zero faster than any power of q2. In 
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addition, we showed that, for fixed s, the multiplicity of final state mesons pro- 

duced at the lower vertex in Fig. 4b is strongly dependent on q2. For both pro- 

cesses I and II our model is not inconsistent with, although does not predict, a 

scaling law for the structure functions. 

On the other hand, the differential cross sections for process III, P+f--had- 

rons, is predicted to decrease faster than any power in q2 and the structure 

functions cannot scale. Because of the smallness of the pion mass and Eqs. (l), 

(2), and (3), the cross section for production of a *+n- pair is expected to domin- 

ate the cross section for the production of any other hadronic state such as a 

pp pair. Finally we predict that the ratio of the cross section for production of 

a proton-antiproton pair over the cross section for production of a no and a 

photon should go to zero faster than any power of q2 and, for q2 -N 6 BeV2, 

should be of order 1.. 
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FIGURE CAPTIONS 

1. Illustration of three hadronic processes involving virtual photons. 

(a) lepton + proton-- lepton ,f hadrons 

(b) proton + proton’- lepton pair + hadrons 

(c) lepton pair -. hadrons. 

The dashed, wavy and solid lines refer to leptons, photons and hadrons 

respectively . 

2. Illustration of a general interaction of a photon with hadrons. 

3. (a) Tree decomposition of process I. The wavy line refers to the photon, 

the straight light lines refer to initial and final hadrons , the heavy lines 

refer to internal lines in the tree graphs, and the circles refer to the vertex 

in Eq. (1). 

(b) Subclass of .tree graphs for process I characterized by a peripheral 

production mechanism. The open circles can be further decomposed into 

tree graphs. Ml and M2 refer to the invariant masses of the hadrons 

produced at the lower and upper vertices and t is the square of the momentum 

transfer between the photon and the hadrons produced at the upper vertex. 

4. (a) Tree decomposition for process II. 

(b) Subclass of tree graphs for process II characterized by a peripheral 

production mechanism. 

5. (a) Tree decomposition for process III. 

(b) Tree graph for the process e+e--+~“~. 
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