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ABSTRACT 

The matrix form of the Walsh functions as defined in the short note 

referred to can be generated by the modulo-2 product of two generating 

matrices, one of which is the natural binary code, and the other of which 

is the transpose of the bit-reversed form of the first. As a result, the 

coefficients of the Walsh transform occur in bit-reversed order. 

By simply reordering the Walsh functions themselves to correspond 

to generation by the product of two such code matrices, neither or both 

in bit-reversed form, the Walsh coefficients occur in their natural order. 

Index terms : code matrix, Walsh-Fourier transform, Walsh functions, 

Walsh matrix. 



A useful relationship between the Walsh functions and the Cooley-Tukey al- 

gorithm for the fast Fourier transform has been established by Shanks [I], upon 

which Lechner has also commented [2]. As with the Cooley-Tukey algorithm, the 

coefficients of the Walsh-Fourier transform occur in bit-reversed order, unless 

the discrete data representing the function to be transformed are first rearranged 

in bit-reversed order [3]. 

This inconvenience can be circumvented by a very simple reordering of the 

Walsh functions themselves. 

The writer has shown in previous correspondence that the binary Walsh 

functions in matrix form can be generated by modulo-2 multiplication of two 

simpler matrices representing some form of the reflected and/or natural binary 

code(s) [4]. 

By way of review, the basic binary Walsh matrix, possessing the property 

that each row has one more sign change than the preceding one (from 0 to 1 or 

from 1 to 0 in this case), is generated by any of the products: 

I$ = si 0 bt mp-i =Sp-i O$=iiOat =b Oat “p-i *p-i *i (1) 

(i=O, 1, . . . P -1) 

where & denotes the reflected binary code and% the natural binary code of p 

variables in the form of matrices of gp rows and p columns, and where a “p-i and 

b dp-i represent the respective matrices with the order of their columns reversed - 

or, in the contemporary terminology, in bit-reversed form. Examples are (21) 

and (22) of [410 The superscript t denotes transposition of the. matrix. The 

symbol 0 denotes matrix multiplication, modulo-2. 

Similarly, a modified binary Walsh matrix possessing a very simple and 

very useful recursive structure, perhaps first developed by Lechner [5] and 
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shown in (17) of [4], is generated by either of the products: 

(2) 

in which neither of the code matrices is, or both are, in bit-reversed form, 

Other forms of the Walsh matrix (some symmetrical and some unsymmetrical) 

can be generated by using other variations and combinations of the foregoing code 

matrices and matrices representing other codes. Still other forms can be ob- 

tained by independent reordering of the rows and/or columns of the Walsh matrix 

itself. 

Now, the binary matrix representation of Fig. 1 of [l] (after replacing each 

1 by 0 and each -1 by 1) is generated by either of the products: 

W”=b 0 b t 0 bt w Hi *p-i = i?p-i wi (3) 

in which either one of the code matrices is in bit-reversed form, but not both. 

(This form of W is one presented, although not obtained from a product of code 

matrices, by Kaczmarz and Steinhaus [6].) 

That this is so is also evident from (13) of [I], in which the k’s are reversed 

in bit order with respect to the j’s, and which could be written in the more compact 

matrix form: 

where: is a column matrix of the discrete values f, of the M-length real array 

whose transform is desired, and where $ is a column matrix of the transform 

coefficients FmO Subtracting twice the binary Walsh matrix from the unit matrix 

I-J, all of whose elements are 1, effects the necessary transformation O- 1, 

1 - -1, corresponding to (11) of [4]. The symbol l denotes ordinary matrix 

multiplication. 
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Since only one of the generating code matrices in either product in (3) is in 

bit-reversed form, it is not surprising that the coefficients Fm in (13) of [l] occur 

in bit-reversed form 0 

If the Walsh functions in Fig. 1 of [l] are rearranged in the order given by 

(2)) corresponding to (16) of [4], then (4) can be rewritten as: 

(5) 

Then (12) and (13) of [l] could also be rewritten as: 

j2k2 
wal’ (j,, jl,jo; k2,kl,ko) = (-1) 

jlkl jOkO 
t-9 (-1) (6) 

1 j2k2 l 
F’ (j,, j,, jo) =c (-I) 

jlkl l 
c (-I) 

jOkO 
c (-1) f(k2AlAo) (7) 

k2=0 kl=O kg=0 

(j,, j,, j, = 0 01: 1; k2,kl,ko = 0 or 1) 

and the coefficients of the transform would then occur in the natural order instead 

of bit-reversed order. 

Thus, in machine computation as described in [3], the computation may be 

done “in place, ” yet requires no “shuffling” of either the initial data sequence or 

the resulting spectrum. 

The signal flow graph for (5) or (7) differs from that in Fig. 2 of [l] only in 

that the coefficients Fm at the right are now in their natural order, i.e., the same 

order as the data f, at the left. 

Keith W. Henderson 
(Senior Member, IEEE) 
Stanford Linear Accelerator Center* 
Stanford University 
Stanford, California 94305 
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FOOTNOTE 

* Operated under contract with the U. S. Atomic Energy Commission. 
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