
CURRENT ALGEBRAS AND UNIVERSAL DIVERGENT 

RADIATIVE CORRECTIONS* f 

G. W. Gaffney 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

(Submitted to Annals of Physics ) 

* 
Work supported by the U, S. Atomic Energy Commission. 

'A dissertation submitted in partial satisfaction of the requirements for the degree 
of Doctor of Philosophy in Physics. 



ABSTRACT 

We examine, using current algebras, the ultraviolet divergences occurring 

in the calculation of electromagnetic radiative corrections to any lowest order 

weak process a t  arbitrary momentum transfer. We consider all orders in per- 

turbation theory in the fine structure constant a. The divergent parts of the radi- 

ative corrections are expressed in terms of matrix elements of equal-time current 

commutators by using the Bjorken expansion of time-ordered products of currents 

at  large momenta. We assume the validity of this expansion an&of the use of "naive" 

current commutation relations in discussing various current algebra models. We 

impose the condition that the divergences contribute only to an unobservable, uni- 

versal weak coupling constant renormalization. It is shown that, in models with 

operator Schwinger terms in the current commutators, this condition cannot be 

satisfied for non-zero momentum transfer. Also, i t  is not satisfied for a weak 

interaction theory mediated by a vector boson. Two current algebra models are 

exhibited which a re  satisfactory if the weak Hamiltonian has a local current-current 

form. For these models, the weak and electromagnetic currents of both the hadrons 

and the leptons obey the same commutation relations, and the Schwinger terms a r e  

c-numbers. One, a quark model of hadrons with integrally charged quarks together 

with the conventional lepton currents, gives finite radiative corrections. The 

second, the algebra of fields model for the total electromagnetic and weak currents, 

including leptons, contains only a universal divergent factor. These two results 

a r e  shown to hold to all orders in  a. In obtaining these results, divergent contri- 

butions to electromagnetic mass shifts and to electromagnetic renormalization 

effects in strong interaction processes a re  isolated and removed by adding a counter 

term to the interaction Hamiltonian. These divergences may thus be treated as a 

separate problem, which w e  do not discuss in detail. 
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I. INTRODUCTION 

Our current experimental knowledge of leptonic and semileptonic weak 

interactions is well  described by the familiar universal current-current form 

of the phenomenological interaction Lagrangian. One of the most remarkable 

192 

features of this Lagrangian is that i t  predicts, for p-decay and neutron &decay, 

the approximate equality of the respective vector coupling constants, which is 

consistent with experimental observations. Specifically, by using the conserved 

vector current hypothesis, 

bare coupling constants that the renormalized coupling constants a re  equal even 

after the inclusion of strong interaction effects. The fact that the bare coupling 

constants may be chosen to be equal leads us to believe that the effective 

Lagrangian may have a more fundamental significance. 

one may infer from the equality of €he appropriate 

To test this %n.iversality" of the weak interactions we must also include 

the electromagnetic radiative corrections. We expect these to be small corrections 

is the fine structure constant. e at least of the order of a, where a = - -- 47~ 137 
However, for semileptonic processes a serious problem ar ises  in their calculation 

since divergent momentum integrals occur. It is these divergences we wish to 

study, to all orders in perturbation theory in the fine structure constant. 

2 

The most straightforward resolution of this problem would be to construct 

a theory in which all these divergences cancelled out so that the amplitude for any 

weak process would be finite to all orders in a. A less stringent condition would 

nevertheless be satisfactory since all that is required of a consistent theory is 

that measurable quantities, such as ratios of coupling constants, masses, or  

form factors, be finite. Hence, i t  is enough to impose the condition that any 

divergences arising in the calculation of electromagnetic radiative corrections 

to weak processes contribute only to an overall (possibly cut-off dependent) 
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constant factor times a finite matrix element. Of course, this factor must be 

universal, Le., it must be the same for all w e a k  processes so that ratios of 

any measurable parameters will  be finite. The divergent factor can then be 

absorbed into the definition of the weak coupling constant, since i ts  overall 

scale is undetermined. Note that it is not sufficient merely to require that ratios 

of the coupling constants defined at zero momentum transfer be finite. The 

ratios of various form factors occurring for non-zero momentum transfers are 

measurable and therefore must also be finite and calculable. .. 
3 We are interested here in the implications of current algebra for the 

problem of divergences in radiative corrections to weak interactions. It is our 

purpose in this paper to develop a technique for discussing these divergences 

which does not depend upon the particular weak process considered and which is 

valid for arbitrary momentum transfers. Furthermore, we wish to examine the 

corrections to all orders in e , not merely to second order, as in all previous 

investigations . 
2 

Since this topic has received considerable attention in the past by various 

authors, 4-12 let us  first briefly review the previous work before detailing our 

contribution to the subject. The status of the radiative corrections problem 
13 before the advent of current algebra w a s  summarized by Berman and Sirlin. 

They observed that the radiative corrections top-decay could be shown to be 

finite to all orders in Q! by performing a Fierz transf~rmation'~ on the weak 

Hamiltonian. However, for decays involving bare hadrons, the corrections 

were in general logarithmically divergent. It was generally conjectured that 

when strong interactions were taken into account, they would provide the con- 

vergence factors necessary to make the semileptonic amplitudes finite, although 

Berman and Sirlin provided some qualitative arguments to the contrary. 
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4 Bjorken pointed out that the assumption of Gell-Mann's current algebra 
3 postulate implied that matrix elements of the exact hadronic currents behaved 

at large momenta like those of point particles, thus nullifying the above conjecture. 

Specifically, he showed that in the simple quark model with fractionally charged 

quarks, the second order (in e) radiative corrections to the vector part of the 

neutron @-decay amplitude at zero momentum transfer are logarithmically 

divergent, treating the strong interactions exactly. Abers ,  Norton, Dicus, and 

Quinn generalized Bjorken's result and emphasized that certain contributions to 

the divergence depended only on the relatively model-independent commutators 

of the time components of the electromagnetic and weak currents. However, the 

divergent corrections as a whole were model-dependent, and several models for 

the commutators of the space components of the hadronic currents were con- 

structed6' 

in second order. 

5 

so that the radiative corrections to neutron @-decay would be finite 

9 Using basically the same techniques as Bjorken and A b e r s  -2 et a1 9 Callan 

and Preparata and Weisberger" generalized their work to include any semi- 

leptonic process. These authors did not restrict the discussion to only zero 

momentum transfer. Both papers considered only models constructed from re- 

normalizable theories of strong interactions. They concluded that the models 

mentioned above, involving hadronic currents constructed from integrally charged 

quarks, gave finite second order radiative corrections to a general semileptonic 

process. Preparata and Weisberger further noted that currents containing bilinear 

products of spin zero fields yielded additional divergent corrections for non-zero 

momentum transfer. 
8 5 Sirlin and Abers et  al., studied the second order radiative corrections 

to the vector part of p-decay and neutron @- decay in a weak interaction theory 
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mediated by a vector boson. They showed that, at zero momentum transfer, 

only a universal divergence occurred. That is, the divergent part was merely 

a constant factor times the uncorrected matrix element, and this factor was the 

same for both p-decay and neutron &decay. Furthermore, this result depended 

only on model independent current commutators involving time components of 

currents. For the weak boson theory, the order -e corrections to GA/GV, the 

ratio of the axial vector and vector coupling constants in neutron B-decay, were 

shown by Mrlin" to be finite in the algebra of fields model, although this was not 

2 

true in general. He used a technique which is very similar to ours although there 

m e  some differences in detail. In particular, our interpretation of electromagnetic 

mass shift contributions is somewhat different from his. 

The toolwhich we shall use to discuss divergent radiative corrections is 

the expansion of time-ordered products of operators at large momenta in terms 

of equal-time commutators. The relevance of this technique to current algebra 

was first  pointed out by Bjorken and Johnson and Low.15 A l l  of the above 

mentioned papers at  some point used this device. Many also employed Ward 

identities to handle external line wave function renormalization and to exhibit 

cancellations of certain divergent contributions. Since the end result is that the 

divergences involve highly model-dependent current commutators, we shall make 

this explicit by applying the Bjorken expansion in a straightforward manner. We 

shall assume the expansion is justified for time-ordered products containing an 

arbitrary number of currents. 

for the exact hadronic currents it is by no means obvious that this is a valid 

assumption. Nevertheless, we  shall take it a s  our starting point without further 

ado, since i t  is certainly impossible to justify i t  rigorously. 

4 

(1) For point particles there is no problem, but 
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A related assumption we shall make is that we may use the "naiver1 current 

commutation relations obtained from the canonical commutators and the equations 

of motion for any particular model of the hadronic currents. Our point of view 

here is that these models should not necessarily be taken seriously, but that 

perhaps the current algebra should be. For, if we  assume that Bjorken expansion 

is valid, then the requirement that no divergences occur in the calculation of 

physically measurable quantities restricts the form that the current commutators 

may take. Several recent  investigation^'^-^^ have shown that, when simple strong 

interaction models are treated in perturbation theory, the naive commutators no 

longer hold. We shall comment on this point in the conclusion. 

In extending the results on second order radiative corrections to all orders 
2 in e , we shall see that our method allows us to isolate only those divergences due 

to momentum loops containing virtual photons. Thus, w e  ignore any divergences 

arising from momentum loop integrations in the hadron or  lepton "blobs" which 

the photon lines enter. In fact, we - must neglect any such divergences to be con- 

sjstent with our use of naive commutation relations, as we discuss in the conclusion. 

The underlying physical assumption is that the basic hadronic and leptonic theory 

of matter, whatever i t  is, must be sufficiently convergent at high momenta that 

such divergences, if they occur at  all, do not affect the current commutators. 

Lest it be misunderstood, we should state that throughout this paper we 

shall use the manipulations of %aive quantum field theoryft. Thus, w e  ignore 

any singularities of local products of quantum field operators except those which 

are  explicit in the use of equations of motion and canonical commutation relations. 

These ambiguities in local products of operators provide a possible escape 

from the divergence difficulties, but we are interested in the more conventional 

solutions to the problem. 
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In Section 11 we begin our discussion by considering second order electro- 

magnetic radiative corrections. We first illustrate the Bjorken expansion for the 

time-ordered product of three operators which occurs there. We treat the hadron 

and lepton currents on the same footing so that no special weak process is singled 

out. An important part of the discussion of the divergent corrections to the weak 

coupling constant is the removal of divergent contributions to electromagnetic 

mass shifts and to radiative corrections to strong interaction parameters. We 

identify these terms and argue that they are removed by an appropriate counter 

term in the interaction Hamiltonian. Because of this, these divergences may be 

considered as a separate problem, which we shall not study here since it has been 

examined considerably by others. 2o In removing these contributions some care 

is required in making the covariant generalization of the Bjorken limit, an 

explicitly non-covariant procedure. This is illustrated for several models. 

Next we discuss the possibility that the remaining divergences contribute 

only to a universal constant factor times the uncorrected matrix element. We 

show that this is not possible if there are operator (q-number) Schwinger terms 

in the current commutators by considering, as an example, currents constructed 

from a bilinear product of spin-zero fields. These terms produce, for non-zero 

momentum transfer, contributions which are manifestly not proportional to the 

lowest order matrix element. lo If q-number Schwinger terms are absent, the 

current commutators involving time components of currents are the same for 

hadrons and leptons, independent of specific models. We point out that the 

divergent radiative corrections wil l  then be universal if the commutators of the 

space components of the currents are also the same for hadrons as for leptons. 

Two models where this condition is satisfied are exhibited. These are the 

integrally charged quark models6’ mentioned above for hadrons together with 
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the conventional lepton currents, and the algebra of fields mode121 for total electro- 

magnetic and weak currents, including leptons,as proposed by To Do Lee.22 In 

the former model the radiative corrections are finite and in the latter a non- 
11,23 vanishing, but universal, divergence is found. 

We conclude Section I1 with a discussion of second order radiative cor- 

rections in a weak interaction theory mediated by a vector boson. We show that 

the positive result of Sirlin 

momentum transfer. Non-universal divergent terms are found, -and a counter 

8 , l l  5 and Abers et al. , is not maintained for non-zero 

term having a local current-current form would have to be added to the interaction 

Hamiltonian to make the radiative corrections finite. 

We consider the generalization to these second order results to all orders in  
2 e in Section III. After discussing the additional assumptions, we take up the two 

models which were satisfactory in second order with respect to universality. For 

the algebra of fields model we consider the fourth order calculation in some detail 

as an illustrative example, Here an important point to be mentioned is that in order 

to avoid ambiguities in making the covariant generalization of the Bjorken limit, 

we must let only one photon loop momentum go to infinity at a time holding all 

others fixed. This offers no problem since we are dealing with only logarithmically 

divergent integrals. 
2 

the amplitude for any weak process may be expressed, once the divergent mass 

renormalization terms are  removed, as a divergent constant factor times the 

finite part of the matrix element to the next lower order. This is precisely the 

condition for the divergences not to have any observable effects. It contributes 

simply to an overall rescaling of the weak coupling constant. In summing the 

series for  all orders in e the divergent coefficient in second order exponentiates. 

Then w e  show that,for the algebra of fields mode1,to any given order in e 

2 
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Next w e  consider the quark model which led to finite radiative corrections 

in second order and show, examining the fourth order case in detail, that the 

corrections are finite to all orders. It is pointed out that this result could have 

been anticipated, knowing the same is true for p-decay, since our technique is 

independent of any particular weak process. 

In conclusion we present a critical discussion of our assumptions, in 

particular the use of naive commutation relations, We also point out the diffi- 

culties encountered in attempting to apply the Bjorken expansion to discuss 

divergences in non-renormalizable field theories. In the light of our results, 

we  summarize the current status of the problem of radiative corrections to weak 

interactions. 

An appendix examines certain details concerning divergent contributions 

to external line wave function renormalization. 
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II. SECOND ORDER ELECTROMAGNETIC 

RADIATIVE CORRECTIONS 

We wish to show that the ultraviolet divergent part  of the second order 

electromagnetic radiative corrections to leptonic and semileptonic weak processes 

may be expressed in terms of matrix elements of equal-time commutators of the 

weak Hamiltonian density Hwk(X) and the electromagnetic current f ? *  m*(x), and 

of the electromagnetic current with its first  time derivative. The method we 

use w a s  first proposed by Bjorken and by Johnson and Low. 15' The specific 

technique we describe here was applied recently by Sirlin" to discuss diver- 

gences in radiative corrections to G /G A V' 
vector coupling constants in neutron &decay. We show here that i t  can be used 

to analyze divergences in any weak process a t  arbitrary momentum transfer. 

Although a direct test of universality of the weak coupling constant can only be 

made through measurements of leptonic and semileptonic weak processes, the 

discussion of divergences applies equally wel l  to non-leptonic weak decays. 

c1 

4 

the ratio of the axial vector and 

In the calculation of electromagnetic radiative corrections, infrared diver- 

gences also occur due to the massless nature of the photon. This difficulty is 

not serious and its resolution is well  known,24 so we shall not consider i t  here. 

We shall throughout this paper work in the interaction representation with 

respect to electromagnetic and weak interactions. Weak interactions w i l l  be 

treated only in lowest order. In the absence of electromagnetic corrections, 

the amplitude for a leptonic o r  semileptonic weak process A-Be v is 

We assume that the weak Hamiltonian density has the usual local current-current 

form in the following discussion. Later w e  shall treat the case where the weak 

interaction is mediated by a vector boson. 
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The second order electromagnetic radiative corrections are given by 

IH I e.m. (x), He. (Y), Hwk(0) I 1 A> 

where 

Here -e denotes the bare electron charge (e > 0) and . d x )  is the electromagnetic 

field. The total electromagnetic current $- (x) consists of a hadron piece, 
e. m. 
cc denoted by J 

for W-bosons, etc. The lepton current in conventional quan tG  electrodynamics 

is 

e. m. 
cc 

(x), a lepton part, denoted by j (x), and perhaps other terms e. m. 
cc 

where e(x) and ~ ( x )  are the electron and muon fields, respectively. We do not 

want to restrict ourselves to only this form of the lepton current since w e  wish to 

consider, among others, a model in which the total electromagnetic current obeys 

algebra of fields commutation relations. 22 The electromagnetic Hamiltonian 

density may, in general, also contain contact terms which wi l l  affect the second 

order radiative correctionso For  the moment we shall ignore this possibility, 

although we shall come back to i t  later when we consider a model of hadron 

currents constructed from a bilinear product of spin-zero fields. [Our notation 

for Dirac matrices and Lorentz four-vectors and scalar products follows that 

of Bjorken and Drell. 24] 

Properly, w e  should consider, rather thanA1, the appropriate expression 

obtained from the reduction formula. The added complications arising from this 

do not affect the discussion of divergences in second order, as w e  show in an 

appendix. A l l  matrix elements w e  write down will ,  of course, be understood 

to mean the connected part only. 
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A. The Bjorken Expansion 

We may rewrite A1 above as 

where 

is the photon propagator in an arbitrary gauge, and 

In order to find the logarithmically divergent contribution to Jl1 we need to know 

the part of T (k) which goes as l/k for large k. To extract this part we take 

the limit as ko-p withtfixed, since in this limit the behavior of time-ordered 

2 
ccv 

products (as opposed to covariant T* products) is particularly simple. Consider 

the following object X : 

0 Our basic assumption is that, in the limit as k -m withzfixed, the above 

matrix element is sufficiently wel l  behaved that the surface terms at x = &too 

may be ignored and hence that X = 0. If one inserts complete sets of states in 

0 

the time-ordered product, one sees that this means that the high mass interme- 

diate states must be unimportant so that the oscillations of the factor e-ikx wil l  

dominate. 

By taking the time derivatives d/dxo and setting X = 0, w e  obtain an 

expression for T (k): 
CLV 
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where 

The equal- time commutators come, of course, from differentiating the &functions 

in the time-ordered product. Note that L(l)  is independent of k . Hence it is 
P V  

the leading term in the expansion of T (k). 
P V  

We shall further assume that the above procedure can be continued with 

-0 

L (2) (k) and L (3 1 (k) to obtain sufficient terms in the expansion of T (k) in powers 
PV P V  PV 

0 of l /k to isolate the divergent contribution to .Atl. It should perhaps be mentioned 

that such manipulations are manifestly justified in renormalizable perturbation theory 

calculations for point particles. To assume that i t  is true for matrix elements 

of the exact currents is, needless to say, a very strong assumption,which w e  

discuss further in the conclusion. However, by making this assumption we shall 

see that w e  can make some very general statements concerning the divergences. 
0 2  0 Here it suffices to consider the l/(k ) terms. We insert a derivative d/dy 

in L(2)(k) and L(3)(k) to obtain the following result for T (k): 
P V  P V  P V  

where 
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and 

are independent of ko since the equal-time 6-functions have eliminated the factors 

-ik xo. The term T e 

E > 0, as k -00 and hence leads to finite contributions to .,tdl. T 

three terms which are 

f 0 0 2 + €  , 
P V  

0 
(k) is still dependent on k so we assume it goes as l/(k ) 

0 f (k) contains 
P V  

f 0 2  (k) to go faster than ( l /k ) is for an additional 
P V  

Clearly a sufficient condition for T 

partial integration of a derivative to be justified, in which case it goes at least 
0 3  as ( l /k  ) as kO-00. 

The expansion above is, of course, explicitly not covariant. After taking 

the various time derivatives inside the time-ordered product so  that they a re  

acting on current operators, w e  may, by then expressing the currents as functions 

of field operators, use the equations of motion of these fields (in the interaction 

representation) to write a f 
spatial derivatives a / ax  (i = 1,2,3) of fields. If we then continue the expansion 

0 in powers of l /k we w i l l  thus obtain equal-time commutators which contain 
25 Schwinger terms, 

i After partial integration these derivatives wil l  give rise to factors of k . We 

. m. (x) and higher time derivatives in terms of 
O P  

i 

i. e .  , spatial derivatives of four dimensional 6-functions. 

implicitly assume that such Schwinger terms in higher terms in the expansion 

w i l l  yield the powers of k /k necessary to maintain the covariance of T (k). i o  
P V  
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We extract the covariant amplitudes by the following procedure. After 

evaluating the equal-time commutators, all the terms in T (k) wi l l  have a tensor 
ccv 

structure 

i j... .Y 
pv00 .... i j... 

In the limit as ko-m withxfixed, w e  have 

l?kv $0 v 0  
g ,  

and 

Hence w e  see that by reversing this limit w e  can construct the appropriate covariant 

tensor; e. g., 
0 0  i j... " '5  VOO...~ j . . .  

... D 

-pka. . . X pvpo.. . aPy6 . .  . (gap- - 

i Note that any terms containing a factor k wi l l  thus be eliminated since 

B. l lMassll  Renormalization Effects 

We next wish to argue that when the proper covariant contributions to the 

terms L(l) and M 

counter terms added to the interaction Hamiltonian to remove the divergent part 

of lepton mass renormalization and of electromagnetic renormalization effects 

(i. e., mass and coupling constant shifts) in strong interaction processes of the 

hadrons. In fact, the second order electromagnetic correction to any hadronic 

have been constructed, they wi l l  be cancelled by appropriate 
PV PJ 
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amplitude < f out I i in > is given by the expression 

where 
e. m. tpv(k) =Jd4xsd ye -ik(x-y)<f out 1 T J c1 (x), J:*mg(y)) 1 i i n>  . 

0 Making an expansion of t 

we  find 

(k) in powers of l /k analogous to the one for T (k), 
P V  PLY 

f 
w where t 

terms w e  see wi l l  give divergent contributions to these processes. These diver- 

(k) contains the finite part of the radiative corrections. The first two 

gences must be cancelled by adding counter terms to the interaction Hamiltonian. 

Since the operators 

are completely determined by their matrix elements between arbitrary hadronic 

states, w e  may choose the counter terms to contain precisely these operators. 

These divergent counter terms are not directly relevant to universality 

of the weak interactions; however, for the theory of radiative corrections to be 

completely consistent we would have to show that they did not contribute diver- 

gences to the calculation of any observable hadronic parameters, such as electro- 

magnetic mass differences. This is a difficult problem in itself, but since it has 

been discussed considerably by others2' w e  shall not consider i t  here. 

This same argument can obviously be applied to the lepton part of the 

electromagnetic current. In the case where the leptons are just free fields in 

the interaction representation, the necessary counter tcrm is just the divergent 
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part  of the electromagnetic mass shift of the leptons. For a model where the 

total electromagnetic current obeys a field-current identity the counter term 

wil1,in general, contain other contributions. In discussing such models, w e  

shall for simplicity refer to these additional contributions as "strong interaction" 

effects. 

One should note that the counter terms w e  are adding remove only certain 

divergent terms. We do not make all the subtractions necessary to carry out 

the renormalization program, io e., 

masses and coupling constants. In fact, using our technique this would be very 

unwieldy. We specifically do not want to add.wave function renormalization 

counter terms, since this would make the question of using the equations of motion 

to evaluate time derivatives of operators a very delicate one. We shall need to 

use equations of motion in the interaction representation to calculate certain 

commutators. 

to express everything in terms of physical 

There is a difficulty with the above argument which is related to the non- 

covariance of our procedure. This is best illustrated by considering lepton cur- 

rents in conventional quantum electrodynamics, where the fields satisfy free 

field equations of motion!2) First, however, observe that the photon propagator 

in an arbitrary gauge 
1 

3 
becomes, in the limit as ko-m with k fixed, 
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Referring to dll, we  see that w e  need consider only the combinations 

(1) L(1) i = 0 in fie i Since the electromagnetic current commutes with itself, Loo 
general case, so w e  may henceforth ignore L (1) . 

clv 
The usual lepton electromagnetic current is 

where the electron and muon fields e(x) and p(x) respectively obey equations of 

motion 

and the canonic a1 an tic ommutat ion relations , 

By using current conservation 

(x) = 0 
acl j;. m' 

w e  see that 

provided w e  use the naive commutation relations and ignore the well-known 
0 0  ambiguity25 of the Schwinger term in [jeorn*(y), j f * m * ( ~ ) ]  8(x - y  ). We shall 

make the conventional assumption that it is a c-number and therefore does not 

contribute to connected amplitudes. Thus Moo = 0, so there are no gauge depend- 

ent contributions to the divergent mass shift, as must be the case. 
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Using the above anticommutation relations and the equations of motion, i t  

is easily verified, after a short calculation, that 

We note that the first  term already has the form of a mass counter term; however, 

w e  must construct the covariant generalization of the second term, which requires 

some care. The leptonic part of M: w e  denote by M!’) ’. It may now be written as 

-4 - a 4  (x -y )T{z (y ) t e (x )  -Z(X)?e(y), Hwk(0) 1 -I- (e-fl)]IA> . 
ax’ 

d’) i is The covariant generalization of the second term in 

0 which reduces to the original expression when k -00 . We now perform a partial 

intergration with Wax” to put the derivative on e(x) and Z(x). Differentiating the 

exponential gives a term proportional to k which vanishes since 
V ’  

Also, realize that under symmetrical k-integration w e  may make the replacement 
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We are thus led to the covariant generalization of MY) i ,  which is 

In taking the derivative a/a? inside the time-ordered product we pick up 

additional equal-time commutators from differentiating the &functions. The 

terms involving the anticommutator 

0 0  

actually cancel, but in any case they do not contribute to the connected amplitude 

since they are c-numbers. One thus obtains 

where 

and 

after using the equations of motion. 

The careful reader will  have noticed that the above manipulations were 

somewhat of a swindle. If we had performed the partial integration with a/axi 

before making the covariant generalization, w e  would not have obtained the term 
- 
M(') '. It is easily verified that if w e  combine M(l) ' with the contribution of 

ct ct 
N to AI, w e  obtain a result in agreement with a manifestly covariant Feynman 
W 

-(l) ' is included, We shall therefore diagram calculation only if the term M 
P 

assume this method of handling these terms is also valid in the general case 

when strong interactions a re  present. This seems very reasonable as time 
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ordered products not containing operator derivatives are presumably less 

singular objects. 

The contribution of M ('1. P to 4tl is cc 

d') We recognize S 

mass shift. It is removed by the appropriate counter term. However, M p 

contributes to weak coupling constant renormalization. We note- that whenever 

the commutator 

as simply the divergent part of the lepton electromagnetic 
P 

-w P 

--(') ' wi l l  in general be non-vanishing. contains q-number Schwinger terms, M 
P 

Turning now to the hadron part of the electromagnetic current, we may 

perform a completely analogous calculation if the currents are constructed from 

spin-1/2 fields. In the simplest quark model the hadronic electromagnetic 

current is 

26 

where the octet of vector currents is given by 

in terms of the quark fields q(x). Here the A matrices and the indices (a) use 

the conventional SU(3) notation (in Adler and Dashen, 27 for example). We have 

denoted the hadronic charge matrix by Qh. If the quark fields obey an equation 

of motion 
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for some unspecified(3) hadronic operator F(x), w e  may repeat the above calculation 

for leptons, to obtain the hadronic contributions to 6M (h) and%(h) whichare 
P P 

8 d h )  cc = si/.a4, < B b , J T ( Y ( x ) i  IQ;, F(x)lq(x),  Hwk(o)l [ A >  

and 

To make the analogy more explicit, w e  may define lepton fields 

and charge matrices 

0 0  0 0  
Qe = (0 -1) Qp = (0 -1) 

Then the lepton expression for In) M ’ takes the form 
P. 

It is very instructive to consider as a 

$!Je(X)] + (e -PI1 I A >  

further example currents constructed 

from spin- zero bosons, as occurs in a perturbation theory calculation of radiative 

corrections to pion decays. 

terms appear. Suppose then that the octet of vector currents Va(x) is constructed 

from a bilinear product of scalar fields @ (x), a = Q, . . . , 8). They have the form 

It  provides an example where q-number Schwinger 

P 

a 

The scalar fields obey the canonical commutation relations 
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The electromagnetic current is, as usual, 
3 1 8  

(x) = VP(X) + - v (x) . 
6Ct 

As is well known, 24 the electromagnetic interaction Hamiltonian of spin-zero 

fields contains a contact term. If we assume a model hadronic Lagrangian density 

where Fab(x) is free of operator derivatives but otherwise unspecified, then the 

minimal electromagnetic substitution 

* yields, in the usual fashion, the interaction representation Hamiltonian density 

H = Ho + He. m. , where 
(x) = eJ e. m. (x) .xP(x) - z 1 e 2 c ab $,(x)$b(X)di(x) d i (x )  . 

e. m. P 
H 

e, m. Here  &' (x) is the electromagnetic potential, J (x) is defined above, and 
P P 

Note that i f  we write 

where the hadronic charge matrix Q is h 

then Cab i s  simply 
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In discussing second order radiative corrections w e  must in this case 

consider 

#'(k) [. P V  (k) + T;v] 

where the additional term TC is given by 
P V  

TC wil l  give a quadratically divergent contribution to However, w e  

immediately note that it will  be cancelled by the mass counter term 

is only a "tadpole" contribution. Of course, in higher orders this w i l l  no longer 

P V  

since i t  

be the case. 

We are now ready to calculate the commutators in M . Using current 
P V  

conservation and the canonical commutation relations one finds 

The commutator 

motion, simply from the canonical commutation relations. After a brief cal- 

may be calculated without using the equations of 

culation w e  find that i t  may be written as 
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h) d h )  i. 
i ’  By combining these two commutators we obtain for (1 - A) do0 -t 

where 

In the first two of these terms w e  find, after partial integrations, that they are 

respectively proportional to kiki and ki. In making the covariant generalization 

they do not contribute since 

Note that this eliminates the gauge dependent term, as expected. 

The Schwinger term in the third expression gives rise to the same ambiguity 

that w e  noted in the spin-1/2 field example when we make the covariant generaliza- 

tion. Again, by referring to the Feynman diagram calculation in the free field 

case when Fab(X) = aabm , w e  find that we must use the same prescription for 

handling this term in order to get the correct answer for the divergent part of 

the radiative corrections. Realizing this, it is straightforward to show that the 

2 

covariant generalization of (1 - A)M$) -+ M (h) i is 

where 

x <BlulIT I C ab $a(x)Fk(x)@c(x), Hwk(0) 
I 
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and 

In writing these expressions we have used the equations of motion 

aP aP @a(x) = - F ~ ~ ( ~ ) # ~ ( N  

and have dropped a term involving the c-number commutator 

since i t  contributes only to the disconnected piece. 

The expression for ?i?ch) 
P 

has a familiar structure. To make this even 

more explicit we  note that in both the spin-1/2 and spin-zero field examples, the 

charge density operator had the form 

J T ~ * ~ * ( x )  = -i n(x) &#(XI 

where the #(x)'s were the canonical fields, the n(x)'s the canonically conjugate 

momenta, and Q the appropriate charge matrix. For this type of current, we 

found 

G: = -3i1d4X'(X0) <BlVa I 1 b ( X ) ,  Hwk(o)l Q2#(X)+ n(x)Q2 [HWk(O)? @(X)]/ la> 

A final type of model we shall consider is the algebra of fields.21 This is 

obtained by constructing a model Lagrangian which yields a field-current 

identity, i. e.,  28 
9 

my 

g0 
a ~a 

Vp (x) = - (p,(x) a=( l ,  ..., 8). 

a 29 
P 

The massive vector fields @ (x) have a bare mass mo and a Yang-Mills 

self-interaction with a bare coupling constant g 

type 

Such a field-current identity 0' 
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can hold for  the total electromagnetic and weak currents, as proposed by 

T. D. Lee.22 In this model, the commutation relations relevant to the cal- 

culation of M(~) are 
WJ 

0 0 - 4 i  e. m. e*m-(xj l  6(x - y  ) = - a i axi a a4(x-y) [Jo (Y), aoJo 
m2 ax 0 

and 

Here, as usual, the hadronic electromagnetic current is 

1 8  3 
ct (XI = v (x) + - v (x) , 

f i p  

and also 

The c-number parts of these commutators do not contribute to connected ampli- 

tudes. The remaining term does not contain spatial derivatives of operators, so 

$h) = 0. The covariant contribution to M (h) I.t is thus simply 
P 2 ct 

and is completely cancelled by the mass counter term. 

C. Divergent Corrections and Universality 

We have just seen how to consistently remove the divergent part of mass 

renormalization and of electromagnetic renormalization effects in strong inter- 

action processes. The remaining contribution to dl which we denote by AI, 
N 

1' 
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still contains divergent terms. We wish to inquire in  which current algebra 

models does the divergent part of ..f7; give only a universal weak coupling 
pi". is constant renormalization. This divergent part d 

Here %i ' are the model-dependent contributions from M 

and 

which we found above, 
CI ccv 

The condition for universal divergences in second order is 

where y is some constant independent of the particular process and A. is the 

uncorrected matrix element. 

We first  consider the case of a local current-current Hamiltonian density 

with 

* 
Here $(x) and j (x) a r e  the hadronic and leptonic weak currents, respectively, 

We assume the hadronic current has the usual Cabibbo form 
P P 

2 

where 0 is the Cabibbo angle and the SU(3) indices (1, 2, 4, 5) use the conventional 

notation. The weak currents Ja(x) all have a V-A structure 
P 

Ja(x) = Va(x) - Aa(x) a = (1,2,4,5) . 
P P P 
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3 Following Gell-Mann, w e  assume that the normalization of the octets of hadronic 

vector and axial vector currents is fixed by requiring the space integrals of their 

time components 

Fa = I d  3 a  xVo(x) F5 a = 1 d 3 x  A:(x) a = (1, . . . , 8) 

to generate, at  equal times, an SU(3) X SU(3) algebra. This implies, apart from 

Schwinger terms (which w e  abbreviate a s  S. T. ), the current algebra 

= i t? b c c  VP(x)6 4 ( X - y )  +KT. 

The appropriate commutators of the electromagnetic and weak hadronic currents 

are thus 
0 0  e. m. 0 0  ko Jlr(Y)] - Y  ) = [Jcl (x), Ji(y)] 6(x - y  ) 

* e. m. 

= f $(x) S 4 (X-y) + S.T. 
P 

+ The leptonic weak current j (x) consists of electron and muon pieces 
P 

Throughout w e  shall assume (M-e) symmetry, which, of course, guarantees 

(p-e) universality. With the usual point interaction the lepton currents 
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are 

A s  mentioned before, w e  do not restrict ourselves to this model, although w e  

shall assume that the leptonic electromagnetic and weak currents obey the usual 

commutation relations 

= f  j * 4  (x)6 (x-y) + S.T. 
P 

With these preliminaries out of the way, w e  may now begin our discussion 

of the divergent corrections, contained in dy*. We start  with a treatment of 

the case where the hadronic currents a r e  constructed from a bilinear product of 

spin-zero fields. This example illustrates the difficulty with theories with q- 

number Schwinger terms. We must now include both scalar fields sa(x) and 

pseudoscalar fields p,(x), with vector and axial vector currents respectively 

given by 

and 

The non-vanishing canonical commutators a re  
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Using these one easily obtains 

Note also that the commutators of the spatial components of the currents vanish; 

in particular 

We wish to show for this model that the presence of q-number Schwinger 

terms in the current commutators destroys any possibility that the divergences 

give simply a universal constant factor. For this purpose, let us consider a 

- P  semileptonic process, i. e .  , choose (A  > and I B > to be hadronic states. M 
CE 

clearly does not involve Schwinger terms so we need not consider i t  further in 

this model. In the remaining term N 

in the limit as k -00. It easily verified that the gauge dependent term NO0 

actually vanishes. For a semileptonic process N. is given by either 

w e  need to calculate (1 - A) N + N; w' 00 
0 

i 
1 

or  the corresponding form with the Hermitean conjugate piece of the weak 

Hamiltonian. For  the moment let us suppose the lepton current commutators 

contain no Schwinger terms. Then the only part of Ni yielding a Schwinger i 
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term is 

To evaluate the contribution of the Schwinger term we translate the hadronic 

matrix element through -x, yielding a factor eiq* ', where q = p - p is the A B  
lepton momentum transfer. Af te r  performing a partial integration, this part of 

the above matrix element gives 

The covariant generalization is made in the standard way 

the last 

term is 

replacement being made under symmetrical k-integration. The resulting 

manifestly not proportional to the lowest order matrix element 

Thus we conclude that the divergent part of the radiative corrections in this 

model is not universal in the sense that w e  have used it. 

If the lepton currents contained similar Schwinger terms they would, of 

course, have to be included. However, for them to cancel with the hadronic terms 

would be virtually impossible a s  it would imply precise equality of certain hadronic 

and leptonic matrix elements. Thus, spin-zero boson models seem to be unsatis- 

factory. This has been noted by Preparata and Weisberger, who used a per- 

turbation calculation of pion P-decay a s  an illustrative example. A popular 

model which is ruled out on this basis is the a - r n ~ d e l . ~ ~  Here the currents 

10 
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contain both spin-1/2 and spin-zero parts, so the above Schwinger terms wil l  

occur. It is difficult to draw any general conclusions about Schwinger terms 

for models with higher spin fields since the commutator 

could conceivably cancel the type of terms found above, although this does not 

occur in the simplest examples of currents bilinear in spin-1/2 or  spin-one 

fields. On the other hand, for the algebra of fields model the Schwinger terms 

are c-numbers, so they do not contribute to connected amplitudes. 

Let us now turn to models where the currents are constructed from spin- 

1/2 fields. We use the naive commutators, assuming any Schwinger terms are 

c-numbers. In the quark model the vector and axial vector currents are 

respectively. The canonical anticommutation relations 

yield the current algebra postulated above and, in addition, the space-space 

commutators 

and 
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26 In the simplest quark model the electromagnetic current is given by 

3 1 8  (XI = V,Cx) + - V (XI = T(X) QhyP q(x) Je. m. 
cc f i p  

where 

2/3 0 
% =  +(A3+$= b8) =( 0 -1/3 i) . 

0 0 -113 

The space-space commutators of the electromagnetic and weak currents are thus 

[Jf?*m*(x), J;(yj]~(x 0 0  - y  ) = i g . . S ( x ) a  4 (x-y)-  i+ijkJ'Jx)a 4 (x-y). 
11 0 

We shall assume in this example that the lepton weak and electromagnetic currents 

have the conventional form given by 

+ - 
jcc(x) = ve(x) Ycc'l - 'yg) e(x) + i p  yc,'1- 1/51 p(x) 

m*(x) = - e(x) yP e(x) - PCX)~, p(x) 
- 

with 
+ t  $(x) = jp(x) . 

The appropriate space-space commutators are easily verified to be 

0 0 -  .* 4 k 4  
[(a m*(X), j ; ~ ]  w - Y - gij lo (x) 6 (x- y) + icijk j* (x) 8 (x- y) . 
To discuss the divergences in the radiative corrections for this model we 

and, in the limit as k -GO, (1 - A) NO0 + Ni . A s  usual, i t  is - c c  0 i 

i 

need to know M 

easily checked that NO0 vanishes. 
cc 

Ni contains a term involving the double 
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commutator 

The covariant generalization of this expression is constructed by the replacements 

where, once again, w e  have used the fact that a symmetrical k-integration is to 

be performed. We thus obtain for the right-hand side of the above expression 

A considerable simplification ensues if w e  note that the contribution of this 

double commutator is exactly cancelled by the corresponding term in M . 
Indeed, one finds there 

- P  
P 

Clearly, a similar cancellation also occurs for the lepton commutators. 
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Thus, the only remaining divergent contributions a re  the terms in N: of 

the form 

Except for possible Schwinger terms, the commutators 

are model independent. However, the above expression 

mutators 

which are highly model dependent. We immediately see * 

also involves the com- 

that for the simple quark 

model the divergent radiative corrections cannot be universal since the antisym- 

metric part of the space-space hadronic current commutator differs by a factor 

of -1/3 from the of the leptonic commutator. This is the result originally obtained 

by Bjorken. 4 

Clearly a sufficient condition for the divergent corrections to be universal 

is for the space-space commutators of the hadron and lepton currents to be the 

same. It w a s  noted by several authors 5' 6' 

made to satisfy 

that the hadron currents could be 

in agreement with the usual lepton commutators, by adding an SU(3) singlet 

piece to the hadronic electromagnetic current. In fact, a quark model6' with 
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integrally chargcd quarks having a charge matrix 

0 0 

'h 
-1 

does the trick. A special feature of this model is that the divergences actually 

cancel so the second order radiative corrections are finite. One easily verifies 

that 

The covariant generalization has the form 

which vanishes after symmetrical integra ti on. 

A final model we shall consider is the algebra of fields. Since in this case 

the space-space current commutators vanish, universality can clearly only be 

satisfied if the total electromagnetic and weak currents obey the field-current 

identity.22 The commutators relevant to our discussion are then 

0 0  

As mentioned before, -. M ' = 0 in this model. NO0 also vanishes, so w e  need 

consider only 
P 
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as is easily verified. By making the covariant generalization 

we find for the divergent part of the second order radiative corrections 

a result previously obtained by Sirlin" and, for a slightly different model, by 

Schwinger. 23 

We conclude this section with a brief discussion of second order radiative 
31 corrections in a weak interaction theory which is mediated by a vector boson 

rather than a local current-current Hamiltonian. We shall show that the diver- 

gent part of the corrections does not satisfy the universality requirement except 

at q = 0. The weak Hamiltonian density in such a theory is 

where the vector fields 

constant g is related to 

W (f) (x) are free fields of mass m The coupling cc W. 

the Fermi constant G by 
n 

The lowest order weak interaction matrix element is given by 
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The manifestly covariant expression is obtained by observing that the non-covariant 

part of 

cancels the contact term. However, for our purposes the above form i s  more 

useful since it is the time-ordered products which are wel l  behaved in the limit 

ask -00. 0 

32 The second order electromagnetic radiative corrections to d[o are 

where Ifv(k) is 1 

x<ml 

Le photon propagator and 

TC 

which we need not consider since radiative corrections to the W-boson propagator 

are necessarily universal. Here the total electromagnetic current f 

is an additional contact term in the electromagnetic interaction of the W-bosons 
PV 

e. m. 
P (x) is 

where 

The divergent contribution toudtl is obtained as  before by isolating the 
i 2 0 part of (1- A)Too + Ti which goes as l/kg as k -CO . The contact term in the 
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i weak intcraction wi l l  yield the following commutator in Ti : 

Since this contact term contains spatial components of the weak current, i t  w i l l  

no longer be cancelled by the non-covariant term in the W-boson time-ordered 

products. Furthermore, i t  is easily verified that the remaining contributions 

to T 
WJ 

actions of the W-boson wi l l  not change this result. 

(k) will  not have this form. Clearly, non-minimal electromagnetic inter- 

Thus, we conclude that in a W-boson theory we connot satisfy the univer- 

sality requirement 

8 , l l  for  arbitrary momentum transfers q, although as was  first  shown by Sirlin, 

it is satisfied at  q = 0. In fact, i t  is interesting to note that in order to make the 

radiative corrections finite w e  would have to cancel the above contribution by 

adding a counter term to the interaction Hamiltonian having a local current- 

current form. Hence we should have included such a term in the Hamiltonian 

from the start, However, in doing that w e  lose the original motivation for 

introducing a W-boson interaction. 
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III. GENERALIZATION TO HIGHER ORDERS IN e2 

Most of the results of the previous section are not new, although they were 

originally obtained by slightly different techniques. The method w e  have illustrated 

above for second order radiative corrections can be used to discuss divergences 

occuring in higher orders in e We wish to investigate, using current algebras, 2 

whether the divergences in radiative corrections to leptonic and semileptonic 

weak processes to any given order in e can be absorbed into only a universal 

coupling constant renormalization. 

2 

Our method allows us to isolate only those divergences due to momentum 

loop integrations containing at least one virtual photon Line. Thus, in diagrams 

such as Fig. 1 we ignore all divergences due to closed loops inside the '?blobs" 

containing only hadrons o r  leptons (or  perhaps other types of particles), but no 

photons. 

A few remarks are in order concerning this assumption. In conventional 

quantum  electrodynamic^^^ of leptons the only such divergence arises in the 

second order correction to the photon propagator, i. e., the diagram of Fig. 2, 

and through its insertion in higher order graphs. However, corrections to the 

photon propagator even in the general case can only give divergences which are 

universal, since they contribute alike to all processes. A more serious difficulty 

was first noted by A d l e ~ - , ~ ~  concerning the triangle graph involving a n  axial 

vector vertex, illustrated in the diagram of Fig. 3. Adler studied this 

diagram in great detail and showed that i t  gives rise to divergences in higher 

order electromagnetic radiative corrections that cannot be removed by simply 

an overall rescaling of the coupling constants. We shall sweep such problems 

under the rug by taking the point of view that a proper discussion of divergences 
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in closed lepton loops requires a satisfactory theory of higher order weak inter- 

actions. As for hadrons, a treatment of similar diagrams involves a more 

detailed commitment to a strong interaction theory than is contained in the state- 

ment of current commutation relations. We expressly wish to avoid this, so we 

shall treat the blobs as black boxes and use only their general expression in terms 

of currents as matrix elements of 

for the case where n photons are attached. 

We defer until the conclusion a discussion of whether it is physically reason- 

able to neglect any divergences inside the blobs. Note, however, that to do so 

is consistent with our use of naive commutation relations for the various models 

we shall consider. In fact, these two problems are intimately related, as we 

shall see later. 

In the previous section we found that only two of the commonly discussed 

current algebra models gave satisfactory results in second order,in the sense 

that the divergences w e r e  universal (or zero). We shall restrict our attention 

in analyzing higher order radiative corrections to these two models, namely, 

algebra of fields commutation relations for the total (hadron + lepton) electro- 

magnetic and weak currents, and the quark models with integrally charged quarks 

for hadrons together with the conventional point interaction for leptons. 

First, we shall consider the case of the algebra of fields, since it is less 

complicated. The electromagnetic radiative corrections in order (e ) to a 

lowest order weak process are given by 

2 n  

- 45 - 



plus additional terms if there a re  contact terms in the electromagnetic interaction. 

Here 

H e. m. (x) = e G *  m*(x$(x) = eJeom' P (x#(x) + eje* P m o  (xk#(x) 

where the notation is as before. 

A s  in second order, we  should properly consider the appropriate vacuum 

expectation value obtained from the reduction formula. This introduces only 

inessential complications which obscure the basic argument so we  have relegated 

a discussion of this point to an appendix. We defer the question- of contact terms 

momentarily. 

The above expression for leads to 

where the 
P . V .  1 

D ' tki) = 2 
k. + ic 
1 

are the n photon propagators and 

T Pl"1' .PnVn (kl, . . , kn) = i= 1 [ p x i p y .  1 e 

Here the fadtor 

(-1)"o! = (-i)n(2n- 1) (Zn- 3 ) .  3 0 1 n n! 2 

comes from contracting 

to form n photon propagators. 
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In order to isolate the ultraviolet divergent contribution of Ji/n w e  need to 

& T -  1 
for large ki 0 in find the part of T (kl, . . . , kn) which goes as 

P 1yr' 'PnVn 
each of the integration variables k.. These terms wi l l  gibe'logarithmic divergences 

wheq after constructing the covariant generalization, the appropriate integration 

is performed. 

1 

We shall assume that the various partial integrations necessary to express 

these terms as matrix elements of equal-time commutators are justified for the 

(2n -t 1)-point function as we did in second order for the 3-pointTunction. We 

shall also assume that the prescription for constructing the covariant amplitude, 

illustrated in second order, generalizes for each of the n momentum variables. 

Such assumptions are clearly justified for quantum electrodynamics, so i t  is not 

unreasonable to assume them here. Our purpose is not to justify these assumptions 

but, having made them, to see how much current algebras can tell us about ultra- 

violet divergences. 

2 "  Before considering radiative corrections in an arbitrary order (e ) , w e  

illustrate in order e the new features not occuring in order e . We begin by 4 2 

observing that 

where 
-ikl(xl-yl)-ik (x - y  ) 

(kl, kz> = / d 4 x 1 / d 4 y l j P 3 / d 4 y 2  e 
2 2  2 

R~1v1!42v2 
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after four partial integrations. The integrations on the time variables are, by 

assumption, valid in the limit as <, 1.2" - 00 and those on the space variables 

true in any case. To isolate the divergent contribution to d2, we need the part 
0 which behaves as a constant in either or both of the variables kl 

Of RP1v1P2v2 
0 0 0  andk2 ask l ,  $ 4 ~ 0 .  

We may simplify matters slightly by using the Landau gauge for the photons 
+ 

so that in the limit as kp, k20-m with kl, 5 fixed w e  need consider only . .  
1 .  

(where sums from 1 to 3 are implied over il and i2). - Actually, i t  is '1 '2 
Ril i2 

easily verified that gauge dependent terms do not contribute to divergences anyway 

because as k: - 00 with fixed 
1 

0 v o  k? k? 

ki 
p - A + - g k g v , + ( l - h ) 8  g , 

and also 

since 

il i2 
Considering now R. , w e  first take the derivatives (Y a - a inside 

'1 i2 

the time-ordered product and use the commutation relations 
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of the algebra of fields model.21 One obtains 

The first two of the five terms in this expression w i l l  give contributions to 

Ril i2 
eliminate the factor e 

dependence after the 6 -functions are integrated out, so w e  shall assume they 

give only finite contributions to the kl momentum integration. In the spirit of 

our technique, we could make further partial integrations of derivatives with 

i i  
which are independent of kl since the 6-functions in x1 and y1 wi l l  

. The last three terms wi l l  still contain a kl- 
-ik (x -y ) 

il i2 
respect to x1 or  y1 to show that these terms give contributions to T. going 1, i n  I L  0 at least as fast as l/(kl"P as kl - 0 0 .  Of course, this would be a sufficient, 

but not necessary, condition for these terms to be finite. 

The term containing 
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w e  recognize from the second order calculation wi l l  be cancelled by an appropriate 

counter term added to the interaction Hamiltonian to remove the divergent part of 

mass renormalizatiop corrections and of electromagnetic renormalization effects 

in strong interaction processes. Thus, only the second term wil l  give a divergent 

contribution to the kl integration. The double commutator 

as in second order has the covariant generalization 

Under symmetrical kl integration we may replace 

-- P I V l  - <l<l 3 Pl”1 
4 g  

(kl, % ) a t e r m  

g 
k: 

9 

il i2 so this term effectively contributes to T. 
I1 i2 

This matrix element now has the same structure as the second order radiative 

correction. To isolate the divergent contribution to the 5 integration w e  therefore 

repeat that calculation and find that the above term’s contribution to the covariant 
il i2 

generalization of T il i2 (kl, k2) is 

1 

- 5 0 -  



where 

f We recognize T (3) as simply the finite contribution obtained in the second 
PZV2 

order result after the divergent terms were isolated. We have, of course, 

removed the divergent mass  renormalization term in obtaining the above expres- 

sion. 

We now return to the three terms which gave finite contributions to the kl 

integration. We must extract the part of these terms which gives a divergent 

contribution to the $ integration. To do this w e  take the remaining derivatives 

and - a in  
ay2p 

2 (;lv1 - ’lk;’) pl vl R i 

1” li2 

inside the time-ordered product. In the algebra of fields model 

and, using the Jacobi identity twice, 

L 
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Using these relations w e  see that the only terms which lead to a divergent 5 
integration, except the usual one containing (x), m. (y)] 6(xo - yo), 

which is cancelled by the mass renormalization counter term, are those involving 

a double commutator 

The remaining terms, which are too numerous to write out explicitly, w i l l  still 

be dependent on both kl and 

Thus, by assumption, they are the finite contributions toJtCZ, the fourth order 

after any 6 - functions have been integrated over. 

((e”,”, matrix element. 

Evaluating the double commutator and replacing i t  by the covariant form 

as before, w e  may combine the divergent pieces from the last three terms to give 

a contribution to Ti (kl, $) which is il i2 
1 i2 

f 
P I V ,  

where, again, T (kl) is the finite part of the second order radiative correction 

given above. 

At last, w e  may put everything together. We define the fourth order radiative 

corrected matrix element with the mass renormalization terms removed to be JZ2. 
Also, denote by 

d4k 1 
L = - g i  Jz (k 2 2  +ic) 

the divergent momentum integral. Then the above calculation yields 
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where 

is the lowest order matrix element, .. -. 

f 
ccv 

is the finite part of the second order matrix element (with T (k) given above), 

and Jt2 is the finite part of the fourth order matrix element, which w e  have not 

exhibited explicitly. Hence we may write 

f 

4 We see that through order e the matrix element d V  for any semileptonic 

o r  leptonic weak process can be written as a divergent constant factor times a 

finite part. The divergent factor can be absorbed into a rescaling of the weak 

coupling constant G by defining 

1 4 2  L + ' y e  L 
2! 2 

Since the divergent term is the same for all processes, the ratio of the rates for 

any two processes, which is a measurable quantity, is finite. Thus, the divergences 

are universal and have no observable effects. 

A comment concerning our technique is necessary. In order to obtain the 

correct covariant amplitude, note that, after extracting the divergent part of the kl 

integration, w e  were careful to construct the covariant generalization with respect 

to the indices p and u before examining the k integration. If we vary only one of 

the momenta ki at a time this removes any ambiguities concerning thc proper 

covariant form. 

1 2 
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It is now clear how to proceed in the case of radiative corrections in an 
2 "  arbitrary order (e ) . Using the Landau gauge for each photon we consider suc- 

cessively each of the integration variables kl, . , kn and extract the part of 
il i2 i 

Til .is n 
to a divergent km sub-integration. As before we remove all terms containing 

2 n .... (kl, . . . , kn) which goes as l/k for each km and thus contributes 
1 m 

since they are cancelled by the mass renormalization counter te-rm. The only 

terms which wi l l  lead to a divergent km integral must contain 

which w e  obtain either directly o r  by repeated use of the Jacobi identity if Hwk(0) 

is contained inside some other commutator. A l l  other terms w i l l  still be km- 

dependent after any 6 - functions from equal-time commutators a re  integrated 

out, so by assumption they give only finite contributions to this integration. After 

isolating the divergent part in km and evaluating the double commutator, w e  construct 

the covariant generalization with respect to the indices 1-1 m' 'me 
We do this for  each km from m = 1 to n. Consider then a term in which the 

above double commutator with H (0) w a s  taken r times. This wi l l  contain a factor wk 
r [-+ij4 = Lr 

(2w) (k + i e )  

from the r divergent subintegrations. The matrix element of the object remaining 

in the time-ordered product is proportional to 
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2 n-r 
where Jtf is the finite part of the amplitude to order (e ) . Such a term n- r 
can occur in 

different ways. Thus, w e  have on combining all these terms 

Therefore, w e  may write 
00 (,,+,,+.., +J{)+o(e 2(n+l) ) .  

IF1 

Since this is true for any n, 

where 

is finite. Thus, the weak amplitude containing radiative corrections to all orders 
2 in e , here denoted bydd  , is simply a divergent constant factor times a finite 

matrix element, which is precisely what w e  need to maintain finite corrections to 

universality of the weak coupling constant. We are,  of course, working only to 

lowest order in the weak coupling constant. 

This concludes the discussion of divergent radiative corrections in  the algebra 

of fields model except for the question of contact terms in the electromagnetic 

interaction Hamiltonian. In the model of Lee and Zumino in which the algebra 

of fields commutation relations a re  obtained by imposing a field-current identity, 

the Lagrangian density is 

28 
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where 

is the free electromagnetic field Lagrangian density wi th  Ld (x) as the electro- 

magnetic potential, the 
P 

q,;(x) a = (1, ..., 8) 

Aa form an octet of fundamental vector fields, G is given by 
P V  

and 9 

fields $(x) and their covariant derivatives 

is the matter field Lagrangian density depending on the hadron and lepton m 

where T is the appropriate internal symmetry matrix for the $(x). The indices 

a, b, c, . . . use the conventional SU(3) notation. The electromagnetic interaction 
a 

is introduced through 

We have for simplicity ignored axial vector field terms as these do not change the 

basic argument. 
Aa The interaction representation is easily obtained if we choose $ I ~ ,  ,d , and 

@ as the vasic field variables. Performing a canonical transformation on these 
P 



and their canonically conjugate momenta, it is easily verified that the equations 

of motion in the interaction representation, which are those obtained from me =O), 

are obeyed if w e  choose 

Se,rn. 

In other words, the Hamiltonian density is 

so there are no contact terms. Note that this result is independent of the specific 

nature of the matter Lagrangian density gm. 

We have just shown that universality of.the divergent radiative corrections 

in the algebra of fields model is maintained to all orders in e . We now wish to 

consider the model which gave finite results in second order and extend the dis- 

cussion to all orders. Recall that the electromagnetic current in this model is 

2 

where q(x), e(x), andp(x) and the quark, electron and muon fields, respectively, 

and the quark charge matrix Qh is 

where 

A+ = (al + fi2) cos e + (h4 + ih5) sin e 
C 
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Here 8 is the Cabibbo angle and the Aa matrices follow the standard SU(3) 

notation. ve(x) and v (x) are the electron neutrino and muon neutrino fields, 

re spec tively . 
P 

These currents satisfy the naive commutation relations 

= *gwY*)(x) S4(x - y) 
P 

which guaranteed 
9 

the finiteness of the electromagnetic radiative corrections to 

order eo. In considering higher orders w e  shall also need the commutators 

Of course, w e  are assuming, as before, that the naive commutators are correct 

except for possible c-number Schwinger terms which do not contribute to connected 

amplitude s . 
For spin-1/2 fields with minimal electromagnetic interactions the interaction 

Hamiltonian density is simply 

H ~ *  (x) = (xpf(x), 

i. e. , there a re  no contact terms. Thus, in discussing radiative corrections to 

order (e ) w e  need to consider the ampli tudedn defined above for the algebra 

of fields case. To illustrate we begin with the fourth order correctibns as an 

2 n  
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example. The appropriate amplitude Jt2 is 

In the limit as k:, g-00 w e  may write, as before, 

where 

Again, we use the Landau gauge for the photon propagators so we only need 
il ih 

First, we take the derivatives with respect to x1 and y1 inside consider R. 

the time-ordered product. A s  this generates a considerable number of terms, we 
'1 i2 

introduce here an abbreviated notation. W e  suppress the space-time dependence 

of the operators inside the time-ordered product and also the equal-time 6- 

functions multiplying the various commutators. In addition w e  drop the superscript 

(earn.) on the electromagnetic current. One then has 
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from a straightforward calculation. In obtaining this expression w e  have used 

the fact that only the part of R. 

to A2, so we may symmetrize with respect to xl- y and x2- 

i i  
even under kl--kl o r  %--k2 contributes 

l1 ig 

y2 1 

We note that eight types of terms are found. Of these, only the first three 
1 i 

contain equal-time commutators involving both of the currents gi (xl) and $ (yl). 

Since the 6-functions w i l l  cancel the factor 
-ik (x -y ) 1 ' ' , these terms wil l  be 

independent of kl and hence lead to divergent kl subintegrations. These a re  the 

only terms which could give rise to leading divergences, i. e. , ones where both 

the kl and integrations diverged, since we could continue to expand the remaining 
0 terms in powers of l/kl to show that they lead to a finite kl integration. 

What follows now is a necessarily lengthy argument which shows that, in 

fact, all of the divergent contributions cancel in fourth order as they did in second 

order. We proceed by considering each of the eight terms in turn. The equal time 

commutator in the first term may be evaluated by using the equations of motion 
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k As in second order, A(xl) and d 13&xl, yl),when expressed in covariant form, 

are cancelled by the counter term which removes the divergent part of lepton 

mass renormalization and of all electromagnetic renormalization effects in strong 

interaction processes. However, as in that example, the factor aka (x, - y,) 
must be taken outside the time-ordered product before the covariant replacement 

is made. The added time derivative wi l l  produce additional equal- time commutator 

terms when it is taken back inside. A straightforward calculation shows that the 

4 

resulting contribution to the first  term above is 

The commutator in the second term is 

We must construct the covariant generalization of this in the usual manner. One 

and, under symmetrical k-integration, 
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Thus, the generalization of the right-hand side of the above commutator i s  

The second term therefore contributes 

0 
The third term requires some care. Since w e  have not yet let 5 - 00 , we 

should properly consider 

Now the double commutator is easily verified to be 

The covariant replacement yields 

il i2 is 
Thus, the third term's contribution to Ri 

1 i2 

4 4 
We now see that the first  three terms, after integration over d x, and d yl, 

exactly cancel one another so that there a re  no leading divergences in fourth order. 

We now proceed to the non-leading divergences contained in the remaining five 

terms. 

- 62 - 



The fourth term is easily handled. Using the commutator 

We note that this time-ordered product has the same structure as the expression 

for the second order radiative correction except that electromagnetic current 

m* is replaced by an axial current of the same form. It is easily verified 

that this makes no difference in extracting the divergent part of the %-integration. 

This is apparent from the V-A nature of the weak Hamiltonian. Thus, the divergent 

contributions in this expression cancel, 

The fifth and sixth terms are best considered together. To extract the 

contribution which leads to a divergent momentum subintegration we must now 

take the derivatives with respect to 5 and y2 in the original expression for 
i i  

inside the time-ordered product. Thus, w e  must consider 
1 i2 

R.i 

Taking these derivatives leads to numerous terms, eight of which contribute to 

divergent momentum integrations. Using again the abbreviated notation, these 
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It  should perhaps be pointed out that in taking the first  derivative a/3y 

the time-ordered product, the terms involving the equal- time commutator 

inside 
2P 

i 

[g '(Y,), [& 1 ( x 1 ) 7  fi2x2)]] - x ~ ) ) s ( Y ~  - xi) 
0 0 i i  

give a contribution to Ri ' which goes as a constant times k2 as k2-m . 
1 

Such a term vanishes under symmetrical integration and hence may be dropped. 

By noting that the commutator 

is antisymmetric under il-ig we observe that all of the eight terms cancel in 

pairs except the first  and the last. These two may be rewritten as 

by using the above mentioned antisymmetry and the Jacobi identity. By evaluating 

the commutator we obtain the form 
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Once again w e  note that, except for the axial vector nature of the current, these 

two terms have the same structure as the divergent contribution found in second 

order. Hence, after removal of the mass renormalization contribution, i t  is 

easily verified that they cancel. 

Next, consider the seventh term, By noting that 

we  see that the covariant generalization of this term is proportional to 

il i2 

integrations 

As usual, w e  must now take the derivatives with respect to x2 and y2 in Ri 

inside this time-ordered product. The terms which lead to divergent 
1 i2 

are 

The appropriate equal-time commutators in the first  two terms, and their 

respective covariant generalizations, are easily verified to be (using the 

- 65 - 



abbreviated notation) 

-- 

where the arrows indicate the covariant generalization, The third term contains 

the commutator 

which w e  handle 

[+. a,q3 
in the usual fashion. After removing the covariant mass renormali- 

zation term w e  recognize that the remaining contribution cancels that of the first  

two terms. 

Finally, w e  have the eighth term, whose covariant form with respect to il is 

Extracting once again the divergent contribution to the 

commutators of the same form as those considered above. 

to show that the resulting terms cancel after removal of mass renormalization 

contributions. 

integration, we obtain 

It is straightforward 

This concludes the demonstration of the finiteness of the fourth order 

radiative corrections in this model. Note that this w a s  done by showing that, 

after all the commutators were evaluated, the various terms cancelled precisely 
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as they did in the second order calculation. Thus, it becomes obvious that the 

result must hold to all orders in e . The commutators occuring in any higher 

order have already been encountered in fourth order. By suitable manipulations 

we can reduce them to terms which cancel as in the second order case. 

2 

This result is hardly surprising. I t  is a ~ e l l - k n o w n ~ ~  fact that for 
2 p- decay the radiative corrections may be shown to be finite to all orders in  e 

by performing a Fierz transformation on the current-current Hamiltonian. What 

we  have shown is that, with the stated assumptions, the divergent part of the 

radiative corrections depends only on the commutation relations of the currents, 

and not on the detailed nature of the particles in the initial and final states o r  

their strong interactions, if any. Thus, the /f-decay result must hold for any 

leptonic or semileptonic (or non-leptonic, for that matter) weak process in this 

model. 
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IV. CONCLUSION 

The purpose of this work has been to attempt to find models for the hadron 

and lepton weak and electromagnetic currents which yield a consistent theory of 

radiative corrections to lowest order weak processes. We mean, by consistent, 

that divergent momentum integrals do not enter in the calculation of physically 

measurable quantities. In the previous section we exhibited two models which 

were consistent in this sense, to all orders in e . One, a quark model with 

integrally charged quarks:’ gave finite radiative corrections ahd another, the 

algebra of fields model, contained only an unobservable, universally divergent 

factor. We also observed that in theories with q-number Schwinger terms in 

the current commutators this consistency condition could not be satisfied. Since 

currents constructed from spin-1/2 fields and the algebra of fields model are  the 

only two simple cases we know of where the Schwinger terms are c-numbers, the 

two models mentioned above thus seem to have a special position. 

2 

As we mentioned previously, w e  have not completely solved the consistency 

problem with these two examples. We removed divergent contributions to elec tro- 

magnetic mass shifts and to strong coupling constant renormalization by adding a 

counter term to the Hamiltonian. It remains to be shown that these terms do not 

lead to divergences in the calculation of mass ratios, strong coupling constant 

ratios, and, ultimately, the ratio of the strong and electromagnetic coupling 

constants to the weak interaction constant G .  The simplest way for this to happen 

would be for the commutator 

to be a c-number so that it would not contribute to connected amplitudes, although 

this is clearly not a necessary condition. It has been noted 
34 

that in  the algebra 
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of fields model the above commutator can be madc a c-number by taking an appro- 

priate limit on the underlying Yang-Mills field theory. In general, however, it 

is far from obvious that the commutator could not give rise to unwanted divergences. 

Hence, this problem, which is outside the scope of our paper, remains an open 

question. 

To get as far as we did, it w a s  necessary to make several strong assumptions, 

which we must now discuss. We made three assumptions which are all closely 

related. These are that the Bjorken expansion was justified, that naive commutators 

could be used, and that any divergences in closed loops in the hadron or  lepton 

flblobsll could be ignored. Recent investigatiQns 17-19 have shown that i f  the last 
17 assumption is unjustified, then the first  two break down also. Adler and Tung 

considered the tlgluonll model of strong interactions, a renormalizable model wi th  

an SU(3) triplet of spin-1/2 particles bound by the exchange of an SU(3)-singlet 

massive vector particle. They considered the current-fermion scattering amplitude 

to second order in the gluon-fermion coupling constant go They showed that as the 

current momentum k w,the coefficient of l/ko was not that obtained by cal- 

culating the naive commutator in the Bjorken expansion, but that i t  contained a 

correction term of order g . Furthermore the amplitude contained a term going 

0- 

2 

2 as (In kE)/ki, so that the expansion would not be valid to order l/koo 

Both of these effects have their origin in  primitively divergent subgraphs 

which appear in the perturbation expansion of the interaction, as w a s  emphazised 

more recently by Tung.19 The divergent integrals are made finite by the usual 

regulator technique, but as the regulator masses are let to approach infinity, 

additional contributions a re  picked up which imply that naive use of equations of 

motion and canonical commutators is no longer justified. Also, whenever there 

are logarithmic divergences, Bn ko terms will  always occur. Since there are  2 
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divergent graphs in almost any non-trivial strong interaction model, i t  appears 

that all three of the above assumptions break down in perturbation theory. 

Thus, if we  are to maintain the assumptions, we must suppose that the 

perturbation calculations are misleading and that the exact theory must somehow 

be more convergent than individual terms in the series expansion. I t  turns out 

in all of these examples that the commutators of the time components of the currents 

are unchanged simply because of current conservation. This suggests that what 

is needed to make the naive commutation relations also hold for the  space-space 

commutators is some analogous smoothness condition involving time derivatives 

of the spatial components of currents. 

One might speculate that perhaps the Bjorken expansion is justified but the 

use of naive commutators is not. However, if this were the case, i t  is very dif- 

ficult to see how universality of the divergent radiative corrections could be main- 

tained because we do not expect the commutators of the lepton currents to be 

modified, except perhaps by higher order weak interactions, which is a whole new 

subject. 

Most of the above comments have been made with reference to the current 

model with spin-1/2 fields. However, for the algebra of fields model things are 

no better. Behind the facade of simple current commutation relations lurks a 

non-renormalizable theory of matter. We do not know how to interpret a pertur- 

bation expansion of such a theory so the question of the validity of the naive com- 

mutators is completely open in this case. 

This brings us  naturally to a discussion of the use of the Bjorken expansion 

in analyzing divergences in non-renormalizable field theories. A concrete 

example would be higher order weak corrections. Having seen our partial success 

in handling divergences in  elec tromagnetic radiative corrections, one might suppose 
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that at least the leading divergences to each order in the weak coupling constant 

could be shown to contribute only to an overall coupling constant renormalization 

plus mass shift terms. Unfortunately, there is a serious question of principle in 

applying the non-covariant expansion procedure. In order to avoid possible 

ambiguities in making the covariant generalization, we must let only one loop 

momentum approach infinity at a time, holding all others fixed. For this to be 

justified, free translations of the origin of the momentum integrals must be 

permitted. However, it is well known 

are no worse than logarithmically divergent. 

35 that this is true only if-the integrals 

The attendant difficulties may be illustrated by considering second order 

weak corrections to the electromagnetic vertex of a particle in a W-boson theory 

of weak interactions. A naive application of the technique used in this paper seems 

to give quadratically divergent corrections. However, a Feynman diagram cal- 

culation shows that the quadratically divergent terms cancel, as they must because 

of the Ward identity?' The discrepancy is due to an unjustified translation of the 

momentum loop integration variable. Thus, greater care must be exercised in 

using the Bjorken expansion when higher than logarithmic divergences occur, to 

insure that the Ward identity holds. This problem is as yet unresolved. Hence, 

the divergences in higher order weak interactions are another open question. Of 

course, this is hardly a new state of affairs. 

Our main concern here has been with the divergences occurring in the 

calculation of radiative corrections. Ultimately, having shown that divergences 

are either universal o r  are not present at all, we would like to calculate the finite 

parts of the corrections to test quantitatively the hypothesis of universality of the 

weak interaction coupling. Unfortunately, in the absence of a more detailed theory 

of strong interactions than we now have, only crude estimates can be made. The 

1 
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fact that such estimates 5’20 of finite contributions are in rough agreement with 

experiment is the main motivation for attempting to show that divergences a re  

absent order by order in e . Of course, it is also possible that the divergences 2 

are only a property of the perturbation expansion and do not occur in the exact 

theory. Another way out is to assume the existence of negative metric states. 
37 

We have shown here that a more conventional solution to the problem of divergences 

can be found consistent with the restrictions of current algebra. However, the 

justification of our various assumptions awaits, on the one hand, further develop- 

ments in the theory of strong interactions, and, on the other, a satisfactory 

theory of higher order weak interactions. These two problems may wel l  be 

related. 
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APPENDIX 

In the main text w e  considered various matrix elements between particle 

states of a time-ordered product of the weak Hamiltonian density and several 

electromagnetic currents. We wish here to give a discussion of external line 

wave function renormalization contributions to divergent radiative corrections. 

To do this we must start with the usual perturbation expansion24 obtained from 

the reduction formula. In the weak process A--BPvp let all particles be spinless, 

for simplicity, since this does not affect the argument. The mitrix element A d o  

for this process, to lowest order in G and zeroth order in e , is 2 

where 

- -ipAul + ipB% + ipp3 + ip u 
4 

4 2  4 
A0 = (z A B L ” I  z z z ) {d4u.e 

1 i=1 

a2 + mA, 2 etc., D s  

and 

Here  the @Is are the fields of the respective particles, which for the case of 

hadrons obey the exact strong interaction equations of motion. The Z’s are the 

appropriate wave function renormalization constants. The matrix element dl 

which gives the order (e ) radiative corrections to ..dco is given by a similar 

expression with go replaced by 

n 
2 ”  
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where 

since, again for simplicity, we ignore possible contact terms in H e. m. (x). 

The wave function renormalization constants 2 are  determined from the 
’A exact particle propagators by going to the mass shell. For example, i f  SF (p,) 

is the exact propagator for particle A, then 

‘A SF (p,) has the perturbation expansion 

A To calculate the divergent contributions to Z 

(x) to form n photon propagators. We then extract the part of the remaining H 

time-ordered product which goes as (l/kP,” as ki - for each loop momentum kie 

The divergent contributions come from double commutators of the form 

w e  first contract the &p(x)ts in 

e. m. 
0 

or  in constructing the covariant generalization of 

if it contains operator Schwinger terms. 

Since for the propagator w e  a re  interested only in the divergent contributions 
A to 8, w e  may assume that the double commutator is proportional to @ (u), i. e . ,  
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for some constant a. Furthermore, in calculating dGY any other terms in the 

double commutator wi l l  not give a pole in the external line momentum and hence 

will  not contribute to the on-mass-shell amplitude. It is also easily verified 

that, in any of the models w e  have considered, any additional equal-time com- 

mutators which arise in making the mass shift term covariant are also proportional 
A t o 9  

A It may now be expressed The divergent contribution to Z we denote by Zdiv,. A 

as a power series in e with divergent coefficients. These terms come from 

equal-time commutators with both @ (u,) and @ (0) in the time-ordered product. 

By considering all possible combinations of such commutators it is easily seen 

2 

A A 

that w e  may write Zdiv. A as (p- Zdiv, ) 2 y  where the power series for Eve has 

coefficients which are obtained by including the commutators with only one of the 
A A 

A similar argument holds when w e  consider ./tl 

two 9 9 say 9 (u+ 

There wi l l  now be additional n' 
divergent contributions to the various photon loop momenta involving equal- time 

commutators with the fields for the external particles. As in the single particle 

propagator example, when we  sum over all orders these additional terms w i l l  

factor out to give a contribution of KV. for each particle. These terms are  

then cancelled by the divergent part of the l / P a p p e a r i n g  in the reduction 

formula. 

Having removed these divergent contributions, i t  is now presumably safe 

to reverse the procedure for obtaining the reduction formula and put the external 

particles into in- and out-states. We thus obtain an expression which is the same 

as that used in the main text except for certain finite electromagnetic corrections 

to the wave function renormalization constants. These clearly do not affect any 

of our arguments since w e  are not interested in the details of the finite parts. 

- 75 - 



FOOTNOTES 

(1) The use of the Bjorken expansion for time-ordered products of an arbitrary 

number of currents has been studied in a different context by P. Olesen (Ref. 16). 

This example was discussed briefly by A.  Sirlin (Ref. 11). 

An implicit assumption of the model i s  that F(x) i s  free of operator derivatives. 

(2) 

(3) 
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