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ABSTRACT 

We investigate the multi-Regge model in the kinematic region where 

the four momentum of one initial particle is large and spacelike. These 

kinematics occur in inelastic electron scattering through single virtual 

photon exchange. We predict a rapid fall off in the cross section as the 

virtual particle becomes more spacelike, contradicting present data. 
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After radiative corrections, inelastic electron scattering measures the 

total cross sectionfor virtual photons as a function of the photon mass as well as 

its energy. This freedom of varying a particle mass is a new feature not yet 

available in other reactions; therefore, this process has recently attracted much 

theoretical interest. (1) (2) Denote the total cross sections for transverse and 

longitudinal virtual photons incident on spin averaged protons by (T T and u L 

respectively. Let v be the photon lab energy and let p: be the square of 

the photon four momentum. Bjorken (1) has shown that, as v and pf became 
V 

large with the ratio 2 
p1 

constant, it is likely that va T and v (T 
% 

have finite, 

as opposed to infinite, limits of value dependent on this ratio 2. Current 

(6) 
p1 

data seem to indicate that this limit is nonvanishing . Most of the recent 

interest in the subject concerns the behavior of this limit as a function of 

+ 
p1 * 

The multi-Regge model (MRM) has drawn interest as a possible 

description for highly inelastic hadronic collisions (3). We wish to relate 

the MRM to inelastic electron scattering by discussing the behavior of the 

MRM as the four momentum pl of an initial particle becomes large and 

spacelike. In this way we hope to gain some insight into the behavior of 

Bjorken’s limit functions. In particular, we ask if the above discussed 

behavior for v (T L and v c T is consistent with the simple MRM. 

Our calculation essentially follows the work of Halliday and Saunders (4) , 

except we allow one initial mass to be variable. For simplicity we treat all 

particles as spinless. Figure 1. shows our kinematics. A virtual particle 

of momentum pl collides with a particle of momentum p2 and unit mass 

(pi = 1). The f’ ma1 state consists of n identical particles labeled with momenta 

qi’ i=l, l l 
l n, and all of unit mass (qf = 1). Define invariants 
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(1) 

ti = (p -L q.)2 1 j=l J 

s = (pl +p2)2 = (center of mass energy)2 

v =p 1’p2= & (s-l- pt ) = energy of p1 in the rest frame of p2 

The simple form of the MRM which we shall use says that when all the si 

are large and the I ti I small the amplitude for the process is approximately of the 

form 

Tn = G@f , tl) G(tl, t2) - - 
“Fn- 1) 

- G(tnwl 1) sl%) - - - s n 1 
, 

Here the G1 s are unspecified vertex functions and o(ti) is the trajectory function 

of the exchanged Reggeon. We consider only one type of Reggeon and take 

a(t,) = j. + j’ ti j’ #O 

For each of the n! orderings of the qi there is a similar expression for 

Tn valid when the respective si are large and ti small. It will be clear later 

that these n! kinematic regions are disjoint, giving no interference between them; 

thus, only one ordering need be considered. The factor of n! arising from these 

different orderings is canceled by the -$- occurring in the phase space for . 

n identical particles, 

The MRM contribution to the total cross section from n particle production 

is therefore given by 

o;OT = 
1 

J- 

d ip- 
Vrel Lplo 920 (2 7i- p- 4 

ITn12 

(2) 

(3) 

(4) 
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where 

d@=64@1 + p2- ( 6 +(s ; - 1) d4 qi) 

6+ (cl2 - 1) = 0 (4,) 6 (cl2 - 1) 

i 

1 x>o 
e(x)= 0 x<. 

Vrel = relative velocity of p1 and p2. 

We work in a frame where cl and F2 are parallel. In the limit V-N (note 
2 

8 2 13~2 1 implies - p1 5 2,v) 

vre12p; 2p2 = 4: 
0 0 

To simplify the integral over phase space, let us change to a set of 

variables introduced by Sudakov (5) and apply them to this problem, following 

closely Halliday and Saunders (4) . To define these variables, introduce two new 

momenta 

P’ 1 = Pl - (v - m P 1 2 
‘1 4 I - 

P’ 2 =P2 - P 4 (v - d V2 - P; )P, 

These momenta have the useful property p’21 = p’ 2 - 2 - 0. 

In the limit v --c C+J we have 

2 
Pl P’1=p1--$, P2 

1 
P’2 MP2’ 3- Pi 

Now we define the Sudakov variables { oi, P i, Ki 1 by 

‘i = oip’ 1 ,+ p i p’ 2 + Ki 

where Ki is the transverse part of qi. A little algebra shows that in the limit 

v -.a~ (allowing - pf comparable to v) 

(5) 

(6) 

(7) 

(8) 
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d4Si = v d cyi d p i d2 Ki 
I ,\ (9) 

6+(q; - 1) = l 21/ 

64@1 +P2 -it 4.) 
i=l l 

(10) 

(11) 

S. M 2 v (“i + “i+l) (B i + B i+l) + (Ki + Ki+1)2 (12) 
1 

‘i a (i K.)2 - 2v ; 
i n 

j=l .’ 
a.2 p.+p; iTI 

2 

j=i+l J j=l J 
(Yj + k p .- Pl 

j=i+l j=l J 2v 

Note that cyi and p i are all positive because of 6 +(q:- 1). 

In terms of these variables our integral becomes 

(13) 

1-K. 2 
n 1 

(T TOT= 2n+2(2s )3n- 4v 2 J ii i=l 
(doid/ id2Ki G(ai) 6 (oiP i- 2 ; ) )s2(‘Ki) 

i . , 
r) 

xq2ai - 1)6(xip.- l-- 1 ‘; ) IG @f,t,) I 21G(tn-l 1)I 2 
i 2v , (14) 

x i 2 I G (ti, ti+l) 1 2 II 
i=l i 

(si 2jo si ‘j ’ $) 

2j’ t. In the region where all the si are large, the factor s i 1 in (14) gives 

a rapid ti dependence. If the G’ s are smooth and polynomially bounded, this 

factor will cause small ti to dominate the cross section. Furthermore, when . 

the si are large enough the factor si 
2j’ t. 1 will dominate all ti dependence. 

Restricting ourselves to this region of large si, we can immediately 

do the K: integrals with the result 

n 1 
(+ TOT = 2n+2 

(2n) 
3n-4v 2 (~) n-~j (d”i’Pi’(lyi) ’ t(yiP i- ~ )) t15) 

2 
x 6 yi- 1) d(zisi- 1 - ‘1 1 IG - 

2v 
@“1, ti) 121G (tn-l)l) I 2 x 
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n-2 
x l-l 

i=2 
1 G (ti, ti+l) 1 2 I-is (i i> 2jo tsi ‘j’ “I> ” loglsi 

where now 

S. 
1 

M 2v (pi + “i+l) (B i + P i+l) 

n 
ti = -2v c 

( K) 

7 
b. +Pf 

j=l, ’ 
E a!.+ 

i 2 
+x P 

j=i+l j=i+l J 1 j -$ 

Since si is large. and cxip i a % we have 

a. a i+l g.o+-.+ - 
1 i+l o!. 

> > 1 
1 

However 
2 i Q. 

p1 -I: pj+tp -2vcyi+l pi=+- 
2vl i 

So to keep I ti I small we must have 
o!. 

1 
P 

s. = Q! M i+l 
1 ‘i 

>>l 
i-i-1 

and 
2 

ti = Pf Qi+l - p1 
2v 

This shows that the oi are an increasing sequence and therefore demonstrates 

our earlier claim that other particle orderings have disjoint kinematic regions 
I: 

for the MRM. Remembering i oi x 1 we see from (19) 

2 
Similarly, since Z /3 i = 1 + p1 , 

i 2v 

2 

‘n 
=1+p1+ 1 o! W- 

2v n s 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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From these relations clearly 

o1 rls,=(y =s 
i n 

and 
i 

ti=p; l-I 
- 1 2 

- p1 
j=l 3 2v 

Let us define yi and y by 

8. = syi 
1 

2 Y 
p1 = s 

Since nsi = s, we have 2 yi = 1. We have required si --coo so we must keep 
i i 

yi 1. E > 0 

where 

1 
T 

= o(log 5) 

Furthermore si 5 s implies yi s 1. The variable y can run from - a to + 00 as 

pf runs from zero to 2V, although y becomes large only very near these values 

ofpf. 
2 

The usual limit ‘1 = constant with v-000 corresponds to y - 1. 
v 

In terms of these new variables _ 

s 2j’ ti M em’, - 2jf y log 8 s j=l 
i [ Y-~ Yi t- 3 ‘4/2v 1 

i ( ‘I s i 

=e(i y. 
t-j ‘P+ ) 

j=l ’ 
- Y ) ‘i 

l-lSi 

2j’ ti (-jlP2,/v) 

i 
“eel-Y’S 

This 0 function represents a shrinkage with increasing y of the kinematic region 

for the MRM. It means that in order to keep t, small s, must be larger than pf . 

(23) 

(24) 

(25) 

(26) 

(27) 

(27) 

WV 
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Unless n = 2 we have sl< s implying yl< 1. The 8 (yl - y ) reduces 

the multiplicity n as y increases until for y = 1 only n = 2 will contribute 

appreciably. Let us briefly discuss the case Y-C 1 before going on to y = 1 

and the Bjorken limit. 

We change integration variables from the (Y ‘s to the Y Is using 

log cYi 
yi =logS- 

log ai + 1 
log s 

This gives the result 

s2jo- 2 n-2 

cT:T = logs 
IG(p;,0)l.21G(0,1)12 & J,F 9 Y ) 

where 

J 

1 

J,(’ 9 Y ) = 
dyl. . . dynml 

E yl l ’ ’ Yn-1 

’ (~Yi - 1) e (Y,-Y) 

With pf = 1 this is just the result of Halliday and Saunders. Note that J 
n 

(E , y ) = 0 

unless y + (n - 2)~ < 1. This means 

n<2+9 =2+ 0 log --$ 

( -p1 ) 

This shows the decrease in multiplicity mentioned above. 

As we go to the Bjorken limit of v - 0 with f fixed, the parameter y 

p1 
goes to 1. In this limit we have the remarkable result that final states of two 

hadrons will dominate the cross section. This contribution from n = 2 is easily 

evaluated giving 

a =1 s 
2jo - 2 

aTOT = cTOT 32n j’ logs s 

where 

w=- + 
p1 

’ G 
( 
pf , -2&t.Q- 1) 

1 

(29) 

(30) 

(31) 

(32) 

2 
I 

(33) 

(34) 
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The expression 1 
2w(2w- 1) 

occurring in (32) is the minimum value of - tl in the 

limit of large v . Because it can approach this value only for n = 2, two final 

hadron states should dominate the cross section. Equation (33) is the prediction 

of the MRM for the cross section in the Bjorken limit with WC 00, 

If we put in a typical j = 4 , then for fixed w 

V”TOT - 

n 

Bjorken predicts that this should go to a constant as pf - 00. Indeed the first 

factor is slowly varying for w> 1. However, from experience with elastic 

electromagnetic form factors, one might expect 
4 

lG(p2 2 
1’ 2w(2: -1))I N 

This fall off is quite rapid and no such effect has been seen as yet in the data. 

This indicates trouble with the model unless something drastic happens to the 

asymptotic behavior of G (pt, t) as t is varied from the physical mass of the 

exchanged particle to t = - 1 
2w(2w-1) l 

When we 1 this extrapolation is not 

large and we cannot theoretically justify such a change in behavior. 

It may be that the data are not yet in the asymptotic region. In 

present experiments -pf is not large compared to the above mentioned extra- 

polation of t. Assuming this is the case and the model is still applicable, we 

can make a simple prediction on final momentum distributions. 

If we define the final particle ordering for multiparticle production 

events by decreasing lab momentum (decreasing oi) we should find most 

events with s 1 = (ql + q2)2 2 - pf whereas further si = (qi + qi + 1)2 will 

(35) 

(36) 
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tend to lower values. Furthermore as we increase the lab energy v with fixed 

w =# 0, the average multiplicity should decrease to two. These are effects that 

may begin to show up at nonasymptotic energies and should be looked for. 
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Fig. 1 Kinematics for the inelastic scattering. 


