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ABSTRACT 

We report the results of fitting the Regge pole portion of the ampli- 

tude of 1-I. M. Nussenzveig’s impenetrable sphere solution to r’p back- 

ward scattering measurements. The fits, which require determination 

of the location of a pole in the complex angular momentum plane (2 pa- 

rameters), are made to data at 14 different energies from 2 to 17 G~V, 

and range in quality from good to indifferent. The locus of fitted poles 

on the angular momentum plane determines a trajectory similar to, but 

closer to the real axis than that of the lowest Nussenzveig-Regge sur- 

face pole. A study of fits at 5.2 and 6.9 GeV/c,in which the overall nor- 

malization of the data was varied, indicates that the magnitude of the 

backscattered pion cross section is near optimum for consistency with 

the surface-wave description. 
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I. INTRODUCTION 

The striking similarity of backward-positive-pion-proton scattering above 

about 2 GeV to alpha scattering by light, spinless nuclei in the energy range from 

20 to 50 MeV, and to the meteorological phenomenon of the glory, has been 

pointed oc t. 1 H. M. Nussenzveig has recently discussed2 the scalar version of 

the meteorological glory (scattering of a plane wave by a real, square-well poten- 

tial) and has shown that backward scattering is completely dominated by Regge 

poles which can be associated with surface waves in the high-frequency limit. 

Surface waves (creep v~aves)3 occur in scattering problems for which the 

index of refraction or potential changes within a distance small compared to 

the wavelength and can be thought of as a kind of diffraction in which the scattered 

flux appears to come from a damped traveling wave skirting around the scattering 

center in the neighborhood of its surface. 

Probably the simplest scattering problem in which surface waves play an 

important role is that of scattering a scalar wave by an impenetrable sphere, 

which has been treated in great detail in the high frequency limit by 1-I. M. 

Nussenzveig. 4 The scattering amplitude in the large angle regions breaks up 

naturally to two terms: one results from Regge poles and describes surface 

waves and the other comes from a line integral and can be shown to represent 

specular reflection in the high frequency limit. 

II. A h!lODEL OF THE 7r+-PROTON LARGE ANGLE ELASTIC SCATTERING 

*we conjecture that the large angle elastic scattering is due. to a surface- 

wave type interaction havin, v the functional form of the Rcgge-pole part of the 

impcnctrable sphere problem. We neglect any contributi,on from specular rc- 

flcctions and allolv the positions of the poles to be clet.crmined by the data. 
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III. NUSSEN ZVEIG’S SOLUTION 

Nussenzveig’s expression for the scattering amplitude of a scalar wave by 

an impenetrable sphere can be written (4, Eq. 9.54) for p 
-l/3 

CC O_<nas 

f(k, 0) = fR + fs (1) 

where fR is the isotropic amplitude produced by specular reflecticn and fs is the 

contribution from the Regge poles : 

f = s - (2) 

where a is the radius of the sphere 

p = ka, where k is 27r times the wave number 

8 is the scattering angle 

hn is the location on the complex angular momentum plane of the nth 

Regge pole 

Ai’ is the derivative of the Airy function 

-xn is the nth zero of the Airy function ’ 

Jo is the zero-order Bessel function of complex argument. 

For the hard sphere, the Regge poles are located at (4, Eq. 3.5) 

X,(p) = /3 + (P/a)1’3xnei”/3c O(p-1/3) (3) 

for /3 >> 1; x1 = 2.34. The locations for arbitrary p can be determined from the 

zeros of the llankel functions of the first kind, for which simple expressions 

exist. 5 

Considcrntion of the magnitudes of the terms in the fS series leads to the 

neglect of all but the terni m = 0, n = 1 of Eq. (2). To simplify somewhat our 
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fitting procedure we write: 

fS 
in/3 w[+jj 

2 -e (Rehl/k) (ReA,/2)“3 2 Jo[$t.“-~ ,3 (4) , 
Ai’(-Xn) 

giving us two parameters ReXl and ImXl, the location on the complex plane of 

the position of the first surface-wave pole, We abandon the requirement that 

the pole satisfy Eq. (3). 

IV. THE BESSEL FUNCTION 

For our fits we write 

M 2n 
J,(Z) = C 

n=Q 
(-lp(“‘;) 

w 

where M = 20 for our machine (single precision) calculations. 

It is instructive to see the effect of small imaginary component of z on 

Jo. Butting z = x + iy , we get 

I Jo(z) = Jo(x) + i 2y 2 
n 2n-1 

‘(-I) x2 + O(r2). 
n=O (n! ) 

(5) 

(6) 

Qualitatively, combining Eq. (6) with Eq. (4), we note the following features: 

(1) The position of the dip in the 7r”p cross section determines ReXI. Note 

that Jo(x) = 0 at x = 2.44. 

(2) The overall normalization is determined by ImXl in the exponential. 

(3) The deviation from zero (filling in) at the dip of the amplitude is di- 

rectlypreporitional to Imhl. 

V. THE FITS 

Table 1 summarizes our fits of Eq. 4 to 14 sets of r+p data, WC exclude 

points for which ReAl(n-0) < 6.0. The positions of the pole on the complex 
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plane arc shown in Fig. 1. Plots of the data and the surface pole curves arc 

shown in Fig. 2. The ordinates arc normalized to 1 and the abscissae are 

(ReXI) (x-6). As a test of the uniqueness of the fits the over?‘! normalizations 

for the data at 5.2 ‘and 6. S,(Figs. 2i and 21~) were altered, and the data were then 

fitted. Figure 3 shows the X2 for the fit vs. the factor multiplying the cross 

sections and their errors. This clearly shows that the order of magnitudes of 

the cross sections are just about optimum for compatibility with the surface- 

wave formula, and tends to rule against the “accidental” success of these fits. 

(1) 

(2) 

(3) 

(4) 

(5) 

VI. DISCUSSION 

The fits appear to be comi>arable with those obtained using the Reggeized 

baryon exchange models a For example, K. P. Pretzl’ finds a 2 of 155 

for a six parameter fit to his data (5.2 and 6.9 GeV), whereas we ob- 

tain a 2 of 70.3 for the same data. 

The radius of the pion-proton interaction of about 0.9 F seems quite 

reasonable. Note that this is not an independent parameter, but is 

given by Reh/k. 

The overaIl normalization in most cases agrees well with the size of 

the cross section at the dip. 

The position of the pole on the complex angular momentum plane seems 

to follow a smooth trajectory for p, ,> 3 C&V. There seems to be some 

sort of threshold from 2 to 3 GeV. 

Deviations of the data from the model appear to be definitely present 

for large values ReAl(n-0). The data seem to be dropping off, and the 

model seems to be staying constant or increasing as this paramctcr 

increases above 6. 



VII. CONCLUSION 

In the region of backward scattering, the n+p data seem to fit reasonably 

well a one-pole Regge-type model contained in Nussenzveig’s solution to the 

problem of high frequency scattering by an impenetrable sphere. This pole, 

which can be associated semiclassically with surface waves, seems to be typical 

of interactions with rather abrupt transition regions. 

If our interpretation is correct, the backward scattering of 7r+ by protons 

must be due to a strongly absorptive interaction between the pion and the proton 

which sets in rather abruptly when the two particles are separated by a distance 

of about 1 Fermi, This mechanism seems to dominate above 2 or 3 C&V. 

It remains to be seen if any connection can be established with the currently 

standard Reggeized-baryon-trajectory exchanges used to explain backward scat- 

tering, and if the model can be elaborated to include spin and to make predications 

for the other two pion charge states. 
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TABLE 1: Summary of Surface-Pole Fits to Backward r+p Scattering 

p* 
Radius dc 

du 7r 
Reh Imh # 

points X2 Ref. 

2.28 Gev/c .783 Fermis 524. .@b/&V/c)2 3.73 .886 17 44.0 7 

2.48 .881 873. 4.41 ,844 14 39.6 7 

2.58 ,839 1011. 4.29 .795 15 47.0 7 

2.78 .876 990. 4.68 .807 14 23.4 7 

2.85 .953 547. 5.17 .935 9 ‘7.8 9 

2.93 

3.30 

3.55 

5.20 

5.91 

6.90 

9.85 

13.73 . 

17.07 

.837 

.995 

.938 

1.002 

1.027 

1.037 

.990 

.914 

1. oo* 

454. 4.61 .906 14 26.8 

160. 5.86 1.13 6 1.0 

143. 5.76 1.12 11 9.9 

40.6 7. 59 1.30 29 22.3 

28.2 8.33 1.35 20 253. 

15.7 9.14 1.43 19 48. 0 

2.78 10.53 1.65 16 172. 

.46 11.56 1.87 10 105. 

1.81 14.14 1.66 2 1.2 

* 
LII this case the radius was set to 1 F, since there are only two points and they have very large errors. 



1. 

2. 

3. 

FIGURE CAPTIONS 

Positions of surface-wave Regge poles on the complex angular momentum 

plane for the fitted data. 

Surface-wave fits to the backward angular distributions. All curves have 

been normalized to 1 at 180’. 

X2 vs. factor multiplying the measured cross sections for data at 5.2 and 

6.9 GeV,. This demonstrates the sensitivity of the model to the overall 

normalization. 
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