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1. IN’1’I101:1 JC’I’ION 

The Chew-Low cxtraI)olat.ionl to find on-mass-shell scattering cross sections 

from rcnctions cxpcctcd to invol\rc scnticring of a virtual particle dcpci~ls criti- 

tally on what tJrpc of cstr:tpoI:llion I’unction is used with a limjtcd numl~cr of ovcnts 

(several thousand). The work of Baton ct al. , -- 2(-o 7r 71 scattering), Ma et al. , 
3a 

-- 

(T-+p scattering), and Marateck et al. , 
4 

(7r-77’ and 7r+7fiT- scattering), showed that -- 

linear or quadratic extrapolation functions5 fit the data equally well but i%e extrap- 

olated cross sections differ significantly: In general the higher order extrapola- 

tion leads to larger cross sections. However, neither of these simple function:: 

may give the correct answer as was shown by Schlein and coworkers 3a-h who 

used data on the reaction pp -p;~+n to determine the ~‘p elastic scattering cross 

section in the A region (A = A(123C)) via the Chew-Low extrapolation. Since the 

n+p elastic scattering cross section is well measured, this is a place where the 

extrapc;Ilition procedure can be CllCciiCd. Both linerirly and quadratically extra- 

polated cross section values did not reproduce the on-shell measurements. IIOW- 

ever, good agreement wa s found using the Diirr-Pilkuhn 
6 (DP) paramcferization 

whi.ch relates off-, ‘1~11 and on-shell scattering cross sections. 

Recently a slightly diffcrcnt paramcterization for off-shell scattering ampli- 

tudes has been proposed by IXnccke and Dlirr 7 (l3D). As it: turns out, t.heir treat- 

ment has certain advantages over that of Dtirr and Pilkuhn in that (a) it describes 

the data up to larger momcnl um transfers (up to -1 GeV2 as compared to -0.5 

(I t,l _<,O. 3 GcV2) Ihe 13D and DP 1);11’:1.Int’t(‘l’i%3tiolls l.cacl to identical results. 8a “’ 
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- i- np-7r 7rn . (1) 

The contribution of this diagram to the differential cross section for rencti.on (1) 

is given by 

where 

S 

P” 

P 

t 

in 

qt 

+&L 1 2 
4np*2s 

m Cit(Jn-r+(m 2 t) --& g2 I’.iNT@) 

square of total cm energy 

cm momentum in the initial state 

pion mass 

square of the four momentum transfer bctwecn into, Ang and 

outgoing nucleon 

7rN7r+ rest mass 

momentum of the eschangcd pion in the T-T-+ rest fral,le: 

q: = (t-(m -f v)‘) (t-(n~-p)2)/4m2 

(2) 

(3) 

For t ~1-1~ qt Ixxomcs the on-shell momentum (I, q 2 m2 = 4 - p2 

g NNn coupling constant; g2= 2 X14. G in the case of reaction (1). 
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quantity ZT-T.,.( 2 m, t) to the pion pole, 1 =/A : 

According to r<q. (2), C?,-,+(m) t) in the OPE model is given by the fol.lowing 

expression: 

c ‘IT-T,~(nl) t) = 
i 

Yt cr,-,dmt) 2 
-y- CJ n-ti(ln) Fm~(t) u~-~iTf(ln) 

i 
(4) 

which when cvaluatcd at the pion pole, reduces to u .-,+tm)* 

III. THE BENECKE DiinR PARAIKli:TERI%ATION 

In order to evaluate the OPE formulae (Z), (4), we have to know FNNn(t) and 

the relationship lwtwccn off-shell and on-shell scattering c ross sections. Let us 

assume that the scattering at the TT vcrtes proceeds through a given angular 

momentum state a. Then one can replace u T-TT+(ni, t) in Eqs. (2)) and (4) by the 

partial cross section ~$-~+(ni, 1). 

Benecke and Diirr have studied the connection bctwccn on-shell and off-shell 

scattering assuming that the elasiic scattering of particles a, and h via 

can 1X approximated by the exch~Ingc of a scal:,r particle s wi.tll mass in x. (SW? 

Fig. 2. ) Going off the mass shell, e. g., with particle a, the relation I,etwccn the 
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The functions uQ(x) have the following general propertics 

1. u,(x) -X 
28 for x << 1. 

Hence, near threshold one gets back the Born result: 

2,C! 
clmr-+.(m) (crR, qtR<<l) 

1 for example, 

(7) 

(8) 

2. up, - + Pn (4x2) for x>>l. 
X 

7 
i.e., for large t the off-&cl.1 cross section decreases like Itjmu in co;;?rast to 

the Diirr-Pilkuhn paramctcriznt~ion which lcacls to a fall off proportional to 1 t 1-l. 

An estimate of the parameter R may be found in the following way: The form 

factor F aid) associated u7ith a vertex ahe is defined as the ratio of the actual 

vertex function to the vertex function given by the Born result. In the I3D parnm- 

eterization this leads for the p7r vertex to 
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R. It will be assumctl that there is one parameter R for each partial wave con- 

tributing to the off-shell scattering cross section; e. g., a lt 
P 

for the p-wave 

amplitude of the OTT system, h RA for the (3/Z, 3/Z) partial wave of the nN system, 

Ck. 

For bound state scattering, as in the case of the NN7i vcrtes, the off-shell 

behavior will be calculattid a la Diirr-Pilkuhn since the BD paramcterization 

leads to complex expressions. Therefore, 

with 

Q2 E 
-p2(4mZ,, - p21 

4mZ, 

and 

Qp x 
-t(lmi - t) 
-- 

4m; 

where m N 
nucl.con mass; RN is a prametcr. 

i% ----A+“ (12) 

1’11 *A+% (13) 

r-+1, -A ++‘-P” (14) 

0 
7r J, - np (15) 
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for reactions (12-15): ltn, RN, and It . 
0 

They were dctcrminecl by fitting the 

OPE cxprcssions 10 the dilfercntinl cross sections d~/dlt I for the reactions (IZ- 

15) as mcasurcd Ior bc~~m momcntn lztwccn 1. G and 10 GeV/c. 
10-13 

Figures 

3 through 6 show tl:c c~pcrimc::tal data together with the OPE CWVCS. The OPE 

curves give an excellent description of the differential cross sections up to 

Itl 51 c;,v2 f or all four reactions, and at all momenta. In a separate fit the OPE 

cross sections were multiplictl with the square of a function G(t), which may be 

thought of as a correction to the pion propagator. The following ansntz was made 

for G(t): 

G(t) =+ 
C-P 

In addition to Rh , RN, RP the parameter c was varied. The fit gave c = 140 GeV2 

which shows tllat the data do not require an additional form factor. 

Knowing the values of RA, RN, and R one can go on to fit the R parameters 
P 

of other partial waves of the 7~7i and the TN systems. For instance with the as- 

sumption that the reactions 

n-p -t nf” (17) 
and 

0 7r p”‘ng (18) 



2 1/a ‘L’hc pionic radius of tlic> i~uclcon, <L-~> :- 1. 06 -k 0. 04 f, is l:wgcr tlxtn 

2 l/2 the electric charge raclius of the proton (Tp) = 0.8:: f 0. 02f lG by ;~hllt 20 

2 l/2 
percent, but its val.uc is close to the runs radius for nN jntcrxtions, <rNn> =- 

1. If, olkinccl from an optical lnoclel analysis of TN diffraction scattering. 

l/2 The rms radius for the ANi-i vcrtcx, <rkNr> L 0,86 k 0. 02 agrees rather well 

with Iho value of 0. 84f determined for the ANY vcrtcx from the Ml transition 

form factor measured in ep scattering, 
17 

Table I suggests that for E 2 1, the rms radii for the baryonic vertices arc 

of the order of 0. 8 -- 1. Of and for the mcsonic vertices 0. 6 - 0. ‘7f. Therefore, 

a good guess for the value of R Rand hence for the form factor can be obtained - 

from Eq. (10) choosing a proper <r 2 l/2 > value, e. g., 0. 9f for the baryonic ver- 

t,ices and 0.65f for pionic vertices. This can be a useful procedure in the case 

of small partial waves for which it is difficult to determine the R parameter 

from the t distributions. For s-wave states the value of R is practically zero, 

implying u (q .R)/uf(qR) N 1 for these vertices. 
P t 

V. IMPLICATIONS I?O!t THE EXTRAPOLATION FUNCTION 

We are now in a position to calculate form factors and off-shell. cross scc- 

tions for various vertices in the I3D p:lr:lmctel~i~ation. Figure 8 shows the 

quare of the form factor as a function of t for the NNr, ANT, o’ir~ and fm ver- 

tices, The fall-off with increasing -t is roughly the same in all. four cases. 

The behavior of the off+hcll sc:Lttering cross sections cm lx rent1 off from 
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and ANr vertices a rapid incrcnsc with increasing -t is olxscrvcd. The explan:t- 

tion for the phenomenon is that in t.hc case of the: NNn and ANT vertices one is 

close to thrcsllold ((1, qt =” 0), hence e. g. ) 

(19) 

For the pm and fin vertices, one is far from threshold (m =z 2/1)), thcreforc (for 

-t 5 0.3 GeV2) 

qtOpn7i(1n,t)-qqa~“(m) 
i, f 0 f 

The analysis indicates that also for other vertices, this type of correspondence 

holds when one is far from threshold and I tl is smal.1. 

Let us now turn to the function C T-.iT+(m, t) defined in Eqs. (3), and (4). 

From the above discussion it is clear that in the p region and above the t depend- 

ence of C TiT-7T.,.(n~, t) is mainly that of F2 NNT(t). (Note: This is also true if the 

7r7r s-waves are taken into account since qt 0 ‘=O(m, t) = q (j=‘(m). ) Since ITiNT 

drops with increasing momentum transfer the function ETVn+(m) t) will rise when 

going to the pole. 18 

In Fig. 9, the \alucs of ET-,, (m, t) as obtained by Marateck et al. ,4 for -- 

events scl.ected from a 20 McV band around the p” mass are shown. The: data 
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(b) the cxtrapolatcd cross section values differ by 30-50 percent clepcnding 

on which extrapolation function is usccl : the liiieflr extrapol:~tion lads 

to u - T7r +(m 
P 

) r: S5 f 15 mb, the 13D parnmctcrization yields 0 _ ~ .+m 
P 

) = 

124 f 4 mb. From unitarity WC expect the cross section to be either 

11G mb or 132 mb dcpcntling on whether only the rcsonnnt p wave is con- 

sidered or a resonating T = 0 s-wave is also taken into account. IIence 

the cross section value obtained using the BD parametcrization agrees 

with the expected vsluc whereas the linear extrapolation underestimates 

the cross section by -4 0 percent. 

VI. CONCLUSION 

The number of events presently available does not allow a model independent 

determination of the ~7r scattering cross sections via a Chew-Low extrapolation. 

Reliable results can be expected when the Bcnecke-Diirr (TX)) parameterization 

is used for the pole extrapolation as was shown for reaction (1) in the p region. 

‘Ihis conclusion is strcngthcned 

(a) by the sucess of the OPE fits to the reactions (12-T5);8b 

(1)) by the fact that in the cast of the reaction pp-- A++n the Chew-Low ex- 

trapolation lcad to lhc correct values for the elastic r+p scattering cross 

section in the A rc:;ion v:hcn the TXirr-Pilkuhn (DT?) p:trnll7et.crization 

was :qqdictl; 
32 ) 1, 

. (c) by the good results obtainc~tl \iritll the I)!‘ l)nr;lmctcrization for reactions 

Of IllC tJ’J)c I<N -NNl<TTi. 
m, 1 9 ‘l’lic~ I:tsl two poini:; :l]q)lJ’ :1s v;cll for lhc 

131) i):lr::ltl(‘tc~J.iz;ttjoli ;;iwc’ 21 sill:111 1. v;iluc:; (:;cc 1171I’,~,~jil(‘1i(~II) T)(,th 

~)rO(‘C’tiliL+t’!5 :I I’(! cciu i I ;!]<>jJf . 
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‘I’Al<I,I;: I: 

fits to the monwntun~ tr:tnsfctl* distril,utions. 

-- 

12 R q2 y2 
Vcrtcx (Gd) (f ) (9 

RN NNn 2.8G k 0. 08 0.57 A= 0.02 1.06 * 0.04 

12A ANT 1.76 * 0.03 0.35 YJL 0.01 0.86 * 0. 02 

R P v* 2.31 f 0.19 0.46 .t- 0. 04 0. 65 5 0. 05 

RSll Sll NIT 0. 03 0. 0. 

RPll I’ll Nn 0.34 fixed 0. 1 0. 14 

RD13 D13 4.5 fixed 0. 9 0.9 

I~D15 D15 N;- 5 . 5 

RF15 F15 Nn 4.5 fixed 0.9 0.8 

RF17 F17 Nn 4.5 fixed 0.9 

RF37 F37 NT 4. 5 fixed 0. 9 0.7 

Roo (mqT’O(7T7r) 0.0’ 0. 0. 

Rf f 7l7i 3.23 * 1.4G ,654: .29 0.58 If 0.2G 

R g g lm 4.5 fixed 0. 9 0.5 

R20 (TTT) T=-2 71’ Otazr) o. o 0.01 0. 0. 

R22 (7x) TX-2 ,MtTli) 3.59 i 1,19 0” 72 i 0.24 0. 72 3~ 0.24 

lI24. (W 1’L2,+l(““) 4.5 fixcd 0.9 0.6 
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FICURI!! CAP’I’JONS 

1. OPIS diagram for the reaction n’-p - 7fIT-7r+n. 

2. Approximation of the scattering process a i- b -a’ t- b’ by the ctchangc of a 

sc:tlnr pnrticlc x with nl:k:;r. In 
x’ 

3. 
TT Diffcrcntial cross sections dcr/dltl for events of reaction (12) in the A , 

++ 
A mass region . The curvc?s give the result of the OPE fit. 

(a) at 3. G GeV/cl’a (1.13 GcV < MAA < 1.33 GeV) 

(b) at 5.7 CBV/C ‘Oc (1.1.5 GeV < MzA < 1.35 GeV). 

4. Differential cross sections da/d ItI for events of reaction (13) in the A* 

region. The curves give the result of the OPE fit. 

(a) at 4 GeV/c”a (1.08 GeV < M < 1.40 GcV) 

(b) at 10 GeV/cllb (1,125 < M < 1.325 GeV). 

5. Differential cross sections do/d It 1 for events of reaction (14) in the A ++ 
, 

PO region. The curves in (a) - (d) give the result of the OPE fit. The curve 

for the 1G GeV/c case, (e), is a prediction of the OPE model. 

(a) at 2.35 GcV/C~~” (0.675 GeV < m < 0.825 GeV, 1.185 GeV < IQ < 1.285 

GeV). 

(b) at 3 -4 GeV/clBb (0. G8 GeV < m < 0.8G Gel’, 1. 1.2 GeV < iv1 < 1.32 GeV). 

(c) at 4 GeV/clZd (0. GG GcV < m < 0.8G GeV, 1.12 GeV < M < 1.32 GeV). 

w at 6.95 GeV/c 12’ (0. G4 GcV < m < 0.88 GcV, 1012 GcV < bl < 1.42 GcV). 

(e) at 16 GcV/c12f (01. G8 &V < m < 0. 8G GeV, 1.12 GeV < >I < 1. 32 CkV). 

6;. The differential cross sections dn/d ItI for cvcnts of reaction (15) in the /lo 

region. ‘I’ho CUI*\~CS gi;rc t1:c rosulis of the 01’12 fit. 

(a) at 1. 59 Gn\‘/clnn (0. 616 COV < 111 < 0. ST, @I’) 

(b) :Lt 2. 75 CkxV/c 13’) (0, 65 (k!\~ < 111 < 0. 85 (k\‘) 

(c) at a, 0 mv/,13c (0. 675 Gt>\i < 111 < 0. 8’75 (;<I\‘). 
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7. ‘I’hc tljfl’elx:nli:d cmss s(~i:lion:i tl~r/ti (t 1 for the cvonts of that x:!ction 

0 n-p -nf . The curves give the rcsu1.t of the 01% fit. 

(a) at 4 GCv/G14 (1. l.G GcV < m < 1, 38 GcV) 

(b) at 8 GcV/C~~ (1.17 GcV < m < 1.37 C;eV) 

The diffcrcntial cross: scxtion tier/d it I for the cvcnts of the reaction 

0 
n-p+ng . The curve givccs the result of the OPE fit. 

(c) at 8 GeV/c? (1. 60 GtdV < m < 1. 75 GeV). 

8. The t depcndencc of the form factor and the off-shell cross section (see test) 

for the vertices 

(a) NN7r 

(b) ANn 

(c) PTT 

(d) fTn 

9. The fi-nction Z,-,+( m, t) as measured for events of the reaction 

with an effective mass of the 7~-7r+ system between 0. 76 GeV and 0. 78 GeV40 

Also shown are two different extrapolations of Cn-?r+(m, t) to the pion pole 

(t =p2): one which assumes a linear t dependence for C,-,+(m, t:), another 

which util izcs the Beneckc -Diirr (ED) para meterization. 
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