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ABSTRACT 

The relationship between the mass and width of the p -meson 

resonance seen in colliding beam experiments and the behavior of the 7r/r7~ 

scattering phase shift is discussed in detail. Two conclusions are drawn: 

(1) The resonance peak in e+e- annihilation occurs 5 or 10 MeV below 

where the phase shift reaches n/2. (2) The width should not be identified 

with the slope of the phase shift at one point; in fact, it depends critically 

on details of the rr strong interaction over a wide energy range. 
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Suppose one could do 7r7r scattering over a wide range of energies 

from, say, 300 to 1000 MeV center of mass energy. Presumably, one would 

see a wide bump in the cross section which would be associated with the 

p -meson resonance. An experimentalist might then find parameters for a 

Breit-Wagner (BW) resonance formula which best fits the data. These he 

would quote as the mass m and width P of the resonance. (Given sufficiently 

accurate data, of course, more sophisticated fitting programs would be 

devised. ) 

One would also see two pions produced in electron-positron col- 

liding beam experiments, and measurements’ indicate a broad peak in the 

invariant mass spectrum of the two pions which is also interpreted as the 

effect of the p -meson. After removing kinematical factors and performing 

radiative corrections, the data are given as a series of points for the absolute 

square of the pion form factor F,(t), as a function of the invariant mass2 = t 

of the two pion system. A best fit of a BW resonance formula is made to the 

data points, and a mass m. and width I’, are assigned to the peak. 

The theoretical basis for the BW resonance formula in elastic scat- 

tering has been known2 for some time; one derivation will be given below. The 

question is what, in principle, is the relation between the masses m, mO and 

widths I’, I’, of the resonance as determined by the two empirical methods 

outlined above ? 

Consider first the scattering of pions. Using the N/D representation3, 

we write the I = 1, J = 1 partial wave scattering amplitude as the ratio of two 

analytic functions of the invariant mass:!, 
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In the elastic approximation, N = -+nD, (q= dp). In this case, it is 

customary to write D = I D I e -i6 , so that* 

-qf = -1 1 

DR+i 
= cot6-i 

DI 

Clearly I qf I2 is maximum for (DR/Dr)2 minimum, which occurs for DR= 0 

corresponding to a phase shift 6 = n/2. This defines the position t = m2 of 

the peak, and m is called the mass of the resonance; in this case, of the 

p -meson. In a neighborhood of this point, we have 

qf 2 -mr 

t-m2+ imr 

where the width I’ is defined by --& = 
Dk(m2) 

= 61(m2). Iqf12hasthe 
** 

usual BW shape 
DItm2) 

o-m2 
(t-m2)2 + (~IF)~ 

The mass and width depend only upon the phase shift. 

* 
Here and subsequently, we denote the real and imaginary parts of D by 
DR and DI, respectively. 6 is the phase shift. 

0) 

(2) 

** Note that, had we approximated I f 1 2 rather than I qf I 2, our definitions 
of m and I’ would have been changed. 
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Now consider the pion form factor. In the elastic approximation, 

Fr is related to D by4 

Fn 
= D(O) p(t) 

D(t) p(0) (3) 

where P is an arbitrary entire function, which is real for real t. Whereas 

the mass and width of the resonance in ~YT scattering depended only upon the 

phase shift and its first derivative, the behavior of I Fn I 2 depends only upon 

the modulus of D as well as the unknown function P. 

Define 4 = $ so that I Fn I 2= IE(0)12 

I E(t) l 2 

I FX I 2 is maximum where I E I 2 is minimum, which is certainly not, in 

general, at m2, where DR- - 0 (6 = 7r/2). If the mass shift is small, we may 

approximate I E(t) I 2 in the neighborhood of m2 by a Taylor’s series 

22 
I E2(t) I = I E2(m2) I + (t -m2) 1 E2(m2) 1’ + (t-2m ) 

= I 2(m2)l’” 
2 ((t - mi)2 + (moro)2) 

where 

I 2(m2) I 17 

2 2 121’ 2 IEllEl 
mO 

=m- 
I E2 1” 

=m- 
I El I El” + (1 El’j2 

Pa) 

2 
(more) = 

21 El21 E21” -(dh2 = lE131El” 

( I E2 I” j2 ((IEl’)2 + IEI 
i+W 

IEl”) 
2 
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Therefore* 

1 FT12, %i$ 1 

IE I” (t -rni12 + (mOl?0)2 1 (5) 

Formula (5) is the principal result. In first approximation, the 

peak in I Fr I 2 is also a Breit-Wigner, but it has a different mass and width 

from the Breit-Wigner relevant to 7r7r scattering (formula (2)). Comparing 

Eq. (4) with Eq. (2), it is clear why, in principal, the mass and width of the 

peak in e+e-- 7rTTsr- should not be expected to be the same as in 7r7r scattering. 

We will illustrate the result with an example. 

One popular assumption4 is that Fn has the least degree at infinity 

compatible with its analytic structure. The physical motivation for this 

assumption is obscure but its popularity depends on the fact that jt eliminates 

the ambiguities mentioned earlier. In the elastic approximation, it implies 

that the correct solution5 for Fr is Muskhelishvili’s fundamental solution 

(sometimes called Omnes ’ function) 

co 

t 
I- 

G(x)dx 

F= = e’ 4~ 2 x(x-t) 

In particular, then, I E I is given by the principal value integral 

co 

* We assume that I E 1” > 0, so that (mo170)2 > 0. If not, then one must retain 
higher order terms in this expansion and the shape of the curve will no longer 
be a Breit-Wigner but may be, for example, double-peaked and asymmetric. 
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Since 6 corresponds to a P-wave phase shift, near threshold (t - 4p2), we 
2 3/2 expect 6(t) N (t-4p ) . The general behavior we expect for 6 is for it 

to remain small as t increases from threshold, rising rather rapidly through 
* 

7r/2 at the p-mass, and nearly equal to r beyond the resonance. 

In order to see what this assumption yields for the mass shift and 

width (formula (4)), we need I E 1’ and I E 1” at t = m2. One can show 

In this case, formulas (4) become 

A2+B 
“or0 = 2A2+ B 

Other than in order of magnitude, the width F. may bear little relation to I’, 

depending as it does on such different aspects of the behavior of the phase 

shift. Noting that 

m&-m& 0 
more = jzA’ ’ 

A” 

* 
For large t, we are ignorant of the behavior of 6, but the elastic approxi- 
mation and the preceding solution are irrelevant anyway. 
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We must have B >> A2 for the mass shift to be small compared to the width. 

Since we don’t expect the mass to shift outside the resonance peak, B >> A2 

will be the usual situation, in which case, our expressions simplify to 

2 2 m -m 

-%- = -ro2A 
r2 

Since A will be on the order of -$ or less, the mass shift depends on 0 
m 0 

and so will be quite small. Note that if 6’ is symmetric about t = m2, 
“0 
A will 

be very nearly zero. However, even a simple effective range approximation6 

suggests that 6’ is skewed, especially because 6 is a P-wave resonance. 

Since the threshold region is enhanced, A will be positive, so the mass m. 

will be less than m. For the p-meson, for which r. 2 - 
\“O 1 

is 2 or 30/o, we 

expect, therefore, the peak in I Fn I 2 to appear on the order of 5 or 10 MeV 

less than m. 7,3 No general statement can be made with regard to the relation 

between I’ and PO, since the relationship between 6’ (m2) and B is extremely 

sensitive to the choice of a model for 6(t). The second derivative 6” vanishes 
2 near m , since the rate of change of the phase shift, 6’(t), reaches a maximum 

2 near m . This has two important consequences for the principal value inte- 

gral for B. (1) B is sensitive to the distance from m2 to where 6” vanishes. 

(2) Because this vanishes near m2 , the contributions to B from the be- 

havior of the phase shift farther away from the resonance are enhanced, all 

the more so because 6” blows up at threshold. Therefore, the relationship 

between PO and I? is by no means simple; the interpretation of PO as simply 
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the slope of the phase shift at m2 should not be made. In fact, given more 

accurate data than presently available, the use of a Breit-Wigner approxi- 

mation could also be questioned. 

Although colliding beam experiments are regarded as the 7fcleanest” 

observation of the p -meson resonance, it is clear from the preceding dis- 

cussion that the interpretation of the data in terms of YVT scattering is by no 

means straightforward. It is little wonder that the mass and width of the 

p-meson determined in other, more complicated reactions, such as nN - 27~N 

or yN - 2nN, should be slightly different. Without a theory of strong inter- 

actions, little progress can be made toward reconciling these differences. 

For resonances other than the p, for which the ratio of the width 

to mass is smaller, the preceding effects will be smaller. However, a 

theoretical discussion is complicated seriously by inelasticity, i. e. , the 

presence of several competing strong decay channels. In attempting to per- 

form an analysis similar to our discussion here for colliding beam production 

of kaons or nucleons, one faces the problems associated with unphysical regions 

for the dispersion integrals. Using a method similar to that employed by 

Frazer and Fulco’, one can in part remove the unphysical region, but such 

techniques presuppose knowledge of the pion form factor, at the very least. 

In a subsequent note, we shall discuss how data from colliding beam experi- 

ments may be further utilized. 
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