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ABSTRACT 

We have replaced the static, extended source of traditional strong- 

coupling models with a point fermion of finite bare mass. We find self- 

consistent, stationary state solutions to the problem of the strongly- 

coupled fermion and pion field in the neutral pseudoscalar theory. We 

135 find the usual set of rotational levels, j = 3 2 ‘z) . . . , and in addition 

find a class of states which strongly suggest identification with the 

N’(1470) and its possible rotational excitations. Our model provides a 

natural interpretation of the repulsive hard core potential in nuclear 

forces, and also contains the mechanisms which will lead to negative 

parity nucleon resonances and Regge recurrences when internal sym- 

metries are included. Because of several important approximations 

our numerical results are not yet to be taken seriously. 
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I. INTRODUCTION 

The strong-coupling theory has a long history dating back to some of the 

earliest attempts to form a field theory of the strong interactions. It has not 

been as productive of useful information about nucleon structure as one might 

have hoped, and most of the workers on this model have confined themselves 

to predicting the spectrum of baryon resonances using various forms of static 

sources in dynamical models l-4 or the multiplet structure of the strong-coupling 

groups in non-dynamical models. 5-7 Some attempts have also been made to ex- 

plain nuclear forces* and pion-nucleon scattering, 9 again within the context of 

the static model. 

The limitation to static models is a severe one and effectively denies one 

the opportunity to make unambiguous predictions of such experimentally inter- 

esting quantities as the electromagnetic form factors, photoproduction and pion- 

production amplitudes for resonances, and scattering cross sections (both 

elastic and inelastic). 

In this paper we propose a method for introducing a recoiling source into 

the strong-coupling theory. It must be emphasized at the outset that our first 

formulation of this model is rather primitive, and in its present form it is not 

greatly more satisfactory than the static model itself. But the principle involved 

is more physically realistic than the static-extended source, and if certain 

technical problems can be solved this new model will have not only a richer 

structure in terms of resonances, but the capacity to predict unambiguously the 

quantities previously mentioned. 

The basic innovation of this model is the interpretation of the source to 

which the pion field is strongly coupled. We introduce the source as a point 

fermion with a finite bare mass and a spin of one-half. We then look for solutions 
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in which this fermion and its attendant pion field are in a self-consistent sta- 

tionary state. 

The self-consistency is obtained by treating the probability density of the 

fermion wave function as the source function which determines the pion field in 

the strong-coupling approximation. This pion field then serves as a potential 

well in which the fermion can be shown to have bound states. It is not obvious 

a priori that such a system will have self-consistent bound states, but we show 

in this paper that such states do exist. 

We make several important approximations on the way to our results and 

these are discussed as they are introduced as well as in the final section of the 

paper. These approximations make our numerical results quite unreliable, but 

we have included some anyway to show the qualitative effects of variations of the 

fundamental parameters of the model. 

We have only two free parameters in the model: the fermion bare mass mO 

and the bare pion-nucleon coupling constant g. Our aim is to predict the spec- 

trum of baryon resonances with only these two parameters. Our preliminary 

results as presented here represent a qualitative success but not yet a quanti- 

tative one. This problem will be discussed in detail in the last section. 

Our model has produced two new results which were not present in the old 

static strong-coupling theory. It provides a physically simple and natural 

explanation of the hard core in nuclear forces, and it provides an explanation 

of the existence of the class of resonances typified by the- N’( 1470) or Roper 

resonance . The model also contains the potential (which is not exploited in this 

paper) for including negative parity resonances and’liegge recurrences” in a 

natural way. All of these results are discussed in detail in the text. 
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The paper will be organized as follows: Section II will present a brief 

review of the simplest non-trivial strong-coupling theory emphasizing the limi- 

tations imposed by a static extended source. In Section III we present our pro- 

posal for introducing a recoiling source and in Section IV we find solutions to 

the model. In Section V the virtues and limitations of the model are discussed 

and we suggest ways in which it might be improved. 

II. STATIC STRONG-COUPLING THEORY 

We begin our review of strong-coupling theory with the work of Pauli and 

Dancoff. 1 They considered the problem of a charge symmetric interaction of a 

pseudoscalar field with a static-extended source (p(x)) which has both spin and 

isospin degrees of freedom. 

In this review we shall treat the simpler problem of a neutral pseudoscalar 

field interacting with a neutral source which has spin = l/2. The solutions to 

the two systems follow very similar lines, and by treating the simpler problem 

we economize greatly on notation. 

We begin with the Hamiltonian: 

‘H = f j-d3x {r2(x) + l~9d2 + p2 c?~(x)} +; Sd3x p(x) z-1 4(x) 

The source density p(x) is assumed to be spherically symmetric. 

The essential step in reducing this problem to an easily soluble one in the 

limit where g is large is to define a set of three dynamical variables 

Cti = S d3X I Vi P(X) l (2) 

The qi are operators which represent the strength of the overlap of the p-wave 

part of the pion field with the gradient of the source density. In terms of the qi 
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the interaction part of the Hamiltonian becomes simply 

Since the qi commute among themselves the symmetry group of this Hamiltonian 

is SU(2) x T3 which is the simplest strong-coupling group considered by Goebel 

and collaborators. 
5 

The next step is to get the rest of the Hamiltonian in terms of the qi. This 

requires the splitting up of the pion field q,(x) into “bound” and “free” parts as 

follows: 

(#J(x) = 9,‘: e(x) + CP’M l (4) 

If we now insert (4) into (2) we find the following requirements on C(x) and e’(x) : 

s d3x Vi p(x) Vj t(x) = tLj 

s d3x vi P(x) @l(x) = 6 . 

(5) 

(6) 

We note that the only restrictions on t(x) imposed by (5) are that it be spherically 

symmetric and normalized properly. Note also that (6) puts a restriction only on 

the p-wave part of @l(x) and therefore all mesons in other angular momentum 

states relative to the source are considered free (i.e. , non-interacting). This 

restriction to p-wave mesons is one of the primary deficiencies of the static 

model. It restricts the resonance spectrum to positive parity states and, in the 

charge symmetric theory, those states in which the angular momentum equals 

the isospin. Even if higher symmetries such as SU(3) are used, the resonance 

spectrum is still deficient in “Regge-recurrences” and overstocked with 

unobserved multiplets. 
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Some attempts 3.5 have been made to remove the restriction to p-wave mesons, 

but all have remained within the context of the static model. In the next section we 

will propose a model which, at least in principle, is capable of providing both 

Regge recurrences and negative parity states. 

Now to get the pfon field Hamiltonian in terms of the qi we still need an ex- 

pression for n(x), This is also broken up into a bound and free part as follows: 

_. 7r(x) = ZT, l R P(x) + n’(x) (7) 

where the ni are defined in such a way that 

[ri,qi] = - i 8ij . (8) 

Referring to Eq. (5) and using the fact that r(x) and e(x) satisfy the equal- 

time commutation rules: 

[T(x), t)(x)] = - i S3(x-x1) (9) 

it is easy to show that the proper definition of ni is 

and it then follows that 

1~ = i S d3x n(x) Vi t(x) , (10) 

S d3x n’(x) Vi t(x) = 0 . (11) 

For completeness we include the commutation relations for the r’(x), (9’(x) 

[r’(x), @‘(x)1 = - i [S3(x-x’) --Ip(x) l g’ 6(x’)] W-3 

These commutation relations are non-local and lead to a rather complicated 

problem when one trys to calculate scattering of free mesons. This phenomenon 

(called orthogonality scattering by Sachs’) will not concern us in this paper but 

remains as an obstacle to be overcome in our new model as well as in the static 

model. 
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We now substitute (4) and (7) into the free pion Hamiltonian in (1). We find 

that if we add the further restriction on t(x) 

‘(- V2+p2)( (x) =$ P(X) , (13) 

the full Hamiltonian simplifies to 

H R =- r I I 
2 

2m 

(14) 

+ i Jd3x(~‘2(X) + lL$‘(X)12 + /L2 +12(X)}+ ?ri~3xa’(xf ‘ipfx) ’ 

where 

Now Eq. (13) implies that 

R =+sd3x IlP(x)12 l 

and using (15) and (5) we can derive the expression for N: 

1 N=s 
s [ 

d3x P2(x) - P(X) N &4] l 

(15) 

(16) 

(17) 

The first three terms in H describe the dynamics of the 2, svariables and 

resemble the Hamiltonian for a three-dimensional harmonic oscillator in which 

the amplitude of the vibration is coupled to a spin. The fourth term represents 

the “free” pions and its form is deceptively similar to that of the pion field when 

no source is present. However, one must keep in mind in solving the dynamics 

of the “free” pions that the field amplitudes satisfy non-local commutation rules. 

The last term in (14) gives the coupling of the free and bound fields and it is 

independent of g. We would like to treat this term as a perturbation but first we 

must extract from itthe dependence on angular momentum. This is necessary 

because, as we will see, the level separation in the “rotational band” goes like 
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-2 
g l 

So if g is large the rotational states are relatively low lying and close to- 

gether. For these states the “pulling” of the levels caused by the coupling of the 

bound and free fields is quite significant. 

In the neutral pseudoscalar theory the separation is very simply accomplished 

by noting that lo 

c/ L=- d3x WC) 2 x ,v $4~) 

=cpz- 
J d3x r’(x) c;:%?) $‘(x) . (18) 

Pauli and Dancoff show that the term containing r’, C#J’ can be neglected in the 

limit of large g. Now using (18) we can write: 

, (19) 

and if this is inserted into the last term of (14) we get 

$ qi (S,’ 3 /d3X n’(X) Vi P(X) - ~ (4,” ;)i /d3X I’ Vi P(X) l (20) 

q q 

We now define a new field variable 

““(X) = 7+(x) L + (9,” gi vi P(x) - * vi f(x) , 
q [ 1 (21) 

where 

T =+sd3x IV t(x)i2 . (22) 
This definition is arranged so that (11) is still satisfied using K”(X) instead of 

n’(x). 

H 

Solving (21) for n’(x) and substituting into (14) we get finally: 

1 L2 l q2-Ei 
2 

=- -+- R ‘swnl 2T q2 2N ,p3’q+?q2~-~ I 

+ aJd3x{nJ12(x) + 1: #‘(x)1 2 + /.t2 q2(x)} + 4 qjt% 3&3X “(x) ‘j Ptx) 

(23) 
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In this Hamiltonian the first three terms are the ones we will consider in detail, 

The fourth term represents the kinetic energy stored in the radial oscillations 

of the q variable. The solution of the strong-coupling problem is one in which 

the magnitude of the vector q executes small zero-point oscillations about some L 

equilibrium value qo. The zero point energy of these oscillations contributes 

some additive constant tc the ground state energy and the energies of the rota- 

tional states. As long as we do not consider excitations of higher vibrational 

states this constant can be ignored. 

The fifth term represents the free meson energy. We will measure all 

energies relative to the free-meson vacuum so we drop this term. Finally the 

last term represents the coupling of the radial oscillations of the bound field and 

the free field. This term can be assumed to be small. In addition to these terms 

there are others which are generated if we treat the transformation (21) consist- 

ently as a canonical transformation to new variables. Pauli and Dancoff discuss 

these other terms and show that they are small if g is sufficiently large. It is 

these neglected terms which lead to transitions between rotational states, so 

they must be taken into account properly if decay widths are to be predicted. 

We do nat discuss this problem in this paper. 

We now restrict ourselves to the first three terms of (22) and assume that 

the third term is large. The problem is solved by diagonalizing this last term 

by means of the unitary transformation 

u+c* zU=qa3 

It is straightforward to show that 

(25) 
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where (Y and /3 are respectively the azimuthal and polar angular coordinates of 

the vector g The form of U is quite familiar and in fact if U+ operates on a 

state with spin up (along the space fixed z-&is) the effect is to rotate the spin 

vector so that it is oriented parallel to the vector q. cm 

The transformation U has no effect on the second term of H and the full 

dependence of the Hamiltonian on the angles a! and p is contained in the term 

1 

2Tq2 
u+L2u . (26) 

Now we know the expression for L2 in terms of CY and p and the above transfor- 

mation can be worked out explicitly. The eigenstates of this transformed operator 

turn out to be the symmetric top wave functions (8 Dmi 1,2 (a! ,/3, 0) , where the choice 

of zero for the third argument represents only a choice of an overall phase. The 

transformed Hamiltonian has the form 

1 

2Tq2 
(27) 

and since g has been assumed positive we see that the last term gives a strong 

binding in the state where g l q = q and a strong repulsion when c. q = -q. So SW L 
(8 the correct eigenfunction to choose is Dm+ 1,2(o!, /3,0) , and this represents a 

symmetric top with angular momentum projection + l/2 along its body fixed 
. 

symmetry axis. 

In this state the potential energy becomes 

and we complete the square to get 

iiq 12~ & 
&L2 , (28) 
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where q’ = q - @, 
P 

represents fluctuations in the amplitude about the equilibrium 

kz.E value q. = cc . The term in qf2 can be transferred to the neglected part of H and 

in fact combines with the fourth term in (24) to give the Hamiltonian for a one- 

dimensional oscillator. 

The eigenvalues of the rotational term are 

---& [jtj+l) + i] (29) . 
0 

but the extra l/4 can be dropped since it is also a constant added to all energy 

levels. The final expression for the energy spectrum is then 

E=Eo- $+---J$ [jtj+l) -$j ’ (30) 

where we have kept the second term separate from E. for easy comparison with 

the results of Section IV, and the rotational energy has been set to zero for the 

ground state. 

The above solution of the strong-coupling problem is quite straight-forward 

and physically understandable because we have chosen the simplest interesting 

system. If we try to solve the more complicated theories this same way, we 

find that the SU(2) x SU(2) theory is more complicated but still tractable and the 

SU(2) x SU(3) model is extremely cumbersome.3 Fortunately Cook and Sakita5 

have shown how to derive the eigenstates for any theory by using the elegant 

method of induced representations. Using this method we could have guessed 

immediately that our eigenfunctions would be the symmetric top wave functions 

since these form the irreducible representations of the strong-coupling group 

SU(2) x T3 which is just the Galilean group in three dimensions. The eigen- 

functions in more complicated theories turn out to be generalized symmetric 

top wave functions. 
5 
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This concludes our review of the static strong-coupling theory, The effects 

of the static, spherically symmetric source are seen to be the restriction to 

positive parity states and the appearance of only one state for each value of the 

angular momentum. In the SU(2) x SU(2) model this restriction appears as the 

requirement that I = J and in the SU(2) x SU(3) model, ‘the allowed multiplets are 

those in which the component with hypercharge = + 1 also has I = J. 

We now introduce a new formulation of the strongcoupling theory which will, 

in principle, allow for a richer selection of resonances. 

III. RECOILING SOURCE 

We begin with the Hamiltonian 

- g (31) 

We have added a term representing a non-relativistic two-component fermion 

field G(x) , and we have also changed the interaction term by changing the 

o l p of the Pauli-Dancoff model to s of. c In addition to being simpler to deal 

with, this latter form allows us to use a dimensionless coupling constant without 

introducing a mass. The real motivation behind this choice of s. f , however, 

is that it emerges naturally from the relativistic form of the Hamiltonian, 

We will not use this formulation in this paper since we want to present the 

model in its simplest mathematical form. 
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The next step is to postulate that the eigenstates of the Hamiltonian can be 

given in terms of a set of basis states of the form 

19)=lt$.JX,>~~,,> 9 (33) 

where I $J Pm > is a one-particle fermion state of definite orbital angular momen- 

turn about some arbitrarily chosen origin and Xn> is a two-component spinor. I 

,The definition of I$‘,> can be written explicitly as 

(34) 

where Q,(x) is a one-particle wave function. This restriction to one-particle 
_ - . 

fermion states is essentially automatic in anon-relativistic theory, but in a 

relativistic theory it amounts to the assumption that virtual fermion pair states 

have a small effect. This is just what is done for the relativistic hydrogen atom: 

the one-particle Dirac equation is used to get the energy levels, and then vacuum 

polarization effects are calculated in perturbation theory. Our hope is that this 

same procedure can be used consistently in our model. This is an assumption 

which has not yet been quantitatively justified. 

The state vector C#I I LM) in 33 represents a state of the pion field of de- ( ) 

finite angular momentum. This is not as yet a unique specification, and this 

definition will be made more specific below. 

Now a general eigenstate of H will be constructed as a superposition of 

product states of the type (33). In general an exact specification of any eigen- 

state of H will require an infinite number of the product states and in practice 

this series will be truncated for practical reasons. Presumably the greater the 

number of product states included in the sum the more accurately will be repre- 

sented the actual spectrum of states of H. 
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At this point, before proceeding with the problem at hand, it will help to 

clarify the meaning of the subsequent calculations if we digress briefly to dis- 

cuss a more familiar problem from the viewpoint of our model. We consider 

the problem of two non-identical particles (taken to have equal masses for 

simplicity) which interact via a central force. 

The Hamiltonian for this system is 

2 2 
I? Pa H =s +2m + vtp, - q) # (35) 

and as is well known one solves this by defining new momentum and position 

coordinates, one set referring to the momentum and position of the center-of- 

mass and the other to the momentum and position of an equivalent particle of 

reduced mass in the center-of-mass frame. 

But let us suppose that for some reason we are prevented from making this 

change of variables. WC must then proceed with the techniques used by the 

many-body theorists when they deal with systems such as atoms or nuclei, and 

the standard approach is the independent particle or Hartree type of cal- 

culation. It is instructive to examine the two-body problem using these many- 

body techniques since this is the closest analogy to the way we will proceed 

with our strong-coupling model. 

The standard procedure in a Hartree calculation is to start with a 

state which is a product of single-particle wave functions, these wave functions 

having been determined in some convenient starting potential. To calculate the 

ground state of H we might begin by writing 

(36) 
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where @,(s) is the ground state wave function of a particle of mass m moving 

in the potential well V(lxil) . The eigenvalue equation is 

and this can be written as two coupled equations by taking matrix elements with 

respect to Go(xl) and #o(x2) respectively, i.e. 

<@o(l) IHltiotl)> 1 @ot21 > = E 1 tbo(2)> 
(38) 

Using (35) for H these equations become 

2 
p2 

2m+ J- d3xl Q,“tx,, Vt x1 - 53 1 4$(x1) ++)(x2) = (E -K1) b$)q 

(39) 
2 

p1 
2m+ / d3x2 ti$(x,, Vt x1 - x2 ) 3,(x,) ‘bo(“l~ = (E - Kz) tioCxl) 

where 

/ 

2 

Kj = d3xj “$x3 & fio(xj 

The solutions of these two equations using the starting wave functions in the 

potential integral leads to two new independent particle wave functions. These 

new functions are put back into Eq. (39) and generate another new set. This 

process continues until the wave functions no longer change and we have a self- 

consistent set of solutions to (39) D 

The final result if only (36) is used is at best a crude approximation to the 

real ground state. This can be demonstrated by choosing a soluble potential, 

doing the problem both ways, and comparing the answers. A particularly simple 
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potential is the harmonic oscillator,‘which gives for H: 
2 2 

p1 p2 H=z+~+~ lk 1gl-g212 . (41) 

We know the correct answer for the ground state in terms of center-of-mass and 

relative coordinates: 
1 2 -- 

tp(r, 33)=C e’PoB e 2@ (42) 

where ,P is the momentum of the center-of-mass and C is the normalization. For 

the special case g = 0 we have, 
1 2 -- 

#L(r) = C e 2@ 
D 

where” 

The energy of the ground state is 

E 2 J 2!L 3 
exact 2 m 7= 

(&j 
’ 2 

If we now follow the procedure indicated in (39) we obtain the following 

euuations: 

(43) 

(44) 

(45) 

~o(xl~ = (E - K2 - V2) tio(x2) 

where 

The problem has separated into two uncoupled problems because of the simple 

form of the potential and the approximate ground state. Since 

V( 131 26fr2 > (47) 
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the self-consistency search does not have to be done. The symmetry of the 

problem tells us that K1 = K2 and VI = V2, and the fact that the matrix element 

ofx l x rl r2 vanishes for our simple product of S-wave states then ensures that 

Kl+Vl=K2+V2=z . lE 

The separation of this particular problem makes the calculations simple but does 

not change qualitatively the nature of the result. 

Now the total energy of our approximate ground state is 

E 4; 
approx Lo 

=3w . (48) 

Comparing this with (44) we see that we have overestimated the ground state 

energy by a factor of 6 or about 40%. Our approximate wave function is 

9 (X x )=Ce approx ~1’ -2 

It is instructive to put (49) in terms of the relative and center-of-mass coordinates 

t:,g: 

w approx(g,~) = C e- 2 R2 e 2 J-P -+- 2 
r2 

. (50) 

From Eq. (50) we can set explicitly how the translational invariance of the wave 

function is broken, and also the reason why the energy is overestimated: we have 

effectively placed the whole system in an external’oscillator well centered at the 

origin. Notice also that the wave function falls off less rapidly in r than the 

correct one. 

If a better approximation to the ground state is desired, the next step is to 

include ground state correlati-ons or virtual excitations to excited states. This is done 
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in our simple model by considering’the set of states 

where m and m’ take on the values t 1 and 0. This is a total of 16 states, and 

in general each of the above products should be determined by a self-consistent 

calculation. Once this is done, matrix elements of the Hamiltonian can be taken 

,between va.rious,product states and the Hamiltonian diagonalized to give the proper 

superpositions for the stationary states of H. 

If this is done for our oscillator example the new ground state energy is 

EC= (4- fi)& =2.68w , (51) 

which is to be compared with the value 3.000 for the uncorrelated approximation 

and the correct value of 2.13~ (Eq. (44)). The correlated wave function is: 

ap,, “2, = c e -g(rT’ri)[, + 0 62Pr . nl’& l 

] (52) 

In terms of ;, and 3 this becomes 

2 

(l-1-0.62 /3R2-0.15pr2). (53) 

We see that the effect of including the lowest virtual excitations is to make the 

wave function flatter as a function of R2 (i.e., the’whole system is now in a 

shallower well) and to make the falloff more rapid as a function of r2 (also in 

the correct direction). 

We note in passing that the above procedure leads to too many states, i.e. , 
12 

the spurious states well known to nuclear theorists. Techniques exist for 

treating these states properly in nuclear physics, but the author is at present 

unqualified to say anything more about them. In particular it is not at all clear 

- 18 - 



how the nuclear physics techniques might be adapted to our model, which is 

quite different from the usual many-particle model of the nucleus. Fortunately 

we avoid this problem in this initial exposition of the model by not considering 

correlations. 

We now return to our model of the nucleon. We write our approximate 

ground state as (cf. Eq. (33)) 

p1 > = l$Jl@ 1 > 
-m 2 -m 2 

(54) 

where 

lGfm> = C C($ Lij; n, m-n) Xn lQL m-n> . (55) , 
2 n 

We can use either L = 0 or L = 1 to make the total J = l/2. We consider the eigen- 

value problem 

H Is, > =EIIJI1 > , (56) 
-m 2 -m 2 

and by analogy to Eq. (38) we take expectation values as follows: 

<@ Lmt I Hmtm191 > Itioo> = E Itioo> . 
2 

-m 
2 

Inserting (31) into the expectation value in (57a) we get 

(574 

cm 

(58) 
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which is strongly reminiscent of Eq. ‘(1). The identification is exact if we set 

(59) 

It is clear now that we can solve Eq. (57a) by the same techniques as were used 

in the static strong-coupling problem. ’ We write 

._ #4x) = c&*1 SW + $+(x) 
(60) 

m = A l i P(X) + n’(x) 

where 

%f 
= . d3x Pip(x) c#J(x); ni = / d3x Pi t(x) n(x) . (61) 

We also demand that 

J d3x +-J(X) Pj t(x) = aij (62) 

and 

Jd3x gi e(x) x”(x) =Jd3x +(x) e’(x) = 0 . (63) 

Finally we define 

P(X) = 1 Jl,,q 2 (64) 

and find t(x) from 

(-v2+p3 2 &x) =* . 

The Hamiltonian analogous to (14) is now 

- ; 

H=mo+Ko+ 
.-. 

+ f /d3x { nt2(x) + 13 $‘(x)i2 + /.L~ et2(x)} 

(65) 

(66) 

+ ri / d3x n’(x) Pi p(x) 
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where the constants R and N are now given by: 

R = 5 / d3x p2(x) 

N = 5 J- d3x ‘p(x) q(x) 

and 

-jqx, -51 
rl(x) = N &9 = &fd3xt &$‘, P(z) “lxl wxI l 

m c 

The transformation analogous to (21) is 

(67) 

(68) 

(69) 

where 

T = +{d3x e2(x) . (71) 

As pointed out by Pauli and Dancoff this is just the first order change in nt(x) 

caused by the unitary transformation 

+iV n”(x) = e n’(x) e -iV 

where 

V = ~ (S,X -“‘j fd3X I’ ~j 5 (X) l 

Tq 

(72) 

(73) 

It is assumed that all matrix elements of V are small (of order gw2) so that the 

shift in n’(x) is the only important term to order g -2 O Clearly the transformation 

(72) will also change other terms in the Hamiltonian, but these are already smaller 

than the main ones by a factor of g 
-2 

. We will check these approximations in the 

final section of this paper. 
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The Hamiltonian we will use to solve(57a)is therefore very similar to Eq. (23): 

H 
L2 = ---& + & lPl2 -gz*q+mo+Ko 

(74) 

+ fJd3x { F2(x) + Iy (p’(x)12 + p2 et2(x)} 

- t qj (Q,’ ~fd3x n’(X) :j P(X) . 

Everything now proceeds just as in Section II and we see that the proper 

definition of the states 1 qLM> is that they are states in which q has a definite 

magnitude and in which L2 = ls,xz12 and Lz = (%X ?Jz have definite eigenvalues . 

It is straightforward to show that the result of applying the transformation U given 

by (25) to the state (55) is 
13 

and 

for L = 1 

(75) 

for L = 0 

In the limit of strong-coupling the top element of each of these column vectors 

represents the bound state and the top elements are identical. So the wave func- 

tions are the same whether we use L = 0 or L = 1, but the energies differ 

because the eigenvalue of U+L2U is different in the two cases. The lowest 
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energy corresponds to choosing L = 0, and the energy difference between the two 

states is proportional to gm2 just as the rotational state separations. 

One must resist the temptation to see the above doubling of the states as a 

parity degeneracy. In fact both the L = 0 and L = 1 states have the same parity 

because q is an axial vector. This must be true since G(x) must be a pseudo- 
Dd 

scalar field and therefore must satisfy 

$44 = - 0(-x) l 

Referring to (60) we see that this can be true only if 

mp -1 =+q 
me (76) 

Rut we have written q+in terms of its magnitude q and the spherical angles Q!, p. 

For (76) to be satisfied these angles (which are still operators) must behave 

differently under parity than ordinary spherical angles. In fact 

PaP -1 =o! and PPP’l = p , (77) 

which shows immediately that no matter what the angular momentum L of a state, 

its wave function YLM (a!, p) always has a parity of +l. So the negative parity 

states must come from negative parity wave functions for the core fermion. 

Since the two states (75) have the same parity we can form a linear combina- 

tion of them to get a state with zero for the lower element and D E32 (a 9 PD 0) for 

the upper element. This is our bound state wave function. 

We have now solved Eq. (57a) and see that the proper normalized eigenstate 

to use for 1 Qjm> is 

In addition the vector q has the average magnitude q. = gN. This tells us in turn 
ylh 

how to evaluate the expectation value occurring in Eq. (57b). The eigcnstate (78) 
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is an eigenstate of the transformed Hamiltonian U’HU (see Eq. (27)). So the 

expectation value we want is: 

%’ IHI% -m 
> = <Dg{;>2 IU+HU 1 DE{;>2 > 

2 
-m 2 

. 

where we keep only the l-l matrix element of the 2 X 2 matrix U+HU. 

Equation (57b) now can be written . 

F-9 

where we have used (60) for 4(x) and the fact that the expectation value of $?(x) 

is zero in a state with no free mesons. Also in (80) we have defined 

(81) 

Now it is straightforward to show that the l-l component of U+,a. i U is just 

9,. i so the last term on the left-hand side of (80) becomes 

We treat ai4j as a tensor operator with both a scalar and tensor (spin-2) component, 

but only the scalar component has an expectation value in the state specified. In 

this state : 

<Dt1/2) I I 4 $ Dg(f)2> = L 6.. . 
m+1/2 i j 3 1J (82) 
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So Eq. (57b) becomes 

P2 - - $ a 
2m0 

tiootx) = tE-Eq-mo) tiootx) , (83) 

which is the Schroedinger equation for a particle of mass m. in an attractive 

potential, The potential is the function t(x) which is connected to p(x) (i.e., the 

probability density of the fermion) by Eq. (69). . 

We have now defined the self-consistency problem which must be solved. We 

can put the coupled equations into dimensionless form by setting 

x =pr; y = ma/c”; E =f (E-E+-mO) . 

Then the Schroedinger equation for the fermion wave function is 

V(X) 1 u(x) = E u(x) 

and q(x) is determined from 

00 
V(X) = -$ / 

(1) 
0 

.dx’ u2(x’) j,(ix<) hl (ix>) , 

VW 

VW 

WW 

which is the dimensionless form of (69) when p(x) is .spherically symmetric. In 

the above equations we have set 

b$-JoC~ =* y . (86) 

Self-consistent solutions to the Eqs. (85) have been found, and we discuss 

them in detail in the next section. 
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IV. SELF-CONSISTENT SOLUTIONS 

The solutions we want are the eigenstates of the Hamiltonian given by the 

first six terms of (74). The seventh term is dropped because we will measure 

our energies relative to the “free-meson” vacuum, and the last term is the 

coupling between the free fields and the radial oscillations of the bound field. 

This last term will contribute to the decays of the baryon states, and in second 

order will cause a mass shift. We assume the second order effects to be small 

and we will check this approximation presently. 

As we have seen in Eq. (78) the angular wave function for the q variables is 

is a D~+l/2(~/30), and the eigenvalue equation is 

The energy contributed by the first term is therefore 

E - tj+l/32 , 
rot 2Tg2N2 

where T is given by (71) and N by (68). We have used 

= g2 N2 . 

(88) 

(89) 

which means q has been set equal to its equilibrium value. This approximation 

is checked below and will turn out to be not entirely justified. 

After the transformation U (Eq. (25)) the second, third, and sixth terms of 

Eq. (74) become: 

q--$;&]+&q2-gq . 
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The eigenfunctions and eigenvalues of this part of the Hamiltonian are easily 

determined. We write 

and complete the square on the last two terms. The eigenvalue equation is then 

[ 

-+$+&qt21 u(q’) = (Eq++) u(q’) , (91) 

where q’ = q-gN . 

This is the equation for a one-dimensional harmonic oscillator. In the lowest 

vibrational state we have 

(92) 

so that the energy contributed to the system by the radial oscillations is 

with the first term representing the zero point radial oscillations and the second 

the field binding energy (cf Eq. (30)). 

The radial eigenfunction for the ground vibrational state is 

-5 pqt2 
tio(qt) = (5,“” e g 

where 

J3 = (RN)-1’2 . 

(94) 

We can use this to estimate the error we make by neglecting this vibralion- 

rotation coupling in Eq. (88) 0 The first non-vanishing correction to (88) is 
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proportional to <qt2> in the state eo(qt): 

AE _, 3 <st2> rot 
E rot g2N2 

= --& (RN)1’2 . 
2g N 

(95) 

Finally we note that Eq. (92) gives us the energy separation between the 

vibrational states (again neglecting rotation-vibration coupling). 

112 
AE 

l 
(96) 

We will put numbers into these formulas when we present our solutions below. 

Gur final expression for the energy is now obtained using (88) and (93): 

Ecrn +K +&i/!&&+~(!if’2 
0 0 2g2N2T 2 2 N 

Y (97) 

where m. is the bare mass of the elementary fermion, and K. is its kinetic energy 

determined by 

(98) 

Finally we remind the reader that @oo(x) is determined self-consistently by 

solving the set of coupled Eqs. (85). , 

We will now consider the solutions in three groups: (A) the ground state, 

(B) rotational states, and (C) S-wave core excitations. 

A. Ground State 

In the ground state j = k so Eq. (97) becomes 

E=mo+Ko+ ’ 
2g2N2T 

. (99) 
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We have,solved the self-consistency problem for various values of m0 and g as 

follows: 

1. Start with a square well potential 170(x) as shown in Fig. 1. Equation 

(85a) is solved in this potential with m0 and g specified. This produces an eigen- 

value (E) for the ground state in the square well and a wave function u(x) like the 

one shown on Fig. 1. 

2. The u(x) determined from step 1 is inserted into (85b) and a new q(x) is 

generated. 

3. Equation (85a) is now solved again using the q(x) generated in step 2 and 

a new eigenvalue e results. 

4. This procedure is repeated until the eigenvalue E stops changing. A 

typical final result is shown in Fig. 2. 

We have experimented with a number of different starting potentials in step 1 

and find that, as long as the starting potential has a bound state, the procedure 

converges to the same final eigenvalue and wave function no matter what starting 

potential we use. The rate of convergence will vary, but the final answer is 

always the same. 

This fact is not really surprisi.ng. The wave function u(x) is constrained to 

be zero at both x = 0 and x = 00 and it has no nodes. Therefore no matter what 

the starting potential is the shape of the initial u(x) will not differ very radically 

from that of Fig. 1. 

We present some of the results of these calculations in Table 1. The five 

contributions to the ground state energy are listed across the table in the order 

in which they appear in Eq. (97). We can now comment on the qualitative effects 

of variations in the basic parameters g and mo. 

As g is increased for a given m. the main effects are to increase the binding 

energy and the radial vibration energy. The kinetic energy of the fermion increases 
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and the rotational energy decreases, but these are rather slowly varying as func- 

tions of g. The fact that the rotational energy is relatively insensitive to g makes 

it impossible in our simple version of the model to make the rotational separations 

small enough to fit the observed A and N* 
5/2 

energies. In part B of this section we 

will give one mechanism which will lower these energies and at this point we can 

mention another. 

With the data. of Table 1 we can check the approximation indicated in Eq. (95). 

Using values of R, N, and g for a typical case (e.g., g = 25, y = 6) we find 

-=,l 
E rot 

which, of course, violates our assumption that the centrifugal barrier has a 

negligible effect on the equilibrium value of q. In fact we have estimated that the 

centrifugal barrier can increase q. by as much as 40% or 50%. 

In this paper we will not pursue this matter further because to do it properly 

would require an expansion of the self-consistency problem to include a self- 

consistent determination of qo. This adds considerably to the complexity of the 

calculations and will be necessary to obtain reliable numbers. We will present 

this expanded calculation in a subsequent paper. 

The effects of changing mO are less dramatic than those of g. Decreasing 

m. (which for a given g tends to spread out the fermion wave function) has the 

effect of reducing in magnitude all of the terms in (9’7) m The only useful generali- 

zations we can make are that decreasing m. decreases the energy of the ground 

state, and also raises the energy of the N’ state relative to the N state (see part 

C), However, both of these effects can also be achieved by increasing g. 

Because of the approximations we have made which make our numbers only 

qualitatively significant we- have not made an extensive search for the best set of 
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values for m. and g. A representative set (which fixes the mass of the nucleon 

at its known value) is g = 25, y. = 6 and we use this set for our illustrations in the 

following sections. 15 In Fig. 3 we show the fermion probability density p(x) 

and the pion field strength t(x) for these values of g and y. 

B. Rotational Excitations 

These states are characterized by the angular field wave functions 

u+ 1 x,> 1 GLM> = ID;+l,2) ( 100) 

where 
3 5 j=T 5, . . . . 

This wave function is, of course, to be multiplied by a wave function for the radial 

q oscillations and a wave function of the core fermion which must be determined 

self-consistently. We must now make an approximation for this core wave fun&ion. 

Referring to Eq. (82) we recall that only the scalar part of titj contributed in 

the state j = l/2. But for j I 3/2 the tensor part also has an expectation value, 

and this expectation value is not spherically symmetric. As a consequence Eq. (83) 

contains an extra potential proportional to the 1 = 2 spherical harmonic. This 

extra term means that the fermion wave function can no longer be purely S-wave 

and must contain a mixture of P = 2,4, . . . , etc. 

At the present stage of our model this is an unsolved problem. We have not 

yet determined a good way to treat non-spherically symmetric source functions, 

so we must neglect the tensor potential. This makes the equation for G,,(x) 

independent of j and identical to Eq. (83). In this case we can use the energy 

formula (97) for the rotational states with only j changing, and the energy 
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i 

separations of the first two rotational excited states from the ground state are’ 

AEQ1= 3 
‘zs 2g2N2T 

(101) 

dE51= 
8 

2’~ 2g2N2T 
. 

All we can say about our neglect of the higher angular momentum components of 

the fermion wave functions is that their inclusion should lower the above energies. 

So the formula (101) will overestimate the rotational level separations. 

Equations (101) give the same rotational spectrum as the old static strong- 

coupling theory. The recent evidence for a T = 5/2 nucleon isobar 16 has renewed 

interest in this formula, and we note for completeness the old result that the 

energy of the 5/2 level is predicted by (101) to be about 1740 hireV if the A mass 

is fitted to 1235 MeV. It is “seen” at about 1650 MeV which is not inconsistent 

with our previous remark that Eqs. (101) will somewhat overestimate the level 

separations. 

We have now discussed two different and probably quite significant corrections 

whose combined effect should be to reduce the rotational level separations appre- 

ciably. We are unable in the present form of the model to bring these rotational 

levels down enough so as to make comparison with experiment very meaningful. 

The rotational band (just the lowest three levels) for the values of g and m. chosen 

to be representative is shown in Fig. 4, and it is clear that our model grossly 

exaggerates the rotational splittings. 

We can draw some comfort from another set of numbers in Table 1. It is 

clear that for the ranges of mO and g which we are considering, the excitation energy 

for the next radial vibration state is generally quite large compared to the first 
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. . 

rotational excitation. The same centrifugal barrier effect which should lower the 

rotational levels should raise the vibrational levels, i. e. , the “potential well” in 

which the radial q oscillations take place is made narrower and pushed out to 

larger values of q by the centrifugal barrier. 

Of course, the radial q excitations give another class of states in the model, 

and we might predict another nucleon-like isobar somewhere above 2 BeV. But 

the radial q oscillations will have large amplitudes in such a resonance and one 

might expect it to decay very rapidly, i.e., the approximation of small width 

becomes unreliable. At this stage of our model we cannot predict whether such 

a state would be observable or not. 

C. Core Excitations 

Up to this point our results have not been very different from those obtainable 

from a static extended source model. Cur model has a potential for a much more 

complete description of the ground state and rotational levels, but this potential 

is yet to be exploited. However, it is in the excitations of the core fermion that 

this model makes its new contribution. 

Since we have postponed consideration of non-spherical source functions the 

only core excitations we can consider are those with 1 = 0. In our self-consistency 

problem this means searching for self-consistent fermion wave functions which 

have a single node o Such solutions exist and an example is shown in Figs. 5 and 6. 

It is our proposal that this S-wave excitation be identified with the Ni1(1470), 

the well-known Roper 17 
i.e., resonance. We are motivated in this by the 

identity of the quantum numbers with those of the nucleon, and by the experimentally 

observed fact that the Nil does not decay strongly into the 7r-N channel. If the 

Ni1 is really an S-wave core excitation, and the decay proceeds via emission of 
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a p-wave pion (as the strong-coupling approximation would demand) then we have 

a selection rule which forbids the decay, i.e., no O-O transitions. 18 

Of course we also expect that the NiI will have rotational excitations, but 

we find again that our approximations are too unreliable to allow a prediction of their 

energies. In particular, the fermion wave function is more spread out in the 

N’ state and the neglect of rotation-vibration coupling is even less valid than in 

the ground state. We note, however, that a lrprobabletr resonance, which could 

be called A’, with the quantum numbers of the A is claimed by Lovelace 19 
to occur 

at about 1688 MeV. Our model will have to be improved before we will be able 

to verify this energy value with any confidence,although our numbers do indicate 

that the rotational separations of the primed states are smaller than those of the 

unprimed . 

Our chosen set of parameters gives 1140 MeV for the energy of the N’ and 

1600 MeV for the A’. These values are included for completeness only and are 

quite unreliable. 

The possible existence of a second S-wave excitation has not been considered. 

With the numbers we are using it is unlikely that one could be found, 

V. SUMMARY AND DISCUSSION 

It has been our intention in this paper to present the basic structure of a 

strong-coupling model which includes a point elementary fermion instead of a 

static, extended source function. In order to make the paper a reasonable length 

and make the presentation clear we have made a number of rather significant 

approximations. These can be summarized as follows: 

1. Non-relativistic fermion kinematics. Referring to Table 1 we note that 

the expectation value of the kinetic energy of the fermion is generally a small 
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fraction of its mass. If we take this as an estimate of the validity of our non- 

relativistic approximation we are encouraged to believe that the approximation is 

not too bad. But this could be misleading since if y = E/m0 = 7/6, for example, 

then p = v/c e 0.5. This makes us believe that relativistic kinematic corrections 

will be at least of the order of 20% and that vacuum polarization effects could also 

be non-negligible. 

2. “Independent particle” states. We have seen that the use of product wave 

functions destroys translation invariance and must overestimate the energies of 

the states. To include ground state correlations requires a much more extensive 

calculation and also a technique to handle B # 0 fermion states. This remains for 

future work. 

3. Neglect of configuration mixing in states with j 1 3/2. This has been 

discussed in Section IV-B. 

4. Neglect of vibration-rotation coupling in the radial q-oscillations. As 

we have noted in Section IV-A this requires a more elaborate self-consistency 

problem and will be considered in the next paper. 

5. Assumption of small decay widths and consequently small second order 

level shifts. We have checked this by calculating the width of the A in the case 

when y. = 6 and g = 25. The width is very large, but we can account for most of 

this by noting that the phase space for the decay goes as the cube of the energy of 

the emitted pion. Since we have overestimated the energy separation by so much 

this phase space factor multiplies the error enormously. We also find that the 

width is proportional to (gN) 
-2 as advertised, and that the same effect which we 

expect to reduce the rotational band separations will also reduce the widths. 

6. Neglect of non-linear pion field interactions (e.g. , A G4) s 
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The above list of approximations leads us to distrust any numerical prediction 

’ so far obtained. Rut it should be noted that none of them shows any prospect of 

qualitatively changing the spectrum of states (with the possible exception of a 

strong A+4 term in the Hamiltonian). We can then count the following as quali- 

tative successes of the model: 

1. Prediction of the A and Ng,2 resonances. These are of course old pre- 

dictions, but recent results” have generatednew interest in them. The problems 

that a T = 5/2 nucleon isobar causes for some other models are quite serious. 

2. Physical interpretation of the hard core in nuclear forces. Hard cores 

in potentials have been traditionally the result of the Pauli exclusion principle. 

Our model sustains this tradition, and attributes the hard core to the resistance 

of two core fermion wave functions to overlap. 

3. Prediction of the Roper resonance. The position and decay properties 

of the N’(1470) are qualitatively accounted for in this model. As a bonus (or 

penalty) we also get a A’ which may (or may not) actually exist. The natural 

appearance of the N’ in this model is to be contrasted with the need in the static 

model for an entire new SU(3) multiplet to accommodate it. 

4. Negative parity resonances and “Regge recurrences.” These occur 

naturally in our model and their properties will be predictable once the technical 

problem of the non-spherically symmetric source can be surmounted. 

These qualitative successes, we feel, justify the further calculational effort 

which will be necessary to get numbers in which we might have some confidence. 
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TABLE1 

Detailed breakdown of contributions to ground state energy and energies of excited nucleon states. The values of 

zil 
= 6 and g = 25 are used in the text as a representative choice because the mass of the nucleon is fitted well. 
energies are in units of the pion mass and the last row under the last five cohunns gives the known (or tenta- 

tivej masses of the states considered. 
. 

mO g KO Rot. Bind. Vib. N 3 
Az 

N*$ N' A$ 

4 22 0.57 1.59 - 3.27 3.27 6.17 10.94 18.89 7.06 13.69 

6 22 0.77 1.90 - 4.77 4.56 8.46 14.16. 23.66 8.68 13.24 

8 22 0.98 2.23 - 6.31 5.88 10.78 17.47 28.62 10.64 15.47 

10 22 1.17 2.59 - 7.76 7.12 13.12 20.89 29.84 12.61 16.99 

12 22 1.34 2.92 - 9.14 8.29 15.41 24.17 38.77 14.76 19.44 

4 28 1.19 1.13 - 7.79 4.60 3.15 6.54 12.19 5.60 8.51 

6 25 ,l. 17 1.66 - 7.63 5.55 6.74 11.72 20.02 8.28 11.58 

6.5 27 1.61 1.61 -10.97 6.73 5.49 10.32 18.37 8.16 11.07 

7 27 1.71 1.70 -11.77 7.18 5.83 10.93 19.43 8.60 11.54 

6.72 8.97 11.90 10.65 12.20 
l 



LIST OF FIGURES 

1. Square well potential and solutions for ground and first excited S-wave states 

used to start search for self-consistent solutions. The x-coordinate is 

measured in pion Compton wavelengths. 

2. Self-consistent solution for ground state when g = 25 and m. = 6. The 

starting potential and wave function are shown by the dotted lines for 

comparison. 

3. Fermion probability density (p (x)) and pion field amplitude ( 6 (x)) for g = 25 

and mO = 6. Note that t(x) approaches a multiple of (ewx/x) as x gets large. 

4. The experimental values of the first three states in the lowest rotational 

band are shown on the left and our values on the right. We are off by a factor 

of about 2 when g = 25 and m. = 6. We have used the energy value for 

j = 5/2 of Ref. 16. 

5. Self-consistent solution for the first excited core state (N’ resonance), with 

g = 25, m. = 6. Note that the wave function and potential extend considerably 

further out than in the ground state. 

6. Probability density of fermion and pion field intensity for N’ resonance when 

g=25andmo = 6. We expect that the N’ will be much larger than the 

nucleon (see footnote 18). 
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