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ABSTRACT 

It is pointed out that the notion of vector meson dominance is best 

formulated in terms of old fashioned perturbation theory diagrams 

viewed in the Lorentz frame where the energy of the virtual photon 

q. is infinity, A more convincing way to derive Sakurai’s result on 

ep inelastic scattering is presented. We give a simple way to under- 

stand why vector meson dominance does not give a correct transition 

form factor for the electro-excitation of V(1238). 
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Sakurai’ predicted that the ratio of scalar to transverse y + p total cross 

section in the inelastic ep scattering to be u uT s/ -lq21/ rn: in the deep inelastic 

region based on the vector meson dominance hypothesis. However, one feels 

somewhat uneasy about the way in which the result was obtained. Let us start 

out2 with his Eq. (3) 
I 

<f$JP> =Cm2p/f,)~~-92)-1<fIf~‘lp> . (1) 

Choosing the z axis along the momentum of the photon we obtain from the con- 

servation of 

where qO is the time component of four momentum transfer q. This relation 

.(P) must hold no matter how the matrix element <fl$ Ip> is approximated as long 

as we assume Eq. (1) to hold. This seems to contradict with Sakurai’s (on the 
: 

mass shell) relation: . ’ 
1 

q <f ijfp)ip),, 00 - shell= “;f 1 jtP)IP)on shell . 
Z 

If rni in Eq. (3) were replaced by q2, we would have obtained us/uTzm 2/t-s2) 

instead of Sakurai’s u aT M q2/m2. d P 

We would like to present an argument to make Sakurai’s result more con- 

vincing. Apparently Eq. (3) makes sense, whereas if rni is replaced by q2 it 

does not’make sense. Since current conservation for jcr must be satisfied in 
.- --.~---. 

order to write the inelastic ep cross section -in terms of WI and W2, 

the only way we can save the theory is to modify Eq. (1). 

In actual applications of vector dominance theory, we are merely trying to 

relate the cross sections for the three processes: virtual y + p-f, real 
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y + p-f and real p + pdf (or its inverse). In the last two processes y and ,p 

are both real and moving in the positive time direction whereas the first process 

represented by a Feynman diagram (Fig. 1) actually consists of 3! = 6 old fash- 

ioned perturbation theory (OFPT) diagrams. 
3 

Only Fig. 2A corresponds to our 

notion that y is changed into p and then p interacts with the target system. Hence 

. we conclude that we should not use Eq. (1) which is represented by Fig. 1 but 

should use the matrix element given by the OFPT diagram Fig. 2A. Figure 2A 
-- -. - 

has a denominator _ 

(4) 

(q. is the time component of q) compared with the denominator for the Feynman 
-1 

diagram (Fig. 1), . Only in the limit qi/ Iq 21 ( + mE)--, Eq. (4) 

becomes covariant and reduces to the Feynman propagator. Because all physical 

processes must be Lorentz invariant, we conclude that the notion of the vector 
. 

meson dominance can be formulated only in the Lorentz frame where q 0 
-00. 

This frame can be obtained from the laboratory system by moving the’observer 

with a velocity -c against the direction of the incident photon. Let us denote Q I 

and $ as the momenta of the photon and proton respectively in the go+” frame. 

The usual y for the Lorentz transformation is given by y = (p 2 M2)1’2/M and + 

Q can be written in terms of q2 and v = (pm q)/M as Q = qi-q2 1’2 = (y2-1)1’2v + 

2 21/2 
( ) 

“/(u-Q) l 
In the q -do 0 f rame both g and L& are pointing toward the + z direction 

and their magnitudes become infinity as Y-W. We recall that in OFPT. all par- 

ticles are on the mass shell and the momentum- is conserved at each vertex but 

not the energy. Furthermore, in the frame qo--m, even the energy is almost 

cons,erved at the vertex because q o-(Q2 + mi)l”k (q2-m~)/2qo-0. Since the 

notion of vector meson dominance is valid only in a particular Lorentz frame 
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we can modify Eq. (1) into 

where p 
cc 

=((Q2+mz)l/21 Qdand$O=lifp =Oand8;o=Oifp+0.(5~q. (5) 

satisfies qojo = Qjz ad p + mi)1'2jr) = Qj$))* It does not violate any Lorentz 

invariance because we are comparing two matrix elements in a particular frame 

(90 -00). Because in QFPT the momentum is conserved but not the energy, we 

treated the three spaoe Components of J *(PI (PI 
P 

on the same footing but not j, . In 

the limit qo-a, the energy is conserved, so does the factor ( Q2 + m 2?)1’2/qo become 

unity. e(P) In writing Eq. (5), we have assumed that cfl~~ Jp> in Eq. (1) is approxi- 

mated by a (real p) + p -f’ amplitude obtained by assuming that in the qo-m 

frame p has a momentum s= and energy (Q2 + mE)1’2. Notice 

that f and f’ have the same momentum, and almost have the same energy (the 

difference in energy is equal to 

invariant masses, 

but have a finite difference in the 

+ (V 2-q2)1’2)-I$ 

It is important to notice that this kinematical condition in the qo+mframe, 

when transformed back to the laboratory systems of ep and pp scatterin actually 

becomes the condition that p has energy v ( ( 

s, 
2 2 l/2 -1 

p = u 1 + M v + (V -q ) ,“j , Hence 

in the laboratory system where we actually compare the cross sections we must 

use the cross section for p + p - f’ at energy v 
P’ 

rather than K = Y -q2/2M as 

was done by Sakurai. We could have imposed an alternative condition (as 

Sakurai did) that f and f’, have the same invariant mass, but p and photon have 

different energies and momenta in the go-w frame. However this is not only very 

arbitrary but also causes unnecessary complications in kinematics when we try 

to transform these conditions back to the laboratory frame from the qo-” frame. 

We therefore stick to our assumption and investigate its consequence. 
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There is one obvious question which comes to mind with regard to the 

applicability of vector meson dominance to the inelastic ep scattering, We know 

that vector meson dominance does not work for electro-excitation of P(1238). 

The empirical form factor for this excitation,4 gooduptoq2 =2.4GeV2, is 
2 l/2 

g&en by [l + 9(-q ) ] 
l/2 2’ 1/ exp[-3.15(-q ) “1 which decreases much more 

rapidly than (l -q2 /rnir’ predicted by a naive application of vector dominance 

theory. If the vector meson dominance does not work for the resonance excita- 

tion, why should one expect it to work for the continuum region? There might 

be some dynamical reasons why this is so, but the easiest way out is to notice 

that Eq. (5) fails if the cross section varies rapidly with Mf such as in the 

resonance region. Let us suppose that the cross section changes a considerable 

amount if we change Mf by a width r. Equation (5) fails unless Mf,-Mf<<r, or 

2Mfr>>>Mf,-g = (mEq2) (I + M(v + (1~~-q2)l’~)-l) l (6) 

When q2 C 0, this inequality can never be satisfied in the resonance region, 

where r is typically 0.1 N 0.2 GeV and Mf -1 to 2 GeV. In the deep inelastic 

region where the cross section is flat to within r= 1 d 5 GeV and Mf > 2.5 GeV 

this inequality can be satisfied easily as long as q2 is not very large. We 

believe this is a partial explanation of the failure of vector dominance theory 

when applied to calculate the form factor of the N*(1238) excitation. In addition 

to explaining why p dominance does not work for the 3-3 resonance, Eq. (6) has 

two pleasant features : (1) it is a covariant statement, and (2) it is always sat- 

isfied when q2 
2 

=m p. 

As an illustration of how Eq. (5) can be used for an actual calculation, we 

relate in the following Drell and Walecka1s5 WI and W2 to the total longitudinal 

and transverse p + p cross sections, {(vp) and{(vp). W1(v ,q2) and W2(u ,q2) 
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are invariant functions of u and q2 defined by 

W pv = M-2~~q~(P*q)/q2)(P~qp~~q)/q2) w2-(g&q~qV/q2)wl 

=poM-l 
f 

<p~j~(o)lf)<fIjvtO)~P) (W3 es2S4@ + 4-pf) . (7) 

Since Wl and W2 are invariant we can evaluate them in any Lorentz frame. We 

evaluate them in our qo-m frame. From Eqs. (5) and (7), we have 

and 

w2 = bzz-(l + Q2/q2)wd g/ (P-Q(P* s)/s2)2 (9) 

\ 
where WZz *(PI is a similar expression as (8) with J, replaced by j(P) z 

Since C$(V p) and 4(; p) are also invariant (because our Lorentz transforma- 

tion is along the direction of the incident beam) we calculate them in the q. -m 

frame. 
1 1 

u$J,) = (W4yM2[@*qP$-mp 21vi?izZ~ <f'l jF)!p>q f, -J2S4@ +p-pf,) 
0 

(10) 

.(P) d(yp) is a similar expression as (10) except that J, is replaced by 

$. j(p) = T m (Q2 + m2) 
P P 

-1’2 Jo) , where E: ’ i - m p’[Q, (Q2 + mz,“2ea and the 

*(PI current conservation has been used to eliminate lo . Expressing W= and Wzz 

in terms of of(y p) and o$(v p) 2 respectively, we obtain (for v >>mi) 
P 

w1 = +-r$fp~ (m)i2)m2upfbp) (11) 
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and 

(12) 

From W1 and W2 we can write down Han&’ us and uT,immediately and obtain 

@$q2 9 p ) = (e/fpf[m2/(m~+12)]2 u pK-$~(~ p) (13) 

These two equations are essentially identical to Sakurails Eq. (8) except for the 

factors such as (K/V ,z, (V J K) and the energy used for the p cross sections. 

The difference can be traced back to whether one assumes the state f and ft to 

have the same momentum or the same invariant mass. We regard the difference 

between the two expressions simply represents the amount of uncertainty in- 

volved in using the vector meson dominance hypothesis. 

The point of view expressed in this letter can also be applied to the peripheral 

mechanisms, where the virtual cross sections are also approximated by the real 

cross sections. It should be emphasized that the greatest advantage of using 

OFPT is that all particles are on the mass shell. This gives us an unambiguous 

way to define the density matrix6 of the p hitting the target system. This fact 

will become important when one wants to apply vector meson dominance to in- 

vestigate some specific channel of f, such as electroproduction of p. 

In summary we have accomplished the following: (1) Constructed a vector 

meson dominance theory which satisfies both the current conservation with re- 

spect to<fjjpip> and current conservation with respect to <f’l j~)lp>on-shell 

simultaneously. (2) We gave a simple criterion when we should not expect 

vector meson dominance to work. (3) We pointed out the advantages of using 
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the concept of old fashioned perturbation theory in dealing with pole dominance 

types of mechanisms in general where questions of gauge invariance, current 

conservation and sum over the spin often cause many ambiguities when one tries 

to approximate a virtual amplitude with a physical amplitude. The author wishes 

to thank Dr. Tung-Mow Yan for discussions and comments. 
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Feynman diagram for inelastic ep scattering. 
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Old fashioned perturbation theory diagrams. The direction of time is 

upward, 


