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INTRODUCTION 

The applications of the set-of-support strategy in fields in which 

automatic theorem proving plays an important role continue to increase. 

Question-answering systems such as that of Green [3] and information- 

retrieval systems such as that of Darlington [2] rely heavily on automatic 

theorem proving. Since one of the principal problems in theorem proving 

is generation of a very large number of 'irrelevant" inferences, this 

problem is important for any system based on a theorem-proving subprogram. 

The set-of-support strategy was formulated to impede the generation of ir- 

relevant inferences and thus restrict the number of inferences to be ex- 

amined during the search for a refutation. It is desirable however for the 

restricted system to retain refutation completeness. 

Two inference systems will be considered in this paper: the system II 

employing the inference rules paramodulation, resolution, and factoring, 

and the system C employing only resolution and factoring. The system II is 

applicable to first-order theories with equality, while C is efficiently 

applied only to ordinary first-order theories. IIT and CT are identical to 

II and C respectively, except that on13 7 T-supported inferences are allowed. 

The system CT (C with T as set of support) has been shown to be refutation 

complete when S is finite and S-T is satisfiable, (The finiteness consider-. 

ation for S is not necessary for refutation-completeness, but is necessary to 

show that a certain procedure is a refutation procedure.) 

A number of papers have been published modifying the original resolution 

principle. Such modifications include hyper- resolution [8], semantic resolu- 

tion [9], and resolution with merging [l]. Due no doubt in part to the success 
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with which the set-of-support strategy has met, a common point of interest 

has been the question of refutation completeness of the system combining 

set' of support with the particular modification of resolution then under 

consideration. For such systems the conclusion usually is, briefly speak- 

ing, that set of support is complete. More formally, for such modified 

systems a, ClT is frequently refutation complete. 

In this paper the definition of set of support is extended to inference 

systems based on paramodulation, thus extending the scope of automatic 

theorem-proving from ordinary first-order theories to first-order theories 

with equality, the former being the subject of earlier theorem-proving 

papers. The question which naturally comes to mind is answered in the main 

result of the paper: set of support is refutation complete for functionally 

reflexive first-order theories with equality. 



DEFINITIONS AND NOTATION 

In this paper A, B, C, D, E, and F will be clauses; R will be the 

equality predicate; S, T, and U will be (not necessarily finite) sets of 

(not necessarily ground) clauses; f will be a function symbol; k, 1, and 

m will be literals; s, t, and u will be terms; xl, x2,... will be indi- 

vidual variables; CJ and T will be substitutions of (not necessarily ground, 

. I.e., not necessarily variable-free) terms for variables; and R will be an 

inference system. 

Definition (Paramodulation): Let A and B be clauses such that a 

literal Rst (or Rts) occurs in A and a term u occurs in (a particular 

position in) 13. Further assume that s and u have a most general common 

instance s' = so = u-c where c and T are the most general substitutions 

such that sc = UT. Where 6 is obtained by replacing by to the occurrence 

of UT in the position in B-c corresponding to the particular position of the 

occurrence of u in B, infer the clause C = $ u (A - {Rst))c (or 

C = fj U(A - {Rts))o). C is called a ppramoduhnt of A and B (and also of 

B and A) and is said to be inferred by pammodulation from A on Rst, (or R~S) 

into B on (the occurrence in the particu?cr position in B of) u. The literal 

Rst (Or Rts) is called the ZiteraZ of parcmodulation [6]. 

From a given pair A and B of clauses one can usually infer by Para- 

modulation a number of clauses. Which clause is inferred depends first on 

the direction of paramodulation (A into B or B into A), then on the equality 

literal of paramodulation, then on the choice (first or second) of argument 

within that literal, then on the term and its occurrence within the other 

clause. 
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Notation: S7?C will be CC 1 C can be inferred by paramodulation from 

A into B or from B into A where A E S and B E T). "{A1P{W will be 

abbreviated "APB"; "SP(B)" by "SPB", etc. 

For example, where R is the equality predicate and, intuitively, 

f is product and g inverse, if A is Rf(yg(y))e and B is Rf(xx)e, then 

APB = ((Rf(ef(yg(y)))e), (Rf(f(yg(y))e)e), {Rf(xx)f(yg(y))}, 

(Rf(eg(f(xx))>e>,cRf(f(xx)g(e))e}, {Rf(yg(y))f(xx))). The first three 

elements of AW are obtained by paramodulation from-A into B, and the 

last three from B into A. 

Since the terms resohtim and resolvent vary somewhat in usage 

throughout the literature, we give the following: 

Definition: For any literal 1, 111 is that atom such that either 

l= Ill or 1 = -111. 

Definition (Resolution): If A and B are clauses with literals k and 

1 respectively, such that k and 1 are opposite in sign (i.e., exactly one 

of them is an atom) but Ik( and 111 h ave a most general common instance m, 

and if CT and T are most general substitutions with m = (klc = IlIT, 

then infer from A and R the clause C = (t^l - {k)jo U(B - (1))~~ C is 

called a resohent of A and B and is inferred by resohtion [4][7]. 

Definition (Factoring): If A is a clause with literals k and 1 such 

that k.and 1 have a most general common instance m, and if c is a most 

general substitution with ka = la = m, then infer the clause A' = (A - {k})o 

from A. A' is called an immediate factor of A. The factors of A are given 

by: A is a factor of A, and an immediate factor of a factor of A is a 

factor of A. 



As with paramodulation, resolution yields a number of possible in- 

ferences from a given pair A and B of clauses. SRT will be {C I C is a 

resolvent of A E S and B E T), etc. FS will be {C I C is a factor 

of A E S), etc. 

Definition: If R is the equality predicate, a set S of clauses is 

functionally reflexive if Rxx E S and if, for each n-ary function f occurring 

in S, Rf(xl,...,xn)f(xl,...,xn) E S. 

The theories of interest are the functionally reflexive first-order 

theories with equality. The scope of interest would be a22 first-order 

theories with equality if it were not for the fact that refutation complete- 

ness for II without functional reflexivity is an open question. If and when 

the corresponding theorem is proved, it would be desirable to extend the 

results which follow to all first-order theories with equality. 

Since the inference systems which play the main role throughout are Ii 

(the inference system consisting of paramodulation, resolution, and factoring) 

and nT (identical to II except that only clauses with T as set of support are 

allowed), it becomes necessary to extend the definition of set of support 

[lOI to include inferences made through paramodulation. 

Definition: Given a set S with subset T, a clause C has T-support (with 

respect to S) if C E T, or if C is a factor of a clause with T-support, or if 

C is a paramodulant or resolvent of clauses A and B where B has T-support and 

either A has T-support or is a factor of a clause in S-T. T is called a set 

of sU-f2port for C. 

The definition could be further extended to any inference system R by 

replacing paramodulation, resolution, and factoring by "some rule of R". 
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That the definition of set of support given above is no more than 

an extension of the definition given in [lo] can be seen by examining 

the alternate definition for "C having T-support" given below. In the 

definition below, Ti is extended from that given in [lo]. 

Definition: So is the set of clauses B such that B is in S or there 

is a clause C in S with B a factor of C. For i > 0, S1 is the set of 

clauses A such that A E S i-l , or there exist clauses C E S i-l and D E S i-l 

such that A is a paramodulant or a resolvent of C and D or A is a factor 

of a paramodulant or resolvent of C and D. 

Definition: For TCS, Ti is the set of clauses A such that A E T 

or such that A is a factor of some clause B with B E T. For i > 0, Tg is 

i-l the set of clauses A such that A E TS i-l , or there exist clauses C E TS 

and D E S"u Ti-l such that A is a paramodulant or a resolvent of C and D 

or A is a factor of a paramodulant or a resolve& of C and D. 

Since the factors of a clause A include A itself as a trivial factor, 

So consists of the factors of the clauses of S. When S contains only ground 

clauses, it is obvious that So = S. Normally, however, S contains nonground 

clauses, and in many such cases S 0 - S is not empty. (From the fact that A 

is a factor of itself it follows that some of the definitions given above can 

be appropriately shortened.) 

Definition: The S-Zevei! of a clause A (relative to fi> is the smallest 
. 

i such that A E Si. The Ts-ZeveI' of A is the smallest i with A E Tg. 

Since, for all clauses A, A is. a factor of itself, Ti for i > 0 can be 

obtained from T i-l i-l 
S by adjoining to TS all clauses E which are factors of 

some clause D where D is in turn inferrable by paramodulation or resolution 

i-l from some pair B and F with B in TS and F in the So uT:-l. 

1 That which is now termed TS- level was formerly termed T-level in some 
of our earlier papers. 
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Definition: Given a set S of clauses, a subset T of S, and a clause 
. 

A deducible from S, A is said to have T-support if, for some i 2 0, A E Tk. 

T is said to be a set of support for A, and A is said to be supported by T. 

Definition: A T-supported deduction Dl,D*,...,D, (relative to S and a) 

is a deduction in 52 in which every Di has T-support in 52 or is a factor of 

a clause in S-T. If such a deduction exists we write SpnxDn. 

Definition: A set S of clauses is R-satisfiable if it has an 

R-model, i.e., a model in which the predicate R is mapped to an equality 

relation. 

Definition: A refutation of S is a deduction from S of the empty clause, 

n* 

Definition: An inference system R (or 52T) is R-refutation complete if 

for R-unsatisfiable S, Si-, C(or SlmnT 0). 

Definition: If T GS and Sk,C, then C has T-heritage (relative to S 

and S2) if in R there is no deduction of C from S-T (i.e., S-Th/-nC). 

The concept of T-heritage bears an interesting relation to the concept 

of T-support as evidenced by Lemmas 5 and 6. T-heritage is a concept which 

has in the past been confused WithT-slipport; this point and related 

ones will be clarified in the next section. That the concept of T-heritage 

is distinct from the concept of T-support can be seen from the following 

example: 

Let A = I-P,-Q,R), B = {P,Q~, c = (P,-Q), s = CA,B,C), 

T = (Cl. F = {Q,-Q,R) is a (tautologous) resolvent of A and B, and 

D = (P,-Q,R) is a resolvent of F and C. D has T-heritage, 

but D is not in Ti for any i and, therefore does not have 

T-support. 



MISCONCEPTIONS A3TD NON-EQUIVALENT DEFINITIONS OF SET OF SUPPORT - 

It is incorrect, as can be seen from the example given below, to 

restate casually the heart of the definition of set of support as follows: 

If C is inferrable by paramodulation or resolution from A and B, and if at 

least one of A .and B has T-support and both are deducible from S, then C 

has T-support. 

The example under consideration is that given at the end of the pre- 

vious section. The clause D does not have T-support even though one of its 

parents, C, does. As has been said, D has T-heritage, and there exists by 

Lemmas 5 and 6 a subclause E of D such that E has T-support. The only ele- 

ment of (C%B)P? will do for E (as can be seen by examining the proof of 

Lemma 1). 

We give an additional example to show that the casual rendering of the 

set of support definition given above can lead to an error when both para- 

modulation and resolution are involved as rules of inference. 

Let A = (Rab,-Qc), B = {Pa,Qc), C = (Pa,-Qc), S = (A,B,C), 

T = {Cl. D, the only element of (Am)RC, is IPa,Pb,-&cl. 

Although D has T-heritage, D does not have T-support even 

though one of its parents does. 

The proof of Lemma 3 gives the clause E = {Pb,-&cl, which is a clause 

whose existence is demanded by Lemmas 5 and 6. E has T-support and is a 

subclause of D. E is the only element of (CRB)PA. 

The question of T-support status for some given clause D is in general 

only semidecidable. If S is finite and contains only ground clauses, the 

a question is decidable since u i Ti is finite. But when S contains clauses 

which are not ground, ui Ti is usually infinite. Although one can have a 

.- ._. .-_ 



decidable test for D being an element of a given Tg (the union of 

T;, T; ,...,Ti is finite for each j), all that can be said in general 

is that, if D has T-support, then this fact can be ascertained eventually 

since D will be in some T i S' If D does not have T-support, the situation 

is analogous to attempting to prove that a given non-theorem is in fact a 

non-theorem. 

The question of T-heritage for a given clause is also in general only 

semidecidable. (Putting the set of support question another way, one 

normally cannot show that D is not in T1 s for all i.) 

For us if a clause is in some Ti it has T-support regardless of whether 

or not it is deducible from S-T. 

Slagle [ 91 demands2 that, in order for a deduction to have T-support, 

no resolution occurs between members of S-T (ignoring factoring for th,is dis? 

cussion). Thus all of his T-supported deductions are for us also T-supported, 

but not conversely as can be seen from the following example: 

S-T = {A,B,c,E), T = (~1, A = (P,R}, B ={P,-~1, c = (Q,R), 

E = I&,-R), F = I-P,Q}. Dl = {P,R). D2 = EP,-RI. D3 = k',Q). 

Do = {Q,R), a resolvent of Dl and D 3 . D5 = {&,-RI, a resolvent 

of D3 and D 2' D6 = {&I, a resolvent of D4 and D 
5 

. 

The deduction Dl through D6 has T-support for us, but not for Slagle 

since he does not allow the resolution of D 4 and D., both of which are in 
5 

2 He also assumes S-T satisfiable, which is irrelevant to what follows 

and is mainly done because of his intended application; we wish not 

to make this assumption because of the generality gained and because 

of other applications by other authors such as Green [3 ] concerning 

question-answering systems. 
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S-T. This resolution is allowable for us because D4 and D 5 have T-support 

since they are elements of Ti. Although Slagle does not define set of sup- 

port for clauses but instead only for deductions, he would in effect exclude 

{&I from having T-support while (Q) would have T-support for us. He would 
. 

in effect generate each T& but before retaining it remove from it all 

elements already in S-T. 

The reason for such attention to this difference in definition is two- 

fold. First of all, one should note that his refutation completeness 

theorem is strictly stronger than that given in [lo]. Secondly, since Slaglets 

definition allows fewer deductions, (smaller Ti), it might seem best to 

prove in this paper the stronger refutation completeness theorem as his ap- 

preach might be more efficient. 3 The proof of Lemma 5, however, breaks 

down immediately since, even with F in S-T one cannot conclude that the 

elements of CRF or CPF have T-support when C does since some or all of such 

elements may also be in S-T. 

Even with the obvious possible modification Lemma 5 is false for 

Slagle. For a counter-example, let S-T consist of the three clauses {P,R), 

(Q,-RI, (-R,S), and T consist of the clause {-Q,Sj. D = IP,Sj is a clause 

satisfying the hypothesis of Lemma 5 and, therefore, for us must have a sub- 

clause with set of support. D itself for us has T-support, but no subclause 

3 Slagle's definition of set of support corresponds, at least on the unit 

level, to that which has been programmed in PGl through PG5. Besides 

the stronger completeness theorem, he has shown (unpublished) that an 

instance C!' of a clause C in S-T can be discarded without losing refu- 

tation completeness even when C!' has T-support. For unit clauses this 

result has been used for a number of years in the programs PGl through 

PG5. 



of D exists either in S-T or obtainable with a T-supported deduction 

in the sense of Slagle. 

The question of whether or not Lemma 6 holds with Slagle's defini- 

tion of T-support is at the present an open question. The example just 

given does not serve as a counter-example since the clause D of the example 

does not have T-heritage. 

Lemmas 5 and 6 may give real insight into the question, intuitively 

speaking, of why set of support is refutation complete for IIT (in the 

presence of functional reflexivity) and CT. 
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LEMMAS, COROLLARIES, AND THEOREMS 

Lemmas 1 to 6 are reordering lemmas with 1 to 4 being local and 

5 to 6 global. All six are proved on the ground level here, although 

analogous lemmas are probably provable on the non-ground level if factor- 

ing is appropriately utilized. Lemmas 7 and 8 are used to obtain a non- 

ground refutation from a given ground-clause refutation and are so-called 

"capturing lemmas" for factoring and resolution. The obvious analog to Lemma 8, 

but with resolution replaced by paramodulation, is frequently not true. 

(For a counter-example, let A = Rab = A', B = Qx, B' = &g(a), C' = Qg(b); 

the only factor respectively of A and B are A and B themselves, APB 

consists of (&a) and j&b). There is, therefore, no C in E7?F with C' as 

an instance, see Lemma 8.) The lack of a paramodulation "capturing lemma" 

analogous to 8 has been the source of difficulty in proving refutation 

completeness of paramodulation-based inference systems when functional 

reflexivity was not assumed 161. 

For the proofs of Lemmas I. through 4, note that P and R are symmetric: 

SPIT' = TPS and SRT = TRS for all sets S and T. 

Lemma 1. If D is a clause in (ARB)Rc then there exists a subclause E ~- 

0f D with E E (cRB)RA ~(cRA)RBU(CRB)R(CRA). 

Proof. Let D be in (ARB)Rc. Then there exists a clause F E ARB such 

that D is a resolvent of F and C. F and C must, therefore, contain comple- 

mentary literals, say q in F and -q in C. Similarly, there exist literals 

p in B and -p in A such that F is inferrable by resolution from B and A on 

p and -p. D is inferred from F and C on q and -q. Since q E F, q E B or 

q E A (or both). If q is in B and not in A, then, where G is the resolvent 

of C and B on -q and q, let E be the resolvent of G and A on p and -p. 
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E E (CRB)RA and is a subclause of D. If q E: B and q E A, then, where G 

is as above and H is the resolvent of C and A on -q and q, let E be the 

resplvent of G and H on p and -p. E E (cRB)R(cRA) and is a subclause of 

D. The remaining cases yield a clause E E (cRA)RB or a clause 

E E (CRA)R(CRB) with E a subclause of D. Since R is symmetric (SRT = TRS 

for all S and T), the proof is complete. 

Lemma 2. If D E (ARB)RC, then there exists a subclause E of D with 

E E (C%)RAtJ(CRA)% ~.>(CRB)R(CRA)!.j((CRA)RB)RC ij((CRB)RA)RC. 

Proof. Let D E (AFB)PC. Then there exists F E ARE3 with D a para- 

modular-k of C and F. 

Case 1. D is inferred by paramodulation from F into C. Let 12 E F 

be the (equality) literal of paramodulation. Since F E APB, depending 

on whether paramodulation was from A into B or from B into A, one of A and 

B contains the (eq.uality) literal, say rl, of paramodulation and the other 

contains the literal, say p, containing the term occurrence of paramodula- 

tion. Since ;2 E F, there exists a literal r2 which is the ancestor of 

>2 in A or B (or both). r2 # 22 precisely when r2 is that literal p 

which is involved in inferring F in the discussion above. 

Case la. r2 E B and r2 = ;2. Let G be inferred by paramodulation on 

% 
r2 E B into p2 E C, where p2 contains the term occurrence in the paramodula- 

tion of C and F to get D. The literals of G are, with one possible exception, 

elements of D. The possible exception is the literal (rl or p) from B. If 

:z 4 A, then the clause E inferrable by paramodulation from G and A on rl and 

p (or p and rl) is a subclause of D and is in (CRB)RA. If ;2 E A, let H be 

inferred by paramodulation from C and A on p2 and >2. Infer E from G and H 

onp andr 1, and E E (CRB)P(CPA) and a subclause of D. 
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Case lb. r2 E A and r2 = ;2. There exists a subclause E of D with 

E E (cPA)PB 0r E E (cPA)P(cPB) which, by the symmetry of P equals (CPB)P(CPA), 

The argument parallels that of la. 

Case lc. r2 E: B and r2 $ >2, which implies that r2 = p. There exists, 

therefore, an argument u of r2 such that u is replaced by "u in inferring F. 

Since the literal of paramodulation of F and C is >2, 
% 
u or u2, the other 

argument of r2 may be the argument being "matched" with a term in p2 E C. 

u2 is unchanged in passing from B to F in all cases since all clauses herein 

are ground clauses. If u2 is the argument for match, then let G be the 

paramodulant of C and B with literal of paramodulation r2 in B, using u2 as 

the match argument. p2 E C becomes s2 E G. If >2 d A, then let E be the 

paramodulant of G and A on s2 and rl. If $2 E A, let H be the paramodulant 

of C ana A on p2 aa >2, and let E be the paramodulant of G and H on G2 and 

'1' E E (CPB)PA or E E (CPEs)P( CPA) and is a subclause of D. On the other 

hand, if z is the match argument for F and C, then an argument of rl can be 

successfully matched with the term in p2. Let H be the resulting inference 

from A and C, and let s2 be the transform of p2. If >2 4 A, let E be in- 

ferred from H and B on s2 and r2, using u E r 
1 2 

as the argument for match, 

where r 2 = Rulu2 or r2 = Ru2u1. If ;2 E A, let G be the paramodulant thus 

inferred by this last sequence and let E be the paramodulant of G and C on 

2 2 ana'~ 2’ E is a subclause of D and is in (CPA)W or ((CPA)PB)PC. 

Case la. r2 E A ma r2 # :2. With the symmetry of P, by paralleling the 

argument of lc, we obtain a subclause E of D with ' 

E E (CPA)PB c)(Ci>B)P(CPA)u (CPB)PA u((CPB)PA)PC. 
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Case 2. D is inferred by paramodtilation from C into F. Thus there 

exists a literal r 2 in C of paramodulation aa a literal s2 in F contain- 

ing the term occurrence. Let rl and pl be the literals for inferring F 

from A and B. Let p2 be the ancestor of s2 with p2 E A or p2 E B. 

If P2 = s2 ma p2 E B, then as in la there is a subclause E of D with 

E E (C!m)F'A unless p2 E A. But then there exists E E (cPB)P(cPA) with E 

a subclause of D. 

If P2 = S2 and p2 E A, then as in lb there exists E E (cPAJPB C)(CPB)P(CPA) 

with E a subclause of D. 

If p2 # s;, with p2 E B, then as in Case lc there exists E a subclause 

of D in (CPA)?6 c)((CPA>~)PC. (The proof parallels that of lc beginning 

with "if z 2 . .." , but with r2 in C in place of p2 in C. There is an al- 

ternate choice of obtaining E in ((CPA)PB)PC, for one can paramodulate C 

and A on r 1 in A or on z 2 in A.) 

Finally, if p2 # z2 =a p2 E A, then there exists a subclause E of D 

in (C?E3)PA u ((CF'B)PA)PC. 

Lemma 3. If D E (A?B)RC, then there exists a subclause E of D with 

E E (cRB)PAI,J (cPA)RBU(CRB)P(CRA)L) (!cRA)PB)RC u(cRc,)?% t,l(cPBjR~ i.,.l 

((cRB)PA)Rc. 

Proof. Let D be a clause in (APB)Rc. Then there exists an F E APB 

such that D is in FRC. Thus there exist literals z in F and -z in C with 

D=(F- {"s>)v (C - 6;I,. A s in the proof of Lemma 2, we can conclude 

that there exist literals q in A or B as ancestor of z, rl and p (one in A, 

the other in B) with F a paramodulant of A and B on rl and p and with 

D E c@. 
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If q E B, q = z, and "9 t A, then resolve C and B on q to get G. 

Then paramodulate G and A on p and rl to get E. If "9 E A but the re- 

maining conditions are as above, let H be the resolvent of C and A on 

'L 
q, and then paramodulate G and H on p and rl to get E. In either case 

E is a subclause of D. E E (CRB)PA or E E (CRB)P(CRA). 

If q = "9 but q E A, then the desired E is in (CRA)PBu(CRA)P(CRB) = 

(Cti)m u(CRB)P(CRA) by the symmetry of P. 

If q # z and q E B, then rl E A and rl has an argument which matches 

a term in -"s E c. (One argument of rl in fact matches a term in q while 

the orther argument of rl is the term just mentioned for the match with -"g.) 

If z k A, then paramodulate C and A on -z and rl, and resolve this para- 

modulant with B to get E. If "9 E A, then resolve C and A on "9, paramodulate 

the resolved with B on q, and finally resolve this paramodulant with C to 

get E. E E (CPA)RB u ((CRA)PB)RC and a subclause of D. 

If 9 # $ aa q E A, one finds a subclause E of D in (CPB)RA L)(.(CRB)PA)RC 

by paralleling that just given but interchanging the roles of A and B, 

Lemma 4. If D E (ARB)PC, then there exists a subclause E of D with 

E E (cPB)RAIJ (cPB)R(cPA)U (cPA)RB. 

Proof. Let q and -q be respectively in A and B as required for 

F E ARB with D E FPC, for arbitrary D. rl and p are the literals of F and 

C (in either order) for paramodulation. If p E B or rl E B (say, without 

loss of generality, p E B), then paramodulate C and B on rl and p to get G. 

If p E A, paramodulate C and A on r1 and p, and then resolve with G on q 

to get E. If p $. A, resolve G and A on q to get E. If p E A or rl E A in- 

stead of in B, then one can find E in (CPA)RB or in (cPA)R(cPB). The symmetry 

of R completes the proof. 
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Lemma 5. Let S and T& S be given and let U be the smallest set -..-** 

containing S-T such that U is closed both under paramodulation and reso- 

lution. (Factoring is irrelevant on the ground level.) 1fF~U,adC 

has T-support, and if D E CPF UCRF, then there exists a clause H such 

that H is a subclause of D and, more importantly, H has T-support. 

Proof. Let (S-T)O = S-T (since ground clauses have no non-trivial 

factors), aa for j 2 o let (s-T$+' = (s-T)~ UAPBUARB for all clauses 

A and B in (S-T)j. 

Then U = lJ (S-T)j. Let F be a clause in U, C a clause with T-support 

and D a clauseJin the union of CPF and Cm. The proof proceeds by induc- 

tion on the (S-T)-level of F, where the (S-T)-level n of F is (as given 

earlier) the smallest n such that F E (S-T)n. If the (S-T)-level of F is 

0, then F E S-T and D by definition has T-support since C has and F is a 

paramodulant or a resolvent of C and a clause in S-T. Assume by induction 

that the lemma is true for clauses G with (S-T)-level j with 0 < j 2 n, - 

and let F be of (S-T)-level n+l. Then there exist clauses A.and B in (S-T)n 

with F E AmI)ARB. D, therefore, is in the union of (ARB)Rc, (APB)PC, 

(APEMC ad (333)Pc. Depending on which of the just given four sets con- 

tains D, one of Lemmas 1 through 4 applies to yield a subclause E of D. 

In addition one knows that E is itself contained in some union of sets de- 

pendent on C, B, and A, and on some combination of parainodulation and reso- 

lution. We shall give the argument for the case'in which E E ((Ci&)i%)RC 

and show that a subclause H of E and hence a subclause of D, exists and has 

T-support. The remaining cases can be proved by an argument similar to that 

which follows but less involved. 
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Since in the case under discussion E is assumed in ((CRA)PB)RC, 

there exist clauses Gl and G2 with Gl E Cl&, G2 E GIPH, and E E G2RC. 

Since C has T-support and A E (S-T)n, by induction there exists the clause 

El which is a subclause of Gl and has T-support. El is either itself a 

subclause of G2 or El contains the literal relevant to the paramodulation 

of Gl and B. In the first case, let E2 = El. In the second, apply the 

induction hypothesis to El and B to show that there exists an E 2 which is 

a subclause of G 2 and which has T-support. Thus in either case we have a 

T-supported subclause E2 of G2. Either E2 is a subclause itself of E or 

contains the literal for resolution with C corresponding to that by which E 

was inferred. Since E2 has T-support and since every resolvent of E2 and 

C has T-support (for they both do), we have an E3 which has T-support and 

is a subclause of E which is a subclause of D. E3 = E2 or is in E21?C!. 

H = E3 is the desired subclause of D having T-support. 

Lemmas 5 and 6 are proved with IIT as the underlying inference system. 

The obvious modification of those proofs will give corresponding lemmas 

for CT. 

Lemma 5. Given S znd T CS and a clause D with T-heritage (relative - 

to S and n) then there exists a subclause E of D such that E has T-support. 

Proof. Let D be a clause with T-heritage, not deducible with para- 

modulation and resolution from S-T but deducible from S with those same in- 

ference rules. The proof proceeds by induction on the S-level of D. If D 

has S-level 0, then D E T since D has T-heritage. So D itself has T-support. 

Assume by induction that all clauses with S-level less than or equal to n 

having T-heritage possess a subclause having T-support, and let D have 

S-level n+l. Then there exist clauses C and F of S-level less than or equal 
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to n such that D E cFP UCRF. If neither C nor F have T-heritage then 

both are deducible in II from S-T, and D, therefore, is deducible in II from 

S-T. But D has T-heritage in II, which would be a contradiction, so one of 

C and F say C has T-heritage. By the induction hypothesis, C has a sub- 

clause Cl having T-support. 

If F has T-heritage, then by the induction hypothesis there exists 

a subclause Fl of F having T-support. Now C and F with paramodulation or 

resolution yielded D. Hence C and F each contain a literal relevant to 

this paramodulation or resolution. If either Cl or Fl (subclauses re- 

spectively of C and F) lack that particular literal, then the clause lack- 

ing the literal is a subclause of D and has T-support from the above. If 

both Cl and Fl have the literals in question then paramodulation or reso- 

lution of Cl and Fl on that literal pair yields a subclause of D. This 

subclause has T-support since C 
1 and Fl both do. 

Now consider the case where F does not have T-heritage and. is, there- 

fore, deducible in n from S-T. Paramodulation or resolution can be applied 

to Cl and F on the literal pair used to infer D, unless Cl is a subclause 

of D. In the latter case we are finished. In the former we infer from F 

and Cl the clause G which, since C 1 is a subclause of C, is a subclause 

of D. We apply Lemma 5 to F, Cl, and G to obtain a subclause C2 of G. 

C2 is, therefore, a subclause of D, and by Lemma 5 it has T-support. 

It has already been shown by example (see the end of the section on 

definitions and notation) that the concept of T-heritage is distinct from 

that of T-support. It follows that, given a clause with T-heritage, 

Lemmas 5 and 6 may yield at best a proper subclause having T-support. In 

the example just cited the clause with T-heritage was (P,-QR), and the 

subclause provided by Lemmas 5 or 6 is {-Q,R). 
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Remark. By examining the proofs of Lemmas 5 and 6, one can prove 

the corresponding lemmas with n replaced by C. The correspondent of 6 

states that, if D has T-heritage relative to S and C, there is a sub- 

clause E of D which has T-support relative to S and C. A similar state- 

ment is the correspondent to Lemma 5. The heart of the matter is Lemma 1, 

which guarantees the existence of a clause (ground) inferrable by reso- 

lution with some appropriate re-ordering when presented with.a clause D 

in (ARB)Rc. 

Definition: R is R-sound if, whenever St-,C, C holds in all R-models 

of S in which C is defined. An R-model of S is a model of S in which R 

(the equality predicate) is mapped to an equality relation. 

Corollary 1. If S is an unsatisfiable set of ground clauses with 

T &S such that S-T is satisfiable, then Sf- CT" (set of support is ground 

refutation complete in C). 

Proof. Let S be an unsatisfiable set of ground clauses with T&S 

such that S-T is satisfiable. Since resolution is refutation complete, 

S)- ,D, the empty clause is deducible from S. Since resolution is sound 

and S-T saLlsfiable, the empty clause bar; T-heritage (rele.tive tc S and 2). 

By the remark above, there exists a subclause of D having T-support 

relative to S and C. (Contradictory units could have been the focus of 

attention instead.) Thus set of support is ground refutation complete in C. 

Corollary 2. If S is an R-unsatisfiable set of ground clauses and if 

T&S is such that S-T is R-satisfiable and if S contains all clauses of 

the form Rtt for t in the Herbrand universe of S, then SpnTR; set of sup- 

port is ground refutation complete in II. 
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Proof. Let S and TCS satisfy the hypothesis of the corollary. -- 

Since 11 has been sho+m to be refutation complete for such an S [ll] [51, 

and since paramodulation and resolution are both R-sound and S-T is 

R-satisfiable, the empty clause has T-heritage (relative to II and S). APPlY Lemma 6. 

Parsmodulation, though R-sound (i.e., sound for first order theories 

with equality), is of course not sound for ordinary first order theories. 

Qb is a paramodulant of &a and Rab but not a logical consequence of &a 

and Rab. In Corollary 2 it is not sufficient to require S-T to be satis- 

fiable rather than R-satisfiable as can be seen from the following 

example. 

S-T = {&a), I-&b), (Rab) { 1 
, and T = {Pa). 

S is R-unsatisfiable. S-T is satisfiable but R-unsatisfiable. Obviously 

there is no T-supported refutation relative to S and II. 

Lemma 7. If A' is an instance of A, then there exists a factor B of 

A having the same number of literals as A' and having A' as an instance. 

Lemma 8. If A' and B' are instances respectively of A and B and if 

C!' is an element of A'RB', then there exists a clause C E ERF having C' 

as an instr,pce, where E is a factor of F and F is a factor of B. 

Lemmas 7 ma 8 are true for all instances aa not just for ground 

instances. 

For the theorem which follows, the proof is one of obtaining a de- 

duction based on a set S of clauses from a ground clause deduction based 

on a set of instances of S. 

Occurrences of terms in two literals are said to be in the saMe 

position if each is the il-st argument of the i2-nd argument of . . . of 

the in-th argument of its literal. 
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Lemma 9. If A' and B' are ground instances of clauses A and B re- 

spectively, aa if C' is a paramodulant of A' and B1, and if B has a 

term in the position corresponding to the term of paramodulation in B', 

then there exists a clause C in E?F where E is a factor of A and F is 

a factor of B [12]. 

Theorem 1. If S is a functionally-reflexive R-unsatisfiable set of 

(not necessarily ground) clauses and if T&S with S-T R-satisfiable, 

then SkIITU; set of support is R-refutation complete (in IIT) for func- 

tionally reflexive sets. 

Proof. Let H be the Herbrand universe of S, and let S' be the full 

instantiation of S over H. Since S is R-unsatisfiable, S' is R-unsatisfiable. 

S' contains all clauses of the form Rtt for all terms t in H, where R is 

the equality predicate. Let the full instantiation of S-T over H be (S-T)'. 

(S-T)' is R-satisfiable since S-T is. T', the full instantiation of T over 

H, is such that S'-T' is R-satisfiable since S'-T'& (S-T)'. By Corollary 2 

there exists a T' -supported refutation Di,D;,...,D'. Using the refutation n 

D;,D;,...+ the following procedure yields a T-supported refutation 

Dl,D2>.-, Dh of S itself within II. 

For each clause Di of the ground refutation, the procedure yields a 

finite sequence Ui of clauses such that the last clause in Vi has Di as an 

instance and also has precisely the same number of literals as D!. The 1 

juxtaposition of Ul,U2,..., Un will be a T-supported refutation Dl,D2,...,Dh 

in il of S. In many cases h will be greater than n. This results from two 

causes: the need for factoring or the need for extra steps due to the lack of 

a capturing lemma of the desired type for paramodulation. 



23 

For each Dl whose justification is that Di is in T', there exists an 

A in T with Dl as an instance. If A and Di have the same number of lit- 

erals, let Ui = A. If not, let Ui be A,B as provided by Lemma 7. 

For each Di whose justification is that Di is in S'-T', there exists 

an A in S-T with D; as an instance. If A and Dl have the same number of 

literals, let Ui = A. If not, let Ui be A,B as provided by Lemma 7. 

For each Di whose justification is that Di is a resolvent of D3 and 

D;', consider the corresponding U. and U Let A be the last element of 
J k' 

Uj and B be the last element of Uk. Since by construction A, B, D!, and 
J 

D;Z satisfy the hypothesis of Lemma 8, there exists a C in ERF having Di 

as an instance, where E and F are respectively factors of A and B. A, how- 

ever, has the same number of literals as DJ by construction. One can deduce, 

therefore, that E = A. Similarly, it follows that F = B. If C and Df have 

the same number of literals, let Ui = C. If not, apply Lemma 7 to obtain 

the clause D such that D has the same number of literals as D; and has D; ' 

as an instance. Then let Ui be C,D. 

For each Df whose justification is that Di is a paramodulant of D! 
J 

and D11;, let the paramodulation be, wi,tho::t loss of generality, from D! into 
J 

D;. Let A and B be respectively the last elements of the corresponding U 
J 

and U k' Let u' in DL be the term occurrence of paramodulation relevant to 

the inference of Dr. If B contains a term in the corresponding position to 

that of u' in Di, then by Lemma 9 there exist factors E and F of A and B 

respectively such that some C in E?F has D! as an instance. 
1 Since by con- 

struction, DJ and A have the same number of literals and similarly Di and B 

have the same number of literals, E = A and F = B. If C and Di have the same 

number of literals, let Ui be C. If not, let Ui be C,D, where D is obtained 
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by applying Lemma 7 to D; and C. When B does not have a term in the posi- 

tion corresponding to that of u' in Dl', the property of functional reflex- 

ivity comes into play. 

In the case now under discussion D' i is inferred by paramodulation 

from D; into Di, A and B are respectively the last elements of Uj and Uk, 

and B does not have a term u in the position (within the corresponding 

literal) corresponding to u' (the term of paramodulation) in DL. Normally 

A and B will not have a paramodulant C having Dl as an instance. Depending 

on whether or not DL has T-support, there are two alternatives for obtaining 

a pair of clauses one of whose paramodulants has Di as an instance. 

Consider the case in which DL has T'-support. We show that a clause 

Br can be inferred by paramodulation from B and a set of functional reflex- 

ivity axioms. Br will have Di as an instance and will also have a term u 

in the position corresponding to u'. Since DL is an instance of B, there 

is a substitution CI such that Bo = D' k' Since B lacks a term in the position 

corresponding to u', there exists a variable x in B and a non-empty set of 

functions fl,f2,..., fp in DL such that cr contains fl(...f2(...fp(...u'...)...))/x, 

l.e., x ic replaced in passing from B to D' b k y instantiation by 

fl(...f2(...fp(...U'... )...)>. The vector giving the position of x in B is 

an initial segment of that for u', i.e., the vectors agree on the first q 

coordinates where q is the number of coordinates giving the position of x in 

B. Let Gl,G2,..., Gp be the functional reflexivity axioms corresponding to 

fl'f2Y. ,fp* Let Bl be the paramodulant of Gl into B on x. In general for 

1 2 m 2 p-l, let Bm+l be the paramodulant of GmAl into Bm on the variable 

occurring as the t-th argument of fm where t is the (q+m-t-l)-st coordinate 

of the position vector for u'. By construction Bl and, therefore, all Bm, 
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lzmzp, have the same 

A, B P' 
D; and Di satisfy the 

clause C in E?F having D; as 

number of literals as D1 k' Let Br = B . 
P 

hypothesis of Lemma 9. So there exists a 

an instance, where E and F are respectively 

factors of A and B 
P' 

As earlier in the proof one can conclude that E = A 

and F = BP since B 
P 

and DL have the same number of literals. If C and D; 

have the ssme number of literals let Ui be Gl,G2,...,Gp,Bl,B2,...,Bp,C. 

If not, apply Lemma 7 to C and Dl to obtain a clause D having D; as an in- 

stance and having the same number of literals as Di; Then let Ui be 

Gl ,...,C,D. 

The other alternative occurs when BL does not have T'-support. But 

then, since the ground deduction has T'-support, Di has TV-support. Now 

the procedure just given would, of course, still yield a clause D with 
P 

most of the desired properties. But, because of the consideration of 

T-support desired for Dl,D2,...,Dh, BP will not do. We shall show instead, 

therefore, that there exists a clause Ap which can be inferred from A, the 

last element of U., and the G,, 
J 

the functional reflexivity axioms of the 

previous paragraph such that paramodulation from A into B yields a clause 
P 

having a subclause of Di as an instance. First we re-number the G r' 
Fcr 

1 2 m 2 p with r+m = p+l, let Hm be Gr. Since the inference of Di was by 

paramodulation from D! into D$ 
J 

D; contains an equality literal Rs't'. 

Since the term of paramodulation in D;C relevant to this inference was u', 

and since D! and DL are ground clauses, s' or t' = u'. 
J 

Without loss of gen- 

erality say that s' = u'. Since by construction D! 
J 

is an instance of A (the 

last element of Uj), A contains a corresponding equality literal Rst. A 
P 

will be identical to a subclause of A except that Rst will be replaced by 

Rfl(f2(...fp(s)...))fl(f2(...fp(t)...)), and the last p coordinates of the 
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position vector of s will be identical to the last p for u'. Let A0 = A, 

and At for 1 2 t 2 p be the paramodulant of At 1 into Ht. Each paramodu- 

lation is into the second argument of the corresponding Ht and into the 

r-th subargument therein where r is the (q+p+l-t)-th coordinate of the 

position vector of u'. The literals of paramodulation are respectively, 

Rst, Rfp(s)fp(t),...,Rf2(f~(...fp(s)...))f2(f3(...fp(t)...)). As was seen 

earlier there exists the variable x occurring in the position in B whose 

first q position coordinates are identical to the first q of u' in DA. 

Let Bl be obtained by parsmodulation of A into B on Rfl(f2(...fp(s)...))fl(f2(,.. 
P 

fp(t)... >> into the above mentioned occurrence of x. Let x1 denote the term 

occurrence resulting from the replacement of that occurrence of x. Let B2 

be the paramodulant of A on Rst into x1 in Bl and let x2 denote the corres- 

ponding resulting term occurrence. Let B3 be obtained by paramodulation of 

A on Rst into x2 in B2. B3 has Dl as an instance. If B3 and Df have the 

same number of literals let Ui be Hl,H2,...,H A A p' 1' 2' . . ..ABBB p' 1' 2' 3' If 

not, apply Lemma 7 to B3 and Di to obtain B4 such that B4 has D! as an in- I 

stance and B4 and Di have the same number of literals. Then let 

Ui be Hl,.+.'B 3 4’ ,B 

The need for application of paramodulation to A and Bl and then to A . 

and B2 is that certain literals needed to capture D f as an instance of A 

might be lost in passing from A to A and then to Bl, 
P 

Now generate in order Ul,U2,...,Un from Di,D;,...,D~ by applying the 

procedure given above. The desired (possibly) non-ground deduction 

Dl,D2,-, Dh is obtained by juxtaposing Ul,U2,...,Un. Since DA is the 

empty clause and, by the construction, the last element of Un has DA as 

an instance, Dl,D2,..., h D is a refutation (that Dl,D2,...,Dh is a deduction 

including justifications follows from the construction.) 
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The argument that Dl,D2,..., Dh is a T-supported refutation proceeds by 

induction. We show that for each Ui, all elements of Ui are either factors 

of clauses in S-T or have T-support, and in addition we show that, for all 

. 1, if Di has T'-support, then the last element of Ui has T-support. D; is 

in S'-T' or in T'. So by construction the elements of Ui are either fac- 

tors of clauses in S-T or factors of clauses in T. If Di has T'-support 

then by construction the last element of Ul is a factor of a clause in T. 

Now assume by induction that our statement holds for Ut with 1 2 t 2 r, 

and consider U r+l' 

If D;+l 
is justified by being in S1-TV, then Ur+l has its elements 

among factors of S-T. If D&l is justified by being in T', again as above 

U r+l consists of factors of elements of T, and, therefore, the last element 

of u r+l has T-support. 

If D;+l is a resolvent of D; and Dl',at least one of D; and Di has 

T'-support since the ground deduction has T'-support. Say without loss of 

generality that DL has T'-support. But then by induction the last line B 

of Uk has T-support. Also by induction A, the last element of U., either 
J 

has T-SU-JQG;% or is a factor of a clalxe in S-T. Ur+l by construction con- 

sists either of C or C and D, where C is a resolvent of A and B and D (if 

needed) is a factor of C. In either case Ur+l has all of its elements with 

T-support. 

If D;+l is justified as a paramodulant of two earlier clauses A and B, 

and if B has a term in a position corresponding to the term (on the ground 

level) of parsmodulation, we can parallel the arguments just given for D! r+l 

when D' r+l is a resolvent. If D;+l is justified by paramodulation from D! 
J 

into Di where D$ has T' -support, and if B is the last element of Uk but does 

not have a term in the corresponding position to that of the term of 
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parsmodulation in DL then the procedure gives as U r+l the sequence 

Gl,G2,...,Gp,Bl,B2,...,Bp,C or possibly . ..C.D. Gl,G2,...,Gp are in 

s.. By induction B has T-support since D' does. k Therefore Bl,B2,...,Bp 

have T-support. By induction the last element A of U. either is a factor 
J 

of an element of S-T or has m ,-support,so C has T-support. If the pro- 

cedure calls for an application of Lemma 7 to yield a clause D, then D 

has T-support. The last line of Ur+l, therefore, has T-support. 

If D;+l has T'-support and is a paramodulant of D! into Di, but Di 
J 

does not have T1 -support, then Di has T' -support since the ground deduction 

is T' -supported. We can parallel the argument just given in the previous 

paragraph and conclude that Ur+l consists either of factors of clauses of 

S-T or clauses with T-support and that the last element of Ur+l has T-support. 

The induction is, therefore, complete, and we have the proof of Theorem 1. 

Since S'-T' was shown to be R-satisfiable, the empty clause must have 

T'-support. Dh, therefore, must have T-support since Dh is the last element 

of un. 

[It should not be concluded that a completeness theorem for paramodula- 

tion witholt functional reflexivity would lead directly to the completeness 

theorem for paramodulation with set of support in the absence of functional 

reflexivity. The functional reflexivity axioms were used directly in the 

proof of Theorem 1.) 

Theorem 2. If S is an unsatisfiable set of (not necessarily ground) 

clauses, and if Ts S is such that S-T is satisfiable, then SPCTU; 

set of support is refutation complete within CT. 



Proof. The proof parallels that just given for Theorem 1, omitting 

all references to functional reflexivity, paramodulation, and replacing 

R-satisfiability by satisfiability, etc. 

It is perhaps interesting to note that the proof of Theorem 1 easily 

yields refutation completeness within CT, i.e., completeness of set of 

support for resolution. The previously given proofs for refutation 

completeness in CT [9][10], however, do not seem to generalize easily to refutation 

completeness in ITT. 

Corollary 3. For finite functionally reflexive sets there is a refuta- 

tion procedure for II with set of support. That is, there is a uniform pro- 

cedure that will, given any T and a finite functionally reflexive R-unsatisfiable 

Sg T with S-T R-satisfiable, generate (in a finite number of steps) a refuta- 

tion of S in the system IIT. 

Proof. By Theorem 1 there exists a T-supported refutation Dl,D2,...,Dk. 

Since by definition refutations are finite in length and the Di either are 

factors of S-T or are in some Ti, there exists an n such that So!-,) Ti contains 

all D.. 1 Consider the procedure which generates (S-T)', then TE,Ti,...,Ti. 

Since S is fjnite, (S-T) 
0 * and Ti for 0 2 j 2 n are all finite, the given pro- 

cedure will find the T-supported refutation of S after generating only finitely 

many clauses. 
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