# AXIOM SYSTEMS IN AUTOMATIC THEOREM PROVING* 

by
George Robinson
Stanford Linear Accelerator Center Stanford, California, U.S.A.
and

Lawrence Wos
Argonne National Laboratory Argonne, Illinois, U.S.A.

Presented at the IRIA Symposium on
Automatic Demonstration at Versailles, France December 16-21, 1968

[^0]In judging the suitability of axiom systems for automatic theorem proving in a particular domain, two considerations are of prime importance: $Z o g i c a l$ strength and proof-search efficiency. The axiom system should be just strong enough to yield all the theorems of the theory and only the theorems of the theory. We shall employ the concept of adequacy (defined in the following section) to study this property. Given two axiom systems each of appropriate strength for the theory in question, one would prefer to use the system that would, when used by the theorem-proving programs in question, discover proofs in the shortest time (or using the smallest amount of memory or other computer resources). Examples showing how the choice of axiom system can have important effects on proof-search will be given in the section on efficiency.

We shall be dealing with a language equipped with denumerably many individual variables, individual constants, n-adic function constants, and n-adic predicate constants. An individual constant or individual variable is a term, as is an n-adic function constant followed by $n$ terms. A ground term is one involving no variables. An atomic formula (or atom) is an n-adic predicate letter followed by n-terms. A literal is an atomic formula or the negation thereof. A clause is the disjunction of finitely many literals; it is a ground clause if no variables occur. It is often profitable to identify clauses, particularly ground clauses, with the set whose members are the literals occurring in the clause.

If some or all of the variables of a clause are systematically replaced by terms, the resulting clause is an instance of the original clause.

A set of ground literals (literals involving no variables) satisfies a ground clause if it has a non-empty intersection with the clause; it satisfies any clause (with respect to some herbrand universe, $H_{S}$ ) if it satisfies all ground instances (over $H_{S}$ ) of that clause. If a set of literals contains the negation of each literal of a ground clause, it condemns the ground clause; if it condemns some ground instance of any clause, it condemns the clause. The clause I (read "the empty clause" or just "nil") having no literals can be'satisfied by no set of literals and is (vacuously) condemned by every such set.

The herbrand universe, $H_{S}$, of a set $S$ of clauses is the set of all ground terms that can be formed from the functions and individual
constants occurring in $S$, with the constant a being supplied in the case that $S$ contains no indidual constants. An herbrand atom for $S$ is an atomic formula composed of a predicate letter occurring in $S$ and the appropriate number of terms from $H_{S}$. An interpretation $I$ of $S$ over $H_{S}$ is a set of (ground) literals such that for each herbrand atom $L$ for $S$, exactly one of $L$ or $\sim L$ is in $I$. A model of $S$ (over $H_{S}$ ) is an interpretation of S over $\mathrm{H}_{\mathrm{S}}$ that satisfies S .

If $S$ and $T$ are sets of clauses, the $S$ implies $T(S \vDash T$ ) if no model of $S$ condemns $T$. Then each clause $C$ in $T$ is a logical consequence of S (is implied by $\mathrm{S}, \mathrm{S} \vDash \mathrm{C}$ ).

This paper concerns itself principally with sets of clauses. There appears to be no reason, in principle, why the discussion should not go over to more general sentences, such as those obtained by using logical operators for conjunction, conditional, biconditional, and more general application of negation and quantification. (In effect, with clauses one considers only universal quantification over each clause.) In the discussion of eliminability, the biconditional $\equiv$ is in fact used, since the statement of this property appears to become inordinately complex in terms of clauses alone. We assume some conventional rules of function, inference, and semantics for these additional connectives.

For clauses, three rules of inference are of prime importance in automatic theorem proving: factoring, paramodulation, and resolution.

Definition (Paramodulation): Let $A$ and $B$ be clauses such that a literal Rst (or Rts) occurs in $A$ and a term $u$ occurs in (a particular position in) B. Further assume that $s$ and $u$ have a most general common instance $s^{\prime}=s \sigma=u \tau$ where $\sigma$ and $\tau$ are the most general substitutions
such that so $=u t$. Where $\hat{B}$ is obtained by replacing by to the occurrence of $u \tau$ in the position in $B_{\tau}$ corresponding to the particular position of the occurrence of $u$ in $B$, infer the clause $C=\hat{B} U(A-\{$ Rst $\}) \sigma$ (or $C=\hat{B} U(A-\{R t s\}) \sigma) . C$ is called a paromodutant of $A$ and $B$ and is said to be inferred by parcomodulation from A on Rst (or Rts) into B on (the occurrence in the particular position in B of) $u$. The literal Rst (or Rts) is called the literal of paramodulation. [4]

Definition: For any literal 1, /I/ is that atom such that either $I=/ I /$ or $I=\sim / 1 /$.

Definition (Resolution): If A and B are clauses with literals k and $I$ respectively, such that $k$ and $l$ are opposite in sign (i.e., exactly one of them is an atom) but $/ k /$ and $/ 1 /$ have most general common instance $m$, and if $\sigma$ and $\tau$ are the most general substitutions with $m=/ k / \sigma=/ 1 / \tau$, then infer from $A$ and $B$ the clause $C=(A-\{k\}) \sigma \cup(B-\{I\}) \tau . C$ is called a resolvent of $A$ and $B$ and is inferred by resolution.

Definition (Factoring): If $A$ is a clause with literals $k$ and $I$ such that $k$ and $l$ have a most general common instance $m$, and if $\sigma$ is the most general substitution with $k \sigma=1 \sigma=m$, then infer the clause $A^{\prime}=(\Lambda-\{k\}) \sigma$ from A. A' is called an imediate factor of A. The factors of A are given by: $A$ is a factor of $A$, and an immediate factor of a factor of $A$ is a factor of $A$.

Given a set $S$ of sentences and implicitly understood rules of formation and semantics, we shall be interested in the set $W(S)$ of all wellformed sentences over the vocabulary of $S$ (with a denumerable supply of individual variables added if necessary) and the set $V(S)=\{A \mid A \in W(S)$, $S\{A\}$. A theory $T$ will be thought of as being defined by the set $W(\mathbb{T})$ of well-formed sentences of the theory and the set $V(T)$ of valid formulas of the theory even when we have no particular set of axioms in mird for $T$.

A set $E$ of sentences is a non-creative* extension of a set $E$ if $V(E) \cap W\left(E^{\prime}\right)=V\left(E^{\prime}\right)$; it is an eZiminable extension if for every $C \in W(E)$ there is a $C^{\prime} \varepsilon W\left(E^{\prime}\right)$ such that $E F C \equiv C^{\prime}$.

In Figure 1 two (redundant) sets of axions are given.** Al-8 were obtained by writing in clause form a set of axioms given by Abraham Robinson*** for group theory in terms of a single binary relation
*The concepts of non-creativity and eliminability as used here are closely related to the two criteria for definitions given in [7], page 154; hence the choice of terminology.
**\{A1, .., A8\}, $\{A 6, \ldots, A 10\}$, and $\{A 6, A 7, A 8, A 9, A 11, A 12\}$ are equivalent sets. $\{B 1, B 2, B 5, B 6, B 7, B 8, B 9, B 11, B 13\},\{B 6, B 7, B 9, B 11, B 13, B 14\}$, and $\{B 6, B 7, B 11, B 12, B 13, B 15, B 16\}$ are equivalent sets and each of them implies the three sets of A-axioms. Since A3 appears to be a more natural way of stating associativity one might ask whether AlO might not be replaced by $A 3$ in the set $A 6-10$. This question is answered negatively by the following counter-example:

Consider a domain of three elements $\{0,1,2\}$. Let $f$ map to the usual cyclic group operation on this domain, let $g$ map to the corresponding group inverse operation, and let e map to 0 , but let $R$ map to the equivalence relation $K$ such that $0 \neq I=2$; namely $K=\{(0,0),(1,1),(1,2),(2,1),(2,2)\}, A 3, A 6, A 7, A 8$, and A9 are all obviously satisfied, but $A 5$ is falsified by the choice of $x=y=z=1$ and $u=2$, since $(1,1) \varepsilon K,(1,2) \varepsilon K$, and $(f(11), f(12))=(2,0) \notin K$.
***Reference [3], p. 26.
AI $\overline{\mathrm{R} x y}$ Ryx (sym) BI $\bar{R} x y$ Ryx
A2 $\bar{R} x y \overline{R y z}$ Rxz(trans)
B2 $\overline{\mathrm{R} x y} \overline{\mathrm{Ryz}} \mathrm{Rxz}$
A3 $\operatorname{Rf}(f(x y) z) f(x f(y z))$ ..... (assoc.)
A4 $\bar{R} x y \operatorname{Rg}(x) g(y)$ ..... (g-subst.)
A5 $\bar{R} x z$ Ryu $R f(x y) f(z u)$ (f-subst.) B5 $\bar{R} x t$ Ryu Rzw $\overline{\text { Pryz }}$ Ptuw
A6 $\operatorname{Rf}(e x) x$(I.ident.)
B6 Pexx
A7 $\operatorname{Rf}(g(x) x) e$(l.inv.)
B7 $\operatorname{Pg}(x) x e$
A8 Rxx(reflex.)
B8 Rxx
A9 $\overline{\mathrm{R} x z} \overline{\mathrm{R} y z}$ Rxy
B9 $\bar{P} x y z$ Pxyu Rzu (uniq.of prod.)
Alo $\overline{\operatorname{Rf}}(x y) u \overline{\operatorname{Rf}}(y z) t \operatorname{Rf}(u z) f(x t)$

Bl3 Pxyf(xy) (closure)
B14 $\bar{R} z u$ Pxyz Pxyu ( $P_{3}$-subst)
B75 Rxy Pexy
B76 Pexy Rxy
B17 Pxyz Pxyu Pezu
B18 Pezu Pxyz Pxyu
B19 $\overline{\mathrm{R}} f(x y) z$ Pxyz
B20 Pxyz Rf(xy)z
A21Rf(xe) $x$B21 Pxex
A22 $\operatorname{Rf}(\mathrm{xg}(\mathrm{x})) \mathrm{e}$(r.inv.)B22 $\operatorname{Pxg}(x) \mathrm{e}$
$R$ and two functions $f$ and $g . B 1-2, B 5-9, B 11$, and Bl3 were obtained from another set of group theory axioms in the same book\%** by replacement (in a set of sentences not originally involving function symbols) of existentially-quantified variables by Skolem function symbols.

Consider the set $S 4=S I \cup\{B 15, B 16\}$, where $S I=\{B 6, B 7, B 11, B 12, B 13\}$. Thus defined, 54 is obviously a non-creative, eliminable extension of Sl . If a theory $T$ is a non-creative, eliminable extension of a set $S$ of axioms, then the set $S$ is of appropriate logical strength for a study of the theory $T$ by means of automatic theorem-proving. That is, since every sentence $C$ in $W(T)$ can be mapped into a sentence $C \mu$ in $W(S)$ in such a way that $C \mu$ is in $V(S)$ iff $C$ is in $V(T)$, we need only apply a proof procedure to $V(S)$. But confining the choice of axiom sets to those which have $T$ as a non-creative, eliminable extension is unnecessarily restrictive. It forbids, for example, using a system such as SI to study one such as Al-A8, when the former is much more efficient in proof search with some types of inference apparatus than the latter. This problem is not avoided by allowing the use of a set $S$ which is itself a non-creative, eliminable extension of the theory. It appears appropriate for automatic theorem proving to make only a requirement concerning the existence of an appropriate (and effective) mapping $\mu$. We shall do this by defining a set of sentences $S$ to be adequate for a theory $1 P$ iff there exists a uniform means of transforming the atomic formulae of $W(T)$ into atomic formulae of $W(S)$ such that the mapping $\mu$ induced on all sentences of $W(T)$ maps the
sentences $C$ in $W(T)$ into sentences $C \mu$ of $W(S)$ such that
$C \mu \varepsilon V(S)$ iff $C \varepsilon V(T)$. 粒粒
Whenever $T$ is a non-creative, (effectively) eliminable extension of $S, S$ is adequate for $T$. By effectively eliminable we mean that there is an effective means of determining the $C^{\prime}$, given the $C$. In that case, let $C \mu=C^{\prime}$ for $C \varepsilon W(T)-W(S)$ and let $C \mu=C$ for $C \in W(S)$. Then for $C \varepsilon W(S), C \mu=C \varepsilon V(S)$ iff $C \varepsilon V(T)$ since $V(T) \cap W(S)=V(S)$. For $C \varepsilon V(T)-V(S)$, we have $C \mu \varepsilon V(T)($ since $T \neq C \equiv C \mu$ ) and hence $C \mu \varepsilon V(S)$. For $C \in W(T)-V(T)$, we have $C \mu \notin V(S)$, since if $C_{\mu} \varepsilon V(S)$ we would have Cu $\varepsilon V(T)$ and hence $C \varepsilon V(T)$ (since $T \vDash C \equiv C \mu$ ) contrary to hypothesis.

On the other hand, $S$ can be adequate for $T$ but fail to be a noncreative extension of $S$ as illustrated by the trivial example $T=\{P\}$, $S=\{\bar{P}\}$ ( $\mu$ is the mapping from $P$ to $\bar{P}$, and from $\bar{P}$ to $P$ ).

If we let $S 2=\{B 9, B 14\}$ and consider $S 3=S 1 \cup S 2$ we find that $S 1$ is adequate for $53 .{ }^{* * * * * * ~ T o ~ s e e ~ t h a t ~ t h i s ~ i s ~ t h e ~ c a s e, ~ l e t ~} \tau$ map each
*****It may be possible to generalize the concept of adequacy by partially relaxing the restriction that $\mu$ be induced by a transformation of atomic formular. The restriction is quite natural for automatic theorem proving, since it requires, in effect, that $C \mu$ be a clause if $C$ is a clause. The restriction apparently cannot be completely removed to allow arbitrary effective $\mu$ without admitting, for example, certain pathological mappings by which any set of tautologies in a sufficiently rich vocabulary could be shown adequate for any finitely-axiomatizable theory.
******Henceforth we shall restrict the discussion to consider only clauses as sentences, i.e., $W(S)$ will always be a set of clauses.
atomic formula of the form Raß into Peaß while leaving one of the form Praß unchanged. Then let $\theta$ be the mapping on clauses induced by $\tau$. First we show that $\theta$ maps $V(S 3)$ into $V(S I)$. Suppose by way of contradiction that for some $C, S 3: C$ but $S I \neq C \theta$. Then there is a model $M$ of Sl over $\mathrm{H}_{\mathrm{SI}}$ that condemns some ground instance $\mathrm{D} \theta$ of $\mathrm{C} \theta$, where D is a ground instance of $C$. Let $M^{*}=M \cup\{\operatorname{Ra\beta } \mid$ Pe $\alpha \beta \in M\} \cup\{\bar{R} \alpha \beta \mid$ Pe $\alpha \beta \notin M\}$. Then $M^{*}$ is an interpretation of $S 3$ that satisfies Sl. If R $\alpha \beta$ and Pyo人 are in $M^{*}$, then Peaß and Pro $\alpha$ must be in $M$ and, since Pezu Pxyz Pxyu is a theorem of $S l$, it follows that $P \gamma \delta \beta$ is in $M$ and hence in $M^{*}$. Thus $M^{*}$ satisfies $B 14$. A similar argument shows that $M^{*}$ satisfies $B 9$ as well, hence $M^{*}$ is a model of $S 3$ and must satisfy $D$. Let $M^{*} \cap D=E$. Then $M \cap D \theta=E \theta \neq \varnothing$, contrary to the hypothesis that $M$ condenned $D \theta$. It remains to show that $\theta$ maps only elements of $V(S 3)$ into $V(S l)$ : Since $S 3 \equiv \bar{P} e x y$ Rxy and $S 3=\bar{F} x y$ Pexy, it follows that $S 3, C \theta F C$ for any $C \in W(S 3)$. If $S 1 \vDash C \theta$, then $S 3 F C \theta$, since $S I \leq S 3$. Hence if $S 1 \vDash C \theta$, S3 F C .

To show that $S 3$ is adequate for $A 1-8$, let $\mu$ be the identity mapping on clauses and rirst note that S 3 F Ai for $i-1, \ldots, 8$. (Two of the examples in the section on proof search efficiency contain proofs that S3-B21-22. Proofs that $53, B 21-22+A 1-8$ are given in Appendix A.) Hence if $C \varepsilon V(A I-8)$, then $C_{\mu}=C \in V(S 3)$. Now suppose that $C \in W(A I-8)-V(A I-8)$, Then there must be a model $M$ of $A l-8$ over $H_{A l-8}$ that condemns $C$. Let
 Pxyz $\operatorname{Rf}(x y) z\} \leq$ S3. Hence $M^{*}$ must be a modcl of $S 3$. Since $M^{*}$ condemns $C$, $C \mu=C$ camot be in $V(S 3)$.

In general, if $S^{\prime}$ is adequate for $S$ and $S$ is adequate for $T$, it follows that $S^{\prime}$ is adequate for $T$, since if $\mu^{\prime}$ is the mapping of $S$ into $S^{\prime}$ and $\mu$ the mapping of $T$ into $S, \mu \mu^{\prime}$ will do for the mapping of $T$ into S'. In particular, since $S 1$ is adequate for $S 3$ and $S 3$ adequate for Al-8, Sl must be adequate for Al-8 and in turn for any theories for which Al- 8 may be adequate. One might wish to note that Al-8 is not a noncreative extension of Sl .

## Proof-search Efficiency

In the literature on automatic theorem-proving, considerable attention has been devoted to selection of an efficient proof search algorithm. [1], [2], [4], [6], [8], [10]. Nevertheless, at the present state of the art, the ease--even the feasibility-mof automatic theorem proving in a given theory (e.g., group theory) is vitally affected by the choice of axioms and representations of theoremcandidates for the study of the theory. Indeed, the choice can be so important that it is difficult to find examples to compare search times for systems such as AI-8 with more efficient (with a given proof search algorithm) systems such as 53 . With an unfortunate choice of axions, the running times for quite simple theorems can be prohibitively long to obtain a numerical comparison.

The figures for running times given in this section are for the PGl-PG5 series of theorem-proving programs developed at Argonne a number of years ago and more fully described in [8], [9], and [10]. PG5 has been singled out for use in most of the cases run becausc it provides the rairest basis for comparing diverse axiom systcms, even though it is slower in some cases than some others in the PGI-PG5 family. In order to obtain numerical comparisons for efficiency of axiom systems in ordinary first-order theories with no special treatmont of equality, the demodulation apparatus of PG5 was disabled. It proved to be infeasible to obtain, with the programs available, conclusive efficiency comparisons for first.order theories with equality, due to incompleteness difficulties introduced by the treatment of demodulation in those programs having special treatment of equality.

First we shall consider the example of proving that in a group a right inverse exists. As is usually the case in automatic theorem proving, the procedure is to deny the existence of a right inverse and proceed to refute the denial by appeal to the axioms. In the vocabulary of Al-8, the denial is $\bar{R} f(a y) e ;$ for $S 3$ it is Faye. PG5 obtained a refutation from 53 in less than one second, but could obtain no refutation from Al-8 in the 288 seconds allowed for running the case. Some insight into the difficulties may perhaps be obtained by examining refutations in the two systems. One refutation from Al-8 is as rollows:

1. $\overline{\mathrm{Rxy} \mathrm{R}} \mathrm{Ry}$
2. $\overline{\mathrm{R}} x y$ $\overline{R y z} R x z$
3. $R f(f(x y) z) f(x f(y z))$
4. $\overline{\operatorname{Rexz}}$ ̄ㅢu $\operatorname{Rf}(x y) f(z u)$
5. $\operatorname{Rf}(e x) x$
6. $\operatorname{Rf}(g(x) x) e$
7. Rxx
8. $\overline{\mathrm{R}} f(a y) \mathrm{e}$
9. $\operatorname{Rr}(x f(y z)) f(f(x y) z)$
10. $\overline{\operatorname{Rxz}} \operatorname{Rr}(x f(e y)) f(z y)$
11. $\operatorname{Rf}(x f(e y)) f(x y)$
12. $\overline{\operatorname{R}} W \Gamma(z f(e x)) \operatorname{Rwr}(z x)$
13. $\operatorname{Rf}(f(z e) x) f(z x)$
14. $\overline{\operatorname{R}} \mathrm{Wr}(\mathrm{g}(\mathrm{x}) \mathrm{x}) \operatorname{Rr}(\mathrm{we})$
15. $\operatorname{Rf}(f(g(x) e) x) e$
16. $\overline{\mathrm{R}}(\mathrm{ax}) \mathrm{y}$ Rye
denial
$\mathrm{AB}_{\mathrm{A}} \mathrm{Al}_{1}$
Al-sym
A2-trans
A3-assoc

A5-f-subst
A6-1. ident
A7-1. inv
A8-reflx
$A 6-A 5_{2}$
$10_{1}-\mathrm{A} 8$
$11-A_{2}$
$\mathrm{A}^{-3-12} 1$
$\mathrm{A}^{7}-\mathrm{A}_{1}$
$13-14$
${ }^{8-A 2_{3}}$
17. $\bar{R} f(a x) f(f(g(y) e) y)$ ..... $15-16_{2}$
18. $\overline{\operatorname{Raf}}(g(y)$ e $\bar{R} x y$ ..... ${ }^{17-A 5} 3$
19. $\operatorname{Raf}(g(x) e$ ..... A $8-182$
20. Firu $\operatorname{Rf}(f(g(x) x) y) f(e u)$

$$
\mathrm{A} 7-\mathrm{A} 5_{1}
$$

21. $\operatorname{Rf}(f(g(x) x) y) f(e y)$ ..... A8-20 ${ }_{I}$
22. $\overline{\operatorname{Rwf}}(f(g(x) x) y) \operatorname{Rwf}(e y)$ ..... $21-\mathrm{A}_{2}$
23. $\operatorname{Rf}(g(x) f(x z)) f(e z)$ ..... $9-221$
24. $\bar{R} w f(e z) R w z$ ..... $\mathrm{A}^{6}-\mathrm{A} 2_{2}$
25. $\operatorname{Rf}(g(x) f(x z)) z$ ..... $23-24_{1}$
26. $\operatorname{Rzf}(g(x) f(x z))$ ..... $25-\mathrm{Al}_{1}$
27. $\overline{\operatorname{Rf}}(g(x) f(x z))$ w Rzw ..... 26-A2 1
28. $\overline{\operatorname{Rf}}(g(x) f(x a)) f(g(y) e)$ ..... $19-27_{2}$
29. $\overline{\operatorname{R} g}(x) g(y) \bar{R} f(x a) e$ ..... $\mathrm{C}_{2}-\mathrm{A} 5_{3}$
30. $\overline{\operatorname{Rf}}(\mathrm{ya}) \mathrm{e}$ ..... A8-29
31. ㅁ ..... A7-30
Contrast that refutation with the following one obtained from S3:
32. Pexx
33. $\operatorname{Pg}(x) x e$
34. P̄xyu Pyzt Puzw Pxtw ..... B11
35. P̄xyu Pyzt Pxtw Puzw ..... B12
36. Payedenial
37. $\bar{P} x y a$ Pyzt Pxte7. F̄xea Pxte
$5-4_{4}$
38. $\overline{\mathrm{P} g}(t)$ ea$1-6$$2-72$
39. $\overline{P g}(t) y u$ Pyze Puza$8-34$
40. $\overline{\mathrm{P} g}(t)$ ye $\overline{\text { Pyae }}$ $1-93$
41. F̄yae $2-10_{1}$
42. $\square$ 11-2

For further contrast, we cite the following proof from Al-8 using the special equality mechanisms of paramodulation. This proof suggests that Al-8 (more precisely the subset \{A3,A6,A7,A8\}) is probably a better choice than $S 3$ when such special mechanisms for equality are incorporated into the theorem-proving program.

1. $\operatorname{Rf}(f(x y) z) f(x f(y z))$ A3
2. $\operatorname{Rf}(e x) x$ A6
3. $\operatorname{Rf}(g(x) x) e$ A7
4. $\overline{\operatorname{Rr}}(\mathrm{ay}) \mathrm{e}$
denial of theorem
5. $\operatorname{Rf}(f(x g(z)) z) f(x e)$
$A 7(f(g(x) x))-A 3(f(y z))$
6. $\operatorname{Rf}(f(e z) f(g(g(z)) e)$

A7(f(g(x)x))-5(f(xg(z))
7. $\operatorname{Rzf}(g(g(z)) e)$

A6(f(ex))-6(f(ez))
8. $\operatorname{Rf}(f(x e) z) f(x z)$

A6(f(cx))-A3(f(yz))
9. $\operatorname{Rf}(f(g(z) e) z) e$

A7( $f(g(x) x))-8(f(x z))$
10. $\operatorname{Rf}(z g(z) e)$
$7(f(g(g(z) e))-9(f(g(z) e))$
11.

10-4

Similar results are obtained when the two systems $S 3$ and Al- 8 are used to refute the denial that in a group, the left identity element is also a right identity. A refutation from Al-A8 looks much like that for right inverse. No refutation is obtained by PG5 from this set after

288 seconds, while less than one second is required for a refutation from 53 . This is not surprising since short refutations such as the following are available from S3.

1. Pexx ..... B6.
2. $\operatorname{Pg}(x) x e$ ..... $B 7^{-}$
3. $\overline{\text { Pxyu Pyzt Puzw Pxtw }}$ ..... Bll
4. $\bar{P} x y u$ Pyzt Pxtw Puzw ..... Bl2
5. Paea ..... denial
6. $\overline{\text { Pxya Pyet Pxta }}$ ..... $5-\mathrm{Bl}_{4}$
7. $\overline{P x e a}$ ..... $B 6-62$
8. P̄xyu Pyze Puza ..... $7-\mathrm{Bl}_{4}$
9. Pxye Pyae ..... $B 6-83$
10. Pyae ..... $\mathrm{B} 7-91$
11. $\square$ ..... 10-B7

If we are correct in our conjecture that it is advantageous to use additional free variables and, if necessary, additional literals in order to avoid long terms as arguments, one would expect that adding, say, All and Al2 (or replacing A3 by All-12) might improve the performance of that set. PG5 does in fact get a proof of right identity from Al-8,11-12 in Iess than two seconds, while it failed to find a proof from Al-8 alone in 288 seconds.

If we go to slightly more difficult (to prove from the basic axioms) theorems such as that if in a group the square of every element is the identity then the group is commutative, we find that even S 3 is sorely taxed. This is one of a large class of theorems for which proof-search
efficiency is greatly improved by the addition of the logically dependent axioms B2l-22 for right identity and right inverse. This phenomenon-that inclusion of dependent axioms does not always detract from proof search efficiency but may be a positive benefit, possibly even a necessily-is one of the more important insights into axiom selection, at least with the type of search algorithms we employ in our programs. The denial of the theorem above is $\operatorname{Rf}(x x)$ e $\wedge \operatorname{Rf}(a b) c \wedge \bar{R} r(b a) c$ for $A I-8$ and Pxxe $\wedge$ Pabc $\wedge \overline{P b a c}$ for S 3 . The proof from $A 1-8, A 21-22$ is again quite ledious:

1. $\overline{\mathrm{R} x y} \mathrm{Ryx}$ ..... AI
2. $\bar{R} x y$ Ryz Rxz ..... A2
3. $\operatorname{Rf}(f(x y) z) f(x f(y z))$ ..... A3
4. $\overline{\operatorname{Rxz}}$ Ryu $\operatorname{Rf}(x y) f(z u)$ ..... A5
5. $\operatorname{Rf}(e x) x$ ..... A6
6. Rxx ..... A8
7. $\operatorname{Rf}(x c) x$ ..... A21
8. $\operatorname{Rf}(x x) e$ denial of theorem
9. $\operatorname{Rf}(a b) c$
" ..... il10. $\overline{\mathrm{R} f}(\mathrm{ba}) \mathrm{c}$II II II
10. $\operatorname{Ref}(x x)$$8-\mathrm{Al}_{1}$
11. $\overline{\operatorname{Rz}} \mathrm{zu}_{\mathrm{if}} \operatorname{fr}(x) f(x u)$ ..... $\mathrm{A}^{8}-\mathrm{A} 5_{1}$
12. $\operatorname{Rf}(u e) f(u f(x x))$ ..... 11-121
13. $\operatorname{Rf}(x f(y z)) f(f(x y) z)$ ..... $\mathrm{A}^{3}-\mathrm{Al}_{1}$
14. $\overline{\operatorname{Rf}}(u f(x x)) z \operatorname{Rf}(u e) z$ ..... $13-\mathrm{A}_{1}$
15. $\operatorname{Rf}(u e) f(f(u x) x)$ ..... 14-151
16. Ruf(ue) ..... $\mathrm{A}_{21-\mathrm{Al}}^{1}$
17. $\overline{\operatorname{Rf}}(u e) z \operatorname{Ruz}$ ..... $17-\mathrm{AR}_{1}$
18. $\operatorname{Ruf}(f(u x) x)$ ..... $16-18$
19. $\left.\operatorname{Rf}(x u) f\left(\operatorname{xf}^{(f(u w) w}\right)\right)$ ..... $19-121$
20. $\overline{\operatorname{Ruf}}(x f(y z)) \operatorname{Ruf}(f(x y) z)$ ..... $14-\mathrm{A}_{2}$
21. $\operatorname{Rf}(x u) f(f(x f(u w)) w)$ ..... $20-21_{1}$
22. $\overline{\operatorname{Rz}} u \operatorname{Rf}(z y) f(u y)$ ..... $\mathrm{A}^{-}-\mathrm{A}_{2}$
23. $\operatorname{Rf}(f(z z) y f(e y)$ ..... $8-23_{1}$
24. $\overline{\operatorname{Rxf}}(f(z z) y) \operatorname{Rxf}(e y)$ ..... $24-\mathrm{AR}_{2}$
25. $\operatorname{Rf}(f(u w) u) f(e w)$ ..... 22-251
26. $\overline{\mathrm{R} x f}(\mathrm{ez}) \mathrm{Rxz}$ ..... $\mathrm{A}_{6}-\mathrm{A}_{2}$
27. $\operatorname{Rf}(f(u w) u) w$ ..... $26-27_{1}$
28. $\overline{\operatorname{Rxf}}(\mathrm{ab}) \mathrm{Rxc}$ ..... $9-\mathrm{AR}_{2}$
29. $\overline{\operatorname{Rf}}(\mathrm{ba}) \mathrm{f}(\mathrm{ab})$ ..... $10-292$
30. $\overline{\operatorname{R}} f(\mathrm{ab}) f(\mathrm{ba})$ ..... $30-A I_{2}$
31. $\bar{R} f(a b) y \bar{R} y(b a)$ ..... 31-A23
32. $\overline{\operatorname{Rf}}(f(f(a b) z) z) f(b a)$ ..... ${ }^{19-32} 1$
33. $\overline{\operatorname{Rf}}(f(a b) a) b$ ..... $33-23_{2}$
35.34-28

The proof from $S 3 \cup\{B 21, B 22\}$ is, as before, shorter (still shorter proofs than the one given below have been obtained by the computer):

1. Pexx ..... B6
2. Pxex ..... B21
3. $\operatorname{Pxg}(x) \mathrm{e}$ ..... B22
4. P̄xyu Pyzt Puzw Pxtw ..... Bll
5. P̄xyu Pyzt Pxtw Puzw ..... B12
6. Pxxe
denial
7. Pabc"
8. $\overline{\mathrm{Pb} a c}$ ..... "
9. P̄xye Pywt Pytw ..... $1-43$
10. Pywt Pytw ..... $6-91$
11. Pacb ..... $7-10_{1}$
12. $\overline{\text { Pyzt }} \overline{\text { Pezw Pytw }}$ ..... $6-4$
13. $\overline{\text { Pbza Pezc }}$ ..... $8-123$
14. Pwyu Pyze Puzw ..... $2-53$
15. $\bar{P} g(w) z e ~ P e z w ~$ ..... $3-14$
16. $\operatorname{Peg}(\mathrm{w})_{\mathrm{w}}$ ..... $6-151$
17. $\overline{\mathrm{Pbg}}(\mathrm{c}) \mathrm{a}$ ..... $16-13_{2}$
18. $\bar{P}_{\text {wyu }} \operatorname{Pug}(y)_{\text {w }}$ ..... $3-14_{2}$
19. $\mathrm{Pbg}(\mathrm{c}) \mathrm{a}$ ..... 11-18
20. $\square$ ..... 17-19

## References

1. Kowalski, R., and Hayes, P. "Semantic trees in automatic theorem proving," Machine Intelligence IV, ed. by D. Michie and B. Meltzer (1969).
2. Luckham, D. "Some tree--paring strategies for theorem-proving." Machine Intelligence III, ed. by D. Michie, Edinburgh Univ. Press, Edinburgh (1968).
3. Robinson, A. Model theory and the mathematics of algebra. North Holland, Amsterdam (1963).
4. Robinson, G., and Wos, L. "Paramodulation and theorem-proving in first-order theories with equality." Machine Intelligence IV, ed. by D. Michie and B. Meltzer (1969).
5. Robinson, J. "A machine-oriented logic based on the resolution principle." J.ACM 12 (1965), pp. 23-41.
6. Slagle, J. "Automatic theorem proving with renumerable and semantic resolution." J. ACM 14 (1967), pp. 687-697.
7. Suppes, P. Introduction to Logic, Prentice Hall, New York (1957).
8. Wos, L., Carson, D., and Robinson, G. UThe unit preference strategy in theorem proving." AFIPS Conf. Proc. 26, Spartan Books, Washington D, C, (1964), pp. 615-621.
9. Wos, L., Robinson, G., and Carson, D. "Efficiency and completeness of the set of support strategy in theorem proving. J. ACM 12 (1965), pp. 536-541.
10. Wos, L., Robinson, G., Carson, D., and Shalla, L. "The concept of demodulation in theorem proving." J. ACM 14 (1967), pp. 698-709.

## Appendix A

Proof that $53, B 21-22$ Al-8:

1. $\bar{P} e x u$ Rxu

A8: 2. Rxx
3. $\bar{R} z u$ Pxyz P$x y w ~ R u w ~$
4. $\overline{\text { Rzu P P }} \mathrm{Fyz}$ Ruz

Al: 5. $\overline{R z u}$ Ruz
6. Ēyu Peyu
7. $\overline{R y z} \bar{R} z u$ Peyu
8. $\overline{R y z} \bar{R} z u \overline{P e y w ~ R w u ~}$

A2: 9. $\bar{R} y z \bar{R} z u ~ R y u$
10. $\bar{P} x y u \operatorname{Rf}(x y) u$
11. Pyzt Pxtw Pf(xy)zw
12. $\overline{\operatorname{Pxf}}(\mathrm{yz}) \mathrm{w} \operatorname{Pf}(x y) \mathrm{zw}$
13. $P f(x y) z f(x f(y z))$

A3: 14. $\operatorname{Rf}(f(x y) z) f\left(x f^{\prime}(y z)\right) \quad 13-10_{1}$
15. F̄yu Fyzt Fetw Puzw $\quad B 122_{1}-\sigma_{2}$
16. Fyy Fyzt Puzt $\mathrm{B}_{\mathrm{B}}-15_{3}$
17. Exxu Pxeu
$\mathrm{B}_{2}-\mathrm{BI}_{2}$
18. $\overline{\text { Rxu Pyxz Pzew Pyuw }}$
$\mathrm{Bll}_{2}-17_{2}$
19. $\overline{\mathrm{K} x u}$ Pyxz Pyuz
$\mathrm{B}_{2}-1 \mathrm{~B}_{3}$
20. K̄uy Fyzt Puzt
$5_{2}-16_{1}$
21. $\bar{R} u x$ Pyxz Pyuz
$5_{2}-191$
22. $\bar{R} u x \overline{\text { Pyxz }} \overline{\mathrm{R} w y}$ Pwuz
$\mathrm{II}_{3}-20_{2}$
23. $\bar{R} w y$ Rux Pwuf(yx)

B13-22 4
$3_{2-3}$
B6-4 2
$\mathrm{B}_{6}-\mathrm{Bl}_{2} 2$
BI $4_{2}-\sigma_{2}$
${ }^{B 9} 2_{2}-73$
$\mathrm{B}_{\mathrm{B}}-83$
$\mathrm{Bl}^{3-B 9}{ }_{\mathrm{I}}$
$\mathrm{Bl}^{-1}-\mathrm{Bl} 2_{1}$
$\mathrm{Bl}_{13-11}^{1}$
Bl3-12 1
${ }^{3} 13-22_{4}$
(resolution of $B 6$ against first literal
of $B 9$ )
$B^{B 6-1}$ (resolution of $B 6$ against first literal of step 1)
$\mathrm{Bl}_{3} 3^{-\mathrm{B9}} 1$ (resolution of third literal of Bl 4 against first literal of B9)
(factoring step 3 on second and third
literals)
A5: 24. $\bar{R} w y$ Rux $\operatorname{Pf}(w u) f(y x)$ ..... $23_{3}-10_{1}$
25. $\bar{P} x z t \overline{P e z w} \operatorname{Pg}(x) t w$ ..... $\mathrm{B} 7-\mathrm{Bll}_{1}$
26: $\overline{\text { Pxzt }} \mathrm{Pg}(x) t z$ ..... $B 6-252$
27. $\bar{R} t x$ P̄tzu $P g(x) u z$ ..... $2 \sigma_{1}-1 \sigma_{3}$
28. $\bar{R} t x \operatorname{Pg}(x) \lg (t)$ $\mathrm{B} 22-27_{2}$
29. F̄yeu Ruy ..... B21-B9 2
A4: 30. $\overline{\operatorname{R}} t x \operatorname{Rg}(t) g(x)$ $29_{1}-28_{2}$
A6: 31. $\operatorname{Rf}(e x) x$$\mathrm{B} 6-1 \mathrm{O}_{1}$
A7: 32. $\operatorname{Rf}(g(x) x) e$ $\mathrm{B} 7-1 \mathrm{O}_{1}$


[^0]:    *Work performed under the auspices of the U. S. Atomic Energy Commission.

