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In judging the suitability of axiom systems for automatic 

theorem proving in a particular domain, two considerations are of 

prime importance: Zogicai! strength and proof-search efficiency. 

The axiom system should be just strong enough to yield all the 

theorems of the theory and only the theorems of the theory. We 

shall employ the concept of adequacy (defined in the following sec- 

tion) to study this property. Given two axiom systems each of ap- 

propriate strength for the theory in question, one would prefer to 

use the system that would, when used by the theorem-proving programs 

in question, discover proofs in the shortest time (or using the 

smallest amount of memory or other computer resources). Examples 

showing how the choice of axiom system can have important effects 

on proof-search will be given in the section on efficiency. 
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We shall be dealing with a language equipped with denumerably many 

individual variables, individual constants, n-adic function constants, 

and n-adic predicate constants. An individual constant or individual 

variable is a term, as is an n-adic function constant followed by n 

terms. A ground term is one involving no variables. An atomic formula 

(or atom) is an n-adic predicate letter followed by n-terms. A literal 

is an atomic formula or the negation thereof. A clause is the disjunc- 

tion of finitely many literals; it is a ground cZause if no variables 

occur. It is often profitable to identify clauses, particularly 

ground clauses, with the set whose members are the literals occurring 

in the clause. 

If some or all of the variables of a clause are systematically 

replaced by terms, the resulting clause is an instance of the original 

clause. 

A set of ground literals (literals involving no variables) satisfies 

a ground clause if it has a non-empty intersection with the clause; it 

satisfies any clause (with respect to some herbrand universe, H S ) if it 

satisfies all ground instances (over Hs) of that clause. If a set of 

literals contains the negation of each literal of a ground clause, it 

condemns the ground clause; if it condemns some ground instance of any 

clause, it condemns the clause. The clause -TJ (read "the empty clause" 

or just %ip') having no literals can be'satisfied by no set of literals 

and is (vacuously) condemned by every such set. 

The herbrand universe, HS, of a set S of clauses is the set of all 

ground terms that can be formed from the functions and individual 
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constants occurring in S, with the constant a being supplied in the 

case that S contains no indidual constants. An herbrand atom for S 

is an atomic formula composed of a predicate letter occurring in S 

and the appropriate number of terms from HS. An interpretation I of 

S over HS is a set of (ground) literals such that for each herbrand 

atom L for S, exactly one of L or QL is in I. A model of S (over Hs) 

is an interpretation of S over HS that satisfies S. 

If S and T are sets of clauses, the S implies T (S k T) if no 

model of S condemns T. Then each clause C in T is a logical eonse- 

quence of S (is impZied by S, S k C). 

This paper concerns itself principally with sets of clauses. 

There appears to be no reason, in principle, why the discussion should 

not go over to more general sentences, such as those obtained by using 

logical operators for conjunction, conditional, biconditional, and more 

general application of negation and quantification. (In effect, with 

clauses one considers only universal quantification over each clause.) 

In the discussion of eliminability, the biconditional E is in fact used, 

since the statement of this property appears to become inordinately 

complex in terms of clauses alone. We assume some conventional rules 

of function, inference, and semantics for these additional connectives. 

For clauses, three rules of inference are of prime importance in 

automatic theorem proving: factoring, paramodulation, and resolution,. 

Definition (Parsmodulation): Let A and B be clauses such that a 

literal Rst (or Rts) occurs in A and a term U occurs in (a particular 

position in) B. Further assume that s and u have a most general common 

instance s' = su = UT where o and T are the most general substitutions 



such that SO = UT. Where ij is obtained by replacing by to the 

occurrence of u-i in the position in B-c corresponding to the particular 

-position of the occurrence of u in B, infer the clause C = g u(A - {Rst})a 

(or C = 5 u(A - {Rts))a). C is called a paramodulant of A and B and is 

said to be inferred by parwnodulation from A on Rst (or Rts) into B on 

(the oeeuhwzee in the particular position in B of) u. The literal Rst 

(or Rts) is called the literal of paramodulation. [43 

Definition: For any literal 1, /l/ is that atom such that either 

1 = /l/ or 1 = %/l/. 

Definition (Resolution): If A and B are clauses with literals k --.. - 

and 1 respectively, such that k and 1 are opposite in sign (i.e., exactly 

one of them is an atom) but /k/ and /l/ have most general common instance 

m, and if CT and T are the most general substitutions with m = /k/a = /l/-c, 

then infer from A and B the clause C = (A - {k))o L-,1 (B - {l))'~. C is 

called a resolvent of A and B and is inferred by resolution. 

Definition (Factoring): If A is a clause with literals k and 1 such -- 

that k and 1 have a most general common instance m, and if o is the most 

general substitution with ka = 10 = m, then infer the clause A' = (A - {k))a 

from A. A' is called an immediate factor of A. The factors of A are 

given by: A is a factor of A, and an immediate factor of a factor of A 

is a factor of A. 

Given a set S of sentences and implicitly understood rules of forma- 

tion and semantics, we shall be interested in the set W(S) of all well- 

formed sentences over the vocabulary of S (with a denumerable supply of 

individual variables added if necessary) and the set V(S) = {AIA E W(S), 

Si= A). A theory T will be thought of as being defined by the set W(T) of 

well-formed sentences of the theory and the set V(T) of valid formulas of the 

theory even when we have no particular set of axioms in mind for T. 



Adequacy of an Axiom System 

A set E of sentences is a non-creative% extension of a set E' if 

V(E) 0 W(E') = V(E'); it is an eliminable extension if for every 

C E: W(E) there is a C' s W(E') such that E i C E C'. 

In Figure 1 two (redundant) sets of axioms are given.** Al-8 were 

obtained by writing in clause form a set of axioms given by 

Abraham RobinsonsX* for group theory in terms of a single binary relation 

*The concepts of non-creativity and eliminability as used here are 

closely related to the two criteria for definitions given in [71, 

pagels; hence the choice of terminology. 

**{Al,...,A8], {A6 ,...,AlO}, and {A6,A7,A8,Ag,All,Al2} are equivalent 

sets. (Bl,B2,B5,B6,B7,B8,Bg,Bll,B13), {B6,B7,B9,Bll,Bl3,Bl4), and 

{B6,B7,Bll,Bl2,Bl3,Bl5,Bl6~ are equivalent sets and each of them im- 

plies the three sets of A-axioms. Since A3 appears to be a more 

natural way of stating associativity one might ask whether A10 might 

not be replaced by A3 in the set A6-10. This question is answered 

negatively by the following counter-example: 

Consider a domain of three elements {0,1,2}. Let f map to the 

usual cyclic group operation on this domain, let g map to the cor- 

responding group inverse operation, and let e map to 0, but let R 

map to the equivalence relation K such that 0 f 1 = 2; namely 

K = ((O,O), (l,l), (1,2), (2,l);(2,2)1. A3, A6, A7, A8, and A9 

are all obviously satisfied, but A5 is falsified by the choice of 

x=y=z = 1 and u = 2, since (1,l) E K, (1,2) E K, and 

(f(ll),f(12)) 7 (2,C) d K. 

"%"Reference [3], p. 26. 
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Al Tixy Ryx (syd Bl fixy Ryx 

A2 Exy ??yz Rxz (trans > B2 ky Tii;rz Rxz 

A3 Rf(f(xy)z)f(xf(yz)) (assoc. ) 

A4 EXY h&&h) (g-subst.) 

A5 Exz &u Rf(xy)f(zu) (f-subst.) B5 zxt zyu Fzw pxyz Ptuw 

A6 Rf(ex)x (l.ident.) 

A7 Rf(g(x)x)e (1.ir-m.) 

B6 Pexx 

B7 Pg(x)xe 

A8 Rxx (reflex. > B8 Rxx 

A9 Tixz zyz Rxy 

A10 Ff(xy)u Ef(yz)t Rf(uz)f(xt) 

All gf(xy)u Ef(yz)t Iif(uz)w 

Al2 Ef(xy)u zf(yz)t Ef(xt)w 

Bg pxyz pxyu Rzu (uniq.of prod.) 

Bll &yu Fyzt P,zw Pxtw 

B12 P,yu Fyzt -i;xtw Puzw 

B13 Pxyf(xy) (closure) 

B14 Ezu &yz Pxyu (P3-subst) 

B15 fixy Pexy 

A21 Rf(xe)x 

A22 Rf(xg(x))e 

(r.ident.) 

(r.inv.) 

Bl6 pexy Rxy 

Bl7 pxyz &yu Pezu 

Bl8 f;ezu pxyz Pxyu 

Big Ef(xy)z Pxyz 

B20 pxyz Rf(xy)z 

B21 Pxex 

B22 Pxg(x)e 

Figure 1. 



R and two functions f and g. Bl-2, B5-9, Bll, and Bl3 were obtained 

from another set of group theory axioms in the same book%'"*% by re- 

‘placement (in a set of sentences not originally involving function 

symbols) of existentially-quantified variables by Skolem function 

symbols. 

Consider the set S4 = Sl~(B15,E16}, where Sl = (B6,B7,Bll,B12,B13). 

Thus defined, S4 is obviously a non-creative, eliminable extension of Sl. 

If a theory T is a non-creative, eliminable extension of a set S of 

axioms, then the set S is of appropriate logical strength for a study of 

the theory T by means of automatic theorem-proving. That is, since every 

sentence C in W(T) can be mapped into a sentence QJ in W(S) in such a 

way that Cp is in V(S) iff C is in V(T), we need only apply a proof pro- 

cedure to V(S). But confining the choice of axiom sets to those which 

have T as a non-creative, eliminable extension is unnecessarily restric- 

tive. It forbids, for example, using a system such as Sl to study one 

such as Al-A8, when the former is much more efficient in proof search with 

some types of inference apparatus than the latter. This problem is not 

avoided by allowing the use of a set 6 which is itself a non-creativ2, 

eliminable extension of the theory. It appears appropriate for automatic 

theorem proving to make only a requirement concerning the existence of an 

appropriate (and effective) mapping U. We shall do this by defining a set 

of sentences S to be adequate for a theory T iff there exists a uniform 

means of transforming the atomic formulae of W(T) into atomic formulae of 

W(S) such that the mapping u induced on all sentences of W(T) maps the 
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sentences C in W(T) into sentences Cn of W(S) such that 

Cn E V(S) iff C E V(T).%%*%* 

Whenever T is a non-creative, (effectively) eliminable extension 

of S, S is adequate for T. By effectiueZy eZiminabZe we mean that there 

is an effective means of determining the C', given the C. In that case, 

let c1-l = C' for C E W(T) - W(S) and let Q.I = C for C E W(S). Then for 

C E W(S), Cu = C E V(S) iff C E V(T) since V(T) fl W(S) = V(S). For 

C E V(T) - V(S), we have C!F.I E V(T)( since T /= C z Cv) and hence C!p E V(S). 

For C E W(T) - V(T), we have Cp & V(S), since if Cu s V(S) we would have 

C$J E V(T) and hence C E V(T) ( since T f= C 5 Cu) contrary to hypothesis. 

On the other hand, S can be adequate for T but fail to be a non- 

creative extension of S as illustrated by the trivial example T = {PI, 

S = IF> (p is the mapping from P to P, and from ?-to P). 

If we let S2 = {Bg,Bl4} and consider S3 = Slu S2 we find that Sl 

is adequate for S3.***%** To see that this is the case, let T map each 

*8a*sIt may be possible to generalize the concept of adequacy by 

partially relaxing the restriction that 1-1 be induced by a trans- 

formation of atomic formulae, The restriction is quite natural 

for automatic theorem proving, since it requires, in effect, 

that QJ be a clause if C is a clause. The restriction apparently 

cannot be completely removed to allow arbitrary effective p with- 

out admitting, for example, certain pathological mappings by which 

any set of tautologies in a sufficiently rich vocabulary could 

be shown adequate for any finitely-axiomatizable theory. 

%"*%%"Henceforth we shall restrict the discussion to consider only 

clauses as sentences, i.e., W(S) will always be a set of clauses. 
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atomic formula of the form Rae into PeaB while leaving one of the form 

P-f& unchanged. Then let 0 be the mapping on clauses induced by T. 

First we show that 0 maps V(S3) into V(S1). Suppose by way of contra- 

diction that for some C, S3 k C but Sl p C8. Then there is a model M 

of Sl over HS1 that condemns some ground instance DO of CO, where D is 

a ground instance of C. Let M" = M U{RaBIPe& E Ml ~{&BIPec$&M). 

Then M-x is an interpretation of S3 that satisfies Sl. If Rclf3 and 

PyGa are in M*, then Peal3 and PyGa must be in M and, since pezu FxyZ PXYU 

is a theorem of Sl, it follows that Py6B is in M and hence in Ms. Thus 

MX' satisfies Bl4. A similar argument shows that M* satisfies B9 as well, 

hence M* is a model of S3 and must satisfy D. Let M'x'r) D = E. Then 

M r\De = Ee $ p', contrary to the hypothesis that M condemned DO. It re- 

mains to show that 0 maps only elements of V(S3) into V(S1): Since 

S3 k pexy Rxy and S3 $ %-y Pexy, it follows that S3,CB k C for any 

c E w(s3). If Sl b CO, then S3 b CO, since SlgS3. Hence if Sl k Cf3, 

s3 fi c. 

To show that S3 is adequate for Al-8, let p be the identity mapping 

on clauses and first note that S3 k Ai for i - 1,...,8. (Two of the ex- 

amples in the section on proof search efficiency contain proofs that 

S3:-B21.-22. Proofs that S3,B21-22t-Al-8 are given in Appendix A.) Hence 

if C E v(A~-8), then Cu = C E V(S3). How suppose that C E W(.Al-8) r V(N.-8), 

Then there must be a model M of Al-8 over HA1 8 that condemns C. Let 

@ = M (-){pclByIRf(aB)Y E M} ~(&~jRf(cl& 4 Ml. Now Al-8 'd{Rf(xy)z pxyz5 

&yz Rf(xy)z) " S3. Hence M" must be a model of S3. Since M" condemns C, 

QJ = C cannot be in V(S3). 



10 

In general., if S' is adequate for S and S is adequate for T, it 

follows that S' is adequate for T, since if p' is the mapping of S into 

S' and 1-1 the mapping of T into S, LIP' will do for the mapping of T into 

S'. In particular, since Sl is adequate for S3 and S3 adequate for 

~1-8, Sl must be adequate for Al-8 and in turn for any theories for which 

Al-8 may be adequate. One might wish to note that Al-8 is not a non- 

creative extension of Sl. 
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Proof-search Efficiency 

In the literature on automatic theorem-proving, considerable 

.attenCion has been devoted to selection of an efficient proof search 

algorithm. [l], [2], [‘II, [61, 181, [lo]. Nevertheless, at the 

present state of the art, the ease--even the feasibility--of automatic 

theorem proving in a given theory (e.g., group theory) is vitally 

affected by the choice of axioms and representations of theorem- 

candidates for the study of the theory. Indeed, the choice can be so 

important that it is difficult to find examples to compare search times 

for systems such as Al-8 with more efficient (with a given proof search 

algorithm) systems such as S3. With an unfortunate choice of axioms, 

the running times for quite simple theorems can be prohibitively long 

to obtain a numerical comparison. 

The figures for running times given in this section are for the 

PGl-PG5 series of theorem-proving programs developed at Argonne a number 

of years ago and more fully described in [ 81, [g], and [lo]. PG5 has 

been singled out for use in most of the cases run because it provides 

the fairc?st basis for comparing diverse axiom systems, even though it 

is slower in some cases than some others in the PGl-PG5 family. In order 

to obtain numerical comparisons for efficiency of axiom systems in ordinary 

first-order theories with no special treatment of equality, the demodula- 

tion apparatus of PG5 was disabled. It proved to be infeasible to obtain, 

with the programs available, conclusive efficiency comparisons for first- 

order theories with equality, due to incompleteness difficulties intro- 

duced by the treatment of demodulation in those programs having special 

treatment of equality. 



First we shall consider the example of proving that in a group 

a right inverse exists. As is usually the case in automatic theorem 

proving, the procedure is to deny the existence of a right inverse 

and proceed to refute the denial by appeal to the axioms. In the 

vocabulary of Al-8, the denial is Ef(ay)e; for S3 it is Paye. PG5 

obtained a refutation from S3 in less than one second, but could ob- 

tain no refutation from Al-8 in the 288 seconds allowed for running 

the case. Some insight into the difficulties may perhaps be obtained 

by examining refutations in the two systems. One refutation from Al-8 

is as follows: 

iky Ryx 

fixy !fyz Rxz 

Rf(f(xy)z)f(xf(yz)) 

gxz &u Rf(xy)f(zu) 

Rf(ex)x 

Rf(g(x)x)e 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

Rxx 

Rf(ay)e 

Rf(xf(yz))f(f(xy)z) 

i&z Rf(xf(ey))f(zy) 

Rf(xf(ey))f(xy) 

Ewf(zf(ex)) Rwf(zx) 

Rf(f(ze)x)f(zx) 

%wf(g(x)x) Rf(we) 

Rf(f(g(x)e)x)e - 

Ef(ax)y fiye 

Al-sym 

A2-trans 

A3-assoc 

A5-f-subst 

A-7-1. inv 

A8-refix 

denial 

A3-All 

A6-A52 

lol-A8 

11622 

A?+ 

A7-A21 

13-141 

8-~2~ 
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17. Rf(ax)f(f(g(y)e)y) 

18. Eaf(g(y)e Rxy 

19. Raf(g(x)e 

20. &Xl Rf(f(g(x)x)y)fb-d 

21. Rf(f(g(x)x)y)fk.Y) 

22. Ewf( f (g(x)x)y> Rwf(d 

23. Rf(g(x)f(xz))f(ez) 

24. zwf(ez) Rwz 

25. Rf(g(x)f(xz))z 

26. Rzf(g(x)f(xz)) 

27. ??f(g(x)f(xz))w Rzw 

20. Rf(g(x)f(xa))f(g(Y)e) 

29. Fg(x)g(y) Kf(xa)e 

30. Ef (Yale 

31. cl 

15-162 

1'7-A53 

A8-102 

JI~-A~~ 

A0-201 

21-A2 
2 

9-221, 

A6-A22 . 

23-24, 

19-27, 

A7-30 

Contrast that refutation with the following one obtained from S3: 

1. Pexx 

2. Pg(x)xe 

3. i%yu Fyzt Fuzw pxtw 

4. pxyu Fyzt Fxtw Puzw 

5. Faye 

6. Fxyahzt Fxte 

7. Fxea Fxte 

0. Fg(t)ea 

9. Fg(t)yu Fyze Fuza 

B6-l.ident 

B7-l.inverse 

Bll 

B12 

denial 

5-44 

1-6 2 
z-T2 

8-34 

. 
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10. Fg(t)ye Fyae 

11. Pyae 

12. R 

i-9, 

2-lOI 

11-2 

For further contrast, we cite the following proof from Al-8 using 

the special equality mechanisms of paramodulation. This proof suggests 

that Al-8 (more precisely the subset {A3,A6,A7,A8)) is probably a better 

choice than S3 when such special mechanisms for equality are incorporated 

into the theorem-proving program. 

I, Rf(f(xy)z)f(xf(yd) A3 

2, Rf(ex)x 

3. Rf(g(x)x)e 

4, Rf(ay)e 

5, Rf(f(xg(z))z)f(xe) 

6. Rf(f(ez)f(g(g(z))e) 

7, Rzf(g(g(z))e) 

8, Rf(f!xe)z)f(xz) 

9, Rf(f(g(z)e)z)e 

10, Rf(zg(z)e) 

11. 
0 

A6 

A7 

denial of theorem 

A7(f(g(x)x))-A3(f(yz)) 

A7(f(g(x)x))-5(f(xg(z)) 

A6(f(ex))-G(f(ez)) 

A6(f(ex))-A3(f(yz)) 

A7(f(g(x)x))-B(f(xz)) 

7(f(g(g(z)e))-9(f(g(z)e)) 

10-4 

Similar results are obtained when the tvo systems S3 and Al-8 are 

used to refute the denial that in a group, the left identity element is 

also a right identity. A refutation from Al-A8 looks much like that for 

right inverse. No refutation is obtaFned by PG5 from this set after 



15 

288 seconds, while less than one 

from S3. This is not surprising 

following are available from S3. 

1. Pexx 

2. Pg(x)xe 

3. Fxyu Fyzt i%zw Pxtw 

4. &yu. Fyzt Fxtw Puzw 

5. Faea 

6. Fxya Fyet Fxta 

7. Fxea 

8. FxyuFyze 'i;uza 

9. Fxye Pyae 

10. Pyae 

11. II 

second is required for a refutation 

since short refutations such as the 

B6 : 

B7- 

Bll 

Bl2 

denial 

52~12 4 
B6-6, 

7-Bl14 

B6-83 

B7-9, 

lo-B7 

If we are correct in our conjecture that it is advantageous to use 

additional free variables and, if necessary, additional literals in order 

to avoid long terms as arguments, one would expect that adding, say, All 

and Al2 (or replacing A3 by All-121 might improve the performance of that 

set. pS5 does in fact get a proof of right identity from Al-8,11-12 in 

less'than two seconds, while it failed to find a proof from Al-8 alone 

in 288 seconds. 

If we go to slightly more difficult (to prove from the basic axioms) 

theorems such as that if in a group the square of every element is the 

identity then the group is commutative, we find that even S3 is sorely 

taxed. This is one of a large class of theorems for which proof-search 
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efficiency is greatly improved by the addition of the logically dependent 

axioms B21-22 for right identity and right inverse. This phenomenon-- 

that inclusion of dependent axioms does not always detract from proof 

search efficiency but may be a positive benefit, possibly even a necessity-- 

is one of the more important insights into axiom selection, at least with 

the type of search algorithms we employ in our programs. The denial of the 

theorem above is Rf(xx)e A Rf(ab)c r\ Ef(ba)c for Al-8 and Pxxe f\Pabc/\ f;bac 

for S3. The proof from Al-8,A21-22 is again quite tedious: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

0. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

& Ryx 

-?iiy ?iyz Rxz 

Rf(f(xy)z)f(xf(yz)) 

&z &,.I Rf(xy)f(zu) 

Rf(ex)x 

Rxx 

Rf(xe)x 

Rf(xx)e 

Rf(ab)c 

Ef(ba)c 

Ref(xx) 

Ezu Rf(xz)f(xu) 

Rf(ue)f(uf(xx)) 

Rf(xf(yz))f(f(xy)z) 

'df(uf(xx))z Rf(ue)z 

Rf(ue)f(f(ux)x) 

Al 

A2 

A3 

A5 

A6 

A8 

A21 

denial of theorem 

t1 II 11 

11 II II 

8-~1~ 

A8-A51 

n-121‘ 

A3-All 

13-A21 

14-151 

i. 
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17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

Ruf(ue) 

!?f(ue)z Ruz. 

Ruf(f(ux)x) 

Rf(xu)f(xf(f(uw)w)) 

&f(xf(yz)) Ruf(f(xy)z) 

Rf(xu)f(f(xf(uw))w) 

Ezu Rf(zy)f(uy) 

Rf(f(zz)yf(ey) 

Rxf(ey) 

(ew) 

25. Fi;;f(f(zz)y) 

26. Rf(f(uw)u)f 

27. fixf(ez) Rxz 

28. Rf(f(uw)u)w 

29. ??xf(ab) Rxc 

30. Ef(ba)f(ab) 

31. Ff(ab)f(ba) 

32. Ef(ab)y Eyf(ba) 

33. Ef(f(f(ab)z)z)f(ba) 19-321 

34. Ef(f(ab)a)b 33-232 

35. Q 34-20 

14-~2~ 

20-211 

A8-A52 

8-23, _ 

24-A22 

22-251 

A6-A22 

26-271 

9-A2, 

lo-292 

30-Al2 

31-A23 

The proof from S3 u {B2l,B22) is, as before, shorter (still shorter proofs 

than the one given below have been obtained by-the computer): 
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1. Pexx 

2. Pxex 

3. Pxg(x)e 

4. 

5. 

6. 

7. 

0. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

10. 

19. 

20. 

Eg-Ll Fyzt Fuzw Pxtw 

&yu Pyzt Fxtw Puzw 

Pxxe 

Pabc 

Fbac 

Fxye &w-t Pytw 

&w-b Pytw 

Pacb 

-&zt Fezw pytw 

Fbza pezc 

-&y-u Pyze Puzw 

Fg(w)ze Pezw 

Peg(wh 

Fbg(c)a 

-5yL-l pug(yh 

Pbg(c)a 

n 

B6 

B21 

B22 

Bll 

B12 

denial 

II 

11 

1-43 

6-9, 

7-q 

6-4, 

8-123 

z--Y3 

3-141 

6-15, 

16-13, 

3-142 

11-181 

17-19 
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Appendix A 

Proof that S3,B21-22 Al-8: 

1. 'iexu Rxu 

A8: 2. Rxx 

3. Ezu hyz &yw Ruw 

4. Ezu &-yz Ruz 

Al: 5. zzu Ruz 

6. ?&-u Peyu 

7. Eyz Ezu Peyu 

8. Kyz ??zu Fey-w Rwu 

A2: 9. Eyz i?zu Ryu 

10. &y-u Rf(xy)u 

11. Fyzt Fxtw Pf(xy)zw 

12. Fxf(yz)w Pf(xy)zw 

13. Pf(xy)zf(xf(yz)) 

A3: 14. Rf(f(xy)z)f(xf(yz)) 

15. Xyu Pyzt Fetw Puzw 

16. Fyu Fyzt Puzt 

17. j&u Pxeu 

18. Exu -t$xz Fzew Pyuw 

B6-B91 

B6-ll 

B143-B91 

32-3 

~6-4, 

B6-B142 

sl4,-6, 

B9,-T3 

~6-0~ 

B13-Bgl 

B13-B121 

Bl3-ill 

B13-121 

13-10, 

~12~-6~ 

B6-153 

B21-B142 

Bl12-17, 

19. Rxu pyxz Pyuz B21-103 

20. Ruy Pyzt Puzt 5,-16, 

21. Rux Fyxz Pyuz 5,-19, 

22. Rux Fyxz &y Pwuz 213-202 

23. zwy Rux Fvuf(yx) m3-22 4 

(resolution of B6 against first literal 
of B9) 

(resolution of B6 against first literal 
of step 1) 

(resolution of third literal of Bl4 
against first literal of B9) 

(factoring step 3 on second and third 
literals) - 



A5: 24. 

25. 

26; 

27. 

28. 

29. 

A4: 30. 

A6: 31. 

A7: 32. 

Ewy xux Pfhu)f(yx) 

Fxzt Fezw Pg(x)tw 

Fxzt Pg(x)tz 

Etx Ftzu Pg(x)uz 

Rtx Pg(x>eg(t> 

'i;yeu Ruy 

ikx R&)&d 

Rf(ex)x 

Rf(g(x)x)e 

Zi3-10, 

B7-Bill 

B6-252 

26,-163 

B22-2'72 

B21-Bg2 

29,-28, 

B6-lo1 

B7-101 
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