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ABSTRACT 

A sum rule similar to that of Fubini, Furlan and Rosse tti is used 

to show that the weak magnetic form-factor in strangeness changing 

semi-leptonic hyperon decays is renormalized to first order in the sym- 

metry breaking Hamiltonian. This is in contrast to the Ademello-Gatto 

theorem which states that there is no such renormalization in the case of 

the strangeness changing charge form-factor. 
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There is increasing experimental interest in the measurement of the weak 

magnetic form-factor in semi-leptonic hyperon decays. 
1 This paper will argue 

that we should not expect very close agreement of these form-factors with their 

SU(3) symmetry values. 

We start by considering the matrix element between the baryon octet states 

/o@)> and [BIG)> of the i’th component of the SU(3) vector current; 

qzp’ -p 

The Ademello-Gatto theorem2 states that the charge form factor Gv BfB (0) is renor- 

malized to no lower order in h than h2 where the total Hamiltonian is given by 

H = Ho + hH’ with h sma.ll,3 and where Ho conserves SU(3) invariances. Our prob- 

lem is to see if a similar theorem holds for the weak magnetic form factor GsB(0). 

We derive our result from the commutation relation: 

“= ;“; J;-~~ (?) 
I 

3+3&L = @j + ,h- J;(z) = Jo (Xl (2) 
t=o 

Where Q” is definc& as s d 3- j - X Jo(X). We insert this commutator between the baryon 

states <B’(p)] and IB&> and insert a complete set of intermediate states in the 

commutator yielding;’ 
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On separating out the octet contribution we obtain: 

@‘@‘)I J;-15($i a ‘it;,> <a ‘(k) IQ4 + I5 lB@)> 

where 1 B’(E)> is an octet state and the Io(rr>> are the higher mass states. 

Now let 5l-F = c = qbt where7 > T = 0 and differentiate both sides of Eq. (4) 

with respect to qb and then take the limit as q,--0, p. --LCI). Carrying this out we 

obtain using Eq. (1): 

B’B 
GM (0) 

3+ 3& c GB’B”4 + 15(o) GB”B 
Gil ’ 

M to) 
4-15- GB$3’f(o)4-15 B” 

Gv (0) 
B4-t 15(0)+,B’B 

(5) 

Where the correction term is defined by (we assume 

GBIB 2 M (q )-& Or + GEB(q2), 
B s2 b (q2 :“, ) 

2 -0 as qb--‘0): 

q2--0 . 

- <B’(;)~J~-15(0)~cu’(k)><o$j~Q4 + 151Bc)> = aBIB - o! ‘) 
B’Bt+). (6) 

(Note the interchangeof lhe limit p -ooand the sum over states.) 
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We shall take specific cases of Eq. (5) and show that we obtain a set of 

equations which may be solved for the weak magnetic form factors in terms of 

certain baryon anomalous magnetic moments and the correction terms Q! B’B , 

By the Ademello-Gatto theorem the charge form factors in Eq. (5) may be re- 

placed.by their SU(3) symmetry values with the introduction of an error of order 

?I’ or smaller. Such corrections will be ignored as we are attempting to establish 

that there exist corrections to the weak magnetic form factors of order A. This 

leads to the following set of equations: 

2up + uN/2MNcv - --J,“i(-$$-~$2 +,pp tw 

2u g + uwo/2MNa, = 
S 

(9 

tw 

Vd) 

U 
COAO 

/ZMNa z&G? +& Gp+ &‘A; 
w- 
1 1 

B’B 3+ 3Gto 
where we have used isospin invariance to convert GM 

GB’B3+ Es- 

UB’B 
M --._-! 

-i, and where M 
2MN” N is the nucleon mass. Equations (7a) through (7d) are degenerate 

..- ._ ._ _. 
but may be solved with the help of Eq. (7e) which involves the mixed moment 

5 
u~o*o’ * 

L 
We will now attempt to estimate the order in Abf the correction terms (I! 

B’B 
. 

Consider the first,term in Eq. (6) 

cyB’B(-) lim lim -& <B’@71Q4 + 151~‘(~)><q~ ti15(0) B(T)> 
Pb-qb- ’ dgb I I. 

. 
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Now we use the following substitutions: 

<B’(6) 1 Q ec15)&j> ,ld’y <B!(G) IJ:~~(~ 1 fYci;,> F -fi3y cB’cpi’qoJ<15(y)1 o’(k)> 

<BYp) 1 Dlk15(fi .I a’(k)> (a’- o) 
90 

i 
J;-15(o) 1 Wp’,> = 

<a(z)1qoJ;-15(0) 1 qi$> =+ <a 1 qbJ;-15 IW$)> + <a (D4-15(0) 1 B(i%‘> 

QO 90 90 

with D(x)= a,= (10) 

and note that the matrix element <a! 1 D4-15 1 B) is manifestly of order A. If we 

ignore the octet mass splitting between B and B’ we are left with: 

r-- .- - ..-.-- - -- ._. __ _ _ ___ _ . .._ i ,B’W = I c 
o!’ 

p* 
00 

<all D4+15(0)) o’& >z<“‘(q 1 ~kl~(O) 1 B(P)> 3(3)(FG 

I QO 
-- - - __ _____ .__._ _.. _____ - ..-- ------ --- --_ ..___ --- ..-.- .._ .-. .- 

We now introduce the invariant state lB(G)) = ,& IB(@> and the invariant variable 

v = p-9 = P()QO’ then suppressing the sum over the internal quantum numbers of the 

(s’* C=O) 

intermediate states we have 

with 

kO =p0+ 90 * 
&O dV - = 7 (T = 0) 
90 

where eb = 1 with E a polarization vector whose components are zero save for 

the b%h (this vector is invariant in any frame where 5-6 = 0). 
. 

, 
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Next we consider the invariant R (3 given by: 

I&-) = lim eb 
k-0 

eeax 6(x0) (B$$ J2-15(0)) (B(P)) d4x 
I 

if we define: 

BB’B(v) = Eb (B’i;;, ID 4+15(0)l&j> <c$)i J;-15(0)lB(p)) St4)(p-k+Q 

6 = 0) (14) 

insertion of a complete set of intermediate states between the operators in R (3 

shows that its absorbtive part is given by: 

abs R(-)(v) = Im A(-)(v) (. (15) 

Therefore assuming that the field of the strange scalar meson the K is given by: 

D4-15 
lx) 

we obtain 

R(-) = fK- 
a / 

(Dim A(-)(v) dv 

V’ 

Im A(-)(v) dv 
V 

(16) 

(17) 

(18) 

From the form of FE) - , Im A (3 (v) is the imaginary part of the invariant amplitude 

for ,the process: K- + B-B’+ K* for virtual K and K*; at zero momentum transfer- 

V’ is the minimum value of V for contributions from intermediate states other than 

the octet. 
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Finally we have obtained with a similar analysis of (Y B’ B(+) 
s 

(yB’B=fK- 
00 

/ 

Im AK-+B-BB’+K*- 00 
(v) dv Im ,K++B - B’+K* (v) dv 

n V V 
V’ 

(19) (v’ # V”) 

Now the K- vertex in Eq. (18) is suppressed by a factor of x as this vertex is 

proportional to a matrix element of the divergence of the strange vector current. 

However, there is no such suppression of the K*- vertex which, in fact we ex- 

pect to be of the same order of magnitude as a photoproduction vertex, divided 

by the fine structure constant cz. Thus unless there is a fortuitous cancellation 

between aBIB(-) and oBfB(+), we expect the correction term Q! B’B to be of first 

order in A. It should be noted that this result is not very surprising when we 

note that the electromagnetic moments of the baryons themselves arise out of the 

amplitude for the photoproduction of pions and are, in fact, given by integrals of 

the photoproduction amplitude as of the same functional form as our Q! B’B and 

vanish if the axial vector current is conserved. 
4 

We should also remark that we have assumed that we may interchange the 

limit p -00 and the sum over intermediate states in CY B’B . Adler and Dashen’ 

indicat: that this interchange of limits in the case of the commutator [Q’, 2 (01 

may be valid depending on the details of the model one chooses for the currents. 

By necessity we make the assumption that the interchange is valid. 

The author would like to thank Prof. Sam Berman for suggesting this prob- 

lem and for many valuable discussions. 
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& + 2u +u = ,PP+ $A+ (ycoco+ 09-‘-) 

N ( 2upp + unn+3u**+ 3u 
z;?q” a-z:- ~OYO El I( 

6. To be more explicit, if we consider the currents- in a specific representation, L 
the quark model say 

J4+15 cr (x) = S(x) A&l5 Yp q(x) 

Jf+) = q(x) p/J3 8 Yp q(x) 
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where q(x) is the quark field and define in analogy with Eq. (13) a quantity 

we notice that R\y differs from R(-) essentially by the replacement of 

b J4+15 by b A3 . Now 
Plr PP 

apA: is proportional to chiral SU(3) x SU(3) breakin.g 

which is large, of order 1, whereas, a 4+15 J is of order X . Thus we expect 

arB’W to order X with respect to aErn , where c$‘m) P’PV is obtained from 

$-t-P in the same way that CK BIB(-) is obtained from R ci* But from Ref. 4 

we have that agpm-) = p 
Ncy 

which is of the same order of magnitude as the 

baryon octet terms in Eqs. (7). Thus we expect o!B’B(-) to be a correction 

term of order A. 
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