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ABSTRACT 

The observed rapid fall-off of the proton’s electromagnetic 

form factor at high spacelike momentum transfer squared q2 may 

result from compositeness, Here we examine simple models to 

determine upper bounds on the asymptotic behavior of the form 

factors derived from them. General requirements of non- 
,’ z 

relativistic quantum mechanics yield form factors of two-body 

composites which fall at least as fast as l/q2; with Yukawa 

forces providing the binding, this becomes l/q4. For three 

bodies we find, respectively, faster than l/q4 and faster 

than 1/q7. Relativistic considerations are introduced via the 

Bethe-Salpeter formalism, for both ladder and non-ladder kernels, 

and we find the results (apart from logarithmic factors)of l/q4 

for two bodies and l/q* for three bodies. Comparison with other 

recent work is made briefly. 



I. INTRODUCTION 

It has become clear recently that one way to understand the 

rapid fall-off of the electromagnetic form factor of the nucleon may be 

1,2,3,4,5 
the idea of compositeness of the nucleon. In this note we 

summarize our own 

experimental fact to 

form factors appear 

recent work on this problem. 

which all our comments refer 

to fall-off at large momentum 

The central 

is that the nucleon 
‘. 

transfer appr-oxi- 

mately as l/q4 .but in any event faster than l/q’, 

If the form factor satisfies a dispersion relation 

G(q) = + dq12 

s 

Im G( q’2) 

q ‘2 - q2 
( I-1) 

then for large spacelike q2 

The only way to obtain a more rapid decrease of the form factor 

would be to require that 

s d qlz Im G( q’“) = 0 ( I-3) 

It is very difficult to develop a non-composite theory or model 

calculation which leads to this relation as a natural consequence. 

Thus in dispersion theory it is very difficult to obtain a more rapid 

decrease of G( q”) than l/q2 e 
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On the other hand, as shown in Section II, this rapid fall-off 

may be obtained very easily with a non-relativistic two-body model of 

the nucleon, Here as elsewhere we take all particles to be spinless. 

In Section III we will consider the modifications arising from 

assuming that the nucleon consists of three non-relativistic particles 

( e . g. quarks) . We will find there that the form factor will fall-off 

as l/q* for a two-body Yukawa potential between each of the 

three particles., This appears to be too rapid a decrease to be 

consistent with experiment. 

Next, we turn to relativistic models In Section IV, we 

present some general statements based on perturbation theory. In 

Section V we obtain the asymptotic behavior of G( q2) in a two-body 

Bethe -Salpeter formalism assuming the ladder approximation. This 

work largely parallels the recently published work of Ball and 

3 495 
Zachariasen and Amati et al. , for this reason, we emphasize 

here only the parts of our approach which differ from published work. 

In the same section, we also discuss the effect of non-ladder terms 

in the Bethe-Salpeter kernel. 

Finally we proceed in Section VI to an analogous Bethe- 

Salpeter approach to composites of three or more bodies. 



SECTION II 

NON RELATIVISTIC THEORY -TWO BODIES 

If the composite particle consist of 2 equal-mass, scalar 

particles bound in an S-state, then, non-relativistically, the form 

factor is given by the Fourier transform of the charge distribution. 

(If one of the particles is charged this is just the absolute square 

2 

of the wave function e ) 

G( q2) = 

It follows that 

d’qG(q’)=-& dqq’ G(q2) ; 

s 

(II-l) 

(11-2) 

hence if the charge density is finite at the origin, then G( q2) must 

fall off faster than l/q3 . 

More precise information can be obtained by using the result 

that, asymptotically, 

G(q2)~fi _ g”(O) + @(o) - 
q2 q4 2 

(11-3) 

where d 4 = r 
P 

( r) ,, For a potential which goes as l/r as r-+0, 
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e. g. a Yukawa potential, g( 0) is 0 and g’( 0) is finite; for this 

type of potential, then, G( q2)~1/q4 as q2 +co. 

Thus it is extremely easy to reproduce the observed fall-off 

of the form factors with such a model. 

SECTION III 

THREE (OR MORE ) BODIES 

We have seen that very general considerations show that the 

form factor of a two-body composite particle falls off as q -, co. We 

can view this as a consequence of the difficulty of having the two 

particles stay together as one is given an enormous kick by the 

electron. If this is the case, one would expect that the form factor 

for three bodies would fall off even faster as the difficulty of staying 

together would be compounded. We shall now see that this is indeed 

the case, 

The Schrodinger Eq. for three bodies is 

where 



r=- 
ry ; ‘2 -2, * ;=++ -A-g 

Equation (11-3) still holds, with the replacements r --t s and 

d 4 -g(s) where, now 

Now, for two bodies, Hermitiity of the Hamiltonian 

requires that 

r +O as r +O 

The generalization for three bodies is 

r 
Y 

+O as r +O 

(111-2) 

(III-3a) 

( III-3b) 

(111-3~) 

in addition 

s?y,O as s-+0, (III-3d) 

Using this information, we show in the Appendix that 

g”( 0) = 0, in other words, from Eq. (II-3) for 3 bodies, G(q2) falls faster 



than l/q4 with any two -body potential what soeve r . 

If we limit ourselves to a superposition of Yukawas which 

goes as l/r as r ‘0, then the most singular part of the Schrodinger 

equation is solved by 

(111-4) 

where m, n and p range over the positive integers and 0. From 

this it follows that 03 _ -7 f \ 1 I d qq6 G( 9) = d3 r ;( r, s) 
-J 

s=o 

k 
: I 

6 (~~~5) t 6 (r t s) t less singular terms c: co (111-5) 
-4-Q 

hence G( q7) falls to 0 faster than l/q7 as qz+ - 03, This fall-off 

is more rapid than that given by experiment. 

SECTION IV 

RELATIVISTIC CALCULATION - INTRODUCTION 

In this section we shall derive the asymptotic behavior of the 

form factor of two-body scalar composites by means of the Bethe- 

.C,alpeter formalism, but before we do this we shall discuss a simple 



perturbatibn model which may help clarify the essential point of 

the relativistic result. 

Consider’ first’the most simple possible perturbation theory 

treatment of a composite form factor; since the system does not 

interact with the photon as a whoIe , this is given by the 

Feynman diagram in Fig. 1 or 

G(q”) = 
s 

d4p 

qzz p’ - P where for simplicity we ignore the spin of the photon, 

The resultant asymptotic behavior in the space-like region 

In q2 
is G(q’) m- q2 ) q 

2 +-co. Thus, the fact that the system is 

composite is sufficient to cause some fall-off of G( q2) . 

A more realistic model would have variable rather than 

constant coupling at the vertex of the composite and its constituent. 

This would lead, in many cases to faster fall-off; the essential 

feature being, in perturbation theory, that an additional propagator 

is needed to carry large space-like momentum to the constituent 

particle which does not couple directly to the photon. To illustrate 

this point further, we examine an over simplified model in which the 

behavior of the vertex is simultated by an extra propagator as shown 
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in Fig. 2. Here we have added a new particle of mass cr2,> m2 > -$- M2 

6 

as shown. The asymptotic behavior of this diagram can be proved to be 

G(q’) /v In . 

( q212 

An extension of this model would be the inclusion of higher 

order diagrams of a similar type. A typical example with n m and 

r propagators ( of particles of mass-squared greater than -& M2) on 

the left and right legs and base of the triangle respectively, is 

shown in Fig. 3. 

The behavior associated with this diagram is found to be 

G( q”)fv In q2 

(s2)N 

where N = min (n, m) , or, in other words, the 

contribution of each diagram will go as In ( q2) 
1 

times (2 ) raised 
q 

to the power given by the smallest number of lines along which large 

6 
space -like momentum must pas s, 

Similar considerations would hold had we considered more 

realistic theories ( such as a renormalized 
(P 

3 Lagrangian) provided 

they were not too singular, We shall consider such theories in the 

Bethe-Salpeter formalism, 



SECTION V 

BETHE-SALPETER FORMALISM FOR TWO BODIES’ 

Ladder Approximation. In ladder approximation, the form factor 

G( q”) is given by 

Gh2> (2P+dtL = 

(p+ 2p+q) 1 

HP_-- P)” -L21 HP_+ P)” 
L -m 1 (P (P.91 (v-1) 

2 2 

Where 9 represents the Bethe-Salpeter vertex function 

+(P,P)= [(P_+ PJ2 -m’l [(P_- PI2 -m21 x ~(p,P) 
2 2 

W-2) 

(X is the usual Bethe-Salpeter wave function in momentum-space ), 

To extract the asymptotic behavior of G( q”) from Eq” (V-l). or 

Fig. 4, we must first extract the asymptotic behavior of (p from the 

Bethe-Salpeter equation: 

1 1 
+(p,$‘) = [(P-P’)‘ - #I [(P’ + P_)” -m’] 

2 

1 

ITp’ + c)’ -mLl 
4) (P,3 

2 

(v-3) 

either by solving the equation or somehow extracting the asymptotic 
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behavior of + by extracting denominators from under the integral sign 

on the right hand side of Eq* ( V- 3)) a process which only makes sense if 

there is a sufficient knowledge of the behavior of 9 from some other source 

to make sure that the integral remaining afterwards will still converge. 

The knowledge of the asymptotic behavior of + ,,thus obtained, enables 

one to find the asymptotic behavior of G from Eq. (V-l) _ 

Such analyses for two body composites in ladder approximation 

have recently been carried out independently by a number of different 

groups 3’ 4’ 5 (including the present authors). Since the others’ work 

has already been published, and since our results agree completely 

we shall merely outline our own method and state the result, then, 

before proceeding to the discussion of more complicated kernels, 

we shall discuss the differences between our method and those of 

the other workers. 

In order to obtain a bound on the asymptotic behavior of (p we impose 

the requirement that the self-mass correction of the bound. state stemming 

from the type of diagram show in Fig. 5 be finite. This implies 

s d4p +“( p,z) 
[(g+ ‘p,” -mLl [(P_-‘P,), 

2 -m 1 
2 

The integral here is the coefficient of the double pole term in the second 

order correction to the bound state propagator, 

The resultant upper bound on the asymptotic behavior of 4 (p, P) is 
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1 

(log (P”)) + 

as p2 - 00 

Inserting this behavior in the Bethe-Salpeter eq. allows us to extract 

the first denominator for p2 large. We thus find + (p, P) 1 , lip to 

7 
logarithmic factors, as p2 -* 00. 

Now the integral indicated by Fig, 4 ( Eq. V-l) is done by choosing 

the momentum of the bottom line, say p,, as the integration variable 

and performing a contour integral in the pp plane by closing the contour 

below. This yields an integral over the discontinuity of the cuts in 4 

starting at pr) = (p,” t (m t p) 2 - ic ) ,t and the residue at the one 

1 

particle pole at py = ( p,” t m2 )” - k , The result is found to be 

G(q’) 1 up to logarithms. 

T-T> 2 
One difference between the above and the other work cited is in 

the input assumptions about the asymptotic behavior of + (corresponding 

to Eq. V-4). Our method for finding the asymptotic behavior of 4 

( Eq. V-4) is closely related to that of Ball and Zachariasen3, who, 

however made use of a stronger input assumption, essentially 

I- i 
\ d4p (V-5) 

(Since the quantity in curly brackets correspond to the wave function, 

this condition is analogous to the condition that the spatial wave function remain 

finite at the origin) Amati et. al. 5 , on the other hand, obtain a bound 

on the behavior of + by manipulating the partial wave Bethe-Salpeter 



equation into a Volterra integral equation, a bound on the solution of which 

is given by the solution 07 a E,impler equation which they proceed to solve. 

The only input assumption is that needed for their form of Wi.ck 

rotation to leave no contribution from co; this is assured by the 

condition + (p, P) + co less rapidly than p as p + 00, a much weaker 
tJ. v 

condition than ours The only difficulty with this method is in its 

extension to more complicated diagrams., 

Both Ball and Zachariasen and Amati et. al, take up the case of 

one constituent particle having spin; Amati. et. al also treat arbitrary 

orbital angular momentum We extend our discussion instead to non- 

ladder kernels and three-particle composites. 

Non- Ladder Contributions 

If non-ladder kernels of the type shown in Fig. 6a are included 

then essentially the same arguments as above hold for the contribu- 

tion of Fig. 4. But now the requirements of gauge invariance demand 

that we also include additional corresponding terms in G. 

Consider Fig.. 6b, The effect of the additional particles in the 

type of argument used above i.s to change the one particle pole to a 

three particle cut. Explicit examination shows that this yields the 

same type of behavior as Fig. 4: We conjecture that this also holds 

for Fig 6c etc. on the basis that it is the minimum number of 

lines which must carry large space=like momentum which seems 

to determine the number of powers of ~$2 in G. 
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SECTION VI 

THREE BODIES: BETHE-SALPETER TREATMENT 

It is convenient to introduce not the ladder kernel shown in Fig. 7, 

but a connected kernel as seen in Fig, 8. (Since no disconnected parts 

in fact appear in the bound state wave function, nothing is lost by 

keeping only the connected kernel. ) 

We now keep only the lowest order contribution in the Bethe- 

Salpeter equation (inspection suggests that the higher order terms 

will yield similar behavior). Then the right-hand side of the B-S 

equation will contain terms like 

C 

(UP ,P9 P)= 
12 3 3 

d4p’ d4p’ 
3 12 

X 1 

(C-P +P’ 12 -PM” - m2 
3 

3 2 

1 X 

(PI2 -P;2 -&-Pi 1” -p2 
2 

1 1 X 

(p3 -p:)’ -7 (p;2tE-&)2 -m2 

3 i 

X 1 1 9 (P’ 2 P’ t P) (VI -1) 
12 3 

(P_- p12 -p(3)2 -m2 (P_ t p’ )” -m2 
; 2 3 3 

t similar terms 

Now using a condition analogous to ( V- 5) enables us to extract three 

denominators (apart from logarithms) from the above: thus we obtain the 
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following asymptotic behavior in the various limits shown 

9 1, // 
P3 

(VI -2a) 

+4l 1 +4l 1 p2 finite p -+ co, * -p + co p2 finite p -+ co, * -p + 00 p finite ( VI-2b) p finite ( VI-2b) 
-- -- P 3 P 3 3 3 3tJ. 3tJ. 3 3 3P 3P 12 12 

3v 3v 

+d +d 1 1 P P + + 00, 00, * -P * -P finite finite (VI (VI - - 2c) 2c) 

P 2 P 2 
3P 3P 3 3 3 3 

3tJ. 3tJ. 

or with same limits for a, b, and c respectively, or with same limits for a, b, and c respectively, 

(2a)+ 4u 1 

?t I 
i 

(VI - 3a) 

r 2P -P finite 
12 3 

(VI - 3b) 

(VI- 3c) 

To obtain the three body form factor G, we now must evaluate 

Fig. 9. 

After the integral over the relative momentum of particles 1 and 2 

has been carried out, there remains one more 4 dimensional momentum 

integral, We take this momentum to be the total momentum of particles 

1 and 2 

Again, the asymptotic behavior of this integral is found by converting 

the integration along the zero component to an integral over the discon- 

tinuities of cuts extending to t co -k . These cuts are either cuts in 
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4 itself or simply the two body cut corresponding to particles 1 and 2 

being on mass shell. In either case, the asymptotic behavior established 

for 9 enables one to ascertain the beha,vior G 3 -body(qL)+4 bp to 

logarithms) I 

Again this corresponds to ( raised to the power given by the 

smallest number of lines which must carry large space-like momentum 

in order that all three particles in the bound state efi7?cj- and leave the 

diagram together. If we now add non-ladder terms of the type shown 

in Fig. 10a to the kernel then we again expect the same sort of behavior 

both for 9 and for non-ladder terms in G itself: (Fig lob) . 

Hence, we conclude that for three particle bound states, the 

form factor should fall as up to logarithms. 

N Particle Comnosites 

The formalism for three bodies may be extended directly to N. 

The result will then b? G( q2)p-g 
(q2) A-, 

up to logarithms, since it 

it possible to extract 2N-3 denominators from (p and there is an addi- 

tional denominator in the leg of the triangle connecting to the photon. 
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APPENDIX I 

PROOF THAT G(q2) FALLS FASTER THAN j FOR 3 BODIES 

;1’;4-- 

IN NON-RELATIVISTIC POTENTIAL 

Note first that for r > s the potential term in Eq, III - 1 is 

AA 
analytic and even in z = r* s .” N- From this it follows that 4 ( 

I 
L*L)) 2 

is even and analytic in z, ( ) rl > 1s \ ) But the wave function can 

depend only on the three inter- particle vectors 2~~ z%aand rts, /yN 

and since it is a scalar the only s dependence is on s 2 andp;-z= rsz. 

Hence, 4J 1zd2 1 s even and a;~-~l~~tic in s for r > S _ 
(2”j (o) 

‘Tl-v.s.g 

would be 0 if we kept only the portion of the integral in Eq (III = 2) 

in which r > s 

It follows immediately from the above observat.ions ;‘u~:-i Eqs, (111-2) 

and (III - 3) that g( 0) = 0 and gl( s) is integrable; also we can write 

g”(O) = g:’ (0) + g’h(O) (A - 1) 

where 

fl(r) t f (r, s2) 
3 

dr (A - 2) 
2 

-s 
rr 

where k > 1, and the quantity in square brackets i.s the result of carrying 

out the z integration; f2( r, ( s2 /r”)) is analytic everywhere in its 

second argument and f (r-,0) = 0. Also, 
2 



ks I 

r’dr I- ‘4JbY 4 I 
’ dz -. L i 

18 

(A - 3) 

Since the volume of integration in ( 3) is proportional to s3 and since 

+ ’ is less singular than 1 r2 (or ./ [r-s\” or i/ Irts(‘)I g (s)+ 0 faster 
2 

than s2 as s --f 0. Hence gls (0) = 0. 
2 

As for g” , by explicit differenti.ation 
1 

g;! (s) = 4( k3s2) - k(ks)3 
1 

(ks) t f (ks,?& 
2 

I 

00 co 

f’(sk) t f” (ks, ! ) 
1 2 

-. 
k= 1 I 

-ks2f2 1( ks, ! 
, i7 

(A-4) 
) dr t s3 

d 
f (r, s”) dr, 

s + 2, 2 -y-z- 

wheref, (x,y)z d f (x,y); f 
2 

--- 
dx ’ 

2,n(x’ Y> =(g f (x,y>- 
dY 2 

Since both f ( r) and f (r, s2) are less singular than l/r2 as 
1 2 --- r 

r ‘0, ( s < r) ) by direct examination, term by term 

g”( 0) = 0 -+ g”(0) = 0 
1 

Thus, we have shown that for any acceptable wave function the three- --- 

body form factor -+ 0 faster than !/q4 as q + co. 
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FIGURE CAPTIONS 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Simplest possible form factor of a composite particle. 

Form factor in composite model with bound-state 

vertex function replaced by additional propagator of 

mass SC 

i;cnera!.ized ciia-gram for same type of theory as Figure 2, 

G (9’) in Bethe-Salpeter formalism ( Ladder 

approximation) . 

Self-mass correction to bound state propagator 

a) A non-ladder contribution to the kernel 

b) Additional term which must be added to G( q’) to 

insure gauge invariance when (a) is included in kernel. 

c) Another non-ladder contribution to G( q2) . 

Disconnected three -body kernel 
? 

I- 
P?k,tk,tk,, p12S-$-(kr-k,), andpSz3-kg-+-(kl tk2): 

-i 

Connected three -body kernel. 
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