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The structure functions for inelastic electron-nucleon scattering 

are studied in the Bjorken limit in the framework of canonical field theory. 

The “parton” model of Feynman is derived and the structure functions’ 

asymptotic behavior for large energy transfers is computed. 

In this note we report some preliminary results derived from a field 

theoretical study of the structure functions WI and W2 summarizing inelastic electron 

nucleon scattering as defined by 

E 
w = 

P 
47r2 -g 

l- 
(dx) e+iqx <PI Jp(x)Jv(0)lP > 

9cl 
= - ‘gpv - --q W1(q2, v) +‘(p - 9 

cl2 M2 p cl 

where I P > is a one-nucleon state with four momentum P 
P’ 

J,(x) is the total hadronic 

electromagnetic current operator; qp is the four momentum of the virtual photon; 

q2 = - Q2 < 0 is th e square of the virtual photods mass and Mu = Pm q is the energy 

transfer to the proton in the laboratory system. An average over the nucleon spin is 

understood in the definition of W 
W’ 
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Bjorken’ has shown on general grounds that WI and W2 become experi- 

mentally important probes of small-distance nucleon structure in the experimentally 

accessible limit Q2, Mu - ~0 and w = 2Mv/Q2 fixed. In particular, if they are non- 

vanishing in this asymptotic limit, W 1 and vW2 should become non-trivial functions 

of w. We have studied the structure functions in the Bjorken limit on the basis of 

canonical quantum field theory, starting from the familiar interaction lagrangian and 

current operator for the charge symmetric theory of pseudoscalar pions and nucleons 

with r5 coupling. 

First, we will present our results and interpretation and then sketch 

the formal calculations from which they emerge. A more detailed description of the 

formalism will appear in a forthcoming paper. Working in an infinite momentum 

frame of the nucleon, we find that only certain classes of diagrams or amplitudes 

survive in this limit. To identify them we find it useful to “undress” the current 

operator and go into the interaction picture with the U matrix, 

t 
dt’ HI (t’) 

The fully interacting current and the corresponding free or “undressed” current 

are connected in the well-known manner by the perturbation series of time ordered 

products of the interaction, or the U matrix 

J,p) = U-l 6) &(x) WI 

where jp(x) has the same form in terms of in-fields as does JV(x) in terms of fully 

interacting Heisenberg fields, Our first result states 

Lim 
‘2 w = 47T2 pv s 

OW e 
q , MC-~ 

iqx[% < UPI jti(x)jv(0)I UP>lp =,co ;UP> E U(O)1 P> (3) , 

w>l 

E:cl- (3) permits a very intuitive physical interpretation. In the Bjorken limit, the 

nucleon can be regarded as composed of free constituents described by the infinite 
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sum of terms generated by U I P > . These interact with the photon as free point 

particles and the current operator describing this interaction has the form 

jp = Jjp ypQp + i(r+8 T- 
P 

- rTT- ap7r’) in terms of free proton and charged pion fields as 

indicated. We view this result as a field theoretic derivation of the “parton model” 

of independent point constituents proposed by Feynman. 2 We believe this result is 

more general than the simple model implies, 

A basic ingredient required to prove (3) is the existence of an asymptotic 

region in which Q2 can be made greater than the transverse momenta of all the 

particles involved, i.e., of the pions and nucleons that are the (virtual) constituents 

of UP>. The present high energy scattering data strongly indicate that the trans- 

verse momenta of the final particles are indeed very limited in magnitude. Accordingly, 

we will take the existence of a transverse momentum cutoff as our fundamental 

assumption. This cut off is a parameter in the theory and is invariant under Lorentz 

transformations along the P- 00 direction. 

We have computed the structure functions W in the large w region 

ignoring the renormalization loops, a procedure which will be partially justified later. 

Then, order by order in g2, the pion nucleon coupling constant, a simple class of 

diagrams dominates, namely, the ladder diagrams with pion lines as the rungs as 

shown in Fig. 1 which pictures the square of the matrix element; the vertical line 

signifies that we are computing only the absorptive part describing the production 

of real multi-pion states. Contributions of all other diagrams in the P - 00 system 

are smaller by at least one power of log w. Examples are diagrams with crossing 

pion lines, diagrams with currents interacting with pions, diagrams with a Z in the 

nucleon line describing nucleon-antinucleon pair formation, and those with final 

3 
states involving pairs. To leading order in In w >>l for each order in g2, the 

series of contributions can be summed for the proton and neutron to 
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and 

where 

(4) 

(5) 

k Imax is a cutoff for the transverse momentum to be described below, and the constant 

c is not fixed by summing an exponential series of powers of In w. Several remarks 

can be made: 

1) The recent SIAC data4 indicate that vW2@) for the proton approaches a 

constant for large w. This demands 

6 Lor 
k21max M 

M2 
= 0.3 

which is consistent with the indication from other high energy collision data, 

k lmax c-25 400- 500 MeV. 

2) The fact that W@) and W@) approach each other rapidly makes it desirable 

to estimate the next leading contributions in In w since the difference W @I - Wtn) is 

very important in calculating the proton-neutron mass difference. Notice the sign 

of W@) - W@) is negative, We also need these next leading contributions to 

evaluate c and verify that the series of leading terms yields the dominant sum.5 

3) The ratio of structure functions in this limit, W1/vW2 = +& corresponds 

to a vanishing of the ratio of “scalar” to “transverse” photoabsorption cross sections 

for virtual photons of mass Q2 on protons. It corresponds to the Callan and Gross’ 

(6) 

result for a spin $, quark current because as we have seen the current interacts with 

the spin 3 nucleon in the high w limit. 
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4) The multiplicity of pions produced is given by.KT = 5 In w. 

We can only sketch here the proof of the assertions we have made above 

and reserve details for our forthcoming paper. In the infinite momentum center of 

mass frame of the electron and the nucleon in which we carry out our calculation, 7 

we have 

2Mv- Q2 2Mbr+Q2 
q” = 4P 9 93 = - 4p 9 

where the nucleon momentum2 is along the 3 axis. We now rewrite Eq. (1) as 

follows 

WFv= 4n 2E 2 I: <UPlj~(0)U(O)ln~<niyl(O)jv(O)lUP> (2@464(q+P-Pn) . 
n 

(7) 

(8) 

If a final state I n > is not directly attached to the current because of the intervention 

of U(O), the energy denominators introduced by the time integrals in the expansion of 

the time ordered products in (2) connect states differing by gin general. This comes 

about because each order of U describes the absorption or emission of a pion and the 

associated energy denominators in this case connect states before and after the 

current has introduced a momentum q = vp. Thus the contributions of these 

diagrams vanish in the limit Q2 - m. To illustrate what we mean, consider the 

diagram in Fig. 2. Using the momentum labels of the particles denoted in the 

diagram, Weinberg’s argument’ implies that both 77 and (1 - n), the fraction of 

momentum carried by the nucleon and pion lines respectively along the F$ direction 

must be positive. Hence, the energy denominator in question is 

-q (l- ?j) 
2E p+ qIEp+q- ‘v,t+ q - w(l-q)p-kl] = 2 q (l- q)2+kL2 + 2(1- n)kl * q+M2(1- n)2 

- O(L) (13) 
q2 

and such terms can consistently oe dropped so long as the pion acquires a finite 

fraction of the momentum in the P - 00 frame when P Q ” I kmax I . A corollary 

of this discussion is that diagrams with the currents attached to two different lines 
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are excluded by the same reasoning. We have now shown therefore that the 

U(O)‘s adjacent to the final states I n >< nl may be effectively replaced by unity. 

By similar arguments we can show formally, order by order, that the 

transformed proton state UP > can be treated as an eigenstate of the total 

Hamiltonian with eigenvalue E .- To show this let Eup symbolically denote the 
P 

energy of one of the multi-pion + nucleon states in the perturbation expansion of 

! UP >. In the infinite momentum frame, E - E 
P UP 

is of the order of -$ multiplied 

by the sum of squares of some characteristic transverse momentum and some 

characteristic mass. However, q, given by (7) appears in the energy delta function 

in (8) and thus for Q2, Mu - ~0 and w # 1, E - E 
P up 

can be neglected relative to qo. 

One can then make use of the translation operators to restore the space-time 

dependence to obtain (3). This establishes the ‘parton model” by allowing us to work 

with free point currents and the superposition of essentially free (i.e. long-lived) 

constituents in describing the proton’s ground state in the infinite momentum frame 

and in the Bjorken limit. 

We can now formally sum the series of the leading contributions from 

the class of diagrams we have claimed to dominate in the large w region. We shall 

first ignore the charged pions completely, since they can be taken into account 

later by a simple consideration, and consider the proton. The contribution from a 

diagram as in Fig. (1) involving n7r Ofs in the final state is obtained by introducing 

u,nno,(“) 1 p > = 

c ,y5W+y Pnml) y5. . - y5(M+yP1)~5 up 

x (2E1). . . (2E n-l)(Ep-E1-~1)....(Ep-En-~1-~2-...-~n) 

into (3), evaluating the bare current matrix element 

s (dx)e 1 M- 
iqxiPnl jp(x) jv(0) lPn> = -- 

4ir2 E 
Up ypW+yPn+ 91 yvUp 6(q2+2Pn’ 4 

‘n n 
n 

and doing the standard traces. For large w the integrand simplifies to 
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1 

’ “2 [nro] W ’ (t Jn o s 
Ql.. . . dvnW1.. .7&j =I& (5,10g wjn-‘, 

0 

(9) 

w1 W 

vW== 
2 

where 
50 

= i!- 
16a3 I- 

-d2k ’ = & ($log[l f k12max 

1 k;+M2 M2 I 
(10) 

and k lmax is a cutoff introduced for the transverse momentum integrals in accordance 

with our fundamental assumption, Summing over all numbers of rots, we find 

vw2[7ro] = $ exp [.$ log w] = 5 w*‘- ’ 
0 0 (11) 

To include the charged pions in the calculation, we observe that an 

initial proton can emit a 7r” and remain as a proton with coupling constant g or it 

can emit a 7r+ and become a neutron with coupling constant&g. An analogous 

situation applies to a neutron. Let the contribution from a final state with mr”‘s 

and a proton be taken as the basic unit, and denote the total numbers of contributions 

from all possible final states with n charged plus neutral pions by Pn and Nn for the 

proton and neutron respectively. They satisfy the recursion relations 

Pn= Pn 1+2Nn 1 ; Nn= 2P + N n-l n-l 

These give Pn+ Nn = 3n ; Pn- Nn = (-l)n (12) 

which convert (11) to (4) and (5). 

To discuss the contributions of all other diagrams, we need only recall 

that at each nucleon vertex with spin zero pions, the nucleon likes to give up most of 

its momentum to the pion. In fact, the (log w) n-l behavior in (9) comes simply from 

this fact that each segment of the nucleon line has but a small fraction q << 1 of the 

longitudinal momentum of the one preceding it in Fig. 1. Moreover, the delta function 

in (9) tells us that the n’s measuring the fraction of energy retained by the nucleons is 

small for w >> 1. However, when the currents are attached to a pion line, the delta 
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function would dictate that a pion and not the nucleon pick up a small fraction - $ 

of the longitudinal momentum from the initial nucleon, i-n the large w region. 

This is not favored by the vertex, and hence at least one power of log w is lost. 

If two pion lines get crossed in a diagram, the two virtual nucleons which connect 

the two pion lines on each side have a momentum mismatch. If a nucleon on one 

side picks up a small fraction of the available longitudinal momentum, the nucleon 

on the other side has to pick up a large fraction by momentum conservation. 

For a diagram with final state involving nucleon-antinucleon pairs, the virtual 

pion creating the pair is favored to have a large fraction of the available longitudinal 

momentum. Finally, 101: a Z diagram (an anti-nucleon or nucleon moving backward 

in time) the vertex favors a high momentum virtual nucleon (or antinucleon). In all 

these cases at least one virtual particle has a large fraction of the longitudinal 

momentum available; thus at least one power of log w is lost. Having exhausted all 

possible classes of diagrams except the diagrams involving renormalization loops, 

we now have derived the ladder approximation for the leading term order by order 

for w >> 1. 

us we have just shown, in the l.arge w region all the dominant contributions 

come from diagrams such as Fig. 1. The invariant momentum transfers to the Virtual 

intermediate nucleon lines are of mini-mum magnitudes in this region, i.e.’ 
I- 2 

(EP- * (I-17)p-kl) 
Kl 2 - (r - (i-qy+ g2 = -=)+nM2 = -kf for 77 - << 1 . 

We expect then that the neglect of renormalization effects and loops that are 

responsible for the structure at the pion-nucleon vertices may not be crucial in this 

region. To study them we must be able to master the series expansion in g2 rather 

than relying on a larger parameter g2 In w as we have done. We conjecture that 
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the cut off kmax introduced in (5) reflects this structure; measuring the rate of 

decrease in the pion-nucleon vertices with increasing momentum transfer to the 

nucleon. There is no analogous cut off at the electromagnetic vertex which is “bare” 

as in (3) once the U(0) operating on final states I n > has been removed from (8). 

Once again it will be necessary-to master a series in powers of g2 in order to clarify 

the vanishing of the elastic form factors at large Q2. We suspect that the origin 

of this behavior will be found in the vanishing of the wave function renormalization. 

Moreover, it will also be necessary to evaluate terms of order unity relative to 

In w in order to determine the scale constant c appearing in (4). Our analysis also 

suggests that for w M 1, detailed dynamics will play an important role since the 

structure of the interaction for very large momentum transfers at the vertices is 

being probed in this region. Thus it is here near w N 1 that the small distance 

structure will be most clearly probed. For large w >> 1 the structure functions 

behave in the same manner as the very high energy total hadron cross sections and 

are dominated by the “Pomeron” or the ladder series. 

The prediction of pion multiplicities follows from (9) and (11) if each 

term in the series is weighted by n, the number of pions. Our result that z7 = [ In w 

for In w >> 1 is a consequence of the fact that the pions, or rungs of the ladder in Fig. 1, 

do not interact with each other- -i. e. in (3) we have made the replacement 

U(0) I n > - n >. Our model also predicts that the pions are focused in momentum space 

with transverse momentum < k lmax about the incident electron direction while the 

nucleon recoils with the large transverse momentum q = G. 
1 

We thank J. -D. Bjorken and R. P. Feynman for discussions of their 

ideas and work in advance of publication. 
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FIGURE CAPTIONS 

Fig. l-- Dominant ladder diagrams for large w. Solid nucleon and dashed pion 

lines are labelled with indicated momenta. 

Fig. z-- Example of diagram describing pion emission between currents which 

vanishes for Q2 - m. 
-lO- 
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