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ABSTRACT

Quantitative predictions for the energy and A dependence of the nuclear
photoabsorption cross section and inelastic electron-nucleus scattering are given.
In general each nucleon does not contribute equally to the total photon-nucleus
cross section when coherent contributions of photoproduced hadrons are taken
into account. At low energies (Ey~ 1 BeV) the cross sections are proportional
to nuclear number A, but at high energies, they become proportional to the
number of surface nucleons — provided that the photon interactions are mediated
by hadrons of sufficiently low mass. The condition on the masses is that the
momentum transfer in forward photoproduction of these states is small compared
to the reciprocal of their mean free paths in nuclear matter. In the case of rho
dominance, the real photon photoabsorption cross section has the same A de-
pendence as hadron-nucleus total cross sections for v > 10 BeV, whereas the
cross section for virtual photon absorption at that energy, obtained from in-
elastic electron scattering, for spacelike momentum transfer IQ2 |l 25 BeVz,
is nearly proportional to A.

We then generalize to an arbitrary spectrum of intermediate particles,
and discuss the sensitivity of feasible experiments to various models in which
the spectrum contains important structure beyond the rho. Measurements of
the photon-nucleus cross sections will provide a fundamental test of '""hadron
dominance" in general, and of p-w- ¢ dominance in particular, as well as help
to determine the basic parameters of photon~nucleon and rho-nucleon inter-
actions. We also calculate the photon-deuteron cross section and discuss the
multiple scattering approach to photon-nucleus interactions. This discussion
provides insight into the many-body processes which underlie the eikonal, optical

model calculations; it is also relevant to the determination of 07/11 at high energies.



I. Introduction

Direct application of the rho-dominance model1 to the forward elastic
amplitude for photons on nuclei, together with the optical theorem, yields the

total cross section prediction

%A = (e/g)2 TA" @

This result is paradoxical, because the mean free path of photons in nuclear
matter (= o'y_N X density of nucleons_lw 700 F) is large compared tc nuclear
sizes, so one might have expected all of the nucleons to participate equally,
and o;y A A. However, one certainly expects orp A not to be proportional to A
because of shadow effects: the mean free path of rho's in nuclear matter
(= G;II\I x density of nucleons-lkf 3 F) is comparable to nuclear sizes, so
mucleons deep inside the nucleus do not see the full incident rho ﬂuxz. Never-
theless, Bell3 and Stodolsky4 have shown that Eq. (1) is not unthinkable; that
in particular it follows at sufficiently high energies from assuming rho domi~
nance of the interactions on individual nucleons.

Our purpose in this paper is to develop a quantitative description of
the energy and A dependence of the nuclear photoabsorption cross section5" . At
low energies (for our purposes, EyN 1 BeV) the photon cross section will be
shown to be proportional to A. At very high energies it is predicted to be
proportional to ”Az/ 3u , 2 provided only that the photon interactions are mediated
by hadrons of sufficiently low mass. We wish to emphasize that this high energy

/3

prediction of "A2 " behavior does not rest on detailed assumptions of vector

/3

dominance. The energy of transition between A and AZ is related to the

average mass of hadronic states which dominate the electromagnetic current:



the critical condition for (1) to hold is that the momentum transfer in forward
photoproduction of these states be small compared to the reciprocal of their
mean free paths in nuclear matter. Measurements of the total photoabsorption
cross section through the tragsition region (1-20 BeV) would therefore constitute
a fundamental test of the basic ideas of ""hadron dominance! in general, and

of p-w- ¢ dominance in particular. They offer the possibility of confirming
and understanding the breakdown of rho dominance which already seems to
have been observed in p photoproduction on complex nuclei.7 The total cross
section, i.e. the imaginary part of the forward Comptonamplitude, is anespecially
useful physical quantity here because itcontains no background of energy independent
absorption, such as occurs in the photoproduction of any given hadron through
final state absorption; and because the forward Compton amplitude is totally
coherent, involving only the ground state of the nucleus. We generalize our
results to photons which are off-mass-shell in the spacelike region, i.e. to
inelastic electron or muon scattering from nuclei. This generalization is im-
portant because it introduces a new parameter — Q2 of the photon — which

can be varied in testing the theory, and because inelastic electron scattering
experiments may be easier to perform that total photoabsorption experiments.
Our calculations are first done within the framework of rho dominance (Sec~
tions II-IV). We then generalize to allow for an arbitrary spectrum of inter-
mediate particles, aad discuss the sensitivity of feasible experiments to
various models in which that spectrum is related to the cross section for
electron-positron annihilation into hadrons. (Sections VI, VII) We also cal-
culate the photon-deuteron total cross section, and discuss the multiple-

scattering approach to photon shadowing. This discussion provides insight



into the many-body processes which underlie the optical model calculations,
and clarifies our basic assumptions; it is also relevant to the determination of

o'yn at high energy.
-II. A Basic Description

We begin by assuming photons couple only through rho mesons (see

3,t

Figure 1). The coupling constant is defined as emi/ g. Following Bell he

o . .. =igex ..
incident photon wave function is e q and the rho wave equation in nuclear

matter is
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Y)p is an optical potential, and is related to the forward scattering amplitude
of rho's on nucleons by

o
= _ (07)
Vpp 4 dpr——pN 3)

where d is the nuclear density. In the case of pure absorption, f is imaginary

and

oo = “id ooy ' )

where O'pN is the total rho-nucleon cross section for rhoos in momentum k, and

4 is the mean free path 3 F. The index of refraction for rho's in the nuclear

medium is given by
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%P is assumed not to mix spin states Eq. (2) describes a helicity component

of the p wave function.

I \;‘)p is constant within the nucleus, the solution has the form

e mi -ig-x
‘/’p‘g—————veqw 6)
+
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where x is a solution of the homogeneous equation corresponding to exponential

decay within the nucleus. Using the optical theorem and (4), the first term

contributes to the cross section

(M)

This term vanishes in the high energy limit
IV | 5> m2, ie. E = q> mp ®)
pp mp 9 . 0 ‘)/ p

leaving only the contribution from y, which is not proportional to A and produces

the hadron-like behavior of the cross section. We give precise formulae below.



On the other hand, for sufficiently low energies y becomes small and only the
A term survives, corresponding appropriately to coherent scattering on a
nearly transparent nucleus.

These results can be understood simply using an uncertainty principle
argument. The description of Figure 1 in terms of old-fashioned perturbation
theory is that energy is not conserved at the rho-photon vertices by an amount
AE = Vmi+ q2 -q = mi/Zq. The longitudinal position of the y-p conversion

point must then be uncertain by a distance
2q
AE 2 - ' 9
m
p

If Ax is large compared to the hadron mean free path in the nucleus, then the
photon converts to hadrons well before reaching the nuclear surface, and shadow
effects are to be expected. This results in the same high energy condition (8)
as obtained above. No details of rho-dominance theory, such as the magnitude
of the rho-photon coupling constant, enter into this uncertainty principle argu-
ment. The necessary condition for ”Az/ 3 behavior at high energy is therefore

only that the photon interactions be mediated by hadronic states of finite mass.
IIl. An Alternate Description

Stodolsky4 has given a somewhat different description, in which the
photons are eigenstates of the vacuum; i.e. the direct rho-photon coupling
vanishes for on-mass-shell photons, and the photons are instead allowed to

interact directly with the nucleons.



The two descriptions are related by a canonical transformationS, and
therefore contain the same physics (see Figure 1). The question of whether the
photon changes into a rho before or after reaching the nucleus in a rho dominance
model is thus purely a matter of taste. In Stodolsky's description, the ”Az/ 3
behavior of the photon—nucleu‘s total cross section at high energy arises because

a ""downstream' nucleon feels, in addition to the full-strength incident photon

beam, a beam of real rho mesons of intensity -f which has

YN — pN/pr»pN

been generated "upstream'. (The factor 1/f oN—pN enters here because only

rhos generated within ~ one mean free path survive absorption.) The direct

photon beam results in a contribution to the forward amplitude =« ny»yN while
h ho " " 1 o _
the rho '""beam!" contributes (f)/N—-pN/pr—»pN) f’yN——pN and the coef

ficients are such that these cancel each other, leaving no term proportional to
volume, provided the relation

2

f'yN -—pN (10)

LN ~ N foN—pN =
holds, as it does in the rho dominance modell’ 9.

At low energies, the cancellation is made imperfect by several effects
which reduce the rho term, sothat (1) is only expected to hold at high energies.
First of all, the rho may decay before it can reconvert to a photonlq That
will only be negligible when the distance a rho can travel before decaying is
long compared to its mean free path, i.e. when k/mpP >> u. Because of the
time dilation factor k/mp, that inequality becomes true at energies of a few
BeV. Themost importanteffectresults from the transfer of three-momentum A to

one of the nucleons, and ~A to another where |A] > mi/Zq. This effect



depends in general on the nuclear wave function. In the eikonal model it takes
the form of a coherence requirement: the photon wave is « eiqz and the rho
o« eikz, where k = g- A; in order for shadow effects to be important, these
must stay approximately in step over at least a rho mean free path, i.e.

mi /29 = A << 1/u. This is the uncertainty principle condition (8) discussed
above. A third effect is that (10) must be éxpected to fail at low energies even
if one believes in rho dominance, because of minimum momentum transfer
considerations — e.g. the rho contribution to shadowing must vanish if the
photon energy is less than rho production threshold of 1.1 BeV, since as we

wish to emphasize, the shadowing is caused by real intermediate states.

IV. Rho Dominant Calculation

We now use the Stodolsky description to calculate the photon- nucleus
total cross section, assuming rho-dominance of photon-nucleon scattering. We
use the eikonal approximation, and treat the nucleus as a homogeneous sphere
of radius R = rOAl/B, r, =~1.2 F. Begin by pretending the rho has zero width.

The forward photon-nucleus amplitude is

@, vy ) 1)

eiqz
) @)

is the incident photon wave with energy E,y = q,

111

where
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is the corresponding outgoing scattered wave, and V is the 2 x 2 matrix

v v
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where Vyp 41 d ny — N etc. To order e, z/)y (z) =e and
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The rho wave function, which satisfies the eikonal approximation to this
.
equation is
(+) Y iqz _ikn(z +a) -iqa
Z’Dp (z) = —2L—— e ~-e e 16)
+
™y * Voo
where a = VR2 —b2 for impact parameter b, so that the boundary condition
zpp (-a) = 0 is met; i.e. wp vanishes at the left-hand edge of the nucleus. We
emphasize that V. is proportional to the photoproduction amplitude for real
P
rho mesons with physical momentum k = VHZ— mi . Employing the optical
theorem, we obtain
m [F(z)V2 /(m? +V_ )]
oc. =Ac. b1- Y o “pp 17

YA N ImV
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where
3 -z z2
Fz) = 1- 5 |(l+z)e -1+
Z
(18)
z = 2iR|g-k + 2k | .
' [q Yoo/ ]
At energies high enough that minimum momentum transfer effects
are negligible, rho dominance implies 1,9
2 _
vo = Voo Vyy 19
I, in addition, the energy is high enough that g-k times the rho mean free
path ¢ is small then
v
5 PO = 1 20)
m_ +V
P PP

and the terms proportional to A in qy A vanish leaving the surface contributions.
The expression (17) can be improved in several ways. We can take
into account the instability of rho approximately by adding impI‘ to YJ/O . This

amounts to changing the mean free path by

Vp—1/u absorption u decay. 1)

We can include the nucleon recoil energy in computing the minimum momentum
transfer g~k. Further, we can determine V,y 0 from the measured photo-
production amplitude for rhos in order to incorporate the correct threshold

dependence, These modifications have only minor effects on U’y A because

they are sizable only at low energies where the rho contribution is small and
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U'y A Y A(T,YN. That fact also justifies our use of the eikonal approximation down
to low energies. Real parts can be included in %p and Vyp; the values are of
course not known, but assuming (19) holds, we find the effects of changing
Ref/Imf from 0 to + 0.2 to be only about 5%.

The energy dependence of cr,y A given by (17) is shown in Figure 2. It
is also shown in the form of o;y A/A oyN’ which can be thought of as an effective
number of nucleons; the strength of the y-p coupling is divided out in this
expression, as is some of the energy dependence of qu.

the effect we discuss is large, and occurs in an energy region amenable to

It is apparent that

experiment. The transition energy increases with A, i.e. the shadowing
comes in at lower energies in light nuclei. This is because the '"thickness" of
a light nucleus — especially at non-zero impact parameter — is less than a
rho mean free path, and the distance over which coherence between rho and
photon is required, Ax in Eq. (9), is determined by the smaller of (a) the rho
mean free path, and (b) the path-length through the
nucleus12 . The transition in energy from ocxAto o A%O'8
is not monotonic in energy: the exponent at first rises above 1 because of the
differing energy dependence on light and heavy nuclei just discussed. For this
reason, the most effective way to study photon shadowing experimentally is by
the energy dependence on a few nuclei rather than to measure A dependence at
just a few energies. This recommended program also has the advantage of

1/3

being relatively insensitive to deviations from simple R « A™" ~ nuclear models.

On the other hand, the A dependence at high energy is sensitive to GpN’ as in
the case of rho photoproduction, assuming rho dominance holds .

In addition to rho dominance, the following approximations were made
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in obtaining Figure 2: A purely absorptive potential was used corresponding

to a uniform nuclear density of radius 1.2 Al/ 3 F and UpN =30 mb. The width

of the rho was taken as 110 MeV. Nucleon recoil was included in calculating

the minimum momentum tra}nsfer. The rho photoproduction amplitudes were
taken to be zero below threshold, and constant at the rho dominance value
above threshold. Cross sections on neutrons were assumed the same as on
protons. The w and ¢ channels were neglected, but these states can con-
tribute only very small amounts of shadowing, because the yw and vy ¢ couplings

are relatively small, and in addition is probably substantially less than

13
N
Below 1.1 BeV, Figure 2 shows a complete absence of shadowing. In

g ¢N
GpN’ as one would expect by analogy with Ty Versus o

fact, a small amount of shadowing is possible due to the low-mass tail of the
rho, or due to pions, whose contribution should be very small. (See Sections
VI, VII) For energies substantially below 1 BeV, the photon wave length be-

comes comparable to the internuclear separations, and the relation

(hadronic) _ (hadronic) _
O:YA Aqu, or qu =7

Our calculation can easily be extended to off-mass-shell photons. If

o + (A-Z)o again breaks down.
Yp vn

Q2 is the square of the photon invariant mass (negative for electron scattering),
then in Eq. (17) we must include the correct minimum momentum transfer:

g-k = (mi— Q“)/2q. The bracket then becomes

2
F(z)Vw

QR+ 22)
p pp

where the potentials V’VP and V’yy are proportional to forward amplitudes for

2/3

virtual photons. Because of the coherence requirement, "A " behavior
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ensues only at relatively higher energy if Q2 # 0. The predictions are shown
in Figure 3. We assume spin flip processes to be unimportant, and these
curves therefore apply separately to the total absorption cross section for
longitudinal photons and transvgrse photons, UL(QZ, V), ch(Qz, v) which are
obtained from inelastic electron or muon scattering in -the standard way 14.
The results are again divided by A times the corresponding nucleon cross
section, and thus can be interpreted as the effective fraction of nucleons which

absorb the photon. The mean free paths for longitudinal and transverse rhos

were assumed equal, corresponding to GpN = 30 mb.

V. Photon-Deuteron Total Cross Section

The simple eikonal model which we have used up to now is inappro-
priate for light nuclei, and must be replaced by a multiple-scattering approach
such as the Glauber approximation15. We shall discuss the simplest case:
the photon-deuteron cross section. (A multiple-scattering analysis for A= 2,
and its connection with the eikonal approximation in the limit A — <, has been
given by TrefilG.) This discussion should serve to clarify our basic physical
assumptions and approximations, and provide insight into the microscopic pro-
cesses which underlie the optical model calculations. Also, an understanding
of this particular problem would enable one to extract the photon-neutron cross
section from experiment.

The relevant multiple-scattering terms (see Figure 4) are:
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where ¢ is the deuteron wave function in momentum space.
If we neglect the recoil and binding corrections (represented by AEnuc)

and assume the energy variation of the scattering amplitudes is gradual enough
to be neglected inside the integral (as is justified by experiment), the third term

in f

'yd—-'yd(O) becomes

1
27rq

(o) ®) !

yo—pn=o yp=-pp - \/T:z_’?
(gl -v (@=-p) -mp+i€ (24)

where the arguments of the amplitudes now refer to the magnitude of the three-

jd pSp)f

momentum transfer and we have used the relation ny__; pN: pr—»yN from

time reversal to combine the double scattering terms. Here

se) = § a5 0@ ¢G-7) = fa*ru @2 P T (25)
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is the nonrelativistic deuteron form factor, and ¥ (r) is the deuteronwave function in

coordinate space. We have ignored the spins of the nucleons and of the deuteron,
as well as D-state and many-body components of the deuteron wave function, in

accord with common practice 16

15
The Glauber approximation now corresponds to dropping the principal-

value part of the energy denominator (propagator), and keeping only the delta
function part. This approximation is good at high energy; it is also good at low
energy to the extent that the real parts of the scattering amplitudes are negli-
gible, because in that case the principle value part does not contribute when the
imaginary part of fy d—vyd is taken to use the optical theorem17 . Changing to

spherical coordinates and using the delta function,

q+'/q2—m2

o
f 0) =f 0) +f 0)+ 4
')/d—"}/d( ) 'yn——'yn( ) '}’p_"}/p( )+ q dppS(p) fyn—-pn(p) f')/p—*pp(p)
v.2 2
q-Vvq mp

The upper limit of this integral is & 2q, which can be replaced by «, since the
deuteron form factor must cut off at a few hundred MeV. The lower limit is
A=q- Vq2- mi = mi /2q which is the minimum momentum transfer, as cal-
culated with neglect of the nucleon recoil energy.

In order to do a simple calculation, we use a gaussian wave function
for the deuteron18 , which leads to S(p) = exp (- ozpz/ 4) with o = 130 Bev_z,

and assume the scattering amplitudes have a momentum transfer dependence

< exp (- 'yp2/2), v =10 BeV—z. Assuming pure imaginary amplitudes and

(26)
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neglecting the difference betw f i
g g e between yn—pn and f*yp-»pp’ the optical theorem
gives
o =g +0 _ - (92) ( 8 )(1—772) eXP[—('Y +2)A2]
vd yn  Yp dt N— pN 4v+ 1+772 4 7

at 0 degrees

where 5= Re fy /Im ny%pN' Note that 4y is small compared to «,

N — pN
so the result is rather insensitive to the value assumed for vy, i.e. to the
assumed t-dependence of the rho production amplitude. (The sensitivity is
even less for a large nucleus, so that essentially only the photoproduction
cross section at zero degrees is important, as assumed in the eikonal model.)
To the extent that the 4y term can be completely ignored, the factor 2/(4y +a)
represents < r_‘2 > for the deuteron wave function; however, for analyzing
experimental data, we would advocate performing the integral in (26), using

a better wave function than the gaussian, rather than going in for the still
more crude < r_z > approximation. The shadow correction (U'ynJrpr- O'V d) /O'y d
should be = 4-5% at high energy, i.e. the correction in obtaining Gyn from
measurements of 0")/ & Gyp should be = 10%. The shadowing is reduced at
intermediate energies due to "incoherence!, i.e. due to the intolerance of

the wave function to the minimum momentum transfer, as given by the expon-
ential factor in (27). The shadowing due to intermediate rhos falls in principle
to zero at the rho production threshold, except for smearing due to the Fermi
motion and the rho width.

We wish to re-emphasize that it is the photoproduction amplitude for

real rho mesons which appears in the shadow contribution. This is also true



-16 -

in the multiple scattering analyses of photoproduction on heavy nucleiG,

although that fact is somewhat obscure in the optical model analysis. Since
only on-shell photoproduction amplitudes enter, it should be possible to cal-
culate the shadow correction in terms of photoproduction data, without ever

making the assumption of vector dominance.
V1. Beyond Rho Dominance

A. Multichannel Effects in the Photoabsorption on Deuterium.
So far we have discussed only the shadow effects which correspond
to propagation of real intermediate rho mesons. Other contributions are
possible, however: e.g. w, ¢, 7, many particle systems. Our calculation
on deuterium is easily generalized to include these possibilities. The approxi-

mate form (27), for example, becomes

do 8 x 1=11 ()]

o =g +0 _ - \dm -4 X
yd ~ “yn Typ f dtdm . N mass myN YT L1 my?

at zero degrees

28)
x exp [~ (y +a/4)(m2/2q)2] x width factor .

This generalization preserves the idea that the contribution of a state to
shadowing is proportional to the cross section for photoproducing it on a
nucleon. The exponential factor embodies the requirement that the shadowing
be small if the minimum momentum transfer is too large for thé nuclear wave
function. The width factor, which we have not written explicitly, should reduce

the cross section due to the spreading of intermediate several-particle states.
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For a resonance, such as the p, the width factor is essentially 1, but for a
nonresonant state at finite energy it may be substantially less than 1. In the
q — = limit, the width factor — 1 because of time dilitation. For example,
a rho of momentum q in frge space will travel roughly (q/mpI‘) =~ 5 F at 2 BeV;
25 F at 10 BeV before decaying. On the other hand, a completely nonresonant
T system of invariant mass 500 MeV would spread by 1.0 -1.2 F while
traveling 3 F at 2 BeV, 0.04-0.25 F at 10 BeV. The two estimates given re-
present ""decay' perpendicular or parallel to the direction of motion.

The effect of the real parts of the amplitudes could be important. If

we write the phase of f’y as ie1¢, then the factor (l—nz)/(1+n2)

N-- (state n)N
equals cos(2¢). This can in principle be negative, i.e. if the photoproduction
amplitude for a given state is predominantly real, then its contribution to the
shadow effect actually adds to the cross section, tending to cancel the effect

of the rho. It could happen that the phases of the photoproduction amplitude

for various final states are essentially random, in which case the contribution

to the shadow effect would average to zero. This is expected to reduce the net effect

of states whose photoproduction requires quantum number exchange. However, states
which can be photoproduced by diffraction, i.e. with the exchange of no quantum
number except for orbital angular momentum, are expected to be produced with
essentially imaginary amplitudes. Forexample, the photoproductionof 7-p systems
with low invariant mass might be due to the '"diffraction-dissociation process19
in which a y-m-p vertex is followed by 7 or p elastic scattering. The phase of
f'yN»pr is then the same as that for f7rN—wrN’ pr—»pN which are known from
experiment20 to be predominantly imaginary.

The question of the phases of inelastic production amplitudes, and the

effects of the spreading of multiparticle intermediate states, as discussed in
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21
the preceding paragraphs, are key problems in the theory of inelastic shadowing

The shadowing predicted for the y- A total cross section can be looked on as a
special case of inelastic shadowing, which is made especially simple by the
absence, to order «, of elastip shadowing.

The shadow effect due to states which are not produced diffractively,
such as 7ro, ¥ are expected to be small. In the first place, the photoproduction
amplitudes for these states are relatively small compared, for example, to the
rho, and are expected to continue to fall with energy. Second, nondiffractive
processes, in particular wo, TTi production, may involve spin flip in the forward
direction and/or charge exchange, which will be suppressed by the requirement

of leaving the nucleus in its ground state in the forward Compton amplitude.

B. Multichannel Shadow Effects for Heavy Nucleii.
Returning now to the question of photon cross sections on large nuclei,

/

and A versus A2 3 behavior, we find that the consideration of other inter-
mediate states besides the rho adds a great deal of complexity, which results
from the many possibilities for inelastic scattering of the hadrons. For ex-
ample, the incident photon might produce a rho on nucleon 1, the rho scatters on
nucleon 2 to produce an NN state, which scatters elastically on nucleon 3 and
then produces a photon on nucleon 4; at high energy this could interfere with

the amplitude for the photon simple to Compton scatter on one of the nucleons.

In the face of such possibilities, a precise calculation of O"YA seems impossible —
if only because it depends on a number of amplitudes which are not directly
neasurable. Nevertheless, it is possible to make some general statements

/3

on the A dependence, and in particular, to demonstrate that A2 behavior

at high energy follows as one would be led to expect from the uncertainty-
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principle argument of Section II, from any model in which the photon inter-

actions are mediated by hadrons of bounded mass.z2

Let us consider m hadronic channels instead of just the rho. Define

the matrices

A A .. .
vy v1 }‘ym 0 0 ... 0
}\'yl 7\11 . . . Alm 0 Al
A = . . A= I 29)
A'ym }\lm’ . . Amm 0 A

where the A's are the forward scattering amplitude, normalized so that 1/ i

is the mean free path for channel i:

_ 4mid o, _
b T " q fan—bNn®) = 3 Vap 39)

Ko} JUN

and /_\i = (m? +1 Q2 [)/2q is the minimum momentum transfer for photoproducing

the state i. The generalization of Egs. (13), (16) for the wave function inside a

homogeneous nucleus is

ZIJV (z) 1
+) eiqz o (2 +a)($ A+iA) J O

AMGIEY NG I (31)

v (@)



The forward scattering amplitude is

1
. .
Ep a0 = - = (0, V") = i—?}jd%ao...ome'(z Fa)(z AN (32)

where the integral ranges over a sphere of radius R = R0A1/3 representing

the nucleus, and z +a is the depth penetrated from the "left-hand" edge at

il

zZ=-a= - ‘ﬁiz— b2 for impact parameter b.

In order to decide whether (32) contains a contribution proportional
to A, i.e. proportional tc volume, imagine diagonalizing the matrix

K = A +2iA which occure in the exponential: in other words, expand the

vector (10...0) in eigenvectors of K. (This can certainly be done, since K

is symmetric.) Working to leading powers in the electron charge e, K has

an eigenvector

where
X, = - T A . (34)
and T is the n x n hadronic submatrix of K:
= A.. +2i6. A, . (35)

The eigenvalue associated with X is
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-1
€ =A - }; ATy A= detK/det T (36)
The eigenvalue € is of order e2, so X corresponds to a diagonal state with a
mean free path which is long compared to the size of the nucleus. X can there-
fore contribute a volume term and will do so unless AX = 0, in which case its
contribution is killed by the A in (32) which is not exponentiated. In the high
energy limit, A — 0, so K — A and the condition for no volume term, i.e.
AZ/3 behavior, becomes €=0, detA =0. The other n eigenvectors of A must have
eigenvalues of order 1, since the product of all the eigenvalues = det A ~ e2.
They therefore correspond to states which are diagonal in the medium, but
which are strongly absorbed, i.e. their mean free paths are a few fermis, so
they contribute only " surface' terms. The generalization of the Bell picture
{Section II) can now be obtained, if desired, by a canonical transformation in
which the photon channel is made to correspond to the eigenvector X.8

A more explicit way to arrive at the condition for complete cancel-
lation of the A term is simply to calculate the exponential in (32) to leading

powers in e. This leads to
T
. _ - (Z +a) E—
v.(z) =25 e T 1(3 -1 A 37)
i ij 7

and to

__z+aT
o, _ iq{.3 -1 2
07) = = + T =21 | I Y g 38

Cd s

3
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We assume on physical grounds that the eigenvalues of T are of order 1 Fermi_l,
i.e. correspond to hadronic mean free paths; therefore T_1 necessarily exists,
the exponential corresponds to "surface!" terms, and the volume term is can-
celled if and only if - 1}_“3 ;yi('r'l)ij A j = det(A+2i4)/det T = 0. In the
high energy limit, A — 0, leading again to the condition det A = 0,

Now let us generalize the vector dominance model, by aliowing the

photon to couple directly to each of the hadronic chammels. Then

€
AL = - A
Y1 Z g. }\1]
I 7
39)
A = ..9_ ...e_ A”
v f e g

where some of the coupling constants, which we write in the familiar form
-z— , may be zero since some of the hadronic channels we consider may have
quantum numbers different from the photon (such as for example the con-
jectured 3~ Regge recurrence of the rho). Now (39) is equivalent to the
condition det A = 0 to order ez, which is needed for cancellation of the volume
term at high energy. Note that this cancellation does not depend on any par-
ticular values for the coupling constants or for the hadronic scattering ampli-

tudes. The only requirements are that the energy be so large that (m?+ [ QZ 1)/2q
is nebgligible for all of the states involved, and that the hadronic amplitudes Aij
not vary significantly when the square of the external four-momentum varies
from ml2 or mJ.2 to Qz.

In the "hadron dominance" model discussed above, there are two
distinct qualitative features to be observed in qy A/A qu: the energy at which

this quantity becomes substantially different from 1 (i. e. when the shadow
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effects become important, which is related to the average mass of the hadronic
channels contributing importantly to the shadowing); and the limiting value at
very high energy, which is related to the average cross sections of the hadronic

states on nucleons., Quantitative results are discussed in Section VIL

C. The Shadow Effects of a Hadron Spectrum.

We have constructed a simple model to describe the shadow contri-
butions of higher mass JP =1 hadronic systems which could mediate the photon-
nucleon interactions. The contribution of the rho and the possibly important
higher mass systems is represented by a spectral function which is related to
the electron-positron annihilation cross section O tom This model is actually
a special case of the many channel model of Section 6B, in which the discrete
states n are replaced by a continuum and all of the off diagonal matrix elements
between the hadronic channels are neglected.

First we note that the propagator of the (I=1) electromagnetic current

of the hadrons is given by

L 4 _
X5 (O]10>d % =

—— 2 (40)

167" o

QQ
1 s820e+e‘ (s)[guv— us V} ds
2

seiQ'X< 01 T

s - Qz— ie
where T+ o= (s) is the total (I=1) hadron production cross section from electron-
positron annihilation at cm energy ,/s.

We then compare this with virtual forward Compton scattering on a

nucleus A: the Feynman amplitude is

A 2 _ 2f iQx . . 4
my, @) = e Je SAIT,E.0, 011 A> o dx (40)
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Let us now use a " Furry picture' description putting the effects of the absorp-
tive medium into the equation of motion for j u Then assuming a polarization-

independent optical potential V,

2 : Q Q
A 2 2
m,, @) =__£§_7jdss cre+e_(s)[gw_ us V][ 1 1 2]ds

167 o s- Q2+V s-Q
(42)
-1 J’ 2 QY| 1 2 1
= dss o+ -(s)|g - TG, Q) —
4 a €e [“V S S-Q2 s-Q
where T(s,Q2) =V+V T—l————— V is the virtual forward nuclear scattering
Q -s-V+ie

amplitude for a vector meson of mass s, four-momentum Q. We have assumed
that the potential V does not mix the various hadron components of the current,
and we identify it with absorptive potential Vpp of Section IIl.  The result for

the (virtual) total photo-absorption nuclear cross section is

2
Oete (58 Voo
A2 ds 53 ) F(z)
o Q,v) C-Re (s-Q7) s-Q +Vpp (i = transverse or) (43)
N5 - 2 1 itudinal
Aot @) Ot (5)8 onenEE
Sds 55
(s-Q")

where cfiN(Qz, v) is the total (transverse or longitudinal) photoabsorption cross

section on nucleons as measured in inelastic electron or muon scattering14.
F(z) is given by Eq. (17) with mi replaced by s.

Comparing with Eq. (39), if the annihilation cross section Ot o=
corresponds to a sum of narrow width Breit Wigner peaks for n vector mesons,

then (43) corresponds to }‘ij = 5ij Aﬁ and
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n A2
2 - (44)
=T Yy

where the )'ii are all taken to be equal. Various possibilities for the hadron
spectrum and the resulting i‘mplications for Uy A(Qz, v) are discussed in the

next section.
VII. Numerical Calculation for Violations of Vector Dominance

Let us now consider how the predictions based on rho dominance which
are shown in Figures 2 and 3 are modified if vector dominance is broken.

As a first way to break vector dominance, assume the effective rho-
photon coupling emi/Z Yo on the photon mass shell has strength given by
ys/ 4r = 1.1 to account for the small magnitude of nuclear rho photoproduction
observed by the Cornell and SLLAC groups.7 In the "pure" vector dominance
models, y§/47r has the same value at the photon mass as it does on the rho
mass shell where it is measured to be 0.52 + .07 from colliding beam experi-
ments e e — 7 7~ and the leptonic decay of rhosl. If we continue to assume'
GpN ~ 30 mb as obtained from the analysis of p photoproduction on nuclei,
then the rho dominant part of U'yp is (e/ 2')/p)2 UpN = 50 ub. The measured
value of cr'yp is 110 to 130 ub 23 so a contribution in addition to the rho must re-
main. Including the w and ¢, using Yo and vy ® given by the Orsay experiments
13

quN is small like TN adds ~ 25 ub,” but this is probably over-

estimated, since if the effective y-p coupling falls by a factor of 2 in going to

and assuming

Q2 =0, the y-w and y-¢ couplings would be expected to fall also. We must

therefore assume some additional states mediate the photon interactions to
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account for the magnitude of cryp. For simplicity, let us first assume those
states are sufficiently massive ( 2 3 BeV) that they do not contribute impor-
tantly to shadowing at energies below 20 BeV, where we can hope to have data
in the near future. The effect of such states in this energy region is the same
as for local coupling of the photon, which contributes to GyN and hence to the
volume of A term but not to the shadowing. The effect is to essentially cut
the shadowing in half compared to the pure rho dominance result. It would be
very hard to understand an experimental result of much less shadowing than
this, since we know the minimum strength and phase of rho photoproduction
at forward angles reasonably well %’ 7,20

This reduction in shadowing is illustrated in detail in Figure 5. The
curves are calculated from Eq. (43) assuming Ot is dominated by the rho
with a Breit-Wigner distribution plus another similar resonance of higher mass
Mvwith equal magnitude. The results are shown for various values of MV' For
v < 20 BeV, the results are nearly indistinguishable for any mass Mvz 3 BeV.
We also note here that a similar calculation to include the phi meson shows
that the effect of a poleatMV =mg with 1/10 the pole strength of the rho is
negligible. The use of a Breit-Wigner distribution for the two pion states of
the rho produces a small amount of shadowing below » = 1.1 BeV and thus
removes the sharp behavior at threshold shown in Figures 2 and 3.

As another model for the spectral function, we can adopt the following

form for the annihilation cross section
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3/2
4m72T> mi mirz
Ge+e' (s) = const. 1~ S e W 5
(s-m ) +m T
o P
2\N (45)
2 mp 2
+ € O0f/s-bm ){—— f(s-4m”)
P\ S T
0
The extra tail is added to reflect a large, slowly falling cross section beyond

the rho region. 24,25

In order to restrict the possibilities we again assume that the rho is
responsible for roughly half of U‘y o Then, for example, With a charge tail
falling like s_z starting at s = Zmi with € =1, the shadowing for real photons
on Copper (A=64) is 24% at v =10 BeV and 32% at ¥ =20 BeV, compared to
31% and 41% shadowing implied by pure rho dominance, respectively. Again,
we note that from the magnitude of the observed rho photoproduction the

minimum shadowing will not be less than half of the pure rho dominance result.
Summary

We have shown that measurements of the total hadronic cross section
for photons up to 20 BeV on nuclei, and measurements of inelastic electron
scattering in the same energy region, provide a sensitive test of the theoretical
idea of vector meson dominance, and of the more general idea of low-mass
hadron dominance of the electromagnetic current.

In the case of the rho dominance, the quantity U’y A/AO’ which

yN’

amounts to an effective fraction of photoabsorbing nucleons, becomes energy

independent, and equal to the corresponding fraction appropriate for hadron
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absorption, when the momentum transfer for forward rho photoproduction on
anucleon A~[mi +1 Q2 {1/2v is small compared to the reciprocal of

the hadronic path length in the nucleus. If the nuclear photoabsorption data
supports this, then by making reasonable assumptions on nuclear models, real
parts of amplitudes, and approximations of the w and ¢ contributions, one will
be able to extract GpN for the rho on the mass shell. This result should agree
with the value for O'pN obtained from rho photoproduction on nuclei. If rho
dominance is correct, oyA(Qz, vYA GyN(Qz’ v) depends only on tmin' Thus
measurements of inelastic electron-nucleus scattering for values of Qz and v
which keep t i Constant, are sensitive to any deviation from the rho dominance

relation f2yp = fy f _ for large space-like Q2.

Y PP

On the other hand, the hadron-like behavior of the nuclear photo-
absorption cross section at high energies is not a unique feature of rho domi-
nance, but.also follows from a generalization of the vector dominance model in
which arbitrary hadron states are assumed to contribute to the electromagnetic
current. The complete vanishing of the volume contribution to oy A only requires
that the momentum transfer be negligible for all of the states involved and the
determinant (29) of the forward scattering amplitudes vanishes to order ez; this
condition is met for the "hadron dominance! model in whichphotons interact
with nucleons via a sum (possibly spectral) of J =1 hadron states, assuming
the high energy forward photoproduction amplitudes do not change apprec iably
when extrapolated to the Q2 of the photon. In the energy region v g 20 BeV,
dominance by hadron states of mass = 3 BeV cannot be distinguished from

dominance by states of very large mass, such as baryon-antibaryon pairs,

quark-antiquark pairs, etc., or states of infinite mass which correspond to
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point-like interactions. The energy dependence of Uy A/A UyN is however
sensitive to dominant states beyond the rho in the 1 to 3 mass region.

In general any state which can be produced (including higher spins,
e.g. a rho Regge recurrence at JP =37 ) contributes to the shadowing in
proportion to the square of —its yet unmeasured nuclear forward photoproduction
amplitude. In particular, if the real forward rho photoproduction cross

section is half7 of what is predicted by simple vector dominance, i.e.

f
YP Yy PP

then the shadow contribution 1 - cry A/A O'yN is half of the p-w- ¢ dominance
prediction for v < 20 BeV; éventually it increases with photon energy as
photoproduction for higher mass states which contribute to fyy but not fyp or
fpp , becomes coherent on the nucleus.

Finally, we emphasize that photoproduction of rhos on nucleons implies
shadowing for photon-nucleus interactions independent of any model with the
exception of the unlikely possibility that there are large contributions from
photoproduction of low mass states with real amplitudes.

By the time of journal publication of this paper, we expect relevant
experimental data to be available. In addition to measurements of y +A— hadrons,
and inelastic electron and muon-nucleus scattering, we would like to encourage
measurements of total cross sections for pions on nuclei, in order to test the
reliability of available methods for treating the nuclear physics, and to look
for the inelastic shadow effects which have been predicted for the scattering of
hadrons, the theory of which is on the same footing as the many-channel cal-

culation of Section III.
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Footnotes and References A

For recent reviews see J. J. Sakurai, "Vector-Mesons 1960-1968" to be
published in Vol. XI, Lectures in Theoretical Physics (Gordon and Breach)
and the rapporteur's summary given at the XIV International Conference

on High Energy Physics in Vienna by S. C. C. Ting (1968). A Lagrangian
formulation of vector dominance has been given by N. M. Kroll, T. D. Lee,
and B. Zumino, Phys. Rev. 157, 1376 (1967).

If hadronic mean free paths were negligible compared to nuclear sizes,
interactions would be confined to the surface implying o «< Az/ 3; nucleii
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See, e.g. M. L. Longo and B. Moyer, Phys. Rev. 125, 701 (1962); J. Engler
et al., Physics Letters 28B, 64 (1968).

J. S. Bell, Phys. Rev. Letters 18, 57 (1964); CERN preprint TH. 877 (un-
published).

L. Stodolsky, Phys. Rev. Letters 18, 135 (1967).

We restrict our attention to the total photoabsorption cross section into
hadronic final states, which is obtained via the optical theorem from the

forward Compton scattering amplitude in order e2.

After our work was completed we learned that M. Nauenberg (to be pub-
lished), B. Margolis (to be published), and K. Gottfried, D. R. Yennie
{to be published), have derived the rho dominance result for Qz =0

given in Eq. (17).

This calculation parallels the calculations of particle photoproduction in
nuclei given by S. D. Drell and J. S. Trefil, Phys. Rev. Letters 16, 552,
E832 (1966), M. Ross and L. Stodolsky, Phys. Rev. 149, 1172 (1966),

K. Gottiried and D. Yennie (to be published). Analyses in terms

of a Glauber type of multiscattering theory have been given by
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K. 8. Kolbig and B. Margolis, Nuclear Physics ES,- 85 (1968) and J. S.
Trefil, MIT preprint (unpublished).

Evidence exists that the forward rho photoproduction cross section is only
half of the value predicted by rho dominance using the value 'ypz/ 4 = é(gi/ 4m)
.52 + .07 measured on the r'ho mass shell: see G. McClellan et al., pre-
prints CLNS-41, 44, Lab. Nuc. Studies, Cornell University, Ithaca, N.Y.
(December 1968) and submitted to Phys. Rev. Letters; and F. Bulos et al.,
" Photoproduction of th Mesons at 9 BeV", Proc. of the XIVth Inter-
national Conference on High Energy Physics, Vienna (September 1968);

and F. Bulos et al., SLAC-PUB-541 (to be published).. We wish to thank
Drs. D.W. G. Leith, W. Busza and R. R. Larsen for discussion of this
data. This possibility of violation of vector dominance would have striking
consequences for the energy dependence of cry A° 3S we discuss in Section VI
The distinction between the treatments of photon-hadron interactions in
Section 2 and 3 can be characterized by the interaction Lagrangian used to
represent vector dominance. In Section II the analysis is based on the

usual vector dominance Lagrangian in which photon interactions with the
hadron current J* are always mediated by the p. In Section III, the analysis
can be based on the Lagrangian model of Ref. 1: the p-photon coupling
vanishes for real photons (Q2 = 0), which however interact locally with the
hadron current. As shown in Appendix B of Kroll, Lee, Zumino (Ref. 1),
the two Lagrangians are in fact related by a canonical transformation: the
photon field of Section II is a linear combination of the photon and vector
meson fields of Section III. Indeed, in the case of photon-nucleon inter-

actions, one takes precisely that linear combination of photon and vector
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mesons of Section III which has no direct interaction with the nucleon.

We generalize this for arbitrary meson channels in Section VI-A.

N—pN(E0)

N(t=0). Consequences of breaking rho

The simple rho-dominance prediction is f =0) =
P prediction is yN—-pN(t ) (e/gp)fp

o 2
£ N y(t=0) = (e/8))

dominance are discussed in Sections VI and VII.

pPN—p

K. Gottfried and D. dJulius, Cornell preprint (unpublished).

A non-uniform nuclear density can readily be included. The general

eikonal solution to (15) is

2mif Z . .
zpﬁf)(z,b) - f dz'd(b, z"e X (Z-2")

Z
exp[-%‘apN 4‘ dz"d<b,z">eiqz'} ,

which reduces to (16) if d is constant. The cross section for forward Compton
scattering on heavy nucleii should be insensitive to the nuclear model as in
the case for forward hadron-nucleus scattering (see Drell and Trefil, Ref. 6,
and S. C.C. Ting, Ref. 1). Nuclear structure corrections have thus been
ignored here.

The transition energy where C{y A/A qu is within ~10% of its asymptotic

value is ¥ ~ mi \/~R7 See M. Nauenberg, Ref. 5a.

See also Ref. (3) and J. J. Sakurai, SLAC-TN-68-11 (1968)(unpublished) for
calculations of pr from p,w, ¢ photoproduction data. A general discussion
of contributions other than the rho is given in Sections VI and VII.

See, e.g., L. H. Hand, Proc. of 1967 Symposium on Electron and Photon

Interactions at High Energies, Stanford.
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R. J. Glauber, Lectures in Theoretical Physics, Vol. 1 (Interscience,
New York) 1959, and Phys. Rev. 100, 242 (1955). Corrections to the

Glauber theory are discussed in J. Pumplin, Phys. Rev. 17_3_, 1651 (1968).
and D. R. Harrington, '*"Multiple Scattering, The Glauber Approximation,

and the Off-Shell Eikonal Approximation', Rutgers preprint (1968).

Such corrections have been considered by D. Harrington, Phys. Rev.
Letters 21, 1496 (1968) and ''Three-Body Interaction Effects in High Energy
Scattering from Deuterons', Rutgers preprint (1968).

Keeping the principal value part would result in a correction to the shadow

2 3
>< where

term in (27) which is down from the term given by ~ 7 (mi/Zq) <r
71 is proportional to the real part of the photoproduction amplitude.

Simple, though unprecise, Guassian wave functions for the deuteron have
been given by M. Verde, Helv. Phys. Acta 22, 339 (1949).

M. L. Good and W. D. Walker, Phys. Rev. 120, 1857 (1960).

See, e.g., S. J. Lindenbaum, Proc. of Coral Gables Conference on Sym-
metry Principles at High Energies (1967). The phase of the rho photo-
production amplitude was measured by J. Asbury et al., Phys. Letters
25B, 565 (1967).

V. N. Gribov (trans. W. J. Zakrewski, University of Michigan, 1968
(unpublished)). J. Pumplin and M. Ross, Phys. Rev. Letters 21, 1778
(196 8).

This result was anticipated by Stodolsky, Ref. 3.

Aachen-Berlin- Bonn-Hamburg-Heidelberg-Miinchen Collaboration, Physics
Letters 27B, 474 (1968). J. Ballam et al., Phys. Rev. Letters 21, 1544
(1968). We shall assume that the forward Compton amplitude is essen-

tially diffractive.
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For € =0, this form for T tgm is the experimentai fit to the Orsay data
(mp =.76, I'=.11 BeV, const. =1.7 + .2 ub), and corresponds to a simple
Breit-Wigner pole in the pion form factor.

The quark field algebra predicts o, _— s for large s. See J. D.
Bjorken, Phys. Rev. lflﬁ—, 1467 (1967). Also, a tail with N > 2 would not
contradict the gauge field algebra. See J. Dooher, Phys. Rev. Letters
19, 600 (1967). Our form (43) is consistent with UT, L(QZ, V)~ l/Q2 in

the diffractive energy region for inelastic e-p scattering if Oytg— s—2.
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Figure Captions

Schematic representation of forward Compton scattering on nuclei.
Figure (a) corresponds to the vector dominance description given
in Section II in which photon-nucleon interactions are mediated by
rho mesons. Figure (b) corresponds to the description used in
Section III in which amplitudes are calculated by the "rho-photon
analogy'. The two descriptions are related by a canonical trans-
formation and give the same results. (See Footnote 8) Only single
and double scattering contributions to the order e2 amplitude are
shown; when the entire multiple scattering series for the forward
produced rhos is summed for large A in the Glauber approximation,
the absorptive medium-~-eikonal approximation is obtained. (See

J. Trefil, Ref. 6.)

The predictions of rho dominance for the photoabsorption cross

section as a function of incident lab energy. The effective number

of nucleons G'yA/AU'yN is given for carbon, copper and lead, assuming

UpN = 30 mb and uniform sphere radii R = 1.3 FA1/3. The curves are

lowered at 10 BeV by .04 to .05 (i. e. shadowing is increased) if R is

decreased to 1.2 FAI/3 or (TpN is increased to 35 mb. The sharp

behavior at the rho photoproduction threshold is removed when the
rho width and threshold factors are taken into account. Nuclear

effects become important at very low energies.

The predictions of rho dominance for inelastic electron scattering on

nucleii are given as a function of the virtual photon lab energy and

space-like four-momentum squared, Q2. The effective number of

nucleons GyA(QZ’ v)y/A qu(QZ, v) is given for copper with R=1.3F A

1/3
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assuming GpN = 30 mb for longitudinal or transverse rho mesons.

The results hold for the transverse or longitudinal photon cross

sections O’i(Qz, v) obtained from inelastic electron scattering.

Schematic representation of forward Compton scattering on deu-

terons to order ez corresponding to the four terms of Eq. (23).

The bottom two graphs represent the shadow contributions from the
emission and absorption of real rho mesons (or, in general, anycoherent
hadron system photoproduced on the nucleons). The solid line represents
the deuteron.

Predictions for the photoabsorption cross section of copper assuming
violation of vector dominance. The cross section for rho photo-
production on nucleons is taken to be 3 the rho dominance prediction.
(See Footnote 7) The effective number of nucleons U’y A/A qu is given

as a function of laboratory photon energy assuming shadow contri-
butions from the rho plus other hadron states, which are represented

bya vector resonance at mass M., photoproduced with the width and

\%

magnitude of the rho. The result for MV 23 BeV, v < 20 BeV is to

reduce the shadow contribution 1- qy A/ A OyN to half of the value

obtained from rho dominance given in Figure 2.
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