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ABSTRACT 

Quantitative predictions for the energy and A dependence of the nuclear 

photoabsorption cross section and inelastic electron-nucleus scattering are given. 

In general each nucleon does not contribute equally to the total photon-nucleus 

cross section when coherent contributions of photoproduced hadrons are taken 

into account. At low energies (E 
Y 

N 1 BeV) the cross sections are proportional 

to nuclear number A, but at high energies, they become proportional to the 

number of surface nucleons - provided that the photon interactions are mediated 

by hadrons of sufficiently low mass, The condition on the masses is that the 

momentum transfer in forward photoproduction of these states is small compared 

to the reciprocal of their mean free paths in nuclear matter. In the case of rho 

dominance, the real photon photoabsorption cross section has the same A de- 

pendence as hadron-nucleus total cross sections for v 2 10 BeV, whereas the 

cross section for virtual photon absorption at that energy, obtained from in- 

elastic electron scattering, for spacelike momentum transfer I Q2 I 2 5 Be 9, 

is nearly proportional to A. 

We then generalize to an arbitrary spectrum of intermediate particles, 

and discuss the sensitivity of feasible experiments to various models in which 

the spectrum contains important structure beyond the rho. Measurements of 

the photon-nucleus cross sections will provide a fundamental test of l’hadron 

dominance” in general, and of p - w- 4 dominance in particular, as well as help 

to determine the basic parameters of photon-nucleon and rho-nucleon inter- 

actions . We also calculate the photon-deuteron cross section and discuss the 

multiple scattering approach to photon-nucleus interactions. This discussion 

provides insight into the many-body processes which underlie the eikonal, optical 

model calculations; it is also relevant to the determination of u w 
at high energies. 
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I. Introduction 

Direct application of the rho-dominance model 1 to the forward elastic 

amplitude for photons on nuclei, together with the optical theorem, yields the 

total cross section prediction 

ayA 
= (e/g12 o;oA’ (1) 

This result is paradoxical, because the mean free path of photons in nuclear 

matter (= CT -1 x density of nucleons -1 
7/N 

M ‘700 F) is large compared to nuclear 

sizes, so one might have expected all of the nucleons to participate equally, 

and u CC A. 
3/A 

However, one certainly expects (T 
PA 

not to be proportional to A 

because of shadow effects: the mean free path of rho’s in nuclear matter 

(= u;; x density of nucleons -1 M 3 F) is comparable to nuclear sizes, so 

nucleons deep inside the nucleus do not see the full incident rho flux2. Never- 

theless, Bell3 and Stodolsky4 have shown that Eq. (1) is not unthinkable; that 

in particular it follows at sufficiently high energies from assuming rho domi- 

nance of the interactions on individual nucleons. 

Our purpose in this paper is to develop a quantitative description of 

the energy and A dependence of the nuclear photoabsorption cross section 5-6. At 

low energies (for our purposes, E 
Y 

N 1 BeV) the photon cross section will be 

shown to be proportional to A. At very high energie.s it is predicted to be 

proportional to “A 2/3,, 2 , provided only that the photon interactions are mediated 

by hadrons of sufficiently low mass. We wish to emphasize that this high energy 

prediction of If A2’3 It behavior does not rest on detailed assumptions of vector 

dominance. The energy of transition between A and A 
2/3 is related to the 

average mass of hadronic states which dominate the electromagnetic current: 
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the critical condition for (1) to hold is that the momentum transfer in forward 

photoproduction of these states be small compared to the reciprocal of their 

mean free paths in nuclear matter. Measurements of the total photoabsorption 

cross section through the transition region (l-20 BeV) would therefore constitute 

a fundamental test of the basic ideas of “hadron dominance” in general, and 

of p - w- $ dominance in particular. They offer the possibility of confirming 

and understanding the breakdown of rho dominance which already seems to 

have been observed in p photoproduction on complex nuclei.7 The total cross 

section, i. e. the imaginary part of the forward Comptonamplitude, is anespecially 

useful physical quantity here because it contains no background of energy independent 

absorption, such as occurs in the photoproduction of any given hadron through 

final state absorption; and because the forward Compton amplitude is totally 

coherent, involving only the ground state of the nucleus. We generalize our 

results to photons which are off-mass-shell in the spacelike region, i. e. to 

inelastic electron or muon scattering from nuclei. This generalization is im- 

portant because it introduces a new parameter - Q2 of the photon - which 

can be varied in testing the theory, and because inelastic electron scattering 

experiments may be easier to perform that total photoabsorption experiments. 

Our calculations are first done within the framework of rho dominance (Sec- 

tions II- IV). We then generalize to allow for an arbitrary spectrum of inter- 

mediate particles, a.id discuss the sensitivity of feasible experiments to 

various models in which that spectrum is related to the cross section for 

electron-positron annihilation into hadrons. (Sections VI, VII) We also cal- 

culate the photon-deuteron total cross section, and discuss the multiple- 

scattering approach to photon shadowing. This discussion provides insight 
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into the many-body processes which underlie the optical model calculations, 

and clarifies our basic assumptions; it is also relevant to the determination of 

O-w 
at high energy. 

- IL A Basic Description 

We begin by assuming photons couple only through rho mesons (see 

Figure 1). The coupling constant is defined as emi/g. Following Be113, the 

incident photon wave function is e -iq+x and the rho wave equation in nuclear 

matter is 

c 0 + m2p + Vpp] I), = i m2p eeiqox . 

xP is an optical potential, and is related to the forward scattering amplitude 

of rho’s on nucleons by 

v = 
PP 

-4n df$ipN 

where d is the nuclear density. In the case of pure absorption, f is imaginary 

and 

v = 
PP 

-ikd opN f -ik/~ 

(2) 

(3) 

(4) 

where (T 
PN 

is the total rho-nucleon cross section for rhoa in momentum k, and 

p is the mean free path M 3 F. The index of refraction for rho’s in the nuclear 

medium is given by 
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“P 
=1+2ndf 

pN- ,,too)/k2 l 

yp is assumed not to mix spin states Eq. (2) describes a helicity component 

of the p wave function. 

If lp is constant within the nucleus, the solution has the form 

[ 

2 

tip = p 
mp e-iq.x 

m:+V 
+X 

PP 1 

(5) 

(6) 

where x is a solution of the homogeneous equation corresponding to exponential 

decay within the nucleus. Using the optical theorem and (4), the first term 

contributes to the cross section 

This term vanishes in the high energy limit 

IVppI >>m2 i.e. 
P’ 

Ey= q=m2pp (8) 

leaving only the contribution from x , which is not proportional to A and produces 

the hadron-like behavior of the cross section. We give precise formulae below. 
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On the other hand, for sufficiently low energies x becomes small and only the 

A term survives, corresponding appropriately to coherent scattering on a 

nearly transparent nucleus. 

These results can be understood simply using an uncertainty principle 

argument. The description of Figure 1 in terms of old-fashioned perturbation 

theory is that energy is not conserved at the rho-photon vertices by an amount 

r AE = mp+q -q = mi/2q. Th e ongitudinal position of the y-p conversion 1 

point must then be uncertain by a distance 

1 2q fWk~-2. 

mP 
(9) 

If Ax is large compared to the hadron mean free path in the nucleus, then the 

photon converts to hadrons well before reaching the nuclear surface, and shadow 

effects are to be expected. This results in the same high energy condition (8) 

as obtained above. No details of rho-dominance theory, such as the magnitude 

of the rho-photon coupling constant, enter into this uncertainty principle argu- 

ment. The necessary condition for “A 2/3 11 behavior at high energy is therefore 

only that the photon interactions be mediated by hadronic states of finite mass. 

III. An Alternate Description 

Stodolsky4 has given a somewhat different description, in which the 

photons are eigenstates of the vacuum; i. e. the direct rho-photon coupling 

vanishes for on-mass-shell photons, and the photons are instead allowed to 

interact directly with the nucleons. 
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The two descriptions are related by a canonical transformation8, and 

therefore contain the same physics (see Figure 1). The question of whether the 

photon changes into a rho before or after reaching the nucleus in a rho dominance 

model is thus purely a matter of taste. In Stodolsky’s description, the ItA w, 

behavior of the photon-nucleus total cross section at high energy arises because 

a r’downstreamff nucleon feels, in addition to the full-strength incident photon 

beam, a beam of real rho mesons of intensity -f yN--+ pNjfpN--pN which has 

been generated t*upstreamlf. (The factor l/fpN,pN enters here because only 

rhos generated within z one mean free path survive absorption. ) The direct 

photon beam results in a contribution to the forward amplitude = f 
3/N-W 

while 

the rho “beam” contributes a - (f yN- pNjfpN+ pN) fyN- pN and the ‘Oef- 

ficients are such that these cancel each other, leaving no term proportional to 

volume, provided the relation 

f yN-yN $N--pN = -PN (10) 

holds, as it does in the rho dominance model 139 . 

At low energies, the cancellation is made imperfect by several effects 

which reduce the rho term, so that (1) is only expected to hold at high energies. 
10 

First of all, the rho may decay before it can reconvert to a photon . That 

will only be negligible when the distance a rho can travel before decaying is 

long compared to its mean free path, i. e. when k/mpl? >> /.L Because of the 

time dilation factor k/m 
P' 

that inequality becomes true at energies of a few 

BeV. Themost important effect results from the transfer of three-momentum x to 

one of the nucleons, and -x to another where I xl x m:/2q. This effect 
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depends in general on the nuclear wave function. In the eikonal model it takes 

the form of a coherence requirement: the photon wave is a elqz and the rho 

a eikz, where k = q - A; in order for shadow effects to be important, these 

must stay approximately in step over at least a rho mean free path, i. e. 

mz/2q Z A << l/p. This is the uncertainty principle condition (8) discussed 

above. A third effect is that (10) must be expected to fail at low energies even 

if one believes in rho dominance, because of minimum momentum transfer 

considerations - e. g. the rho contribution to shadowing must vanish if the 

photon energy is less than rho production threshold of 1.1 BeV, since as we 

wish to emphasize, the shadowing is caused by real intermediate states. 

IV. Rho Dominant Calculation 

We now use the Stodolsky description to calculate the photon-nucleus 

total cross section, assuming rho-dominance of photon-nucleon scattering. We 

use the eikonal approximation, and treat the nucleus as a homogeneous sphere 

of radius R = rOA1’3, ro=-1.2 F. Begin by pretending the rho has zero width. 

The forward photon-nucleus amplitude is 

T = (#p,V$ (‘)) 

where 

G = ( ) 
eiw 

0 

is the incident photon wave with energy Ey = q, 

(11) 

(12) 

* (-9 + (+) = Y 

( 1 * (+) 
P 

(13) 
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is the corresponding outgoing scattered wave, and V is the 2 x 2 matrix 

where V = - 47~ d f too) 
YP ?/N -pN’ etc* To order e2, q:)(z) = eiqz and 

-v2+v pp-k2 $+) = I -vypqt+’ . 

The rho wave function, which satisfies the eikonal approximation to this 
11 

equation is 

+Wtz) = -vvP 
P m2p+V [ 

eigz _ .Wz +a) e-‘4a] 

PP 

7 where a = R -b for impact parameter b, so that the boundary condition 

$, (-a) = 0 is met; i. e. +, vanishes at the left-hand edge of the nucleus. We 

emphasize that V 
YP 

is proportional to the photoproduction amplitude for real 

rho mesons with physical momentum k = m q -m 
P’ 

Employing the optical 

theorem, we obtain 

“rA 
m [WW~/($ + V,,)] 

ImV 
YY 

(14) 

05) 

06) 

(17) 
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where 

z2 (l+z)emZ-1 $2 
3 

08) 
+ VPP/2k . 1 

At energies high enough that minimum momentum transfer effects 

are negligible, rho dominance implies 199 

V2 
YP 

=v v 
PP YY 

If, in addition, the energy is high enough that q-k times the rho mean free 

path /J is small then 

V 
PP 

2 
= 1 

t-V 
mP PP 

(19) 

(20) 

and the terms proportional to A in o 
?/A 

vanish leaving the surface contributions. 

The expression (l7) can be improved in several ways. We can take 

into account the instability of rho approximately by adding impI’ to V . This 
PP 

amounts to changing the mean free path by 

llP - l’Pabsorption ’ l’Pdecay . (21) 

We can include the nucleon recoil energy in computing the minimum momentum 

transfer q-k. Further, we can determine Vyp from the measured photo- 

production amplitude for rhos in order to incorporate the correct threshold 

dependence. These modifications have only minor effects on CT 
3/A’ 

because 

they are sizable only at low energies where the rho contribution is small and 
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= Ao “rA yN’ That fact also justifies our use of the eikonal approximation down 

to low energies. Real parts can be included in V 
PP 

and V ; the values are of 
YP 

course not known, but assuming (19) holds, we find the effects of changing 

Ref/Imf from 0 to f 0.2 to be only about 5%. 

The energy dependence of CT yA given by (17) is shown in Figure 2. It 

is also shown in the form of (T /A (T 
YA ?/N’ 

which can be thought of as an effective 

number of nucleons; the strength of the y- p coupling is divided out in this 

expression, as is some of the energy dependence of (T 
YN’ 

It is apparent that 

the effect we discuss is large, and occurs in an energy region amenable to 

experiment. The transition energy increases with A, i. e. the shadowing 

comes in at lower energies in light nuclei. This is because the “thickness” of 

a light nucleus - especially at non-zero impact parameter - is less than a 

rho mean free path, and the distance over which coherence between rho and 

photon is required, Ax in Eq. (9), is determined by the smaller of (a) the rho 

mean free path, and (b) the path-length through the 

nucleus12. The transition in energy from cr=Ato craA ~0.8 

is not monotonic in energy: the exponent at first rises above 1 because of the 

differing energy dependence on light and heavy nuclei just discussed. For this 

reason, the most effective way to study photon shadowing experimentally is by 

the energy dependence on a few nuclei rather than to measure A dependence at 

just a few energies. This recommended program also has the advantage of 

being relatively insensitive to deviations from simple R CC A l/3 nuclear models. 

On the other hand, the A dependence at high energy is sensitive to apN, as in 

the case of rho photoproduction, assuming rho dominance holds . 

In addition to rho dominance, the following approximations were made 
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in obtaining Figure 2: A purely absorptive potential was used corresponding 

to a uniform nuclear density of radius 1.2 A l/3 Fanda 
PN 

= 30 mb. The width 

of the rho was taken as 110 MeV. Nucleon recoil was included in calculating 

the minimum momentum transfer. The rho photoproduction amplitudes were 

taken to be zero below threshold, and constant at the rho dominance value 

above threshold. Cross sections on neutrons were assumed the same as on 

protons. The w and Q, channels were neglected, but these states can con- 

tribute only very small amounts of shadowing, because the yw and y$ couplings 

are relatively small, and in addition o 
GN 

is probably substantially less than 

OpN’ as one would expect by analogy with h versus crN. 13 

Below 1.1 BeV, Figure 2 shows a complete absence of shadowing. In 

fact, a small amount of shadowing is possible due to the low-mass tail of the 

rho, or due to pions, whose contribution should be very small. (See Sections 

VI, VII) For energies substantially below 1 BeV, the photon wave length be- 

comes comparable to the internuclear separations, and the relation 
(hadronic) = A (T 

*YA ?/N’ 
thdronic) = Z (T 

Or cyA YP 
+ (A-Z) (T 

Yn 
again breaks down. 

Our calculation can easily be extended to off-mass-shell photons. If 

Q2 is the square of the photon invariant mass (negative for electron scattering), 

then in Eq. (17) we must include the correct minimum momentum transfer: 

q-k z (rnz - Q2)/2q. The bracket then becomes 

WV; 
m:-Q2 +V 

PP 
(22) 

where the potentials V 
YP 

and V 
YY 

are proportional to forward amplitudes for 

virtual photons. Because of the coherence requirement, “A 213 It behavior 
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ensues only at relatively higher energy if Q2 # 0. The predictions are shown 

in Figure 3. We assume spin flip processes to be unimportant, and these 

curves therefore apply separately to the total absorption cross section for 

longitudinal photons and transverse photons, oL(Q2, v), oT(Q2, Y) which are 

obtained from inelastic electron or muon scattering in the standard way 14 . 

The results are again divided by A times the corresponding nucleon cross 

section, and thus can be interpreted as the effective fraction of nucleons which 

absorb the photon. The mean free paths for longitudinal and transverse rhos 

were assumed equal, corresponding to (T 
PN 

= 30 mb. 

V. Photon-Deuteron Total Cross Section 

The simple eikonal model which we have used up to now is inappro- 

priate for light nuclei, and must be replaced by a multiple-scattering approach 
15 

such as the Glauber approximation . We shall discuss the simplest case: 

the photon-deuteron cross section. (A multiple-scattering analysis for AZ 2, 

and its connection with the eikonal approximation in the limit A - 00, has been 

given by Trefi16. ) This discussion should serve to clarify our basic physical 

assumptions and approximations, and provide insight into the microscopic pro- 

cesses which underlie the optical model calculations. Also, an understanding 

of this particular problem would enable one to extract the photon-neutron cross 

section from experiment. 

The relevant multiple-scattering terms (see Figure 4) are: 
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f yd- y,t&a--;;,a, 

where (p is the deuteron wave function in momentum space. 

If we neglect the recoil and binding corrections (represented by AEnUc) 

and assume the energy variation of the scattering amplitudes is gradual enough 

to be neglected inside the integral (as is justified by experiment), the third term 

inf yd- ydto) becomes 

1 -- 
2n2q 

d3pWfyn-pn@if YP-PP(P) 
(24) 

where the arguments of the amplitudes now refer to the magnitude of the three- 

momentum transfer and we have used the relation f 
yN--pN= fpN-yN from 

time reversal to combine the double scattering terms. Here 

(2 5) 
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is the nonrelativistic deuteron form factor, and #(r) is the deuteron wave function in 

coordinate space. We have ignored the spins of the nucleons and of the deuteron, 

as well as D-state and many-body components of the deuteron wave function, in 

accord with common practice 16 . 
15 The Glauber approximation now corresponds to dropping the principal- 

value part of the energy denominator (propagator), and keeping only the delta 

function part. This approximation is good at high energy; it is also good at low 

energy to the extent that the real parts of the scattering amplitudes are negli- 

gible, because in that case the principle value part does not contribute when the 

imaginary part of f 
17 

yd-yd 
is taken to use the optical theorem . Changing to 

spherical coordinates and using the delta function, 

q+ P--- 4 -mp 

f yd-yd(') =fyn-yn(o) +fyp-yp(o)+ $ 

J 
dpps(p)f~n-~n(P)f~p~pp@) (26) 

The upper limit of this integral is M 2q, which can be replaced by ~0, since the 

deuteron form factor must cut off at a few hundred MeV. The lower limit is 

p7r 2 A-q- q-m 
P 

z mp/2q which is the minimum momentum transfer, as cal- 

culated with neglect of the nucleon recoil energy. 

In order to do a simple calculation, we use a gaussian wave function 

for the deuteron18, which leads to S(p) = exp (- op2/4) with a! z 130 BeV -2 , 

and assume the scattering amplitudes have a momentum transfer dependence 

a exp (- yp2/2), y g 10 BeV -2 . Assuming pure imaginary amplitudes and 
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neglecting the difference between f and f 
yn-pn YP”PP’ 

the optical theorem 

gives 

Oyd = ayn 
+cT da - YP - dt yN-pN 0 

(&j (+$j ew[-ty +f) A2] (27) 

at 0 degrees 

where 77 = Re f yN - pN’Im fyN -L pN’ Note that 4y is small compared to CY, 

so the result is rather insensitive to the value assumed for y , i. e. to the 

assumed t-dependence of the rho production amplitude. (The sensitivity is 

even less for a large nucleus, so that essentially only the photoproduction 

cross section at zero degrees is important, as assumed in the eikonal model. ) 

To the extent that the 4y term can be completely ignored, the factor 2/(4y + CV) 

represents < r -2 > for the deuteron wave function; however, for analyzing 

experimental data, we would advocate performing the integral in (26), using 

a better wave function than the gaussian, rather than going in for the still 

more crude < r -2 > approximation. The shadow correction ((T yn+cyp- (Tyd)‘oyd 

should be x 4-5s at high energy, i. e. the correction in obtaining (T from 
Yn 

measurements of c 
-4 GYP 

should be = 10%. The shadowing is reduced at 

intermediate energies due to I( incoherence”, i. e. due to the intolerance of 

the wave function to the minimum momentum transfer, as given by the expon- 

ential factor in (27). The shadowing due to intermediate rhos falls in principle 

to zero at the rho production threshold, except for smearing due to the Fermi 

motion and the rho width. 

We wish to re-emphasize that it is the photoproduction amplitude for 

real rho mesons which appears in the shadow contribution. This is also true 
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in the multiple scattering analyses of photoproduction on heavy nuclei 6 , 

although that fact is somewhat obscure ,m the optical model analysis. Since 

only on-shell photoproduction amplitudes enter, it should be possible to cal- 

culate the shadow correction in terms of photoproduction data, without ever 

making the assumption of vector dominance. 

VI. Beyond Rho Dominance 

A. Multichannel Effects in the Photoabsorption on Deuterium. 

So far we have discussed only the shadow effects which correspond 

to propagation of real intermediate rho mesons. Other contributions are 

possible, however: e. g. w, @, YT , many particle systems. Our calculation 

on deuterium is easily generalized to include these possibilities. The approxi- 

mate form (27), for example, becomes 

Oyd = oyn+ oyp - 
da 

dm dtdm 
8 

’ 4y(m)+a! ’ 
l- h (WI2 

yN- (mass m)N 1 + [rl WI2 
at zero degrees 

x exp [ - (y + o/4)(m2/2q)2] x width factor . 
(28) 

This generalization preserves the idea that the contribution of a state to 

shadowing is proportional to the cross section for photoproducing it on a 

nucleon. The exponential factor embodies the requirement that the shadowing 

be small if the minimum momentum transfer is too large for the nuclear wave 

function. The width factor, which we have not written explicitly, should reduce 

the cross section due to the spreading of intermediate several-particle states. 
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For a resonance, such as the p, the width factor is essentially 1, but for a 

nonresonant state at finite energy it may be substantially less than 1. In the 

q - CXJ limit, the width factor - 1 because of time dilitation. For example, 

a rho of momentum q in free space will travel roughly (q/m,I’) = 5 F at 2 BeV; 

25 F at 10 BeV before decaying. On the other hand, a completely nonresonant 
+- 7r7T system of invariant mass 500 MeV would spread by 1.0 -1.2 F while 

traveling 3 F at 2 BeV, 0.04 - 0.25 F at 10 BeV. The two estimates given re- 

present “decay” perpendicular or parallel to the direction of motion. 

The effect of the real parts of the amplitudes could be important. If 

we write the phase of f yN - (state n) N as iei@, then the factor (I-n2)/(l+q2) 

equals cos(2 41). This can in principle be negative, i. e. if the photoproduction 

amplitude for a given state is predominantly real, then its contribution to the 

shadow effect actually adds to the cross section, tending to cancel the effect 

of the rho. It could happen that the phases of the photoproduction amplitude 

for various final states are essentially random, in which case the contribution 

to the shadow effectwould average to zero. This is expected to reduce the net effect 

of states whose photoproduction requires quantum number exchange. However, states 

which can be photoproduced by diffraction, i. e. with the exchange of no quantum 

number except for orbital angular momentum, are expected to be produced with 

essentially imaginary amplitudes. For example, the photoproduction of r-p systems 
19 

with low invariant mass might be due to the ‘!diffraction-dissociation” process 

in which a y - 7r - p vertex is followed by IT or p elastic scattering. The phase of 

f yN - npN is then the same as that for fTN- nN, f 
PN-PN 

which are known from 

20 
experiment to be predominantly imaginary. 

The question of the phases of inelastic production amplitudes, and the 

effects of the spreading of multiparticle intermediate states, as discussed in 
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21 
the preceding paragraphs, are key problems in the theory of inelastic shadowing . 

The shadowing predicted for the y-A total cross section can be looked on as a 

special case of inelastic shadowing, which is made especially simple by the 

absence, to order Q, of elastic shadowing. 

The shadow effect due to states which are not produced diffractively, 
0 f such as IT , 7r are expected to be small. In the first place, the photoproduction 

amplitudes for these states are relatively small compared, for example, to the 

rho, and are expected to continue to fall with energy. Second, nondiffractive 

processes, in particular 7r”, r* production, may involve spin flip in the forward 

direction and/or charge exchange, which will be suppressed by the requirement 

of leaving the nucleus in its ground state in the forward Compton amplitude. 

B. Multichannel Shadow Effects for Heavy Nucleii. 

Returning now to the question of photon cross sections on large nuclei, 

and A versus A 2/3 behavior, we find that the consideration of other inter- 

mediate states besides the rho adds a great deal of complexity, which results 

from the many possibilities for inelastic scattering of the hadrons. For ex- 

ample, the incident photon might produce a rho on nucleon 1, the rho scatters on 

nucleon 2 to produce an NE state, which scatters elastically on nucleon 3 and 

then produces a photon on nucleon 4; at high energy this could interfere with 

the amplitude for the photon simple to Compton scatter on one of the nucleons. 

In the face of such possibilities, a precise calculation of (T 
YA 

seems impossible - 

if only because it depends on a number of amplitudes which are not directly 

neasurable. Nevertheless, it is possible to make some general statements 

on the A dependence, and in particular, to demonstrate that A 2/3 behavior 

at high energy follows as one would be led to expect from the uncertainty- 
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principle argument of Section II, from any model in which the photon inter- 

22 actions are mediated by hadrons of bounded mass. 

Let us consider m hadronic channels instead of just the rho. Define 

the matrices 

h 
Y-Y 

h 
Yl 

. 

h 
ym 

. 

. 

. 

‘lrn. ’ * ‘mm 
1 

A= 

0 0. 

0 + 

. 

. 

. 
0 

I 

. * 0 

*m 
1 

(29) 

where the h’s are the forward scattering amplitude, normalized so that l/Aii 

is the mean free path for channel i: 

h ab = 
4rid f -- 

q a&J+qtoo) = $ vab (36) 

and Ai z (rnf + I Q2 1)/2q is the minimum momentum transfer for photoproducing 

the state i. The generalization of Eqs. (13), (16) for the wave function inside a 

homogeneous nucleus is 

iqz =e e - (z+a)($ A+ iA) 
(31) 



The forward scattering amplitude is 

d3r(10.. . o)Ae-(Z’a)(% A+iA) 

where the integral ranges over a sphere of radius R = ROA l/s representing 

the nucleus, and z +a is the depth penetrated from the “left-hand” edge at 

z=-az- lR2 J - b2 for impact parameter b. 

In order to decide whether (32) comains a contribution proportional 

to A, i. e. proportional to volume, imagine diagonalizing the matrix 

K = A + 2 iA which occurs in the exponential: in other words, expand the 

vector (lo.. . 0) in eigenvectors of K. (This can certainly be done, since K 

is symmetric. ) Working to leading powers in the electron charge e, K has 

an eigenvector 

1 
x -= x1 . e . 

X 
m 

where 

and T is the n x n hadronk submatrk of K: 

(32) 

(33) 

(34) 

T.. 
Kl 

= hij + 2i6..A. . 
4 J 

The eigenvalue associated with X is 

(353 
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E =A yy - $ hri(T-l)ij hrj = detK/det T (36) 

The eigenvalue E is of order e2, so X corresponds to a diagonal state with a 

mean free path which is long compared to the size of the nucleus. X can there- 

fore contribute a volume term and will do so unless RX = 0, in which case its 

contribution is killed by the A in (32) which is not exponentiated. In the high 

energy limit, A - 0, so K - A and the condition for no volume term, i. e. 

A2j3 behavior, becomes E ‘0, det A = 0. The other n eigenvectors of A must have 

eigenvalues of order 1, since the product of all the eigenvalues = det A - e2. 

They therefore correspond to states which are diagonal in the medium, but 

which are strongly absorbed, i. e. their mean free paths are a few fermis, so 

they contribute only 97 surface” terms. The generalization of the Bell picture 

(Section If, can now be obtained, if desired, by a canonical transformation in 

which the photon channel is made to correspond to the eigenvector X. 8 

A more explicit way to arrive at the condition for complete cancel- 

lation of the A term is simply to calculate the exponential in (32) to leading 

powers in e. This leads to 

and to 

fyA, yA(oo) = 2 hyy + c j/ 
Lj 

i [T-$? ‘-ljij AYj} . 

(37) 

(38) 
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We assume on physical grounds that the eigenvalues of T are of order 1 Fermi 
-1 

, 

i. e. correspond to hadronic mean free paths; therefore T -1 necessarily exists, 

the exponential corresponds to 19surface*9 terms, and the volume term is can- 

celled if and only if h - ~ 5 hr i(~-l)ij hyj F det(A + 2i *)/det T = 0. h the 

high energy limit, A - 0, leading again to the condition det A = 0. 

Now let us generalize the vector dominance model, by allowing the 

photon to couple directly to each of the hadronic channels. Then 

A yi =CQij 
j gj 

(3% 
A n/ = 5 $ F ‘ij 

i j 

where some of the coupling constants, which we write in the familiar form 

e 
-9 g 

may be zero since some of the hadronic channels we consider may have 

quantum numbers different from the photon (such as for example the con- 

jectured 3- Regge recurrence of the rho). Now (39) is equivalent to the 

condition det A = 0 to order e2 , which is needed for cancellation of the volume 

term at high energy. Note that this cancellation does not depend on any par- 

ticular values for the coupling constants or for the hadronic scattering ampli- 

tudes. The only requirements are that the energy be so large that (mt+ I Q2 I )/2q 

is negligible for all of the states involved, and that the hadronic amplitudes h.. 
xl 

not vary significantly when the square of the external four-momentum varies 

from rn2 or mj2 to Q2. 

In the “hadron dominance” model discussed above, there are two 

distinct qualitative features to be observed in (T /AU 
YA YN 

: the energy at which 

this quantity becomes substantially different from 1 (i. e. when the shadow 
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effects become important, which is related to the average mass of the hadronic 

channels contributing importantly to the shadowing); and the limiting value at 

very high energy, which is related to the average cross sections of the hadronic 

states on nucleons. Quantitative results are discussed in Section VII. 

C. The Shadow Effects of a Hadron Spectrum. 

We have constructed a simple model to describe the shadow contri- 

butions of higher mass Jp = I- hadronic systems which could mediate the photon- 

nucleon interactions. The contribution of the rho and the possibly important 

higher mass systems is represented by a spectral function which is related to 

the electron-positron annihilation cross section (T~+~, . This model is actually 

a special case of the many channel model of Section 6B, in which the discrete 

states n are replaced by a continuum and all of the off diagonal matrix elements 

between the hadronic channels are neglected. 

F’irst we note that the propagator of the (I=l) electromagnetic current 

of the hadrons is given by 

e iQ”x~Ol T9[j (xj j (0)]]O>d4x= ’ p ‘v 167r3 o2 

j s2”e+e- tJ)rguv - ~~ ds t401 

s- Q2 - ie 

where u~+~- ( ) s is the total (1~1) hadron production cross section from electron- 

positron annihilation at cm energy 6. 

We then compare this with virtual forward Compton scattering on a 

nucleus A: the Feynman amplitude is 

rnfv (Q2) = e2 eiQex < A I T9 [ jP(x), jv (0)] I A >conn. d4x (41) 
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Let us now use a I9 Furry picture 9’ description putting the effects of the absorp- 

tive medium into the equation of motion for jP. Then assuming a polarization- 

independent optical potential V, 

mtv tQ2) = e2 
167r3 cr2 

dss2~e+~-ts+pv- +I [ s-;2+v - -&Ids 

(42) Z-1 
4r2 a! 

ds s2 uese- ts) 

where T(s,Q2) = V + V 1 

Q2 
V is the virtual forward nuclear scattering 

-s-V+ ie 
amplitude for a vector meson of mass s, four-momentum Q. We have assumed 

that the potential V does not mix the various hadron components of the current, 

and we identify it with absorptive potential V 
PP 

of Section III. The result for 

the (virtual) total photo-absorption nuclear cross section is 

!i ds 
ae+e- w2 vpp 

$ts”, v ) ts -Q2J2 s-Q2+V 
F(z) 

= 1-Re PP i = transverse or 

AuiN(Q2, v ) ue+e- 6) s2 
longitudinal (43) 

J- 
ds 

(s-Q2J2 

N 2 where oi (Q , v ) is the total (transverse or longitudinal) photoabsorption cross 
14 

section on nucleons as measured in inelastic electron or muon scattering . 

F(z) is given by Eq. (17) with rnz replaced by s. 

Comparing with Eq. (39), if the annihilation cross section ae+e- 

corresponds to a sum of narrow width Breit Wigner peaks for n vector mesons, 

then (43) corresponds to A.. = dij hii and 
4 
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n A2. c $2. = A 
i=l ii YY (44) 

where the hii are all taken to be equal. Various possibilities for the hadron 

spectrum and the resulting implications for u ,,(Q2 3 v ) are discussed in the 

next section. 

VII. Numerical Calculation for Violations of Vector Dominance 

Let us now consider how the predictions based on rho dominance which 

are shown in Figures 2 and 3 are modified if vector dominance is broken. 

As a first way to break vector dominance, assume the effective rho- 

photon coupling em,/2 Yp on the photon mass shell has strength given by 

Yi/47r = 1.1 to account for the small magnitude of nuclear rho photoproduction 

observed by the Cornell and SLAC groups.7 In the “purec9 vector dominance 

models, Y;/47r has the same value at the photon mass as it does on the rho 

mass shell where it is measured to be 0.52 rt .07 from colliding beam experi- 
1 I 

ments e+e- + - --7r T and the leptonic decay of rhos. If we continue to assume 

OPN 
M 30 mb as obtained from the analysis of p photoproduction on nuclei, 

then the rho dominant part of (T 
YP 

is (e/2yp):! o 
PN 

= 50 pb. The measured 

value of u 
YP 

is 110 to 130 pb 23 so a contribution in addition to the rho must re- 

main. Including the w and 4, using yw and YG given by the Orsay experiments 

and assuming u is small like 0 13 
@N KN adds - 25 pb, but this is probably over- 

estimated, since if the effective y-p coupling falls by a factor of 2 in going to 

Q2 = 0, the y-w and Y-G couplings would be expected to fall also. We must 

therefore assume some additional states mediate the photon interactions to 



account for the magnitude of u 
YP’ 

For simplicity, let us first assume those 

states are sufficiently massive ( 2 3 BeV) that they do not contribute impor- 

tantly to shadowing at energies below 20 BeV, where we can hope to have data 

in the near future. The effect of such states in this energy region is the same 

as for local coupling of the photon, which contributes to u 
YN 

and hence to the 

volume of A term but not to the shadowing. The effect is to essentially cut 

the shadowing in half compared to the pure rho dominance result. It would be 

very hard to understand an experimental result of much less shadowing than 

this, since we know the minimum strength and phase of rho photoproduction 

1,7,20 at forward angles reasonably well. 

This reduction in shadowing is illustrated in detail in Figure 5. The 

curves are calculated from Eq. (43) assuming ae+e- is dominated by the rho 

with a Breit-Wigner distribution plus another similar resonance of higher mass 

Mv with equal magnitude. The results are shown for various values of Mv. For 

v < 20 BeV, the results are nearly indistinguishable for any mass M$ 3 BeV. 

We also note here that a similar calculation to include the phi meson shows 

that the effect of a poleat MV = rn+ with l/l0 the pole strength of the rho is 

negligible. The use of a Breit-Wigner distribution for the two pion states of 

the rho produces a small amount of shadowing below v = 1.1 BeV and thus 

removes the sharp behavior at threshold shown in Figures 2 and 3. 

As another model for the spectral function, we can adopt the following 

form for the annihilation cross section 
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ue+e- (s) = const. 
4m2 [i ) 

3/2 
m2 

l-9 .$ 
m2 r2 

P 

(s -m2p)2+mir2 

+ E B/s-bm;) qs-4rnf) 

(45) 

The extra tail is added to reflect a large, slowly falling cross section beyond 

the rho region. 24,25 

In order to restrict the possibilities we again assume that the rho is 

responsible for roughly half of u 
YP’ 

Then, for example, with a charge tail 

falling like s -2 starting at s = 2,: with E =l, the shadowing for real photons 

on Copper (A =64) is 24% at v = 10 BeV and 32% at V = 20 BeV, compared to 

31% and 41% shadowing implied by pure rho dominance, respectively. Again, 

we note that from the magnitude of the observed rho photoproduction the 

minimum shadowing will not be less than half of the pure rho dominance result. 

Summary 

We have shown that measurements of the total hadronic cross section 

for photons up to 20 BeV on nuclei, and measurements of inelastic electron ’ 

scattering in the same energy region, provide a sensitive test of the theoretical 

idea of vector meson dominance, and of the more general idea of low-mass 

hadron dominance of the electromagnetic current. 

In the case of the rho dominance, the quantity (T YA’A OyN’ which 

amounts to an effective fraction of photoabsorbing nucleons, becomes energy 

independent, and equal to the corresponding fraction appropriate for hadron 
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absorption, when the momentum transfer for forward rho photoproduction on 

a nucleon A-[mz + I Q2 i]/2v is small compared to the reciprocal of 

the hadronic path length in the nucleus. If the nuclear photoabsorption data 

supports this, then by making reasonable assumptions on nuclear models, real 

parts of amplitudes, and approximations of the w and C/I contributions, one will 

be able to extract upN for the rho on the mass shell. This result should agree 

with the value for (T 
PN 

obtained from rho photoproduction on nuclei. If rho 

dominance is correct, cYA(Q2, v )/A (T yN (Q2, v ) depends only on tmin. Thus 

measurements of inelastic electron-nucleus scattering for values of Q2 and v 

which keep tmin constant, are sensitive to any deviation from the rho dominance 

relation ftlp = f 
YYfPP 

for large space-like Q2. 

On the other hand, the hadron-like behavior of the nuclear photo- 

absorption cross section at high energies is not a unique feature of rho domi- 

nance, but also follows from a generalization of the vector dominance model in 

which arbitrary hadron states are assumed to contribute to the electromagnetic 

current. The complete vanishing of the volume contribution to u 
YA 

only requires 

that the momentum transfer be negligible for all of the states involved and the 

determinant (29) of the forward scattering amplitudes vanishes to order e2; this 

condition is met for the “hadron dominance” model in whichphotons interact 

with nucleons via a sum (possibly spectral) of J = l- hadron states, assuming 

the high energy forward photoproduction amplitudes do not change appreciably 

when extrapolated to the Q2 of the photon. In the energy region v 5 20 BeV, 

dominance by hadron states of mass 2 3 BeV cannot be distinguished from 

dominance by states of very large mass, sue h as baryon-antibaryon pairs , 

quark-antiquark pairs, etc. , or states of infinite mass which correspond to 
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point-like interactions. The energy dependence of 0 yAIA 7JN 
is however 

sensitive to dominant states beyond the rho in the 1 to 3 mass region. 

In general any state which can be produced (including higher spins, 

e.g. a rho Regge recurrence at J P = 3- ) contributes to the shadowing in 

proportion to the square of its yet unmeasured nuclear forward photoproduction 

amplitude. In particular, if the real forward rho photoproduction cross 

section is half” of what is predicted by simple vector dominance, i. e. 

2f2 = f 
YP YY$P 

then the shadow contribution 1 - u yAIA uyN is half of the p - w- 4 dominance 
t 

prediction for v < 20 BeV; eventually it increases with photon energy as 

photoproduction for higher mass states which contribute to f but not f or 
YY YP 

f pp, becomes coherent on the nucleus. 

Finally, we emphasize that photoproduction of rhos on nucleons implies 

shadowing for photon-nucleus interactions independent of any model with the 

exception of the unlikely possibility that there are large contributions from 

photoproduction of low mass states with real amplitudes. 

By the time of journal publication of this paper, we expect relevant 

experimental data to be available. In addition to measurements of y +A- hadrons, 

and inelastic electron and muon-nucleus scattering, we would like to encourage 

measurements of total cross sections for pions on nuclei, in order to test the 

reliability of available methods for treating the nuclear physics, and to look 

for the inelastic shadow effects which have been predicted for the scattering of 

hadrons, the theory of which is on the same footing as the many-channel cal- 

culation of Section III. 
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contradict the gauge field algebra. See J. Dooher, Phys. Rev. Letters 

l9-, 600 (1967). Our form (43) is consistent with oT, .(Q2, v) N l/Q2 in 

the diffractive energy region for inelastic e-p scattering if uese- - s 
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Figure Captions 

Figure 1 - Schematic representation of forward Compton scattering on nuclei. 

Figure (a) corresponds to the vector dominance description given 

in Section II in which photon-n.ucleon interactions are mediated by 

rho mesons. Figure (b) corresponds to the description used in 

Section III in which amplitudes are calculated by the “rho-photon 

analogy”. The two descriptions are related by a canonical trans- 

formation and give the same results. (See Footnote 8) Only single 

and double scattering contributions to the order e2 amplitude are 

shown; when the entire multiple scattering series for the forward 

produced rhos is summed for large A in the Glauber approximation, 

the absorptive medium-eikonal approximation is obtained. (See 

J. Trefil, Ref. 6.) 

Figure 2 - The predictions of rho dominance for the photoabsorption cross 

section as a function of incident lab energy. The effective number 

of nucleons o /A o 
?/A YN 

is given for carbon, copper and lead, assuming 

Ann 
= 36 mb and uniform sphere radii R = 1.3 FA l/3 . The curves are 

lowered at 10 BeV by .04 to .05 (i. e. shadowing is increased) if R is 

decreased to 1.2 FA1’” or apN is increased to 35 mb. The sharp 

behavior at the rho photoproduction threshold is removed when the 

rho width and threshold factors are taken into account. Nuclear 

effects become important at very low energies. 

Figure 3 - The predictions of rho dominance for inelastic electron scattering on 

nucleii are given as a function of the virtual photon lab energy and 

space-like four-momentum squared, Q2. The effective number of 

nucleons cyA(Q2, yN v)/Aa (Q2,v) is given for copper with R= 1.3 F A l/3 , 
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assummg %N 
= 30 mb for longitudinal or transverse rho mesons. 

The results hold for the transverse or longitudinal photon cross 

sections 01(Q2, v ) obtained from inelastic electron scattering. 

Figure 4 - Schematic representation of forward Compton scattering on deu- 

terons to order e2 corresponding to the four terms of Eq. (23). 

The bottom two graphs represent the shadow contributions from the 

emission and absorption of real rho mesons (or, in general, anycoherent 

hadron system photoproduced on the nucleons). The solid line represents 

the deuteron. 

Figure 5 - Predictions for the photoabsorption cross section of copper assuming 

violation of vector dominance. The cross section for rho photo- 

production on nucleons is taken to be 4 the rho dominance prediction. 

(See Footnote 7) The effective number of nucleons oyA/A uyN is given 

as a function of laboratory photon energy assuming shadow contri- 

butions from the rho plus other hadron states, which are represented 

by a vector resonance at mass MV photoproduced with the width and 

magnitude of the rho. The result for MV 13 BeV, v < 20 BeV is to 

reduce the shadow contribution l-o /AU 
?/A YN 

to half of the value 

obtained from rho dominance given in Figure 2. 
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