by

M. Fishman and D. Horelick
Stanford Linear Accelerator Center
Stanford University
Stanford, California

One interesting method for comparing two hinary numbers A and B involves the use of the carry logic of an adder summing A and the one's complement of B.

Let $n=$ number of bits in A and R, so that the maximum count is $2^{n}-1$. Then the one's complement of B is $2^{n}-I-B$, and the sum of this number and A is $2^{n}-1+(A-B)$. This sum has an overflow carry from the nth bit when A is greater than B, but has no carry when B is equal to or greater than A. Thus by implementing only the carry logic, one can construct a "greater than" comparator. The logic is described below.

Let C_{1} be the carry generated when adding. A_{0} and $\overline{B_{0}}$, the least significant digits. Then

$$
C_{1}=A_{0} \overline{B_{0}}
$$

Similarly, let C_{2} be the carry generated when adding A_{1}, \bar{B}_{1} and C_{1}. Then

$$
\begin{aligned}
C_{2} & =C_{1}\left(A_{1}+\overline{B_{1}}\right)+A_{1} \overline{B_{1}} \\
& =C_{1} A_{1}+C_{1} \overline{B_{1}}+A_{1} \overline{B_{1}}
\end{aligned}
$$

D. Horelick

27 January 1969
Page 2 -

In general, the j-th carry is given by

$$
C_{j}=C_{j-1} A_{j-1}+C_{j-1} \overline{B_{j}}+A_{j} \overline{B_{j}} .
$$

The carry generator may be easily realized by using DTL NAND gates to implement the "wired-or" as shown in Fig. I which illustrates a comparator of length n. Note that two gates for the least significant bit could be eliminated, but are included to demonstrate the completely iterative nature of the logic. When the complements of B are available, the comparator requires one chip per bit when using an integrated circuit such as the MC846P.

[^0]

M. Fishean
D. Horeticis
27 January 1969
Page 3 -
COMRARATOR
"GREATERTHAN"
$18-u$
FIGURE I. $n-$
\[

=\left\{$$
\begin{array}{l}
1, A>B \\
0, A \leqslant B
\end{array}
$$\right.
\]

$$
\begin{gathered}
\hat{c}^{5} \\
\hat{1} \\
T_{1}
\end{gathered} \cdot \stackrel{s}{ }
$$

[^0]: *Work supported by the U. S. Alonic Energy Commission

