
SLAC-PUB-540
January 19 69
(MISC.)

A SURVEY OF INTERACTIVE GRAPHICAL SYSTEMS FOR MATHEMATICS*

Lyle B. Smith

Computation Group
Stanford Linear Accelerator Center

Stanford University, Stanford, California

ABSTRACT

Existing and proposed systems for performing interactive mathe-

matics are surveyed with special attention to those systems with graph-

ical output. The systems are grouped as general purpose, special

purpose and other systems of interest. The solution of a least squares

data-fitting problem by the various general purpose systems is then

compared to the solution of the same problemby PEG, a special pur-

pose system written at the Stanford Linear Accelerator Center for

interactive least squares data-fitting. A summary includes a discus-

sion of many of the references that appear in the fairly comprehensive

bibliography.

(Submitted to ACM Computing Surveys)

Work support e&by the U. S. Atomic Energy Commission.

TABLE OF CONTENTS ,

Pare

I. Introduclion . 0 . . . D e

II. What Arc The Various Systems? , D . . D 0 . . e .

A. A List of Various Systems e . e . . o . . 0 . 0

13. General Purpose Systems - Operation Oriented. . . a . .

C. General Purpose Systems - Language Oriented . D D . . .

D. Special Purpose Systems ; . 0 0 . . .

E. Other Systems. e D . .

III. Solution of a Least Squares Problem by Various Systems e . , .

A.

B.

C.

D.

E.

F.

G.

I-1.

I.

Culler-Fried Solution. . .

NAPSS Solution 0

POSE Soluti.on . 0 0 e . .

OPS-3 Solution D D . o 0

JOSS Solution D D . . 0 .

Lincoln Reckoner Solution

TOC Solution . . e . . .

MAP Solution a . . . 0 e

AMTRAN Solution

0 D . ..e .e..e . ..*

.oe

...............

...............

...............

...............

...............

...............

...............

IV. How Would PEG Solve the Same Problem? 0 1

V. Summary o e 0 . . . 0 D .

Rcfcrcnccs

2

5

5

7

15

21

26

33

35

36

37

39

41

42

44

45

47

48

51

I. INTRODUCTION

Several authors have recently discussed the possibility of man-computer

interaction and its feasibility, promise, and current efforts. In Licklider and

Clark [1962] an examination of then current on-line capabilities including some

graphical capability is followed by a discussion of basic problems to be solved

in improving man-computer communication. The five short term problems they

list are:

1) The development of adequate time-sharing systems.

2) To devise an electronic I/O surface for two-way communication.

3) The development of a programming system that allows on-line, real-time

selection and shaping of information processing procedures.

4) The development of systems for storage and retrieval of the large amounts

of data required to support several on-line users.

5) To solve the problem of human cooperation in the development of large

programs and systems.

Some progress has been made in these areas since 1962. In answer to problem

1), for example, Schwartz et al. [1964] discuss a working time- sharing system --

and Anderson et al. [1968] discuss a proposed time-sharing system which will --

allow interactive graphical consoles as well as typewriter-like consoles. Problem

2) is answered by Davis and Ellis [1964] who describe the Rand Tablet, an electronic

surface for communication with a computer. Also in answer to 2), Haring [1965] de-

scribes the Beam Pen, an input/output device for CRT display systems and Lewin

[196!i] discusses a magnetic device for computer graphic input.

The third problem has been answered, to some extent, by on-line text editors,

and various other capabilities that are currently implemented. The problem of

-2-

I

.

storing and retrieving vast quantities of information in support of several

simultaneously active user stations is partially solved by the currently avail-

able disk storage units, drums, bulk core, and large main memories, used

together in an hierarchical manner. Problem 5) may not be so formidable as

more sophisticated programming systems and languages are developed. For

example, PEG, the interactive data-fitting system written in FORTRAN by this

author alone was operational in somewhat less than one man-year of program-

ming and design effort. In other words, if fewer people are necessary for the

completion of a programming project, there is less chance of a problem in

human cooperation.

Licklider and Clark [1962] also pose four long term problems whose solu-

tion will enhance man-computer partnerships. These four problems are:

1) Computer appreciation of natural written languages.

2) Computer recognition of spoken words.

3) The theory of algorithms - their discovery and simplification.

4) Heuristic programming.

The first of these problems has been studied in some detail, It is directly

related to the problem of natural language translation by computer. However,

no completely satisfactory solution has, as yet, been found. Some of the current

efforts toward solving the second problem are described by Lee [1968] and

Allen [1968] . One approach toward solving a related pattern recognition probl~~m,

automatic recognition of handwritten words, is discussed by Mermelstein and

Eyden [1964] . The third and fourth of these problems are more abstract and

thus it is more difficult to illustrate progress in these areas.

In a later paper, Licklidcr [19G5], Licklider makes the statement, “It is

now feasible - and practical, too - for a very creative man to think in direct

-3-

I

interaction with a computing machine. 1’ We shall show by our work and that of

others that it is also feasible (and practical) for everyone who has a problem to

solve - to interact with a computing machine while solving problems?

Some other papers of interest that discuss the idea of man-machine in-

teraction are Yershov [1965], Uncapher [1965], and Whiteman [1966]. Much

, of the interest in interactive graphical systems has been in the area of computer

aided design. Some articles of interest in this area are Mann [1965], Roos [1965],

Chasen [1965], Jacks [1964], Cole et al. [1964], Hargreaves et al. [1964], Allen -- --

and Foote [1964], Krull and Foote [1964] and Newman [1966].

It is, I believe, an accepted fact that man-machine interaction both with

graphical capability and with only textual input/output - is a useful, nay necessary,

part of our scientific problem solving repertoire of today and tomorrow. To sub-

stantiate this, consider for example, that three years ago Shaw [1965], at the

conclu.sion of some remarks about JOSS (see Shaw [1964]), says (I, . . at least

for small numerical problems, direct conversation with a computing system

meets computing requirements that are not well satisfied by conventional

services.” Since 1965 we have seen even more successful man-machine inter-

active systems.

In a panel discussion of promising avenues for computer research, Uncapher

[1965] points out that present systems for on-line computing and problem solving
3

assistance, are not oriented toward the thousands of practicing engineers in the

United States. They may be very useful to the computer specialist and the skilled

programmer but the casual user is not helped. Recently there has been more

effort to make the power of an on-line system available to the casual user as

proposed by Uncapher [19(X]. Some efforts in this area are included in the fol-

lowing discussion of various on-line systems. In particular, the interactive

-4-

I

.

data-fitting system outlined in Section 4 and described in detail in Smith [1969]

is designed for the use of non-specialists in computer science.

II. WHAT ARE THE VARIOUS SYSTEMS?

First let us simply list several on-line systems which include mathematical

and/or graphical capabilities. Then we will give a more detailed description of

each system. An interesting survey paper is that by Ruyle et al. [1967], however, --

the paper is confined (by choice) to four systems 7 AMTRAN, the Culler-Fried

System, the Lincoln Reckoner, and MAP. Some of the following remarks are

based on the paper by Ruyle et al. [1967]. -m

A. A List of Various Systems

Here we list some interactive graphical systems. This list is compiled from

a search of the literature and thus may omit some very interesting systems that

are in use or under development but have not been described in the computing

literature. The systems are grouped according to their applicability, That is,

a system that provides the general mathematical capabilities to solve a variety

of problems will be classed as a “general purpose” system. On the other hand,

a system oriented toward a specific problem area, such as data-fitting by least

squares, will be classed as a “special purpose” system.

General Purpose Systems

1) Culler-Fried at Santa Barbara, California. Culler-Fried at TRW

Systems, Redondo Beach, California.

2) TOC at Aiken Computation Laboratory, Harvard University.

3) AMTRAN at NASA Marshall Space Flight Center in Huntsville, Alabama.

4) Lincoln Reckoner at Lincoln Laboratory of Massachusetts Institute of

Technology.

-5-

5) OPS-3 at Massachusetts Institute of Technology.

6) MAP at Massachusetts Institute of Technology.

7) NAPSS at Purdue University.

8) POSE at Aerospace Corporation, San Bernadino, California.

9) JOSS at the RAND Corporation, Santa Monica, California.

Special Purpose Systems

1)

2)

3)

4)

5)

STATPAC at Decision Sciences Laboratory, Bedford, Massachusetts

Marchuk and Yershov in USSR

Gear at University of Illinois

Dixon at University of California, Los Angeles, California

PEG at Stanford Linear Accelerator Center (SLAC), Stanford, California

Other Systems

1)

2)

3)

4)

5)

6)

7)

DIALOG at IIT Research Institute, Chicago, Illinois. (An on-line

algebraic language with graphics).

MATHUB at Massachusetts Institute of Technology and the Mitre

Corporation (on-line assistance in symbolic computations).

MAGIC PAPER at Bolt, Beranck and Newman Inc., Cambridge, Massachusetts

(primarily for on-line symbolic mathematics).

DISPLAY at System Development Corporation, Santa Monica, California

(primarily for graphical examination of stored data - allows excursions

into TINT, an Algol-type interpretor).

Klerer -May system at Col.umbia University , Hudson Laboratories, Dobbs

Ferry, New York.

Moore et al -2’ at the University of Western Australia. (FORDESK an on-

line system and an interactive polynomial fitting program.)

Hall and Ball at the Stanford Research Institute (SRI), Menlo Park,

California. (0 -1 n ine systems for statistical and data analysis.)

-6-

I

B. General Purpose Systems - Operation Oriented

The first five systems to be described are operation oriented as opposed

to language oriented. This means that commands to the system are generated

by involking operators with appropriate operands. Later we will discuss several

language oriented systems.

1. The Culler-Fried Systems

The Culler-Fried system was first developed at Thompson Ramo Wooldridge,

Canoga Park, California, beginning in 1961, see Culler and Fried [1963]. Since

then a similar system, operating on the same RW-400 computer (AN/FSQ-27),

has been implemented at the University of California at Santa Barbara. This

system is used for teaching and research on the Santa Barbara campus as well

as from remote terminals at UCLA and Harvard, see Winiecki [1966]. An ex-

panded version of the original system has also been implemented at TRW Systems

(formerly Space Technolo,qy Laboratories) in Redondo Beach, California on a

Bunker-Ram0 340 computer. In 1968 the system has also been implemented on

an IBM System 360/65 computer at the University of California at Santa Barbara.

For more references see Culler and Fried [1965], Fried [1967], Culler and Huff

[1962], and others referred to by these articles.

The Culler-Fried terminals consist of an array of pushbuttons (96 keys)

and a five inch storage oscilloscope used for output. The TRW version also has

a Calcomp plotter and an output typewriter shared among four terminals, but

most Culler-Fried consoles have only the scope for output. The pushbuttons

are used for entering instructions to the system. The 96 pushbuttons are ar-

ranged in 2 adjoining keyboards, each with 48 keys. One keyboard permits

access to operators and the other permits access to operands. A user solves

his problem by entering instructions and data through the keyboard and viewing

his results, displayed numerically and/or graphically, on the oscilloscope.

-7-

Culler-Fried systems are operation-oriented in that they provide operators

with pushbutton control and allow user definition of new operators (console

programs). Some of the system supplied operators are of a lower level than

some of the more recently developed systems such as MAP and NAPSS which

provide complete solution algorithms (e. g., polynomial root finding) as operators.

For example, some of the operators supplied by Culler-Fried systems are

comparable to assembler language instructions and console programs are

written at that level. On the other hand, other operators are on a higher level,

for example, the forward difference operator and the running sum operator are

among the operators intended to provide the basic tools of.operator calculus.

There are two working registers, a! and p, whose contents are affected by

the various operations. For example, keying PLUS 5.0 will add 5.0 to the .

contents of p register and SQRT will take the square root of the number in the p

register; in both cases the result is left in the p register.

To add to the limited number of pushbuttons available, levels are introduced

in the Culler-Fried systems. By changing levels (a pushbutton accomplishes the

level change), many keys take on different meanings. Each level is composed of

operators of a particular mathematical character, for example, real numbers

and matrices form different levels so that some operators work automatically

on vectors, matrices, or functions depending on the level. The USER levels al-

low storage of console programs composed by users.

The Culler-Fried systems have been the inspiration for several other inter-

active on-line mathematical systems. AMTRAN, and the TOC system, for example,

bear many similarities to the Culler-Fried on-line systems as does the Lincoln

Reckoner.

-8-

For examples of applications of the Culler-Fried system see Culler and

Huff [1962] and the chapter by B. D. Fried in Karplus, [1967].

2. The TOC System

TOC (Tact On-Line Computer) was begun in 1966 at the Aiken Computation

Laboratory of Harvard University; see Ruyle [1967]. TOC was developed by

Project TACT (Technological Aids to Creative Thought) and is based on two

earlier stages of development, The first stage, TOCS, an effort to duplicate

the Culler-Fried system under CTSS at Project MAC, was started in May 1965.

This initial effort differed from the Culler-Fried system in the following ways:

1) an improved display facility

2) inclusion of statistical operators

3) ability to enter numeric data directly into vectors
\

4) ability to enter expressions

The second version of TOCS (Version n) contained even further departures

from the Culler-Fried system. The levels which allow multiple use of the push-

buttons were dropped by providing for arbitrary names for console programs.

The ability to designate which variables are local to a console program, and to

designate variables as argument variables (parameters) was added. Edit facil-

ities were also made available for modification of console programs. Other im-

provements were the ability to give multi-character names to data entities, the

ability to redefine system operators, the ability to use vectors of unlimited length

(to within memory size), and error messages.

TOC, the most recent system developed by project TACT uses three basic

features borrowed fro:!1 the Culler-Fried Systems.

1) The use of pushbuttons to invoke operators.

-9-

2) Operators which work automatically on entities larger than scalars.

3) A repertoire of operators providing the basic tools of operator calculus.

Two engineering features which were also borrowed are:

1) The use of storage oscilloscopes for console output.

2) The ability to draw on the output scope from the input keyboard. Draw-

ings are composed using small directed straight line segments, each

associated with a button.

The two versions of TOCS which preceded TOC provided many more ideas for

the development of TOC, most of these ideas are listed above as departures

from the Culler-Fried System. Each TOC console has 65 operator keys plus a

full typewriter keyboard. The TOC system was expected to be in operation by

the fall of 1967 on an IBM 360/50.

3. The AMTRAN System

AMTRAN (Automatic Mathematical TRANslation System) was developed at

NASA’s Marshall Space Flight Center in Huntsville, Alabama and has been

available to users since early 1966;, see Wood et al. [1966], Reinfelds et al. [1966] -- --

and Ruyle et al. [1967]. AMTRAN was inspired by the Culler-Fried system and --

retains many similarities, especially the use of function buttons. The basic

goals of AMTRAN as stated by Reinfelds et al. [1966] are: --

1) To use the natural language of mathematics as a programming language

without any arbitrary restriction whatsoever.

2) To obtain immediate graphical output of intermediate and final results.

3) To retain a hard copy of useful results and programs.

4) To retain copies of programs in an easily reusable form.

5) To retain utmost flexibility in the system so as to allow its use from

the level of existing programming language up to the level of advanced

calculus.

- 10 -

The AMTRAN system employs remote terminals consisting of a large key-

board (with 224 pushbuttons), two 5-inch cathode ray storage oscilloscopes for

graphical and alphanumeric display, and a typewriter to provide a permanent

record of displayed information when desired. The AMTRAN language is multi-

level in that it can be used by a systems programmer or an applied mathematician

or at any intermediate level. Both an on-line conversational mode and an off-line

batch mode (or a combination) are available to the users.

The language includes Algal/GO programming capabilities as well as the

pushbutton operators. Among the operators which are implemented to facilitate

the expression of mathematical calculations in classical notation are
/

d
,Z’

MINIMAX, etc. An array of unlabeled buttons is provided for storing a user

defined sequence of button pushes (a user defined console program). Automatic

array arithmetic is provided.

4. The Lincoln Reckoner

The Lincoln Reckoner system has been in routine use by the staff-of the

Lincoln Laboratory of the Massachusetts Institute of Technology since the spring

of 1966; see Stowe et al. [1966], Wiesen et al. [1967] and Ruyle et al. [1967]. -- -- --

The Reckoner system, designed to operate within the APEX time-sharing system

for the TX-2 computer, is for on-line use in scientific and engineering research.

The system in its present state does not provide all the services to an engineer

or scientist that might be envisioned, instead the development has been con-

centrated in the area of numeric.al computations on arrays of data. As of the

summer of 1966 there were 64 operations available in the Reckoner public

library. These include the following:

1) Basic arithmetic on arrays.

2) Other arithmetic on arrays.

3) Data shuffling in two-dimensional arrays.

- 11 -

4) Matrix operations.

5) Signal analysis.

6) Input and Output.

7) Miscellaneous.

The Reckoner is primarily a facility for making use of routines and not for

writing them. The aim is to provide a system whereby a scientist can feel his way

through the reduction of data from a laboratory experiment without previous pro-

gramming experience or training. However, the capability to construct ones own

routines is available in the form of a small algebraic compiler called Junior which

can be utilized on-line.

The Lincoln Reckoner is an floperation-orientedl’ system as are AMTRAN,

MAP, OPS-3, and the Culler-Fried system. That is, the system tries to provide

the operations (add, divide, integrate, differentiate, plot, etc.) that a user will

need to solve his problem. The user then combines operations and operands so as

to solve a particular problem. For example, suppose we had already stored values

in a one-dimensional array Y and a two-dimensional array X and we wished to

minimize the quantity

C(Y, - cxijPj)2 l

i

To do this with the Lincoln Reckoner would require the following instructions:

TRANSPOSE X XPRIME
MATMUL XPRIME X
MATMUL XPRIME Y
SOLVE L R

L
R

BETA

This would put the solution to this least squares problem in the array BETA.

To compare graphically the newly found approximation and the original data,
..-

- 12 -

.

a user could type

MATMUL X BETA XBETA
PLOT XBETA Y

This would cause a graph of the elements of XBETA to be plotted against the

corresponding elements of Y.

5. OPS-3

OPS-3, on-line computation and simulation, ivas developed at the Massachusetts

Institute of Technology, Cambridge, Massachusetts, see ‘Greenberger et al. [1965], --

OPS-1 grew out of a graduate seminar on advanced computer systems during the
w

spring of 1964. OPS-2, an improved version of the OPS-1 on-line computational

facility, was programmed during the summer of 1964. The fall of 1964 saw the

beginning of development of OPS-3, a larger-scale improvement, which runs under

CTSS, the MIT time-sharing system. As stated by Greenberger et al. [1965] , the --

aim of the designers of the OPS-3 system . . . is to give the researcher a complete

information-processing and model-building facility without placing any artificial

demands on him; that is, without having the system get in the way of the research.

This goal has been partially realized. For example, vectors and matrices are

operated upon algebraically and processed as whole arrays simply by symbolic

reference to their names. A user need not index through subscripts and test for

boundaries, although the ability to do so is retained. OPS-3 does retain some ad

hoc rules and conventions which a beginning user must learn to become familiar

with OPs’-3. However, according to Greenberger et al. [1965], experience has --

shown that users like the system, especially after becoming well acquainted with it.

Communication with OPS-3 is operator-oriented. There are 60 to 70 standard

operators provided by the system such as:

COMPUT (performs a computation and prints a result)

SET (allows algebraic assignment statements)

- 13 -

.

PRINT (prints information from storage)

READ (allows entry of data from the console)

FIT (fits a linear equation to a multicomponent set of observations)

The SET operator would be used, for example, to perform an assignment as follows:

SET x=5 * (Z + 17.3) .

Compound operators, called KOP’s, can be written in terms of the standard

operators and saved for subsequent usage. A KOP is executed interpretively or

it may be compiled. In either case it is referred to by name and thought of as

an operator. Compound operators may call themselves (recursively) and each

other to any depth. A statement to call a KOP named BETA, with parameters

X, Y, 25 would be. . . CALLK BETA X Y 25.

With matrix multiplication denoted by “. M. ‘I and raising a matrix to a power

by “. P. ” we can use the SET operator to define statistical calculations of the

mean and variance for data stored in an array DATA and the covariance for data

stored in arrays X and Y as follows:

SET MEAN = (DATA. M. 1)/N

SET SQ = DATA .M. DATA

SET VAR = SQ/N - MEAN .P. 2

SET COV = (X. M. Y)/N - (X. M. 1) * (Y. M. l)/(N*N).

The REPEAT operator used in conjunction with the IF and IFB operators

allows loops to be programmed. This capability allows iterative algorithms to

be easily incorporated as KOP’s.

Simulation is one of the primary used of the CPS-3 system. There are

several operators and compound operators available for this purpose, however

since this survey is mathematically inclined we won’t discuss this capability here.

- 14 -

.

For data analysis there are operators for manipulation of stacks, ranking

and counting, solving polynomial equations, and for multiple and polynomial

regression. The operators for statistical analysis that are available with the

OPS-3 system include linear least squares curve fitting and regression, con-

tingency analysis, intercorrelation analysis, and about 10 other statistical tests

and computations. Each operator has two forms: a guided form and a short form.

The guided form essentially asks the user for the necessary parameters one-by-

one. The short form allows a user to enter the parameters as he calls the oper-

ator, thus eliminating considerable interaction time waiting for the system to

type out messages. OPS-3 has no provision for graphical output.

C. General Purpose Systems - Language Oriented

The following four systems are language oriented as opposed to operation

oriented.

1. The MAP System

The MAP (Mathematical Analysis Program) system has been in use by re-

searchers and for teaching at Massachusetts Institute of Technology since the

middle of 1964; see Ruyle et al. [1967], Kaplow et al. [1966], and Kaplow et al. -- -- --

k966a.j. The system operates within the MIT Compatible Time Sharing System

(CTSS) at the MIT Computation Center or at Project MAC.

MAP can be involked from any teletype or IBM 1050 terminal that can dial

into CTSS, regardless of the physical location of the terminal. Graphical output

can be requested if a CRT is available. Some graphical output has been obtained

by using the MIT Electronic Systems Laboratory display terminal (see Ward [1965]),

but these terminals are expensive. MAP with full graphics was used at Harvard

with the CRT display facilities there by Ruyle [1967]. Storage oscilloscopes are

now available at some terminal-s.

- 15 -

MAP does not utilize pushbuttons as do the Culler-Fried, AMTRAN, and

TOC systems. Instead a language which is a combination of English and arithmetic

operation symbols is utilized. According to Kaplow et al. [1966], “the user -m

‘talks’ in one or two-word phrases or in arithmetic equations, while the computer

uses a passable form of English. 1’ The system is flexible in that it allows inter-

mixing of the basic procedures of MAP and user written programs. Automatic

error control has been designed into the MAP system in the sense that the pro-

cedures used will not lose any of the precision inherent in the input.

Functions are handled as arrays of values at specified values of the inde-

pendent variable. To insure accuracy of the results of MAP, operations on

functions, methods are used which are exact (or nearly so) if three point fitting

to the given function values is adequate. Thus a user need only be sure that his

experimental data and calculated input functions (except those intended for least

squares fitting) be tabulated such that a parabolic interpolation over three suc-

cessive points specifies the function as accurately as is meaningful or required,

MAP has no logical operators. This and the absence of looping facilities

mean that the console programming facilities are somewhat limited compared to

the AMTRAN, Culler-Fried, and Lincoln Reckoner systems. However, the

ability to code functions in various languages and have them executable from

within a MAP program provides considerable flexibility to a knowledgeable pro-

grammer .

Some of the complex procedures found in the MAP language in addition to

such functions as sine, cosine, exp, and abs are the following:

1) Integrate (between fixed or variable limits),

2) Convolute C’foldingt’ of two functions).

3) Least square analysis (linear least square analysis).

- 16 -

4)

5)

s)

7)

8)

9)

10)

11)

Basis change (F(x) +F(any function of x)).

Fourier transformation (sine or cosine or both).

Minimax (changes the range of definition of a function).

Select (manipulation of a portion of a function).

Root (finds roots of an equation g(x) - c = 0).

Equalize (creates a function tabulated at equal intervals from two

functions which contain the data and the corresponding values of the

independent variable).

Edit (allows editing of MAP functions).

Matrix operations (full package).

2. NAPSS

As stated by RiceandRosen @966], the aim in the design of NAPSS (Numerical

Analysis Problem Solving System) “. . . is to make the computer behave as if

it had some of the knowledge, ability and insight of a professional numerical

analyst. ‘1 Other references to NAPSS are Rice [1967], Roman and Symes [1967a

and 1967b] and Symes and Roman [1967]. To implement the above stated aims,

the researchers at Purdue University, Lafayette, Indiana, are developing

~~polyalgorithmsY1 to be the numerical analysts behind the keyboard (on-line

console). These polyalgorithms will be ‘(. . . formed by the synthesis of a

group of numerical methods and a logical structure into an integrated procedure

for solving a specific type of mathematical problem.”

NAPSS is currently under development at Purdue. Several polyalgorithms

have been developed to various levels of sophistication,- see Rice [1967]. The

system is planned to be run in a time sharing environment at on-line remote,

consoles including graphical capabilities, however NAPSS programs will be ex-

ecutable as batch jobs as well. The system is expected to be useful as a device

for teaching as well as for solving problems in numerical analysis.

-17 -

The polyalgorithms being developed as of late 1967 are shown in the follow-

ing list.

1)

2)

3)

4)

5)

6)

Linear equation solver (employs LU decomposition and SOR methods

depending on the size of matrix involved).

Solve f(x) = 0 (one variable).

Solve differential equations.

Perform differentiation.

Determine polynomial zeros.

Integration (may use Rombcrg).

Approximation (includes the following) :

a) Least squares polynomial.

b) Least squares with user specified functions.

c) Pseudo least squares by ae tx+b.

d) Pseudo least squares by a + b(x + c)~ .

e) Minimax broken line.

f) Pseudo minimax pricewise cubic with continuous derivatives.

g) Least squares nonlinear cubic splines.

The NAPSS language is being developed as an interactive problem oriented

language. The purpose being to state numerical problems in a mathematical-

like notation with direct manipulation of arrays and functions. The language

will include a procedural language for expressing user defined algorithms but

efforts are being made to eliminate all unnecessary clerical operations some-

times associated with procedural language implementations.

3. POSE

POSE: A language for posing problems to a computer is being developed at

the Aerospace Corporation, San Bernadino, California, by Schlesinger and

- 18-

Sashkin, see Schlesinger and Sashkin [1967] and Sashkin et al. [1967]. Its --

initial implementation is to be on the IBM System/360 and 1800. The authors

state that POSE (Processing, Organizing and Solving Equations) is very similar

to NAPSS (see paragraph II. C. 2) , however POSE will use general purpose

methods on all problems where NAPSS polyalgorithms will attempt to tailor

the methods to the problem at hand.

The POSE language will utilize FORTRAN conventions to express algebraic

statements and allow assembly language instructions to be included as well, The

power of the language comes from the extended capabilities that allow a user to

describe his problem in equation-like form. The method of solution as well as

translation of the problem from equation form to computer instructions will be

provided automatically.

The extended capabilities to be included in the initial version of POSE are:

1) Solution of simultaneous ordinary differential equations (initial value

problems)

2) Evaluation of multiple integrals

3) Solution of a transcendental algebraic equation

4) Solution of a system of linear algebraic equations

5) Matrix arithmetic

6) Inversion of square matrices

7) Simplified data input

8) Simplified printed output

9) Two-dimensional graphical display

10) Table lookup and Nth - order interpolation

11) Basic statistical computation

12) Function evaluation with automatic parameter variation

- 19 -

’ F

The authors call POSE a polymorphic language since it includes assembly

language, procedural language and a declarative language for involking the ex-

tended capabilities listed above. The ability to mix Fortran statements with

assembly language statements can be very useful to an experienced programmer,

however, the POSE implementation of the extended capabilities looks to this author

much like a reworded call of a subroutine with a list of arguments. In fact, in

writing POSE programs one must be careful to spell things correctly and get

parameters in some specified order. This somewhat lessens the usefulness of

the language to the non-programmer in an on-line interactive environment.

4. JOSS

JOSS (Johhnlac Open-Shop System) has been in daily use since January 1964

by the staff members of the RAND Corporation, Santa Monica, California. JOSS

is an experiulental, on-line, time-shared computing system which was designed

11 . . . to give the individual scientist or engineer an easy, direct way of solving

his small numerical problems without a large investment in learning to use an

operating system, a compiler, and debugging tools, or in explaining his problems

to a professional computer programmer and in checking the latter’s results. (1

(Shaw [1964]). JOSS was supposed to demonstrate the benefits of on-line interaction.

JOSS was originally written to use the JOHNNIAC computer (a Princeton-class

machine built at the RAND Corporation in 1950-53) in a time-sharing mode to pro-

vide a modest computing service to the open-shop via remote typewriters.

Physically, JOSS consisted of the JOHNNIAC computer, ten remote typewriter

consoles, and a multiple typewriter communication system to mediate between

JOHNNIAC and the consoles. The capacity of JOHNNIAC (50 ps add time) limited

the service to small numerical computations. In 1964 work began on an expanded

- 20 -

JOSS utilizing a PDP-6 computer, see Bryan [1967]. This PDP-6 system be-

came operational in February, 1966, and allows storage of more and larger

programs than was previously possible.

The JOSS language permits a user to direct the system in editing as well

as computing and typing. According to Ruyle et al. [1967], “JOSS is a simple --

coherent system but the ratio of clerical detail required to power afforded is

rather great. l1 There are no graphical commands or capabilities in the system.

A simple example of the on-line typing illustrates the language (U means user,

J means JOSS):

U TYPE 2+2

J 2-k2=4

U SET E = 2.71828183

U TYPE 1% m

J 1

A numeric label (user supplied) as a prefix to a step is an implied command to

JOSS to store the step in sequence according to the numeric value of the label.

Steps with no numeric label are direct commands to JOSS which are to be executed

immediately.

D. Special Purpose Systems

1. STATPAC

STATPAC, a lightpen-controlled program for on-line data analysis, was

developed and is being used at Decision Sciences Laboratory, Hanscom Field,

Bedford, Massachusetts, see Goodenough [1965]. The system is designed so

that no vocabulary of a language need be learned by a user, This is accomplished

- 21 -

I

.

by displaying a “menu I1 of the vocabulary on a computer-driven scope for user

selection, By displaying on the scope only those items which will make a

syntactically correct command, no invalid commands can be generated.

The author claims similarity in his objectives and methods to the Culler-

Fried systems, however, instead of providing general purpose mathematical

operators, STATPAC is oriented toward statistical operations. While composing

a command at the console, menus of operands (vector titles) and operations are

displayed for lightpen selection. Some of the available operations are:

1) DISPIAY

2) TYPE

3) PUNCH

4) CORR between (X) and (Y)

5) STD DEV OF

6) MEAN OF

7) REGRESSION (X) vs (Y)

8) SUM OF SQUARES OF

2. Marchuk and Yershov’s System

According to Marchuk and Yershov [1965], ‘I. . . the problem of solving

differential equations comprises at least two thirds of all problems arising in

engineering and scientific calculations. I1 Thus they proposed (in 1965) to con-

struct a nonclosed programming system based on a continuous man-machine

interaction to aid in the solution of differential equations. In this problem area

they plan to have the human make such decisions as:

1) Specification of rules, variable substitution, and direction of

analytical transformation to reduce the problem to a canonical form.

- 22 -

2) Information on partition of the operator of the equation into elementary

ones.

3) Which difference scheme is preferred for a given elementary operator.

The current status of this on-line system for solving differential equations

is unknown.

3. Gear’s System

Gear [1966] describes a system for finding the numerical solution of ordinary

differential equations at a remote terminal. Systems such as MAP represent a

function by a pair of vectors of values and use interpolation when necessary. How-

ever, this method is not sufficiently accurate nor is it convenient for high accuracy

problems in differential equations. Therefore, at the Department of Computer

Science, University of Illinois, Urbana, Illinois, a system has been developed

for the solution of differential equations. The system consists of three basic

packages:

1) The numerical integrator - this contains a large number of switches

which determine accuracy.

2) The equation compiler - this allows input in a natural form.

3) The dialogue program -this accepts input, corrections to input (editing), and

interacts with the user to set the switches in the integrator.

A set of differential equations is entered, for example, by typing

10 YO’ = Yl * Y2

20 Yl’= -YO * Y2

30 Y2’ = -. 51* YO * yi

END

To simplify expressions and to make it easier to modify parameters, 23 vari-

ables named A through W are allowed in the expressions on the right hand sides.

- 23 -

.

Up to ten dependent variables YO through Y9 may be used, the highest order

derivative of each must appear on the left hand side of an equation.

The dialogue consists of the following steps:

1) Type in equations

2) Enter initial values

3) Optionally enter

a) step size Gpper limit

b) order

c) error tests for step con<rol

d) or fixed step

e) where and what to print
_ ,. :. .- ,_ -- ; ____ .-. -

f) format

g) when to stop ”

In 1966 teletype models 33 and 35 were in use as remote terminals. Typewriter

plots of the solution are generated and plotted on-line. No other graphical de-

vices are available to the system.

4. Dixon’s On-Line Statistical Programs

Dixon [1967] describes the use of on-line displays with packaged statistical

programs. In this paper he discusses the usefulness of being on-line with a

statistical program and especially the usefulness of on-line graphical ability.

He says ‘I. . . many experts in data analysis have always used graphical methods

to aid their analysis of data. One often hears directives of these experts to

their assistants something like, ‘go thou and plot your data. 1 The plots and

charts frequently do not survive the process of report writing and publication,

but have played an important part in the analytical process itself. I1 An on-line

interactive situation is ideal for the examination of these charts and plots which

are di:lcarded during the data analysis process.

- 24 -

.

At the Health Sciences Computing Facility, University of California at

Los Angeles, California, the BMD programs (Dixon [1964]) are being rewritten

for on-line usage. Programs for stepwise regression, linear regression and

spectral analysis are now available for on-line use and other programs are

being developed. The programming is being carried out for an IBM System

360/75 computer with an IBM 2250 display unit with lightpen and special

function keyboard as a console.

5. PEG System

At the Stanford Linear Accelerator Center, Stanford University, Stanford,

California, this author has been developing the PEG (On-Line Data-Fitting)

system. The work was begun in the fall of 1967 on an IBM System 360/75

computer using an IBM 2250 II display unit with lightpen as the interactive

console. The interactive program runs in a separate partition of memory with

high priority. By the fall of 1968 a working system was available and was used

by physicists for actual data-fitting problems. By October 1968 the IBM 360/?5

had been replaced by an IBM 360/91 and the PEG system was operational on that

computer.

As described in Smith [1969], the PEG system allows user selection of:

1) Fitting function

a) user defined function

b) orthogonal polynomials

c) spline functions - fixed or variable joints

d) Fourier approximations

2) Data mode

a) data from cards

b) data of previous fit

- 25 -

c) residuals of previous fit

d) keyboard entry

3) Display mode - after a fit has been computed there are seven different

display modes.

In addition to the above, PEG allows specification of degree, initial guesses

for nonlinear problems, choice of minimization method (in some cases), cor-

rection, subset selection, selective deletion, or transformation of data values.

All user actions are either light pen selections or numerical entries from

the keyboard. This has been accomplished by anticipating in advance all possible

(at least nearly all - hopefully) desires of a user and providing for on-line

selection from the list of available options.

The PEG System was partially inspired by the DATAN System, see Simonsen

and Anketell [1966]. Some other references of interest in the approximation and

curve-fitting areas are Corm and vonHoldt [1965) and deMaine [1965]. Pyle [1965]

describes a system for on-line data input by question and answer which is re-

lated to the method employed by PEG to obtain input from the user. PEG in

many cases asks multiple choice questions which can be answered with the

lightpen.

E. Other Systems

1. DIALOG

DIALOG is a conversational programming system with a graphical orienta-

tion described by Cameron et al, [1967]. The language was designed by the IIT --

Research Institute, Chicago, Illinois, ‘I. . . as an experimental development

intended to explore the effectiveness of an on-line graphical communication

I crminal as an algebraic programming tool. The system relies entirely on a

- 26 -

I

graphical stylus and a single push button to provide input and, when used on-

line, does not make use of a mechanical keyboard. I1

The language is designed to be used as a computational aid for a casual

user. To facilitate use by untrained personnel, on-line DIALOG programs

are composed by selecting symbols from a list displayed on an on-line oscillo-

scope. The list of displayed symbols is restricted to those symbols whose choice

will result in a syntactically correct program. A few lines of code will illustrate

the type of statements that occur in DIALOG programs.

12.1 K=K-t(B-Y)*(Xf2+Af2);

12.6 ‘WRITE’ K, A, B

13. 3 ‘PLOT’ (A, B)

An interpretive processor for DIALOG programs has been coded for the

UNIVAC 1105 and imbedded in a time sharing monitor that allows simultaneous

operation of several terminals. Programs can be prepared off-line, run as

batch programs, and can produce hard copy of results as well as the on-line

mode of operation. In fact, a DIALOG compiler has been prepared for use on

the IBM 7094 for strictly batch operation.

2. MATHLAB

MATHLAB: A program for on-line machine assistance in symbolic compu-

tations, is described by Engelman [1965]. The program has been developed on ?.
/:

the time-shared system of project MAC at Massachusetts Institute of Technolog-y

and on the IBM 7030 at the MITRE Corporation, Bedford, Massachusetts, As of

September 1, 1965 work was under way to provide the display of mathematical

expression on scopes and to adapt MATHLAB to the AN/FSQ-32 computer at the

Systems Development Corporation, Santa Monica. In 1965 MATHLAB had no

graphical capabilities.

- 27 -

Some of the qualities of MATHLAB are listed as follows:

1) Numerical computations - these are weak since original effort was

in the area of symbolic computation.

2) Symbolic computations - capabilities include

simplification

substitution

adding equations

differentiation

some integration

solution of equations, etc.

3) Simple user commands - for example to differentiate el with respect

to e2 a user need only type lldifferentiate”(e1 X e2).

4) The program can be expanded by any LISP programmer.

5) MATHLAB can be extended by the user - he can l’teachll it derivatives

and rename system functions.

6) It is intimate - a close relationship develops between user and computer.

The following list of some of the system commands available with MATHLAB

gives an indication of the kind of problems that can be worked on in the MATHLAB

environment.

repeat flip

pleasesimplify makeequation

forget makeexpression

substitute makefunction

add factor

multiply differentiate

subtract learnderivative

_.-

- 28 -

integrate . division

raise ’ solve

negative rename

invert newname

3. MAGIC PAPER 1

In 1963 Clapp and Kain [1963] described a computer aid for symbolic mathe-

matics called Magic Paper 1. This is a computer system that is primarily for

symbolic mathematics but it does allow some function evaluation and plotting on

a display scope. Magic Paper 1 was developed at Bolt Beranck and Newman,

Inc., Cambridge, Massachusetts,for a small time-shared computer (PDP-1).

The console consists of a typewriter, a display scope and a lightpen. A

paper tape reader and punch and several magnetic tape units are available for

large scale input/output and saving information off-line. Control of the calcula-

tions is handled by executive control characters which the user types in. Some

typical control characters are:

I ---

--- ,

p- - - . .
D- _ _
i

EVA:- - -
.

enter input mode

leave input mode

display pointer on scope

display figure

evaluate function .

Typical manipulations are insertion, substitution, multiplication of an

equation by a term, transposition, and the addition of two equations. A function

can be built up and then plotted on the scope to examine its graphical character-

istics. The scope plots can be 11zoomedt7 in and out to examine certain features

in detail.
.-

- 29 -

Standard two dimensional mathematical notation is used on the scope while

a linear typewriter notation is used for input. The following mathem::!.ical

evaluation operators are included in the system:

+ addition

subtraction

X multiplication

/ division

sum over an index between limits

7r

t

0 [I
if

then

prod&t over an index between limits

exponentiation

parenthesisation

<> <,2 conditional expressions

when

Notational flexibility is built into the Magic Paper system by allowing the user

to define new control and data interpretation operations as he proceeds with a

problem.

4. The DISPLAY System

The DISPLAY system was written at System Development Corporation,

Santa Monica, California, in 1967, see Bowman and Lickhalter [1968]. DISPLAY

is a system for graphical data management in a time-shared environment which

has been written as a forerunner of the display component of TDMS (Time-Shared

Data Management System) being implemented on the IBM System 360 family of

computers. [TDMS became operational in the summer of 1968, see DATAMATION,

- 30 -

August 1968, p. 95.J The three goals in designing DISPLAY were

1) To provide satisfactory response within a time-shared computer.

2) To produce a system easy for the nonprogrammer to use.

3) By achieving the first two goals, gain users for the system in order

to obtain feedback to improve the system.

These three goals have been achieved by the DISPLAY system implemented on

the SDC Q-32 machine, running under the time-sharing system with no special

consideration from the executive.

The primary function of the system is to allow graphical examination of

stored data. However, excursions into TINT (a higher-order Algol-type in-

terpreter) are allowed whereby a user can perform nonstandard operations on

the data. For example, assume we are using DISPUY and we have already

specified the data to be retrieved (time for data retrieval varies from 15 seconds

to 5 or 6 minutes). At this point we could execute the following steps:

1) Call TINT

2) Specify a TINT program (from a list of already written programs) or

3) Write a new TINT program on-line

4) The TINT program then operates on the data and outputs a graphic

data array which is fed into DISPLAY

5) DISPLAY presents the graphic output on the scope

This capability could be used to do data-fitting similar to that provided by PEG

(see paragraph II. C. 5) if the appropriate TINT programs were available.

5. The Kler.:r-May System

Klerer and May [1964] describe a software-hardware system for the purpose

of facilitating the programming and analysis of well-formulated problems. Other

references to this system are Klerer and May [1965a], [1965b] and Klerer and

Grossman [1967].
- 31 -

The Klerer-May system was originally written for a GE-225 computer at

the Hudson Laboratories of Columbia University, Dobbs Ferry, New York.

The system employs modified Flexowriters as input/output stations.- Special

characters and the ability to control platen movement by half spaces from the

keyboard give the modified Flexowriter the capability of producing %aturall*

two-dimensional mathematical notation, In other words, the Klerer-May

language employs summation signs, integral signs, superscripts and subscripts

as in conventional mathematical notation. The compiler takes this two-dimensional

input and produces very efficient code (2 to 4 times faster object code than other

compilers for the GE-225).

The system is supposed to be self-teaching and succeeds quite well as
._

testified by the fact that a one-page manual is all that is handed to new users .-

of the sy:jtem. After a program has been entered into the system, the computer

“echosl’ its interpretation of the input, thus catching some ambiguities and mis-

takes in a program. Plans are to implement the system with on-line inter-

active programming capability.

6. Moore et al. --

Moore et al. [1966] discuss their experiences with a remote console time --

shared system at the University of Western Australia. In particular they discuss

FORDESK, a FORTRAN compatible on-line system which enables simultaneous

editing, translation, execution and debugging from a user’s console. FORDESK

was first released towards the end of 1965.

Moore and Erickson [1966] describe the use of a CRT with lightpen in a

time-shared environment. Of particular interest is an application involving

polynomial curve fitting. The curve fitting program allows dynamic location

of the axis, adjustment of scale, and choice of the degree of polynomial all by

lightpen p.icking of displayed “light buttons. It

- 32 -

7. Ball and Hall

Ball and Hall [1967a] discuss PROMENADE, an on-line system for data

analysis using clustering techniques. Their work has been carried out at the

Stanford Research Institute (SW), Menlo Park, California. They use a high

precision CRT to perform interactive statistics and data analysis. Other ref-

erences of interest are Ball and Hall [1967b] and VEusebio and Ball [1968].

These discuss methods of handling multivariate data in an on-line graphical

environment.

III. SOLUTION OF A LEAST SQUARES PROBLEM BY VARIOUS SYSTEMS

In this section we will take a least squares problem and discuss how it

would be solved by several of the general purpose interactive systems described

in the preceding section. The particular problem we will consider is a con-

strained linear least squares problem that arose in a physics laboratory.

Several measurements related to a cross section problem gave points which

were to be approximated by a polynomial in even powers only with the added

restriction that the polynomial should always be non-negative. The data, with

weights (inverse of errors in the points), is given in Table 1. The approximating

polynomial is to be:

p(x) = a0 + alX2+a2X4+a3X6 .

In the case at hand, restriction of a0 to be non-negative is sufficient to satisfy

the non-negativity of p(x).

- 33 -

TABLE1
DATA TO BE FIT BY p (x)

I i *(iI Y(i) w(i) weight

1 .713 2.7 5.0

2 .856 8.1 1.667

3 .932 13.2 1.111

4 .988 21.5 .6667

5 .994 22.4 .625

Restating the problem we have:

5
given: ma { (xi, Yi’ wi)s

i=l
.

given: A function p(x) = a0 -i- alX2 + a2X4 + a3X6 with a0 2 0.

Find: Values of ao, . . . a3 which give the weighted least squares fit

of p(x) to the given data. That is

minimize i wf [Yi - P(*i) 1 2 l

i=l

Display: The resulting fit superimposed on the data.

This problem could also be formulated as a quadratic programming problem

and solved by known quadratic programming methods.

In some of the following sample solutions to this problem we will ignore the

constraint, as it complicates the solution considerably. Without the constraint

we have a weighted linear least squares problem which is easily handled by some

of the on-line systems under consideration. The weights are also ignored in some

cases to simplify the problem even more.

- 34 -

I

.

.

A. Culler-Fried Solution

The Culler-Fried system is oriented toward handling functions defined on

equally spaced points. The unequal spacing of the data points makes this problem

more complex than it might otherwise be; however, a considerable amount of

console programming would be required even for equally spaced points.

To illustrate the amount of programming required using the Culler-Fried

system, let us consider the code necessary to evaluate only the polynomial,

p(x) = aI + . . . + a3X6 .

The following code will type out a message “ENTER X l’ and upon entry of

a value, proceed to evaluate the polynomial

The code is:

TYPERSENTERX.....

LII REAL LOAD ENTER

SQ STORE Y SQ STORE

ZOYODSI’ORE

TLOADZO C $

T STORE T LOAD Y 0

- 35 -

After the above code has been executed, the value of p(x) is stored under the

key T for later use. Noting the detail of the code to, evaluate the polynomial

we can extrapolate to say that the code to solve a nonlinear set of equations by

iteration, or even the code to solve a set of simultaneous linear equations

would be quite involved. The code complexity is, of course, relative. What

we are comparing this code to is, for example, the code required by NAPSS

to solve a set of simultaneous equations; see paragraph III. B.

B. NAPSS Solution
v

Thanks to Symes [1968], we have two methods of solving the least squares

problem if we ignore the constraint and the weighting. With no constraint on the

constant term the problem is a linear least squares problem. Assuming we

already have the data read into the one-dimensional arrays X and Y we have

the following methods.

Method 1. (weighting can easily be added to this method)

FOR H--1,2, . . . , 4 DO

Q [+-SUM (Y [K] X [K] t (2(I-1))) FOR K--l, 2,. . . ,5)

FOR J-I, I+l, . . ., 4 DO

R[I, J]+-SUM (X [K] t (2(I+J-2)), FOR K+l TO 5)

IF I#J THEN [R+J, I] = R [I, J] ;;;

SOLVE R*A = Q FOR A: ‘\

P(X)+A[l] +A[21 Xt2+A[3] Xt4 + A[33 Xf6

TABLE (f(X), Y,X)

PLOT (f(X), P(X), ON X[I]IX<X[5])

- 36 -

I

Method 2.

P(X)--APPROXIMATION (f(X), WITH 1, X t 2, X 14, X t 6, USING LEAST SQUARES)

A-COEF(P)

PLOT (f(X), P(X), ON X[l]L%X[5])
.

Although the authors of NAPSS have not mentioned it yet, we expect that

someday they will add a polyalgorithm for optimization (locating a maximum or

minimum). A call on such a polyalgorithm might be

MINIMIZE (f (A), STARTING WITH A=AO).

A solution to the weighted and constrained least squares problem might then be

as follows (we assume the data has already been read into the vectors X, Y, and

W, and that starting guesses for the coefficients are in AO):

Possible future method without constraint.

P(X,A)-A[l]+A[2]Xt2+A[3]Xt4+A[4]Xt6

F(A)-SUM(W[I] 7 2 (Y[I] - P(X[I], A)) t 2, FOR I=1 TO 5)

MINIMIZE (F(A), STARTING WITH A=AO)

Possible future method with constraint.

P@,A)-A[l] +A[21 Xt2+A[3] X t4+A[4] Xl6

F(A)-SUM((W[I] t 2) (Y [I] - P(X[I],A)) 7 2, FOR I=1 TO 5) IF A [l]lO

OTHERWISE 10 i 30

MINIMIZE (F(A), STARTING WITH A=AO)

C . POSE Solution

Since POSE is not yet fully implemented it is difficult to state a solution

very precisely. POSE has been implemented on an IBM 1800 with limited

capabilities; see Sashkin et al. [1967]. Plans call for implementation of the --. --

- 37 -

I

.

capability to solve a system of linear algebraic equations which would allow .

solution to the weighted least squares problem (without constraint). This

modified problem would be solved by a program similar to method 1 of the

NAPSS language. After entry of the data, Fortran statements would be used

to calculate the matrix of the normal equations; then the solution vector would

be found by the built-in subroutine for solving simultaneous linear equations.

An approximation to what the POSE program would look like is:

POSE program (without constraints)
. _ _ _

s. 0 CALCULATION SEQUENCE

READ DATA - : ‘- ._ ‘, .- : . .

EXECUTE S. 20

PRINT RPT. 1 (X(l), X(2), X(3), X(4))

PROBLEM END

S. 20 RANGE OF I = l(1) 4

RANGE OF J= l(l)4

A&J) = 0.0

RANGE OF K = l(l)N

A& J) = A(I, J) + W(K)*W(K)*X(K)**(2(I+J-2)

RANGE OF 1=1(1)4

B(I) = 0.0

RANGE OF K = l(1) N

B(I) = B@ + W(K)*W(K)*Y(K)*X(K)**(2(I-1))

X = SOLVE (A, B)

To plot a graph of the resultin:; computed fit would involve first evaluation of

the polynomial at a series of points for plotting purposes (call these values YY

- 38 -

I

and the independent variable XX). Once the points to be plotted are computed

we would then use the following POSE statements to obtain the graph:

PLOT GRAPH: 1(xX: XMIN: XMAX, YY: YMIN: YIVLAX)

TITLE (POLYNOMIAL(X), X)

The statement, DISPLAY GBAPH:l, in the calculation sequence would then

cause the display to take place.

D. OPS-3 Solution

To solve the constrained least squares problem using OPS-3 would involve

writing a compound operator to solve the non-linear problem. Therefore let us

describe how to solve only the weighted linear least squares problem. There is

an operator in OPS-3 which performs linear least squares curve-fitting. A

linear equation is fitted to the observations with certain optional constraints.

The allowable constraints, however, do not include the constraint of interest

in this problem. The linear equation used is

Y = a0 f alxl f a2x2 + . . . f anxn ,

where the x1, . . . , xn are considered as n independent variables, To use this

operator on the problem under consideration, we define four independent

variables:

x1= 1

x2=x2

x3
= x4

x4 = x6

By defining four independent variables (includin, m the constant, 1) and by selecting

the option which suppresses the term a0 in the above equation, we can solve the
._ . --

- 39 -

least squares problem with weighting, First we consider the equations 1

Yiwi = wiaI + wia2 x2 i + wia3Xt + w.a X6 1.4 i ’ for i=l, 2, . . . ,5 .

Assume we have already read the data into three arrays X, Y, and W. Let A be

a matrix with A(0, K) denoting its kth column. The OPS-3 code to solve the

problem will then be:

SET A(0, 1) = W

SET A(O,2) = W*X*X

SET A(O,3) = w’*X. P. 4

SET A(0,4) = W*X.P.6

SET Z = w*y

LINFISZA452

The last line of the code is an invocation of the linear least squarks curve-fitting

operator in its short form with all parameters given immediately. The guided

form of the call would be

LINFIT Z A

and the OPS-3 system would then come back and ask for values of the other

parameters which are:

NV = 4 = number of variables

NO = 5 = number of observations

K = 2 = code to indicate option which suppresses the constant term of .

the linear least squares fitting function

The printed output from the LINFIT operator includes the coefficients of

fit and a measure of the goodness of the fit.

- 40 -

E. JOSS Solution

JOSS does not have complex operators included in the language so the code

to solve a problem such as the solution of a set of simultaneous linear equations

must be provided by the user. However, trograms may be stored for later use

so such frequently encountered problems may be solved by calling out a pre-

viously coded set of JOSS instructions. Since we do not wish to take the space

here to show the solution to the non-linear constrained least squares problem,

we will consider only the linear problem and assume that a program to solve a

set of simultaneous linear equations is already stored. All we need provide is

the coefficients of the weighted least squares normal equations. This would be

done on a JOSS console as follows (U - denotes inputs of the JOSS user. J -

denotes outputs from JOSS):

(First we read in the data)

U 4.1 DEMAND X(l).

4.2 DEMAND Y(I).

4.3 DEMAND W(l).

DO PART 4 FOR 1=1(1)5.

J/U X(1) = 0. ‘713

Y(1) = 2.7

W(l)= 5.0
.
.
.

X(5) = 0.994

Y(5) = 22.4

W(5)= 0.625
--

- 41 -

I

.

(Now we calculate the coefficients of the normal equations)

U 5.1

6.1

6.2

7.1

8.1

9.1

SET Z(K) = Z(Io + (W(9*2)~Y(I)~X(I)*(2(K-1))

SET Z(K) = 0

D@ PART 5 FOR 1=1(l) 5

Do PART 6 FOR Ji=1(1)4

SET A(I, J) = A&J) -t @‘@.)*2)*X(K)* (2(I+J-2))

SETA(I,J)=O

De, PART 7 FOR K=1(1)5

D@ PART 8 FOR J=1(1)4

Do PART 9 FOR 1=1(1)4

TYPE Z

Z(1) =

Z(2) =

Z(3) = ..,.

Z(4) =

Here JOSS will type out the computed values of the right hand sides of the

normal equations. The coefficients stored in the matrix A could also be
\

printed, if desired; then the preceded program to solve simultaneous equations

could be called on to provide the desired solution to the weighted least squares

problem.

F. Lincoln Reckon: c Solution

As stated by Stowe et al. [1966], the Reckoner “is primarily a facility for --

making use of routines, not for writing them.” There are routines or opera-

tions available in the Reckoner public library to perform many operations in-

cluding solving a matrix equation, AX = B, but again there is no provision for

- 42 -

I
.

for automatically solving the non-linear least squares problem with constraints.

Therefore let us only consider the weighted least squares problem as we have

done for several other systems.

Assume the data has been entered into the arrays X, Y, and W. We could

then form arrays as follows:

Xl = w

x2= w-x2

x3= w.x4

x4= w.x6

Z = W-Y

A two-dimensional array A would then be formed with Xl, X2, X3, X4 as its

four columns. There is an operation available in the Reckoner library for re-

placing a column of a given matrix by a given nxl array which could be used to

form A from Xl, X2, X3, X4. Four lines of Reckoner code would then solve

the linear, weighted least squares problem

ATAp = ATZ.

The Reckoner code is as follows:

TRANSPOSE A APRIME

MATMUL APRIME A L

MATMUL AI?l;IIvIE Z R

SOLVE L R BETA .

The coefficients of the least squares solution are now stored in the array BETA.

There is graphical output available with the Lincoln Reckoner and a

routine available in the Reckoner public library to facilitate plotting on the ..-

CRT. A plot of the data points can be obtained directly from the data arrays

X and Y. To obtain a plot of the least squares curve determined by the

- 43 -

.

coefficients stored in BETA some further calculations are necessary. Two

arrays would need to be generated; XPLOT with some equally spaced values

of X over the range of interest and the corresponding values of the fitting

function in YPLOT. To compute each value stored in the array YPLOT some

code such as the following would need to be executed.

MULT XPLOT(l) Xl?LoT/I) XSQ

MULT BETA(4) XSQ T

ADD T BETA@ T

MULT

ADD

MULT

ADD

T .XSQ T

T BEWZ) T _ .“..
T ..: ., .- XSQ T

:: .,:. ‘!I: -, I,’
T . . :;;,;. BETA(l) YPLCT(I)

.x
After XPLOT and YPLOT are .appropriately defined, the routine to generate a

plot on the CRT can be invoked.

G. TOC Solution

The TOC system is derived from the Culler-Fried system; however it has

been changed to allow a more direct entry of formulas so that coding a solution

to the weighted, co:. >strained least squares problem under consideration should

be somewhat more easily accomplished than with the Culler-Fried system. Thus

instead of the code shown in paragraph III. A to evaluate the polynomial

p(x) = A + BX2 + CX4 + DX6

we would have in the TOC system the code: -

P(X, A, B, C, D) = A $ B*X**2+C*X**4+D*X**6

E WLA,B,C,D)

STORE POLY .

- 44 -

Any further evaluations of the polynomial for different values of X, A, B, C, or

D can be accomplished simply by writing

E W,&B,C, a) l

As with the Culler-Fried and JOSS systems there are no higher level opera-

tions provided for the solution of equations, or minimization, for example.

Therefore, all phases of the least squares problem have to be coded. User-

defined console programs can be stored however and reused again and again.

Console programs could be coded and stored to perform the computations

necessary to the solution of the least squares problem. We will not go into

this code at this point.

: ..- ‘.... .L _.
H. MAP Solution

-. .- -. .- --- -.-_ _. ._ __-_.-
One of the several complexprocedures included in the MAP system is a procedure

_ ._____ --.--..-- -.. . ___ ..- .._...... . -.-- ~-

for least ‘squares analysis. There is no direct method of solving the constrained,

weighted least squares problem but the straightforward linear least squares

problem is handled quite easily.

First the four functions,

Fl(X)=l

F2M = X2

F3(X) = X4

F4(X) = X6
\

should be defined and the data read into arrays XDATA and YDATA. The arrays

YDATA(;rl), Fl(X), F2(X), F3(x) and F4(X) must all be defined for the same

values of X, namely those found in XDATA. Once the functions are all ap-

propriately defined, the interaction can take place as follows (user type-m will

- 45 -

be underlined) :

LEAST SQUARE

I CAN FIT EQUATIONS OF THE FORM

V(Y)=XA*FA(Y) e XB*FB(Y)+XC*FC(Y)+~*FD(Y)+XE*FE(Y) WITH A

MAXIMUM OF 5 UNKNOWNS, XA, XB, ETC., AND 100 DATA POINT.

WHAT IS TH73 NAME OF THE VARIABLE COMPARABLE TO V(Y).

YDATA(XJ

HOW MANY FUNCTIONS, FA(Y), FB(Y), ETC., WILL BE REQUIRED

TO FlT THE DATA, 4

PLEASE PRINT ON THE NEXT LINE THE NAMES OF THE 4 FUNCTIONS

REQUIRED.

Following this interaction MAP will print the coefficients of the normal equa-

tions and the results of their solution. Then the user is presented with options

to have the fitted curve and the residuals printed.

If a graphical output terminal is available the MAP plot command can be

used to display the resulting fitted curve. A point plot of YDATA(X) and a line

plot of YFIT(X) could be obtained by the following interaction (we assume the

least squares fit has been calculated and stored in YFIT(X)):

PLOT

PLOT WILL CREATE A GRAPH OF THE DESIRED FUNCTION(S). WHAT

FUNCTIONS WOULD YOU LIKE TO PLOT. YFlT(X). YDATA(X)

SHOULD THE PLOT BE LINEAR, LOG-LOG, LINEAR-LOG, OR LOG-

LINEAR.

- 46 -

I

.

LINEAR

DO YOU WART A POINT OR LINE PLOT OF YDATA(X). POINT

DO YOU WANT A POINT OR LINE PLOT OF YFIT(X). LINE .

IF YOU DO NOT WANT ALL OF THE POINTS OF THE FUNCTION(S)

PLOTTED, TYPE THE RANGE AND/OR INTERVAL IN X TO BE USED.

OTHERWISE JUST GIVE A CARRIAGE RETURN.

I. AMTRAN Solution

The, AMTRAN system is based on the Culler-Fried system with a large

keyboard providing many function buttons. AMTRAN provides the facility to

store user programs (operations) %nderll buttons for later use. There is a

button which invokes a “locate minimum~l operator which could be used in solving

the weighted, constrained least squares problem we have posed. If the opera-

tion locates a minimum with respect to a single variable it could be used to

construct a Gauss-Seidel type of minimization of the sum-of-squares,

I

5 2
C
i=l

[wf? yi-ao-alXF - a2X 4 - a3XF 1 if a0 > 0

s=

i
1030 if a < 0 o- ’

If the “locate minimum” operates on a function of several variables it could

be used directly on the function S given above.

A scope is available for output from the AMTRAN system. An instruction

such as

DISPLAY SCOPE Y

will cause display of the function described by the values in the array Y to be

displayed on the scope. Such instructions could be used to display the fitted

curve.
- 47 -

IV. HOW WOULD PEG SOLVE THE SAME PROBLEM?

In Smith [1969] th e workings of PEG are explained in more detail.

Here we will just outline the steps necessary to solve the weighted, constrained

least squares problem.

There are one or two preparatory steps to be carried out before going on-line

with PEG. First a FORTRAN function must be coded to evaluate the function

P(X) = a0 t- alx2 + a2x4 + a$.

The constraint on a0 is handled in the code for evaluating p(x) by the following

method. Each evaluation is preceded by a test on a0 . If a0 < 0 then p(x) is

set to 1030 (a ar 1 g e number less than the square root of the largest number that

can be held in the machine). If a0 1 0 p(x) is evaluated normally. By returning

a large value for p(x) if a0 < 0, the sum of squares of residuals which is being

computed becomes vary large. Consequently negative values of a0 are avoided

by the minimization routine as it minimizes the sum of squares of residuals.

This coding of “user function&l is detailed in Smith [1969]. A second step,

prepunching the data on cards is optional since there are only five data points

and we could easily enter then through the keyboard when we get on-line. Let

us assume for this problem that we will enter the data on-line.

When the code for p(x) (constrained) is ready, we include the cards with the

running deck for PEG and submit the total deck to be run. When our program

begin.s execution an introductory picture appears on the IBM 2250 display unit.

At this point we can sit doI\ .I at the console and by selecting options with the light-

pen and entering numbers from the keyboard we can obtain the desired least squares

fit. Rather than show pictures of the scope images that appear on the screen as we

- 48 -

4.

step through this problem, we will give a simple word description of each

picture and indicate what user action is necessary at each step, In the follow-

ing list “Lightpen (continue)” means to touch the V* CONT” option with the

lightpen, this will cause the program to go on to the next step. The other light-

pen actions require choosing an item from a list by touching the selected item

with the lightpen. In Smith [1969], typical pictures of the actual scope

images are shown for the various steps involved in the data-fitting process.

Pictures Seen During Solution of Least Squares Problem

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Picture

Introduction

Choose
function

Choose
data mode

Enter data
from keyboard

Display
titles

Make
corrections

Perform transfor-
mation on data

Delete
data points

Enter number
of parameters
and first guess
for parameters

Choose minimiza-
tion method

Action Required

Lightpen (conthy) :., . . . ,.-. “_ ! c- _ _ .i
-Lightpen (choose user function)
Lightpen (continue)

Lightpen (choose keyboard)
Lightpen (continue)

Lightpen (choose weights)
Keyboard (enter data points with weights)
Lightpen (continue)

Lightpen (continue)

Lightpen (continue)

Lightpen (continue)

Lightpen (continue)

Keyboard (enter 4-- number of parameters)
Lightpen (choose automatic parameter adjustment)
Keyboard (enter first guess--0.0,0.0,0.0,0.0)
Lightpen (continue)

Lightpen (choose ‘*direct search”)
Lightpen (continue)

-49 -

(11)

(lz)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Option to enter
parameters to
“direct search”

Iteration 0 displays
data with fit super-
imposed

Iteration 1
.
.
.

Iteration N

Comparison of
starting fit and
converged fit

Option to examine fit
with iteractive minimizer

Choose display
mode

Display of data with fit
superimposed and table
of fit

Choose display mode

Display of data with fit
superimposed and table
parameter values

Choose display mode

Display data on fit
extrapolated

Branching display

.

Lightpen (use preset values and go on)

Lightpen (continue)

Lightpen (continue)

Lightpen (stop iteration if convergence
seems to have obtained--program will
also automatically terminate iteration)

Lightpen (use best values and continue)

Lightpen (terminate iteration)

Lightpen (choose display data and fit with
fit display
Lightpen (continue)

Lightpen (back-up to choose another display
mode)

Lightpen (choose display data and fit with
coefficients displayed)
Lightpen (continue)

Lightpen (back-up to choose another
display mode)

Lightpen (choose display extrapolated fit)

Lightpen (continue)

Lightpen (choose terminate computer
processing)
Lightpen (continue)

END

- 50 -

.

Note that we are led through the data-fitting process by the computer program.

At several points we are presented with the opportunity to perform some optional

task, for example deletion of data points, In such cases if we wish to bypass that

step we simply use the lightpen to continue to the next step. Where there are

default options built into the program we may always “continue” by lightpen

action. On the other hand, if, for example, the.program requests keyboard

entry of the number of parameters involved, and there is no default option, the

lightpen will have no effect until the required keyboard entry has been accomplished.

As we step through the iterations shown in displays (12) through (14) above,

we can watch the improvement in the fit of successive iterations. If the fit does

not improve, it is possible to terminate iterations and try different starting values.

The display (22) above allows us to examine the extrapolated fit. This is of special

interest in this problem since the constraint on the first parameter is supposed to

keep the approximating function from ever being negative. A visual examination

of the extrapolated fit can provide verification of the success or failure of the

constraint.

V. SUMMARY

Table 2 summarizes some of the characteristics of the general purpose

systems and of the special purpose systems. It is apparent that Culler and

Fried were the first to develop an on-line interactive system for solving mathe-

matical problems. Their work began in 1961. JOSS, MAP, and OPS appear to

have all become operational in 1964. AMTRAN and the Lincoln Reckoner are

chronologically more recent as they both came into use early in 1966. Since

1966 we have NAPSS and POSE as the most recent systems. NAPSS is still

under development.

- 51-

Sy
s t

er
n

I
D

at
es

G
en

er
al

pu

rp
os

e
sy

st
em

s

C
ul

le
r-F

rie
d

TC
C

1 s
t

de
ve

lo
pe

d
19

61

si
nc

e
la

te

19
64

In
 1

96
8

be
ga

n
de

ve
lo

pm
e:

-::

Ai
ke

n
C

om
pu

ta
tio

n
La

b.
,

in
 1

96
6

H
ar

va
rd

U

ni
ve

rs
ity

I
AM

TR
AN

C

Jl

:a

av
ai

la
bl

e
si

nc
e

ea
rly

19

66

I

Li
nc

ol
n

in
 r

ou
tin

e
us

e
si

nc
e

R
ec

ko
ne

r
sp

rin
g

19
66

M
AP

in

 u
se

 s
in

ce

m
id

.
-

19
64

N
AP

SS

un
de

r
de

ve
lo

pm
en

t
si

nc
e

19
66

PO
SE

be

ga
n

w
or

k
ea

rly

in
 1

96
7

TA
BL

E
2

SU
M

M
AR

Y
O

F
O

N
 L

IN
E

SY
ST

EM
S

H
om

e
In

st
itu

tio
n

M
ac

hi
ne

(o

pe
ra

tin
g

sy
s

te
rn

)

TR
W

C

an
og

a
Pa

rk
,

C
al

if.

TR
W

Sy

st
em

s
R

ed
on

do
 B

ea
ch

,
C

al
if.

U

ni
ve

rs
ity

of

 C
al

if.

at

Sa
nt

a
Ba

rb
ar

a
U

ni
ve

rs
ity

of

 C
al

if.

at

Sa
nt

a
Ba

rb
ar

a

N
AS

A
M

ar
sh

al

Sp
ac

e
Fl

ig
ht

C

en
te

r,
H

un
ts

vi
lle

,
Al

ab
am

a

Li
nc

ol
n

La
bo

ra
to

rie
s

of

M
.I.

T.

M
as

sa
ch

us
et

ts

In
st

itu
te

of

 T
ec

hn
ol

og
y

Pu
rd

ue

U
ni

ve
rs

ity
,

La
fa

ye
tte

,
In

di
an

a

‘A
er

os
pa

ce

C
or

po
ra

tio
n;

Sa

n
Be

rn
ar

di
no

,
C

al
if.

R
W

-4
00

BR

-3
40

(4

 u
se

rs
)

R
W

-4
00

IB
M

36

0/
65

(m

an
y

us
er

s)

(C
TS

S)

16
20

TX
-2

(A

PE
X

tim
e

sh
ar

in
g

sy
st

em
)

(C
TS

S)

pr
op

os
ed

(a

 t
im

e
sh

ar
in

g
sy

s
te

rn
)

18
00

 (
pr

es
en

tly

Ba
tc

h)

pr
op

os
ed

(ti

m
e

sh
ar

in
g)

.
C

on
so

le

Fa
ci

lit
ie

s

tw
o

48
 b

ut
to

n
ke

yb
oa

rd
s

an
d

a
5”

st

or
ag

e
sc

op
e

11

II

65
 o

pe
ra

to
r

ke
ys

,
pl

us

a
fu

ll
ty

pe
w

rit
er

ke

yb
oa

rd

an
d

a
st

or
ag

e
os

ci
llo

sc
op

e

22
4

bu
tto

n
ke

yb
oa

rd
,

ty
pe

-
w

rit
er

,
tw

o
5”

st

or
ag

e
sc

op
es

a
tw

w
ke

yb
oa

rd

ty
pe

w
rit

er
,

a
re

fre
sh

ed

C
R

T,

an
 o

n-
lin

e
Xe

ro
x

pr
in

te
r,

pa
pe

r
ta

pe
 i

n-

pu
t

av
ai

la
bl

e

ty
pe

w
rit

er

or

te
le

ty
pe

st

or
ag

e
sc

op
e

or
 r

ef
re

sh
ed

sc

op
e

if
av

ai
la

bl
e

pr
op

os
ed

ty

pe
w

rit
er

sc

op
e

fo
r

di
sp

la
y

pr
op

os
ed

ty

pe
w

rit
er

an

d
sc

op
e

. .

l

ty
pe

w
rit

er

or

te
le

ty
pe

(C

TS
S

)
O

PS
-3

Pr

ed
ec

es
so

r
be

gu
n

in
 S

pr
in

g
19

64

M
as

sa
ch

us
et

ts

In
s

tit
&e

of

 T
ec

hn
ol

og
y

JO
SS

da

ily

us
e

si
nc

e
19

64

R
AN

D

C
or

po
ra

tio
n.

,
Sa

nt
a

M
on

ic
a,

C

al
if.

JO

H
N

N
IA

C

(d
ed

ic
at

ed

to
 a

fe

w
 c

on
so

le
s)

PD

P
6

(s
in

ce

Fe
b.

19

66
)

(ti
m

e
sh

ar
ed

)

ty
pe

w
rit

er
s

II

Sp
ec

ia
l

Pu
rp

os
e

Sy
st

em
s

C
R

T
w

ith

lig
ht

pe

n,

pa
pe

r
ty

pe
 i

np
ut

D

ec
is

io
n

Sc
ie

nc
es

La

b.
,

H
an

sc
om

Fi

el
d,

Be

df
or

d
M

as
sa

ch
us

et
ts

ST
AT

PA
C

(s

ta
tis

 t
ic

al
ly

or

ie
nt

ed
)

in
 u

se
 i

n
19

65

M
ar

ch
uk

an

d
Ye

rs
ho

v
(d

iff
er

en
tia

l
eq

ua
t,i

on
s)

be
in

g
pl

an
ne

d
in

 1
96

5
R

us
si

a

te
le

ty
pe

s
(3

3
an

d
35

)
U

ni
ve

rs
ity

of

 I
llin

oi
s,

U

rb
an

a,

Ill
in

oi
s

U
C

LA
,

H
ea

lth

Sc
ie

nc
es

C

om
pu

tin
g

Fa
ci

lit
y,

Lo

s
An

ge
le

s,

C
al

if.

I
G

ea
r

(d
iff

er
en

-
u-

l
w

tia

l
eq

ua
tio

n:

I
D

ix
on

(s

ta
tis

tic

 a
l)

PE
G

(d

at
a-

fit
tin

g)

in
 u

se
 i

n
19

66

so
m

e
pa

rts

in
 u

se

in
 1

96
8

IB
M

36

0/
75

(h

ig
h

pr
io

rit
y

pa
rti

tio
n)

IB

M

22
50

 s
co

pe
 w

ith

lig
ht

pe

n
an

d
sp

ec
ia

l
fu

nc
tio

n
ke

yb
oa

rd

av
ai

la
bl

e
fo

r
us

e
Fa

ll
19

68

SL
AC

(S

ta
nf

or
d

Li
ne

ar

Ac
ce

le
ra

to
r

C
en

te
r)

IB
M

36

0/
75

(h

ig
h

pr
io

rit
y

pa
rti

tio
q

Af
te

r
O

ct
ob

er

19
68

 o
n

IB
M

36

0/
91

IB
M

22

50
 s

co
pe

 w
ith

lig

ht

pe
n

The special purpose systems STATPAC and Gear’s system becahe opera-

tional in 1965 and 1966 respectively. Dixon’s on-line statistical programs are

partially completed and the PEG system is now operational.

A simple comparison of the languages of the general purpose systems is

given in Table 3. The comparison is for a very simple problem, nevertheless

it gives an indication of the type of commands (instructions) that are used with

each system.

Some of the special purpose systems have languages associated with them.

For example, Gear’s differential *equation system has a language which is used

to enter the systems of equations to be solved and control the processing. On
:>- .. [.

the other.hand Dixon’s statistical programs and the PEG system use lightpen

selection of options rather than having user specification by some hind of command
:

language. .-

In Table 4.we present a parallel between various coding systems used in

batch processing and some of the interactive systems discussed in this survey. ’

The purpose of this comparison is to show that just as there are various levels

of programming used in batch processing, there are various levels of interaction

(levels of console programming) used in on-line problem solving. The reason we

have various levels of programming is not just due to the historical fact that

machines were invented first and the languages have evolved from the basic

machine instructions, but due to a need for communication with the machine at

various levels.

We find that some problems are more efficiently solved by using a higher

level language. For example, a one-shot problem is best coded in FORTRAN

(for example) as opposed to assembler language because of the savings in

programming time where as a code that is to be run several hundred times is

- 54 -

I

TABLE 3

A SIMPLE LANGUAGE COMPARISON

Coding the following problem:

assume : A and B are loaded

compute: R&q

System

Culler- Fried

AMTRAN

Lincoln Reckoner

MAP

NAPSS

POSE

OPS-3

JOSS

Code for R + dK-2

, (each item as a button push)

LOAD A MULT A STORE T LOAD B

MULT B ADD T SQRT STORE R

LETX(A,B) =SQRT (A ** 2 + B* * 2)

E X(&B)
STORE R

Similar to Culler-Fried for pushbutton version

MULTAAT

MULT BBR

ADD TRR

SQRT RR

R = SQRTF (A * A + B * B)

R = J(AT2 + BT2)

R=SQRT(A*A+B*B)

SETR=SQRT (A*A+B*B)

SETR=SQRT (A*2+B*2)

- 55 -

TABLE 4

Compare Levels of Programming Languages .

Batch Processing On-line Interactive Processing

(1) Assembler Language

(2) Procedural Language

(e.g. FORTRAN

ALGOL) , i

(3) Using a comprehensive library

of subroutines (procedures).

(e. g. coding input and output

drivers for existing subroutines)

(4) Using ttCanned11 programs.

(a user need only prepare

dab according to a pre-

specified order and format)

.

:a) Wteractive machine language program-

ming” see Lampson (1965)

Lb) Many of the operations of the Culler-

Fried system are similar to assembler

Language instructions .

(c) AMTRAN (similar to Culler-Fried)

(a) JOSS

(b) on-line inter-

preters such

as QUICK-

TRAN

These languages provide

on-line capability similar

to. FORTRAN and ALGOL

(algebraic statements)

(a) MAP

(b) NAPSS

These systems have op-

erators that are backed

by comprehensive algo-

rithms. The user languages

are supposed to be quite

%aturalt’

(a) Dixon’s system

at UCLA

(b) PEG

These systems allow user

interaction in a single

problem area with no

“language (t involved.

- 56 -

I
.

.

better coded in assembler language because the object code can be made more

efficient thereby saving considerable machine time. As another example, con-

sider the social scientist who wishes to perform a standard statistical analysis

on some data but he knows no FORTRAN: not even enough to co,de a driver for

an existing library subroutine (procedure) which would perform the desired

analysis. For this user, the ?xt.nnedl~ program which includes input and output

and only requires a user to prepare data in some standard fashion, is the appro-

priate language level. Results can be obtained with relatively little effort by the

person who is interested in them kithout the need for an intermediary (a pro-

grammer) or the need for the social scientist to learn a programming language.

. To conclude this survey, let us list with brief descriptions some references

which are applicable in various areas of intej:active graphical systems. The

areas covered are:

(1) Aids to the implementation of interactive graphical systems.

(2) Interactive console developments.

(3) Extra added attractions-features to add to a tttotallt system.

(4) Future systems,

(5) On-line systems without mathematical capabilities.

(1) Aids to the implementation of interactive graphical systems

Feingold [19 6 7] Describes a language, PLANIT (Programming

: . LANguage for Interaction and Teaching), developed

at Systems Development Corporation, Santa Monica,

California. PLANIT is written in the JOVIAL

language and used on the IBM AN/FSQ-32 V

computer.

- 57 -

I

.
.

Pankhurst F968] Describes GULP (General Utility Language

Thomas [196 7]

Processor), a compiler-complier for verbal

and graphic languages. Written at the University

of Cambridge, England, to fit in a small computer

memory, a PDP-7.

Describes a system designed to provide a user-

computer interface employing a model to repre-

sent drawing information in the computer. The

. system, GRASP (a GRAphic Service Program),

was written at IBM, Kingston, New York, for

system 360 computers with 2250 display units.

Hurwitz et al. [1967] -- Describes GRAF (GRaphic Additions to Fortran),

a language which is Fortran plus some added

statements to facilitate graphics programming.

GRAF was written at IBM Los Angeles Scientific

Center and the Health Sciences Computing

Facilities, UCLA, to extend OS/360 Fortran IV

(E level) and to operate with the IBM 2250 I. The

programs described by Dixon [1967] were imple-

Newman [1968]

Roberts [1966]

mented using GRAF.

Describes a system for developing graphical

problem-oriented languages. The work was done

at Harvard University and developed on a PDP-7

computer with a DEC 340 display.

Describes a Graphical Service System (GSS) with vari-

able syntax being developed at Lincoln Laboratory, MIT.

- 58 -

I

Kulsrud [1968] Describes a general purpose graphic language

to handle generation and display as well as

analysis of pictures. The language was developed

at Yale University, New Haven, Connecticut.

(2) Interactive console developments

Christensen and Pinson [1967]

Kopel [1968]

Ninke [1968]

Barlett et al.[l968] --

Ninke k965]

.

Lewin [1967]

Rippy and Humphries [1965]

Lewin [1965]

Haring [I9651

These all describe some aspects of a compre-

hensive hardware setup at Bell Telephone Laboratories.

Gives an introduction to the hardware and software

aspects of the various types of computer graphic

terminals available in 1967.

Describes a machine developed at NBS, Washington,

D.C., as a research tool for the investigation of

man-machine communication techniques involving

CRT displays.

Describes a tablet-type graphic input device de-

signed to minimize the amount of associated circuitry,

developed at the RCA Laboratories, Princeton, N. J.

Describes the “beam pen”, a novel high-speed,

input/output device for CRT display systems, de-

veloped at the Electronic Systems Laboratory, MIT.

- 59 -

Davis and Elliot [1964] Describe the RAND tablet, a device for man-

Stotz 119631

machine graphical communication developed

at the RAND Corporation, Santa~ Monica, Calif.

Discusses man-machine console facilities

needed for computer-aided design and the dis-

play system being developed at MIT.

Gallenson [1967] Describes a graphic tablet display designed at

System Development Corporation, Santa Monica,

for use under time-sharing.

Machover [1967] A review of graphic CRT terminals commercially
:

available with an attempt to clarify some commonly ?. I, :.’ - .! ,
used display terms.

Mahan [1968]
.

Gives a state-of-the-art survey of the data dis-

play field with a hardware orientation.

(3) Extra added attractions-features to add to a lttotaIt’ system.

Mermelstein and Eyden [1964] Describe a system for the automatic on-line

recognition of handwritten words developed at MIT.

Lee [1968]

Allen [1968 1 Describe some research into the problem of

machine-to-man communication by speech done at MIT.

Feldman [1968] Describes some research into the problem of com-

puter input of forms done at the Walter Reed Army

Institute of Research, Washington, D. C.

Teixeria and Sallen [1968] Describe the Sylvania data tablet: a new approach

to graphic data input. This device was developed

at Sylvania Electronic Systems, Waltham, Mass.

- 60 -

I

.

Smura [1968] Discusses a new approach to hardware and

software for graphical data processing that

could replace, in some cases, present-day

Walter [1965]

peripheral devices.

Discusses the use of color in an on-line graphi-

cal environment.

Tobey [1966]

Sammet and Bond [1964]

Hearn [1967]

Give an introduction to FORMAC, a programming

. system designed to permit the manipulation of

mathematical expressions.

Describes REDUCE, a user oriented interactive

system for algebraic simplification developed at

Stanford University .

Klerer and May [19641

[1965aj, [1965b]

Klerer and Grossman [1967] Describe a system using two-dimension::1 input-

output by typewriter terminals developed at

C,olumbia University, Hudson Laboratories.

(4) Future systems

Licklider [1965]

Sutherland [1965]

Describes man-computer interaction and its

promise. A section titled “My partner - the

machinef’ describes an interactive system he

envisions.

Describes the attributes of “the ultimate display”

using many already developed characteristics.

- 61 -

(5) On-line systems without mathematical capabilities (these are included for

the sake of completeness)

Lewis [1968]

T I

Describes SHAPESHIFTER, an interactive

program for experimenting with complex-

plane transformations developed at the

National Institutes of Health, Bethesda,

Maryland.

Lampson [1965] Describes a system allowing interactive machine

.,.’
.. .::
_I...

i “; titherland [1963]

1.
..

Johnson [1963]

language programming developed at the University

of California, Berkeley,

Describes SKETCHPAD, a man-machine

-graphical communications system developed

at MIT.

Describes SKETCHPAD-III, a computer

program for drawing in three dimensions de-

veloped at MIT.

Colin [1966] Describes a simple program for use in the con-

versational mode, written at the University of

Lancaster, England, to gain experience in man-

machine communication.

Dunn and Morrissey [1964] Describe an experimental system for remote com-

puting using conversation source-language debugging

techniques developed at the IBM Development Labor-

atory, New York, N. Y.

Abraham et al. [1968] -- Describe an on-line multiprocessing interactive

computer system for neurophysiological investiga-

tions developed at the UCLA Brain Research Institute.

- 62 -

- REFERENCES

Abraham, F. ID., Betyar, L., and Johnston, R. [1968]. An on-line multiproc-

essing interactive computer system for neurophysiological investigations.

1968 Spring Joint Computer Conference, Thompson Books, Washington, D. C.,

345-352.

Allen, J. [1968]. Machine-to-man communication by speech, part II: Synthesis

of prosodic features of speech by rule. 1968 Spring Joint Computer Confer-

ence, Thompson Books, Washington, D. C., 339-344.

Allen, T. R. and Foote, J. E. [1964]. Input/output software capability for a

man-machine communication and image processing system. 1964 Fall Joint

‘Computer Conference, Spartan Books, Washington, D. C. , 387-396. . _._.-... ;.; ,., .:.., .” % __ . .
Anderson G. B., ‘Bertran, ‘K. R. , COM;. ‘R.’ W. , Malmqui&K. 0. ,

Millstein, R. E. , and Tokubo, S. .[1968]. Design of a time-sharing system
.

allowing interactive graphics. Proceedings - 1968 ACM National Confer-

ence, Brandon/Systems Press, Princeton, N. J., l-6.

Ball, G? H. and Hall, D. J. [1967a]. PROMENADE, an on-line pattern rec-

ognition system. SRI Technical Report No. RADC-TR-67-310 (September).

Ball, G. H. and Hall, D. J. [1967b]. A clustering technique for summarizing

multivariate data. Behavioral Sciences, 12, No. 2, (March), 153-155.

Barlett, W. S.) Busch, K. J. Flynn, M. L., and Salmon, R. L. [1968]. SIGHT,

a satellite interactive graphic terminal. Proceedings - 1968 ACM National

Conference, Brandon/Systems Press, Princeton, N. J., 499-509.

Bowman, S. and Lickhalter, R. A. [1968]. Graphical data management in a

time-shared environment, 1968 Spring Joint Computer Conference,

Thompson Book Company, Washington, D. C., 353-362.

Bryan, G. E. , 1967. JOSS: 20,000 hours at the console - a statistical summary.

1967 Fall Joint Computer Conference, Thompson Books, Washington, D. C.,

769-777.

I

.

.

Cameron, S. H., Ewing, D., and Liverright, M. p967]. DIALJbG: a conver-

sational programming system with a graphical orientation. Communications

of the ACM, Vol. 10, No. 6, (June), 349-357.

Chasen, S. H. p965]. The introduction of man-computer graphics into the aero-

space industry. 1965 Fall Joint Computer Conference, Spartan Books,

Washington, D. C., 883-892.

Christensen, C. and Pinson, E. N. 99671, Multi-function graphics for a large

computer system. 1967 Fall Joint Computer Conference, Thompson Books,

Washington, D.C., 697-711. l

Clapp, L. C. and Kain, R. Y. p963]. A computer aid for

1963 Fall Joint Computer Conference, Spartan Books,

509-517.

symbolic mathematics.

Washington, D. C. ,

Cole, P. M., Dorn, P. H., and Lewis, C. R. p964]. Operational software in

a disk oriented system. 1964 Fall Joint Computer Conference, Spartan

Books, Washington, D.C., 351-362.

Colin, A. J. T. [1966]. A simple program for use in the “conversational mode”.

The Computer Journal, Vol. 9, 238-241.

COM, R. W. and vonHoldt, R. E. [19 651. An online display for the study of

approximating functions. Communications of the ACM, Vol. 12, No. 3

(July), 326-349.

Culler, G. J. and Fried, B. D. [1963]. An on-line computing center for

scientific problems. Thompson Ramo Wooldridge Computer Division Report

(now Bunker-Ram0 Corp.) Canoga Park, California.

Culler, G. J. and Fried, B. D. [1965]. The TRW two-station, on-line scientific

computer: general description. Computer Augmentation of Human Reasoning,

Spartan Books, Washington, D. C.

.’

I

.
.

Culler, G. J. and Huff, R. W. @962]. Solution of nonlinear integral equations

using on-line computer control. 1962 Spring Joint Computer Conference,

National Press, Palo Alto, 129-138.

Davis, M. R. and Ellis, T. 0. .p964]. The RAND Tablet: a man-machine

graphical communication device. 1964 Fall Joint Computer Conference,

Spartan Books, Washington, D. C. , 325-331.

deMaine, P.A. D. [1965]. The self-judgment method of curve fitting. Communi-

cations of the ACM, Vol. 8, No. 8, (August), 518-526.

Dixon, W. J. (Ed.) P964]. BMD, Biomedical Computer Programs. U. of
r

California, Los Angeles.

Dixon, W. J. p967]. Use of displays with packaged statistical programs.

1967 Fall Joint Computer Conference, --- -- Thompson Books, Washington, D. C . ,

481-484.

Dunn, T. M. and Morrissey, J. H. [1964]. Remote computing an experimental

system. Part 1: external specifications. 1964 Spring Joint Computer Con-

ference, Spartan Books, Washington, D. C., 413-423.

Engelman, C. h965]. MATHLAB: A program for on-line machine assistance

in symbolic computations. 1965 Fall Joint Computer Conference, Part II,

Spartan Books, Washington, D.C., 117-126.

Eusebio, J. W. and Ball, G. H., [1968]. ISODATA-LINES - A program for

I describing multivariate data by piecewise-linear curves. Proceedings of

International Conference on Systems Science and Cybernetics, University

of Hawaii, Honolulu, Hawaii, (January), 560-563.

Feingold, S. L. [1967]. PLANIT - A flexible language designed for computer-

human interaction. 1967 Fall Joint Computer Conference, Thompson Books,

Washington, D. C., 545-552.

.,.

I

.

Feldman, A. [1968]. Computer input of forms, 1968 Spring Joint Computer

Conference, Thompson Books, Washington, D. C. , 323-331.

Fried, B. :[1967]. On the user’s point of view. Presented at the ACM Symposium

for. Experimental Applied Mathematics, August 26-28, 1967 (Proceedings in

Press).

Gallenson, L. [1967]. A graphic tablet display console for use under time-sharing.

1967 Fall Joint Computer Conference, Thompson Books, Washington, D. C. ,

689-695.

Gear, C. W. [1966]. Numerical solution of ordinary differential equations at a

remote terminal. Proceeding; - 1966 ACM National Conference, Thompson
,- .-_- .I- __;..

Book Company, Washington, D. C, , 43-49. .’
:, ..T _ c: ., [’ :’ -~~~~;..~.~~~:; ;

Goodenough, J. B. [1965]. A lightpe&controlled program for online data analysis.
_ ::’ :-

Communications of the ACM; Vol. 8, .No. 2, (February), 130-134.
.;;1;.-, ;- ,.:.

Greenberger, M. , Jones, M. M. , Morris., J, H. (Jr.), and Ness, D. N. [1965].
.^ .,z;:::-. . .

On-line computation and simulation: The OPS-3 system. The M. I. T. Press,

Cambridge, Massachusetts. ‘. ‘. .;-‘;x :.. ; /i..
Hargreaves, B. , Joyce, J. D. , and Cole, G. L.]19641. Image processing

hardware for a man-machine graphical communication system. 1964 Fall

Joint Computer Conference, Spartan Books, Washington, D. C. , 363-386.

Haring, D. R. 119651. The beam pen: A novel high speed, input;/output device

for cathode-ray-tube display systems. 1965 Fall Joint Computer Conference,

Spartan Books, Washington, D. C. , 847-855.

Hearn, A. C. [1967]. REDUCE - a user oriented interactive system for alge-

braic simplification. Presented at the ACM Symposium for Experimental

Applied Mathematics, August 26-28, 1967 (Proceedings in Press).

Hurwitz, A. , Citron, J. P. , and Yeaton, J. B. [1967]. GRAF: Graphic additions

to FORTRAN. 1967 Spring Joint Computer Conference, Thompson Book

Company, Thompson Books, Washington, D. C. , 553-557.

.

Jacks, E. L. [1964]. A laboratory for the study of graphical man-machine com-
. . . .,

munication. 1964 Fall Joint Computer Conference, Spartan Books, Washington,

D. C., 343-350.

Johnson, T. E. [1963]. Sketchpad III: A computer program for dratiing in three

dimensions, 1963 Spring Joint Computer Conference, Spartan Books,

Washington, D. C., 347-353.

Kaplow, R. , Brackett , J. , and Strong, S. [1966]. Man-machine communication

in on-line mathematical analysis. 1966 Fall Joint Computer Conference,

Spartan Books, Washington, D. C. , 465-477.

Kaplow , R. Strong, S. , and Brackett, J. [1966a]. MAP, A system for on-line

mathematical analysis. Report No. MAC-TR-24, Massachusetts Institute

of Technology (January),

Karplus, W. J. (Ed.) [1967]. On-Line Computing, McGraw-Hill Book Co. , ,

New York.

Klerer, M. and Grossman, F. [1967]. Further advances in two-dimensional

input-output by typewriter terminals. 1967 Fall Joint Computer Conference,

Thompson Books, Washington, D. C., 675-687.

Klerer , M. and May, J. [1964]. An experiment in a user-oriented computer

system. Communications of the ACM, Vol. 7, No. 5 (May), 290-294.

Klerer, M, and May, J, [1965a]. A user oriented programming language. The

Computer Journal, Vol. 8, No. 3 (July), 103-109.

Klerer, M. and May, J. [1965b]. Two-dimensional programming. 1965 Fall

Joint Computer Conference, Spartan Books, Washington D. C. , 63-75.

Kopel, P. S. [1968]. Interactive Computer Graphics. Bell Laboratories

RECORD, Vol. 46, No. 6 (June), 189-196.

Krull, F. N. and Foote, J. E. [1964]. A line scanning system controlled from

an on-line console. 1964 Fall Joint Computer Conference, Spartan Books,

Washington, D. C., 397-410.

.

Kulsrud, H. E. [1968]. A general purpose graphic language. Communications

of the ACM, Vol. 11;’ No, 4 (April), 247-254.

Lampson, B. W. [1965]. Interactive machine-language programming. 1965

Fall Joint Computer Conference, Part II, Spartan Books, .Washington, D. C. ,

141-149.

Lee, F; F. [1968]. Machine-to-man communication by speech, Part I: generation

of segmented phonemes from text, 1968 Spring Joint Computer Conference,

Thompson Books is Washington, D. C. , 333-338.

Lewin, M. H. [1965]. A magnetic device for computer graphic input. 1965

Fall Joint Computer Conference, Spartan Books, Washington, D. C. , 831-838.

Lewin, M. H. [1967]. An introduction to computer graphic terminals. Proceedings

of the IEEE, Vol. 55, No. 9 (September), 1544-1552.

Lewis, H. R. [1968]. SHAPESHIFTER: An interactive program for experimenting

with complex-plane transformations. Proceedings - 1968 ACM National

Conference, Brandon/Systems Press, Princeton, N. J. , 717-724.

Licklider , J. C. R. [1965]. Man-computer partnership. Int. Sci. and Tech.
,

(May), 18-26. f

Licklider, J. C.R. and Clark, W. E. [1962]. On-line man-computer communication.

1962 Spring Joint Computer Conference, National Press, Palo Alto, 113-128.

Machover, C. [1967]. Graphic CRT terminals - characteristics

availalbe equipment. 1967 Fall Joint Computer Conference,

Washington, D. C. 149-159.

of commercially

Thompson Books,

Mahan, R. E. [1968]. A state-of-the-art survey of the data display field. AEC

Research and Development Report No. BNWL-725, UC-2, Battelle Northwest

Laboratory, Richland, Washington.

Mann, R. W. [1965]. Computer-aided design. Proceedings of the IFIP Congress

1965, Part II, 476.

!

.

Marchuk, G. I. and Yershov , A. P. [1965]. Man-machine inter ction in solvinga certain

class of differential equations. Proceedings of the IFIPCongress 65, Part II, 550-551

Mermelstein, P. and Eyden, M. [1964]. A system for automatic recognitionof handwrit-

r tenwords. 1964 Fall Joint Computer Conferen&, Spartan Books, Washington, D. C.

333-342.

Moore, D. W. G. and Erickson, M. J. [1966 j. The display as a research tool. Preceedings

of Australia ComputerConference. Canberra (May), 16/1/l - 16/l/4.

Moore, D. W. G. , Jarvis, C. L. and Nicholls, I. G. [1966]. User efficiency ina time

shared environments. Proceedings of Australia Computer Conference. Canberra

(May), 11/3/l - 11/3/4.

New.:-.\an, W. M. [1966]. Anexperimentalprogram forarchitecturaldesign. The

Computer Journal, Vol. 9, No. 1, 21-26.

Newman, W. M. [1968]. A system for interactive graphicalprogramming. 1968 Spring

Joint Computer Conference, Thompson Books, Washington, D. C. , 47-54.

Ninke, W. H. [1965]. GRAPHIC 1 - a remote graphical display console system. 1965

Fall Joint Computer Conference, Spartan Books, Washington, D. C. , 839-846.

Ninke, W. H. [1968]. The growth of computer graphics at Bell Laboratories. Bell

Laboratories RECORD, Vol. 46, No. 6 (June), 180-188.

Pankhurs t , R. J. [1968]. GULP-a compiler-compiler for verbal and graphic languages.

Proceedings-1968ACM National Conference, Brandon/Systems Press, ,Princeton,

N. J. , 405-421. .

Pyle, I. C. [1965). Data input by question and answer. Communications of the ACM,

vol. 8, No. 4 (April), 223-226.

Reinfelds, J. , Flenker, L. A. , and Seitz, R. N. [1966] AMTRAN, a remote-terminal,

conversational-mode computer sys tern. Proceedings 1966 ACM National Con-

ference, Thompson Book Company, Washington, D. C. , 469-477.

.

Rice, J. R. [1967]. On the construction of polyalgorithms for automatic numer-

ical analysis. Report No. CSD-TR-16, Computer Sciences Department,

Purdue University (June).

Rice, J. R. and Rosen, S. [1966]. NAPSS - a numerical analysis problem solving

system. Proceedings - 1966 ACM National Conference, Thompson Book

Company, Washington, D. C. , 51-56

Rippy, D. E. and Humphries, D. E. [1965]. MAGIC - a machine for automatic

graphics interface to a computer. 1965 Fall Joint Computer Conference,

Spartan Books, Washington, D. C. , 819-830.

Roberts, L. G. [1966]. A graphical service system with variable syntax,

Communications of the ACM, Vol. 9, No. 3 (March), 173-175.

Roman, R. V. and Symes, L. R. [1967a]. Syntactic and semantic description

of the numerical analysis programming language (NAPSS). Report No. CSD-

TR-11, Computer Sciences Department, Purdue University (May),

Roman, R. V. and Symes, L. R. [1967b]. Implementation considerations in a

numerical analysis problem solving system. Presented at the ACM

Symposium for Experimental Applied Mathematics, August 26-28, 1967

(Proceedings in Press).

Roes, D. 119653. An integrated computer system for engineering problem

solving. 1965 Fall Joint Computer Conference, Part II, Spartan Books,

Washington, D. C. , 151-159,

Ruyle, A. [1967]. Project TACT. Presented at the ACM Symposium on Inter-

active Systems for Experimental Applied Mathematics, August 26-28, 1967

(Proceedings in Press).

Ruyle , A. , Brackett, J. W. ,’ and Kaplow, R. [1967]. The status of systems for

on-line mathematical assistance. Proceedings - 1967 ACM National Con-

ference, Thompson-Book Company, Washington, D. C. , 151-167.

Sammet, J. E. and Bond, E. R. 119641. Introudction to FORMAC. IEEE Trans.

on Electronic Computers, (August), 386-394.

Sashkin, L. , Schlesinger, S. , and Reed, K. [1967]: Two analyist-oriented

computer languages : EASL and POSE. Report No. ATR-68 (S8111)-2,

Aerospace Corporation, San Bernardino, California (November).

Schlesinger, S. and Sashkin, L. [1967]. POSE: A language for posing problems

to a computer. Communications of the ACM, Vol. 10, No. 5 (May), 279-285.

Schwartz, J. I. , Coffman, E. G. , and Weissman, C. [1964]. A general-purpose

time-sharing system. 1964 Spring Joint Computer Conference, Spartan

Books, Washington, D. C. , 397-411.

Shaw, J. C. [1964]. JOSS: A designer’s view of an experimental on-line computing system.

1964 Fall Joint Computer Conference, Spartan Books, Washington, D. C. , 455-464.
_.

Shaw , J. C. [1965]. JOSS: Conversations with the Johnniac open-shop system.

Proceedings of the IFIP Congress 65, Part II. 544-545.

Simonsen, R. H. and Anketell, D. L. [1966]. Mechanization of the curve fitting

process : DATAN. Communications of the ACM, Vol. .9, No. 4 (April),

299-304.

Smith, L. B. [1969]. The use of man-machine interaction in data-fitting problems.

l?h.D.dissertation, Computer Science Department, Stanford University.

Smura, E. J. [1968]. Graphical data processing. 1968 Spring Joint Computer

Conference, Thomspon Books, Washington, D. C. 1 111-118

Stotz, R. [1963]. Man-machine console facilities for computer-aided design.

1963 Spring Joint Computer Conference, Spartan Books, Washington, D. C. ,’

323-328.

Stowe, A. N. , Wiesen, R. A. , Yntema, D. B. , and Forgie, J. W. [1966]. The

Lincoln Reckoner: An operation-oriented, on-line facility with distributed

control. 1966 Spring Joint Computer Conference, Spartan Books, Washington,

D. C., 433-444.

SutherIand, I. E. [1963]. Sketchpad : A man-machine’graphical communication

system, 1963 Spring Joint Computer Conference, Spartan Books, Washington,

D. C., 329-346.

Sutherland, I. E. , 119651. The ultimate display. Proceedings of the IFIP Congress

1965, Part II.

Symes, L. R. 119681. Private communication.

Symes , L. R. and Roman, R. V. [1967]. Structure of a language for a numerical

analysis problem solving system. Report No. CSD-TR-12, Computer Sciences

Department, Purdue University.

Teixeira, J. F. and Sallen, R. P. ‘[1968]. The Sylvania data tablet: A new approach

to graphic data input. 1968 Spring Joint Computer Conference L Thompson Books, .

Washington, D. C. , 315,-321.

Thomas, E. M. [1967]. GRASP - a graphic service program. Proceedings -

1967 ACM National Conference, Thompson Book Company, Washington,

D. C., 395-402,.

Tobey, R. G. [1966]. Eliminating monotonous mathematics with FORMIC.

Communications of the ACM, Vol. 9, No. 10 (October),742-751.

Uncapher, K. [1965]. The man-machine interface. 1965 Fall Joint Computer

Conference, Part II, Spartan Books, Washington, D. C., 88-91.

Walter, C. M. [1965]. Color - a new dimension in man-machine graphics.

Proceedings of the IFIP Congress 1965, Part II.

Ward, J. E. [1965]. Display systems research, Project MAC Report: Progress

to July 1964, MIT.

Whiternan, I. R. [1966], New computer languages. Int. Sci. and Tech. (April),

62-68.

Wiesen, R. A. , Yntema, D. B. , Fbrgie, J. W. , &nd Stowe, A. N. [1967].

Coherent programming in the Lincoln Reckoner. Presented at the ACM

Sy lqosium for Experimental Applied Mathematics, August 26-28, 1967

(Proceedings in Press).

Winiecki, K. , Editor [1966j. Culler on-line system users manual. Harvard

University Coml*!itation Laboratory, Cambridge, Massachusetts,

Wood, L. H. , Reinfelds, J., Seitz, R. N. , and Clem, P. L., Jr. [196G]. The

AMTRAN system. DATAMATI@N (October), 22-27.

Yershov, A. P. [1965]. One view of man-machine interaction, Communications

of the ACM, Vol. 12, No. 3 (July), 315-325.

:
. .

_f

