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Summary 

A “structural description” for two-dimensional 
black and white patterns is defined as the set of contour 
lines for an appropriate function which fits the binary 
pattern. These contour lines are mutually non- 
intersecting closed polygonal curves with edges in only 
eight different directions and they represent the bound- 
aries between connected black and white areas of the 
pattern. Rigorous procedures are described to trans- 
form a “matrix pattern” into a “structural description” 
and vice versa. Advantages of this method for describ- 
ing patterns previous to pattern recognition are dis- 
cussed at some length. 

Introduction 

This paper presents a method for obtaining a “strut 
tural description” of any two-dimensional picture whose 
elements are a finite set of points in the plane each hav- 
ing value zero (white) or one (black) and such that the 
points are arranged in the form of a square lattice. 
Figure 1 shows one such picture. The “structural 
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*Work supporlctl by I~J. S. Atomic Energy Commission. 
(Int’l Joint Conf. on Artificial Intelligence, Washington 
D.C., May 7-9, 1969.) 

description” WC employ consists of a set of simple polyg- 

onal closed curves whose vertices are ordered in either 
clockwise or counter-clockwise sense. These curves 
reprcscnt the continuous boundaries between connected 
sets of black points which wc call “objects” and con- 
nected sets of white points which we call “holes. ” Fig. 
2 depicts the structural description of the pattern in 

FIG. 2 

Fig. 1. Our structure also includes information indi- 
cating which curves are inside each other as shown 
schematically by dotted lines in Fig. ‘2. The points of a 
curve are ordered so that the curve is traced keeping 
black points- to the right and white to the left. As a 
result, curves which define the outside boundary of 
black areas (objects) proceed clockwise and those for 
white areas (holes) proceed counter-clockwise. It 
should bc noticed that the curves do not go through the 
outermost picture points of an area but rather go be- 
tween t.hcse outermost points and the adjacent points of 
opposite color. 

Our scleclion of this particular lormnt lo describe 
the ini’or@ion content of a black/white pattern was 
motivni.cd by n bclicf that the scqucntial trace of the 
bound:lry of ,711 ol~jcct cont:tins the niost. useful data Cor 
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rccognixing 0l)jccls onr from nnothor it1 n grc::lt 111:1ny nppli- 
cations. Expcrimcnlnl cvitlcncc from the psychology of hu- 
man visual pcrccption and the ncurol)hysiology ol animal 
visualpcrccption support this bclicf to an nmn4ing cxtcnt. 

For a more detailed description of this “structural 
description” and an extended discussion of its uses, the 
rcndcr is referred to Znhn. ’ 

Structural Description as Contour 

The closed curves of the “structural description” 
are, in fact, the contour lines at a height of l/2 for a 
continuous function F(x, y) defined over the square area 
of the picture and such that F takes value 1 where the 
picture has a black point and 0 where it has a white 
point. The precise construction of F is as follows: 

Consider the subdivision of the picture area into 
smaller squares defined by the square matrix of picture 
points by drawing horizontal and vertical lines through 
the points of the picture. It should be clear that a tri- 
angulation* of the picture area can now be effected by 
separately triangulating each smaller square, as shown 
in Fig. 3.. We shall describe rules for determining which 
diagonal will be added to each square to complete the 
triangulation. 

MAT& 
PATTERN 

0 Ptj = I (black) 

0 Pij = 0 (white1 

/ Forced Diagonals 

,“Don’t Care Diagonals 

TRIANGULATION RULES 

(0) (b) CC) (d) (e) (f) 

CONTOUR OF 
ABOVE PATTERN 

FIG. 3 

In deciding how to triangulate the square mesh we 
follow two simple rules. If there is a choice of whether 

*Subdivision of plant arca into disjoint trinnglcs. 

to connc~cl two bl:I(~Ic INI~III~ or Iwo wllilc ijoints, c:hoOsC 
the I)laclt :tnd try to h;tvc :LS Ccw curvalurcpoints as 
possible. The tri:lnguI;~t.ion rufc Cmbodicd in (cl) Ol 

Fig. 3 assures t.hat black points have prcccdcncc, while 
rules (b) and (c) prcvcnt a straight cdgc at 45O from 
being cncodcd :LS a snw-tooth contour lint. The reader 
may verify thcsc statements by choosing the other ding- 
onal and then constructing the contour. The actual con- 
tour for the top p:Uern in Fig. 3 is prcscnted at the 
bottom of Fig. 3 and hatch marks have been appended to 
show which side of a contour line is the high or black 
side. 

There are only six csscntially different combina- 
tions of values possible for the corners of a square. 
These are shown in Fig. 3 along with the proper diag- 
on al. Where no diagonal is shown it means that either 
one may be chosen. 

Now that the picture area has been triangulated, we 
define our function F separately for each triangle. 
Supposing some triangle to have vertices A, B, and C, 
weletPA, P 

. 8’ 
PC denote the picture values at points 

A, B, C whlc are indeed points of the “matrix picture. ” 
There is a unique linear function F*(x, y) = ax + by + c 
which takes on values PA, PB, P at points A, B, C. 
Each*triangle of the triangulation 2 etermine%uniquely 
an FABC and F is defined so that F(x, y) = FABC(x, y) 
whenever (x, y) is inside or on triangle ABC. 

The proofs that F is well-defined and continuous are 
easily derived from the exemplary behavior of linear 
functions. In fact, the only way discontinuity could pos- 
sibly occur is by way of F being double defined for some 
point on a common edge AB between two triangles Al 
and A2. The reason that this cannot occur is because 
Fi and Fs (the linear fullctions for Al and A2) when 
restricted to the edge AB are both found to vary linearly 
between A and B and to have the same values at these 
two points; hence F* - 
defined. 

1 - Fz on the edge a and F is well- 

Having defined F over the picture area as a contin- 
uous piecewise-linear approximation to the original pic- 
ture, we can simply repcat that the “structural descrip- 
tion” of the picture is the set of contour lines of F drawn 
at a height of l/2. This approach certainly corresponds 
well with any intuitive notion of edges in a binary picture. 

Curvaturepoints 

We use the term “curvat.urepoints” to describe the 
points where the contour lines (called “edges”) change 
direction. For example, in the bottom of Fig. 3 the 
numbered points 1 - 10 are the curvaturepoints whereas 
E and F are points on the contour but not at bends. This 
is because th@ two sections of contour line which meet 
at E are both in the same direction. t Referring to Fig. 
4, we see that at E there is an incoming edge and an 
outgoing edge both in direction 5, whereas at point 8 
there is an incoming edge in direction 6 and an outgoing 
edge in direction 5. 

It turns out that curvnturcpoints can only occur at 
points midway bct\vccn two picture points. Further- 
more, the question of whctllcr or not a given point is a 

tcontours arc dircctcd so thut Lhc hatch mark is on the 
right. 
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curvaturepoint can be determined by referring to the 
values of just 6 picture goints arranged in a (2 x 3) or 
(3 X 2) array. Figure 4 depicts how curvaturepoint 4 of 
Fig. 3 is determined by the (2 x 3) window shown. If 
Pij denotes the value of picture point (i, j) then 
(P 33 = 0, p 

. . 

incoming e 
z3 7 1 and P.34 = 1) implies that there is an 

ge m direction 3; furthermore (P33 = 0, 
p 32 = 1) implies an outgoing edge m direc- 

As a result, we record that the fourth curva- 
turepoint is at i = 2.5, j = 3 with EDGEIN = 3 and 
EDGEOUT = 5. 

If Dl - D6 denote the picture point values as shown 
in Fig. 2, then the following hold for the point midway 
between D2 and D5: 

First of all, the point is an edgepoint if and only if 
D2 and D5 are different in value. If not, it is useless to 
proceed further with this point. The values EDGEIN 
and EDGEOUT are determined by the following logic 
formulas, which are easily implemented by digital hard- 
ware: 

D5=1, Dl=D2=D4=0-EDGEIN=l 

D2=D6=1, DS=O - EDGEIN = 3 

D2=D3=1, D5=D6=0-EDGEIN= 

D2=1, D3=D5=D6=0-EDGEIN= 

Dl=D5=1, D2=0 - EDGEIN = 7 

D4=D5=1, Dl=D2=0-EDGEIN=O 

D3 = D5 -2 1, L)2 = 0 -EDGEOUT = 1 

D2 = 1, Dl = D4 = DS = 0 -EDGEOUT = 3 

Dl=DZ=l, D4=D5=0-EDGEOUT= 

D2=D4=1, D5-0 -EDGEOUT = 5 

D5=1, D2=D3=D6=O-EDGEOUT=7 

D5=D6=1, D2-D3=0-EDGEOUT=O 

The determination of which edgepoints are curva- 
turepoints is lhen simply a matter of whether or not 
EDGEIN # EDGEOUT. It should be fairly clear from 
the simplicity of the above conditions that the digital 
logic involved is easily implemented. 

Linkage of Curvaturepoints 

So far we have described how an input “matrix pic- 
ture” can be transformed into a set of “curvaturepoints” 
of its approximate contour lines. It is still not entirely 
obvious that these separate and sometimes widely scat- 
tered points can be linked together in the proper way to 
reconstruct the polygonal curves of its “structural de- 
scription.” The reader may have noticed that in an 
earlier section we spoke of the “structural description” 
as consisting of closed curves, whereas it is perfectly 
possible for contourlines to end at the edge of a map 
or in our case, a picture. To eliminate any chance of 
confusion, we shall assume that the picture points on the 
boundary of an input picture are all zero. This will 
force all contours to be closed curves but will not really 
hamper the validity of our approach. The only reason 
we make this assumption is to simplify the discussion 
below; in practice there is no need to border a picture 
with zeros this way, but the linkage of curvaturepoints 
is somewhat more complicated otherwise. 

We shall assume that all the curvaturepoints of a 
given input picture are delivered to a general purpose 
digital computer in the order in which they are encoun- 
tered during a normal left-to-right and top-to-bottom 
raster scan. The rows will be designated by increasing 
values of Y and the column positions within each row by 
increasing values of X. Also, the incoming and out- 
going edge directions EDGEIN and EDGEOUT are con- 
sidered an integral part of any curvaturepoint. For 
example, the simple pattern of Fig. 3 would be repre- 
sented as: 

POINT x x EDGEIN EDGEOUT 

(1) 1.5 3.0 1 0 

(2) 1.5 4.0 0 7 

(3) 2.0 4.5 7 6 

(4) _ 2.5 3.0 3 5 

(5) 3.0 1.5 3 1 

(6) 3.0 2.5 5 7 

(7) 3.0 3.5 1 3 

(8) 3.0 4.5 6 5 

(0) 3.5 3.0 7 1 

(10) 4.5 3.0 5 3 
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A simple iilspcction of the nbovc Lablc sho\vu the 
following intcI.csi.ing facts about the two POINTS 1 and 
5. First of all, EDGEIN [ 11 = EDGEOUT [ 51 = 1 and 
X[l] +Y[l] =X[5] +Y[5] =4.5;furthcrmore, there 
is no curvaturepoint P bctwecn* these two which satis- 
fies the condition X[ I’] + Y[ P] = 4.5. It should be 
clear that whenever two points P and Q (P < Q) have the 
same value of X + Y, then they lie on the same line 
drawn in direction 1 - 5 (see Fig. 4). If, in addition, 
there is no intermediate curvaturepoint and either 
EDGEIN [ P] = EDGEOUT [Q] = 1 or EDGEOUT [P] = 
EDGEIN [Q] = 5, then the two points are adjacent 
curvaturepoints of the same contour curve and hence 
should be linked together. There are similnr conditions 
for the linknge of points with the same (X-Y), X or Y 
values 0 Each case is associated with a pair of direc- 
tions (respectively 3 - 7, 2 - 6 or 0 - 4) and the precise 
conditions are geometrically self-evident. These con- 
ditions are all that are needed to perform the linkage 
of the curvaturepoints into simple closed polygonal 
curves. The implementation of this procedure uses 
very strongly the fact that the points are ordered by in- 
creasing X within increasing Y since there is a great 
deal of geometric information implicit in this sorting 
order. 

The data structure required to implement the link- 
age of curvaturepoints is essentially a cyclic list; this 
requirement reflects the natural structure of a closed 
polygonal curve as well as the fact that at various times 
during linkage we are required to join together two al- 
ready created partial polygonal curves. This joining 
(concantenation) would be quite difficult if simple arrays 
were used. 

Smoothing Curves 

In Fig. 5, we have redrawn the outermost curve of 
the “structural description” in Fig. 2. Some of the 
curvaturepoints are not solid dots and these are to be 
deleted from the description. The criteria which con- 
trol which points will remain are explained below, along 
with an intuitive justification for performing this smooth- 
ing operation. 

An “inflection” will be defined as two adjacent cur- 
vaturepoints, one with a bend? of - 1, the other + 1, and 
such that the distance between the two points is 1 or fi. 
Referring to Fig. 5, the pair of points (3,4) are at dis- 
tance 1 from each other and have bends respectively + 1 
and - 1 as shown in the insert. As a result, the incom- 
ing edge at 3 and the outgoing edge at 4 are in the same 
direction, namely 7. Similarly the pair (G, 8) are at 
distance & with bends - 1 and + 1; hence, we have an- 
other “inflection. ” 

When points 3, 4, 6 and 8 have been deleted, the 
sequence of curvaturepoints becomes 1, 5, 9, . . . and 
point 5 retains a bend value of + 1. Since we allow point 
deletions to occur only in pairs with bends that cancel 
(+ 1 and - l), it is clear that the total bend around a 

*meaning a point with a number bctwecn 1 and 5. 

tThc bend at any curvaturcpoint measures the change in 
direction of the edge at that point in units of 45O. Bends 
toward the right nrc negative and toward. the left, pos- 
itive. 

0 POINTS ELIMINATED (26) 
PERCENT RETAINED= 60% 

669.413 

FIG. 5 

curve is not disturbed at all. The bend at point 5 in 
Fig. 6 is not exactly + 1 as can readily be seen, but as 
an approximation it does not really go far wrong. Fur- 
thermore, if more precision is required, it can be cal- 
culated from the X and Y coordinate values of the 3 
points 1, 5 and 9. 

The main advantages of performing this smoothing 
of inflections are the reduction in the amount of data to 
be processed in subsequent discrimination algorithms 
and the elimination of some sequences of edge bends 
which we may call “spurious wiggles” since the cor- 
responding edge in a typical original continuous pattern 
was probably straight. Figure 5 shows a “spurious 
wiggle” of 4 pairs of points. In the example depicted 
the reduction in data is substantial, amounting to 40%, 
although the picture pattern contains a great deal of 
real detail. - 

As a final point we want to make it perfectly clear 
that this smoothing procedure is not an absolutely nec- 
essary part of the overall method. Depending on the 
particular application, it may or may not be appropri- 
ate. We present it here in place of several other 
smoothing algorithms which we have experimented with 
because it has been found to accomplish a substantial 
reduction in data without eliminating many major de- 
tails and while requiring only simple decision criteria. 

-4- 
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SMOOTHED EDGE CONTOUR 

FIG. 7 
1 FIG. 6 

Bend Groups 

When the sequence of curvaturepoints describing a 
single closed contour has been constructed and the “in- 
flections” have been deleted as described in the previous 
section, then a very compact but extremely character- 
izing signature can be computed by merging curvature- 
points according to the following rules: 

Transform the closed curve into a sequence of in- 
tegers representing amounts of bend by adding together 
the values of bend for two adjacent curvaturepoints of 
like sign whenever their distance apart is less than some 
threshold which is appropriate to a given application. 

Figure 7 depicts how the grouping of like points 
would be made for our sample curve of the last section, 
assuming a threshold distance of approximately 4.0. 
The compact signature for this curve is (-4, +l, -4, +4, 
-1, -3, +5, -5, i-1, -2, +2, -4, +2, +1, -2, i-2, -3, +2). 

Once again we must emphasize that special appli- 
cations will generally suggest variations in the merging 
of bends in addition to guiding the determination of the 
distance threshold. Some applications may, of course, 
require the retention of more detailed edge length infor- 
mation in which case this simple scheme would not be 
appropriate. 

Recovery Algorithm 

An important property of “structural descriptions” 
is that an algorithm exists which will recover the orig- 
inal digitized binary matrix pattern given only the struc- 
tural description. We shall give a brief outline of such 
an algorithm and discuss the theoretical foundation for 
its validity. 

The famous mathematical theorem known as the 
“Jordan Curve Theorem” states that any simple closed 
curve in the plane divides the remainder of the plane 
into two distinct sets called the “inside” and “outside, ‘I 
such that any two points in the same set can always be 
connected with a continuous curve lying entirely in that 
same set; any continuous plane curve joining a point 
“inside” the curve to one “outside” must have at least 
one point in common with the closed curve. The proof 
of this theorem is much simpler for olygons than for 
general curves; Courant and Robbins 5 give a proof for 
the polygonaL case which depends on the fact that if a 
point “outside” a closed curve r is connected by a 
straight line L to another point P, then P is also “out- 
side” r if and only if L intersects r an even number 
of times. If L intersects r an odd number of times, 
then P is “inside” r . 

The algorithm we propose is based on the latter 
fact, which is also proved in Ref. 2. Referring to 
Fig. 9, WC shall show how it is possible to determine 
that the points in ranges /3 and F (for X = X0) are inside 



r while ranges 01, y and L :IL‘C ~,ul:;itlc. ‘rhc proper 
assignment of values then dcl~ntls only on the status of 
r (“object” or “hole”). 

The determination that ranges p and 6 are inside r 
proceeds as follows: 

Curve r is traced from its top all the way around 
and back to the top again. Whenever the curve r 
crosses the vertical line X = X0, WC record the fact by 
making a mark in all points below the crossing. For 
example, r crosses first at CI and all points in ranges, 
p, y , 6 and E are marked + as shown in the table. 
This means that each of these marked points can be con- 
nected by a straight line to the top of the picture area 
only by a line crossing r at e 

t 
. The table is filled in 

for e 8’ e3’ and e4 in an entire y similar manner, After 
e4, t ere are no more crossings and the curve returns 
to the starting point. We then determine which points 
have received an odd number of marks and find that all 
points of ranges p and 6 are inside r. 

When this procedure is carried out for all vertical 
lines X0, then the “inside” points for r will have been 
determined. In any actual implementation, we assume 
that all X0’s would be handled simultaneously while r 
was being traced only once. 

If the same process is repeated for all curves r in 
a “structural description” then the result is just as valid 
as for one curve because curve crossings always repre- 
sent a color change. 

No claim is made for the efficiency of this procedure; 
we merely wanted to show with some degree of mathe- 
matical rigor that the “structural description” contains 
all the information of the original digitized pattern and it 
z be mechanically recovered if necessary. 

Advantages of the Curvaturepoint Method 

The generality of the curvaturepoint method is one 
of its most important properties. The method applies to 
any “black and white” pattern whose significant content 
consists of connected sets of similar points. Hence, it 
also applies to input pictures which can be made to com- 
ply with this condition by suitable preprocessing; fairly 
simple local transformations on binary pictures have 
been found to be very successful at regularizing pictures 
in this way. Our method can be used in some cases to 
extract contrast information from grey-scale* pictures 
by converting the picture to binary several times using 
different thresholds. This idea is more fully elaborated 
in Za.hn. I This applicability to multilevel pictures 
should come as no surprise when it is remembered that 
the method is simply a contouring of a two-dimensional 
distribution of numerical values. 

Simplicity and mathematical rigor are properties of 
the method which we feel have been largely overlooked in 
most’ “edge-detection” schemes. The two properties are 
closely related, for the mathematical rigor with which 
“curvaturepoint extraction” and “linkage” are performed 
is a direct consequence of the simple and straightforward 
definition of the “structural description.” Being contour 

?f%9ure values range over an ordered finite set such as 
(0, 1, 2, 3). 

lines 0P 3. silnplc I’nnction, the ‘lstructural description” 
is constrained to consist of non-intersecting closed 
polygonal curves whose edges are dircctcd in only eight 
different ways and whose edge bends or “curvaturepoints” 
are also tightly constrained. It is precisely because of 
such constraints that the “linkage” of widely spaced 
“curvaturepoints” can bc accomplished in a completely 
assured way. Not only is the transformation from bin- 
ary pattern to structural description rigorous and 
uniquely defined; the reverse transformation (see Re- 
covery Algorithm) exists as well, proving a unique one- 
to-one correspondence between a binary pattern and its 
structural description and also showing that the struc- 
tural description contains total information from the 
binary pattern. 

One of the most serious obstacles to the further 
development of digital picture processing is the volume 
of data implied by the two-dimensionality of pictures. 
When the resolution is doubled the data volume is quad- 
rupled; a picture 1,000 x 1,000 has one million data 
points, an amount which is still prohibitively high for 
even the largest computers. The “structural descrip- 
tion” on the other hand contains one-dimensional infor- 
mation (contour lines) and therefore the data volume 
increases only linearly with resolution. This means 
that if “curvaturepoint extraction” can be done in special 
digital hardware then the storage requirement for imple- 
menting the method on a general purpose computer will 
be greatly reduced and more richly detailed patterns can 
be handled. The “linkage” would be accomplished by 
programming. It turns out very happily that “curvature- 
point extraction” is defined by extremely simple Boolean 
logic (see Curvaturepoints) and its digital hardware 
implementation could be accomplished with the addition 
of two long shift registers. We consider this efficient 
implementation to be an extremely vital aspect of the 
method. 

The intuitive character of our method should prove 
of considerable benefit in constructing recognition al- 
gorithms. In a recent article Uhr3 claims that edges, 
angles and the interrelations between lengths and slopes 
are the important and meaningful properties for human 
pattern perception and recognition. If this is true then 
it is reasonable to expect that algorithms based on 
“structural descriptions” will be highly intuitive in na- 
ture and hence less mysterious than those based on in- 
formation other than edges. In support of Uhr’s claim 
we shall cite evidence from psychology and neurophysi- 
ology which tends to indicate the predominance of edge 
information in animal visual perception. Attneavea in 
experiments on human subjects found that the number of 
bends in polygonal shaped objects accounted for 80% of 
the difference between objects when rated by subjects 
according to judged complexity. This clearly suggests 
importance of curvaturepoints. Other researchers have 
found that an object’s visibility is related to the length 
of its boundary, strongly suggesting that for purposes of 
perception the edge is the predominant information con- 
tent. 

The research of Lettvin et al 5 on the optic nerve --* 
cells in the frog indicates that signals reaching the 
frog’s brain from its eyes are highly contrast-oriented. 
Hubel and Wiese16 determined that nerve cells in the 
cat’s brain are specific to the existence of edges in the 
visual field of given slope. This neurophysiological 
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evidence if extrapolated to the hu~nan cast lends further 
support to the claim that edge information is the raw 
data for visual perception mechanisms in man. 

Although the method is clearly directed toward rec- 
ognition via edge-bend-sequence, nevertheless familiar 
quantitative properties such as perimeter, area, mo- 
ments, height and width are easily calculated. In addi- 
tion, we c& define and compute reasonably intuitive 
quantitative measures of oblongness, compactness, 
wigglyness and total absolute curvature. 

For some pattern recognition applications (character 
recognition esDeciallv) it is useful to have a method 

I ,  

whit; is position and size invariant. “Structural de- 
scriptions” contain position and size information but in 
such a way that it is quite easily disregarded. Rotation 
invariance is also easy to achieve by simply considering 
the sequence of curvaturepoints without paying attention 
to the initial edge direction. The information is always 
there when needed, however, so that recognition methods 
sensitive to position, size and rotation are not hampered 
in the least. 

A pattern description method is greatly enhanced if 
it is compatible with some fairly elegant language for 
pictures. This is particularly true if the language has 
a formal phrase structure grammar which allows pat- 
tern recognition to be accomplished by the formal par- 
sing procedures which have been developed for such 
grammars. The survey paper of Miller and Shawl3 
discusses this aspect of picture processing quite com- 
prehensively. Ledley7 for example, has shown that 
formal parsing techniques can be used to recognize dif- 
ferent chromosome shapes by transforming their edge 
sequences into a string of primitives and then parsing 
this string. For examp’le, in Fig. 8 0 means no bend, 
E means sharp 180° convexity, Y means sharp 1800 con- 
cavity, etc. These are the primitives of the language. 
The formal grammar would define “arm” as OEO, 
“double arm” as arm Y arm, etc. 

An essentially one-dimensional data format seems 
to be advantageous for linguistic processing of pictures 
because phrase-structure grammars describe sets of 
“strings. ” When the data is not in a “string” format 
there are some subtleties involved in making the cor- 
respondence between the data and linguistic formalism. 
The recent work of Shaw8 shows that automatic parsing 
recognizers can be quickly implemented when the struc- 
ture of the picture can be represented by a suitable one- 
dimensional grammar. Syntax directed parsing methods 
are employed so that new recognition tasks require only 
a new syntax table and specially written primitive rec- 
ognizers. 

In addition to formal language parsing methods, our 
“structural description” can be used very readily in a 
decision tree approach to recognition. In fact, the cyclic 
list data format of the “structural description” lends it- 
self’naturally to sequential decisions made as the list is 
traversed. As with all pattern description schemes, it 
is possible to reduce to a vector of quantifiable proper- 
ties and then use one of the many procedures based on 
the property vector representation of a pattern. The 
algorithms of Freeman98 IO,11 for “curve segment 
matching” arc applicable with almost no chnngc since 
“structural descriptions” are essentially “Freeman 

encodings” of the curves dcl’ining boundaries in a binary 
picture. For cxsmple, the Freeman chain-encoding of 
the closed curves of Fig. 3 would be (00766555333111) 
and (5713). Each digit represents a unit vector as 
shown in Fig. 4 and the curve is traced sequentially. 
Our “structural descriptions” vary from this format 
only to the extent of merging like-direction contiguous 
unit vectors into a single vector with length. The 
“structural description” for the outer curve of Fig. 3 is 
essentially (0,2; ‘7,1; 6,2; 5,3; 3,3; 1,3). These curve 
matching algorithms are capable12 of putting together 
an “apictorial jigsaw puzzle” which attests to the sub- 
tlety of their shape discrimination. 
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