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ABSTRACT 

The problem of translating symmetry properties of th.e helicity 

amplitudes for two-body scattering into concise predictions for polari- 

zation experiments is discussed extensively. Particular attention is 

given to the asymptotic symmetries at high energies, which are char- 

acteristic for a Regge pole exchange model and which are associated 

with J-parity and G-parity exchange in a crossed channel. The idea is 

developed that the symmetry operator, as a matrix in the helicity space, 

“map&’ one polarization measurement onto a superposition of other 

polarization measurements. Using this fact a systematic procedure is 

presented for separating different parts of the amplitudes which are 

even or odd under a symmetry. The procedure applies for any spins 

of the particles. To make the paper more complete and self-consistent 

a discussion of the density matrix formal.ism with particular emphasis 

on the choice of coordinate systems and phase conventions is included. 
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1. INTRODUCTION 

Recently the experimental techniques for performing polarization mcasurc- 

mcnts have been greatly improved. In many laboratories equipment for polarizing 

targets or photon beams and for measuring the recoil polarization of nuclcons is 

now or will soon become available. Thus it can be expected that in the very near 

future a deeper look into the details of strong dynamics at high energies should 

become ljossible. 

Given this progress in experimental technique, questions naturally arise as 

to what inf’ormation can be obtained”from a particular type of polarization meas- 

urement or what is the relevance of a possible errperiment to current high energy 

dynamical models. Often theoreticians, when asked questions by their esperi- 

mentalist friends, find it hard to give a concise answer. 

In fact there have been relatively few efforts made to answer these questions, 

and most attempts made so far only consider special situations. Thus I?. Cooper 

emphasizes in a recent series of papers 1 the usefulness of linearly polarized 

photons in photoproduction experiments as a “parity filter” for the exchauge of 

particles in the t-channel. These results are a generalization of a statelllent by 

P. Stichcl, 2 who first observed that in single photoproduction linearly polarized 

y’s can be used at high energies to separate natural from unnatural parity exchange 

in the t-channel. Similarly, R. L. Thews3 analyzed the information obtainable 

from measurements with polarized photons at high energies. For more general 

cases J. P. Adcr et al. 4 also considered bow contributions to the diffcrcntial -- 

cross section from the natural and unnatural parity parts-of the t-channc:l 

anlplitutlcs can 1.~ scp::ratcd. Three years cnrli.er E. Leader and li. C. S1anskyS 

discussed how mcasurci>Icnts of spin dependent paramctcrs in N-N scntl~ring 

provide critical tests for lhc Rcgge pole theory. 
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The main difficulty in a general discussion of high energy polarization mcas- 

urements stems from the fact that at high energies no simple systematic pro- 

cedure is known for stating phenomenological properties of dynamics in a model- 

independent way. At low energies such a tool is given by the partial wave expau- 

sion in the direct channel, but at high energies this technique is no longer useful. 6 

Thus at present a discussion of high energy experiments has to be based on our 

experience with some of the more successful high energy models like the Regge- 

pole assumption. In this way model-dependent assumptions unfortunately enter 

into the discussion from the very beginning. The discussion presented here, like 

those cited above, assumes that the dynamics at high energies are easily repre- 

sented by amplitudes associated with sets of quantum numbers in the crossed t- 

or u-channel. Peripheral models with absorption correction or the Regge-pole 

assumption are the best known realization: of this idea. 

In these models the leading order terms of certain amplitudes are characterized 

by the quantum numbers of the crossed channels, such as the J-parity. Thus under 

dynamical assumptions of this sort one can cxllect, at least in leading order, strict 

selection rules for polarization measurements of any kind. It is our feeling that 

this fact and its practical consequences descrvc a more general treatment. We, 

therefore, consider the two theorems presented in Section 4 to be the principal 

result of this work. These theorems allow a general classification of experiments 

at high energies with respect to J-parity and G-parity exchange in the crossed 

channel without any restrictions on the spins of the particles. We also want to 

emphasize that the general properties of polarization experiments cCan be derived 

easily by using simple algebraic properties of the S-matrix (in leading order) and 

do not ncetl the detailed calculations prcsc:ntcd in some previous works. Because 

of its generality, it sh ,11.d be possible 1.~ cstcnd our method to include any new 

-3- 



criteria which may be proposed to dynamically distinguish different parts of the 

amplitudes at high energies. 

A large part of this paper is concerned with the general theoretical treatment 

of polarization measurements, since the appropriate methods are widely scatkred 

in the literature. Thus we present in Section 3, the density matrix formalism 

including a discussion of parity restrictions and the consequences of time rever- 

sal invariance. In Section 3. C we particularly draw attention to the fact t.hat 

there is a simple redundancy whereby different experimental set-ups obtain the 

same information. Thus one can obtain the differential cross section in a very 

complicated way by measuring the polarization in the final state for a polarized 

target and beam. But this redundancy also provides in other cases a practical 

advantage * Section 4, the main part of this paper, contains the two theorems 

which allow one to classify all polarization measurements according to the dynam- 

ical principles introduced in Section 2. Finally, Section 5, which is an Appendix, 

presents details of the helicity formalism with particular em.phasis on phase con- 

ventions, the observation of which becomes vit.al wh.en one is dealing with polar- 

ization effects. Of course, for direct experimental applications, it is necessary 

to have more explicit results. Thus, since this work was largely motivated by the 

need for interpreting polarization measurements which can be made at electron 

machines, a paper is being prepared in which the polarization features of photo- 

production will be discussed in detail. 

Notations and Conventions --- 

We end this introduction wit.11 an explanation of our k&c notations. In any 

change1 

A-I-B-C+-D (1.1) 
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of particles K with spin S K,helicity XI<, parity Q, mass mK and momentum cK, 

we denote the helicity amplitudes of Jacob and Wick’ (here‘after referred to as 

J.W.), in the c.m. system of (1.1) by 

f 
ii&; AAAB (W, 0, $=O)=f, * (1.2) 

f’ i 

where we use the abbreviation 

(10 3) 

In (1.2) W is the total energy, 0 and $ the scattering angles of the particle C. In 

this paper + is in general fixed: c$ = 0, so that the reaction (1.1) takes place 

always in the (1,3j plane. In the definition of the J. W. two-body helicity states, 

the particle with label 2 has an additional helicity dependent phase factor (see 

(5.13)). To fix this phase factor we always assume that particles A and C have 

the lable 1 whereas B and D have the label 2. It is occasionally convenient to 

note that the added phase for particle “2” may be reproduced by a rotation of the 

single particle state through 7~ about the particle momentum. We also introduce 

A = AA - AB, p=A -A C D 

and the half-angle factor 

tRfA (0) = (J5coS O/2)-“+?’ (Ji sin 0/2)-lh+ 
i 

We shall denote 

(1.4) 

(1.5) 

(1.6) 

Finally we make the convention that the lclrcr v in expressions I.&e (-1) J-v be - 

comes l/2 if J is an half integer; othcrwisc v is zero, so that (-1) 
J-v is always 

a real number. 
-5- 



I 
. 

Throughout this paper we shall use the following conventions to define an 

orthogonal coordinate system in the center-of-mass (c.m.) system or the rest 

system of a particle K: / 

1. c. m. system: The three-axis (polar axis) is parallel to qA, the two- 

axis is parallel to (CA X cc), the one-axis completes a right-handed coordinate 

system. 

2. rest rystem of particle K: As an intermediate step we first assign to 

each particle in the c. m. system three orthogonal “helicity axes” (Fig. 1). The 

choice of these axes is naturally determined by the J.W. prescription for con- 

structing two-body helicity states (with $I = 0) from states at rest. The three- 

helicity axes will be pointing in the direction in which the particle moves in the 

c.m. system, i.e., is parallel to (F ) K c.m.’ The two-helicity axis for particle 

“1” shall be identical to the two-axis of the c.m. system, while for particle “2” 

it shall be the reflection of the c. m. two-axis. This inversion of the two-axis for 

particle “2” expresses our comment above concerning the added phases for particle 

112" . The one-helicity axis is then chosen sl:ch that it completes a right-handed 

frame. Finally, we obtain corresponding axes in the rest frame of the particle 

K by applying a boost in the direction ?& 3~ , which brings this particle at rest. . . 

We shall refer to these axes as the “helicity frame” following common usage. 

Finally, we define in the rest system of particle K a moving frame, the cross- 

ing frame, usually also called Gottfried-Jackson frame, 8 which we shall need later 

on in crossing from the t- or u-ch<annel to the s-channel. Let RF(XK) represent 

a rotation of the rest frame axes i I A K in the rest frame of particle K through the 

angle X 
K 

about the i-axis. We denote the helicity frame axes by i HK}. Then for 

crossing from the t-channel the crossing frame axes are 

{f} = R; I-X;) iHKi (l-7) 

Ic; = 3, B,C,D. 
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while for crossing from the u-channel we define 

= RtD’ K(n) R;(-Xu”) RED’ K(?r) iHKt 

where 

KlK2, K 
RF(a) if K = KI, K2 

R3 (r) = 
I if K # KI, K2 

(14 

(l-9) 

With our choice of the particle labels in Section 4, extra helicity dependent phase 

factors appear only in the crossing relations from the u-channel. This has as 

consequc.. ::e the extra rotations R3 around the 3-axis in the definition (1.8) of the 
K axes 

i”) u ’ The crossing angles X, are given by Trueman and Wick’ and the 

K angles Xu are the corresponding angles after interchanging particles C and D. 

These angles are discussed in detail in Section 4A below. 
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2. BASIC PIIENOMENOLOGICAL CONSIDERATIONS 

Most phenomenological models in high energy physics describe a given reac- 

tion very simply in terms of exchanged particles or resonances like in the isobar 

or peripheral model. In some cases like t-he Regge-polc model the exchanged 

system is of a more complicated structure. The basis for these concepts is an 

identification of the dominant parts of the amplitudes with sets of quantum numbers 

belonging either to the reaction consiclered or a cross reaction. Therefore a 

perfection of our ability to separate parts of the amplitudes, which are charac- 

terized by sets of quantum numbers, would be the basis for an improvement of 

present day models. 

To isolate those parts of the amplitudes, to which only certain internal quantum 

numbers like isospin can be ascribed, one usually has to combine the aml!litudes of 

reactions with particles in different charge states. To isolate those parts, to which 

only certain total angular momenta, parities or signatures can contribute, the 

experiment itself has to be refined by exploiting the polarization effects. 

The possibility to relate different reactions is a consequence of the substitu- 

tion law, which states e.g. , in photoproduction that the amplitudes for the reaction 

N1 + y-N2 + K, s-channel (2.1) 

are suitably chosen analytic continuations of the amplitudes for the crossed reac- 

tions 

or 

ii+, +N2+R 1’ t-channel _ 

5+ Y - El + 7r, u-channel 

(2.2) 

(2.3) 
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It is therefore tempting to use as in the Regge-pole model the knowledge of the 

dynamics in the crossed t- or u-channel for a phenomenological description of 

the dynamics in the s-channel. 

We arc thus confronted with the question of finding a set of amplitudes, with 

which our phenomenological assumptions can be conveniently expressed. Let us 

first consider the usual parity conserving amplitudes 10,ll for the reaction (1.1) 

(w,z) = t* n (‘) fA A (w, ‘) + a(-l)m-‘L ~&,t-1) 

sC+SD-V 

f i f i 

x t* A v-q Qf-ii tw* 0) 
f i 

z = cos 0 (2.4) 

The quantities F Jo 
Yi 

are the parity conserving partial amplitudes. The relation 

between u and the parity P is given by 

p = a(-l)J-V (2.5) 

The functions .eFp( ) z are polynomials in z with the following symmetry property 
, 

eJ” h,p(-z) = (-1) J-m ecptZ), eJhrp(-Z) = - (-qJwrn e~~ptZ) (2.6) 

Since we do not neec! the precise c!cfinition of the F’s and e’s, we refer to Refs. 

(10) or (11) for further details on these quantities. From (2.4) and (2.6) it 

follows that one can easily separate the parity P = +1 contributions from the 
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P = -1 contributions by forming the linear combinations 

‘n”* (W,z) fu(- l)m-v ‘n”* (W, -z) = c (J+1/2) 
f i f i J 

F;:(W) (l*cr(-1) “-‘) 
i 

+ e;;p(z) FA h ‘z;(W) (lTu(-l,j-‘)] (2.7) 

From the point of view of the Regge-pole model one would even like to go further 

and to separate the amplitudes with different signature in the combination (2.7). 

But in general there exist no kinematic symmetry operation, which could help to 

separate different signature amplitudes. Only asymptotically is such a kinematical 

separation possible. Also the combination (2.7) of amplitudes has the disadvantage 

that it relates amplitudes at different angles and is therefore not very useful. For 

this reason one usually works with the parity conserving amplitudes (2.4)) which 

contain both parities P = &l and which have relatively good analyticity properties. 12 

For cur rather kinematical discussion good analyticity properties are not so relevant 

so that the half-angle factors t(0) introduce unnecessary complications. We re- 

place therefore (2.4) by the definition 

f;f*:w,i) = f nf4’W, 0) + otA,k(-l)m-’ TA 77B(-1) sA+sB-v f 
Af-hi (w, 0) (2.8) 

where 

t*fp-o) 
(-l)v $p = lim 4 

(‘+ “)lW (’ - “)lYl 
(0) = .“Fa 1-z - 

z--t*m AfAi It-z 

(2.9) 
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WC shall refer to the amplitudes f: n as “asymptotic pari.ty conserving amplitudes. ” 
f 1 

In the limit z - A 03 , which occupies most of our interest, they are easily related 

to ‘z n because of the factor 5 
LP 

in the definition (2.8) 
f’ i 

(2.10) 

Using the explicit form (2.9) of 5, ~ one can write (2.8) also: 
, 

‘Tf Al -v (w, ‘) - fApi(W, ‘) + (+(--l) 
SA+AA+S B-Ag 

v* 77,(-l) fAf- q(w, 0) (2*8’) 

This form will be useful later on in Section 4. 

The amplitudes fl h are useful if the reaction proceeds via the exchange of 
f 1 

an entity with definite quantum numbers SR and YR O Under this assumption the 

helicity amplitudes f 
Af++ 

obey the relationship 

sR-v 
f, A(w, ‘) -, (-l) 

sA+ SB-V 

f i 
~A?B t-l) , 

,(-l)m-P f 

in the limit 1 z I- ~0 
11,13 as has been discussed several times. This limit will be 

need.cd if one continues the amplitudes into the region of a crossed channel. The 

limit (2.11) holds also for the eschange of a Regge pole, provided the factor 

sR-v 
(-1) is intcrprctcd as its signature. Now, if Eq. (2.11) is true, then it follows 

from (2. 8) or (2. 8’) that the leading order term in ffl is kinematical.ly suppressed 

sliv 
‘f’i 

for cT = - ?I1 (- 1) . We note that the rcl.ntionship~(2. 11) is a consequence of the 

relation 
s i-s -v 

‘$ ‘,kl) 
A B (2.12) 
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for th.2 partial amplitudes, Fi A which is true if in the partial amplituclcs with 
f’ 1 

angular momentum J -1 S R only one parity vii dominates. Finally one needs also the 

asymptotic relation 

lzl+m : d; p(U) “, $ p(-l)n1-p “i, ,$o) = d d!a,,(u) 
, , , (2.13) . 

to derive (2.11). 

There are situations where a selection rule enforces the vanishing of some 

couplings of an exchanged particle. Then (2. 11) is fulfilled either trivially, if 

fAfAi z 0, or no lon.gcr true, if other effects become important, which are not 

dynamically suppressed. The vanishing of certain couplings as a consequence 

of G-parity conservation appears e. g. , for the nucleon antinucleon system N, 

which we want to study in Section 4. If 1 p,I; J M.hlh2> denotes a NE helicity 

state in the c. m. system with definite angular momentum J and isospin I then 

Glp,I;J MA,&, > = WJ+’ Ip,I;J M,A~~~> 
I- L Y 

Therefore, the state with definite parity 

(2.14) 

sl+s2 
771)72(-l) I ~$1; JM, -Al-h2> 1~91; JM, hlX2>* = [P,I; JM,hlh2> f 

= P,I; JM,hlh2>* I 
P, I; J M,-Al-A2 > (2.15) 

sl+ s2 
711172(-1) - -- +l for N% stat? is an eigcnstate of G with G := (-l)Ji-l (-1) 2 . 

Since the parity P of (2. 1.5) is P = :t (-1,” ono obtains the rclntionship 

(-If P*G=k(-1) 
(+p) (al-h2) 

(2.16) 
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There follow some powerful selection rules from (2.16) for the coupling of the 

NE system to the mesons 14 

1. PG(-lf = -1: only states with P(-l)J = -1 and a1 - ~~ are possible. 

(Examples: '7~, B, 7.) 

2. p G(-lf = -kl: (a) p(-l)J - -1 only Xl # X2 iS possible. (Examples: Al) 

(b) P(-l)J = +1 no restriction on A’s. (Exampk:;: p, 0, 9, 

AZ, f, f’, Pomeranchuk.) 

- 13 - 
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3. DENSITY MATRICES AND OBSERVABLES 

3A. General Results 

In order to account for the many degrees of freedom introduced by the spins 

of the particles of any chnnncl (1. I) an adequate formalism is necessary. Let us 
. 

therefore introduce in any frame spin density matrices p1 and pf for the initial 

and final states with fixed momenta Cl< of the particles. The matrices pf and p’ 

are related by the reaction matrix F: pf = Fp F i t , which relation is known as 

von Neumann’s formula. More explicitly one has in the c. m. system 

f 
‘AfA; (GC) = FAfA; (w’O) &, Ai (qA) “II, .;(w’ ‘) (3.1) 

The matrix elements of F are then the helicity amplitudes of J. W. 

F~f~l(W~O) =fA A tW,e,$=O), 
f’ i 

FL A i f(wse)=fL A tw, 0, Q, = 0) (3.2) 
f’ i 

For more details we refer to the derivation of (3.1) in Section 5B. 

In the initial state we assume both particles are uncorrelated. Then pi is the 

direct product of the density matrices for oath particle A and B 

P1 = PA 63 pB (3.3) 

As usual we shall assume in any frame a decomposition of p LB into a polynomial 

of the spin matrices Si of the rest frame. So we write for a nucleon 

N N N N 
= o. J- p1 01 -f p2 o2 -I- p3 o3 (3.4) 
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15 
whcrc cr. 1 = 2Si are the Pauli matrices. The form of this decomposition is inde- 

pcndcnt of whether the nucleon is particle “1” or “2”. For a spin 1 particle we 

write similarly 

K+ -?I,- I + p 
p ((O = PO Js 

-L s $. 1, 0 
lfi l 2 $z 

s2+p -Ls 
3Lfi 3 

+ p5,g k (nS;-=)+ P23($ts2s3+s3sa) + P2433s~+s~s2~ 

+ Pz2 k (St - q +- P3I k (s3S1+ SIS3) ’ (3.5) 

The convention for the signs and normalizations in (3.4) and (3.5) are in agreement 

with the rules for the general spin case given below. 

It is possible to assume the decomposition (3.4) and (3.5) in any frame always 

with the same real, independent parameters p,, prs, which are the components of 

the tensor polarizations in the rest frame with respect to the axes introduced in 

the Introduction. The spin matrices Si have in this case to be understood as the 

representations of certain operators Oi, the representations of which in the helicity 

basis reduce always to the standard rest frame spin matrices Si, with S3, S1 real 

and S2 imaginary, S3 being diagonal.. 7 In Section 5C we shall justify this remark 

in detail and also write down the operators Oi explicitly. With this interpretation 

of t.he decomposition (3.4) and (3.5) it is also possib1.e to study certain symmetry 

properties of their individual terms. We shall do this in our discussion of the 

restrictions following from parity conscrvati.on. 

For n masslcss l)nrticlc l.jkc the photons we calinot boost to a restframe. I3ut, 

since only t\vo polnriz:~tions are possible, one can assume an expansion of the spin 

mntri s in terms of t.hc Pauli in:Lrices 
15 

pY(Q = 1 
J2 

(1 - Ii cos 2 @o- 1 - P sin 2@tr2 -t c r3) 

(3.6) 
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The expression (3.6) refers to a standard frame, for which one chooses cithcr the 

c. m. system or the laboratory system with the I-‘axis in the reaction plane. The 

constants c and J? denote the linear and circular polarization and a6 is equal to the 

azimuthal angle of the polarization vector measured in a right-handed system with 

the photon momentum as polar axis. For a more detailed discussion we refer to 

Section 5D. 

Since in the following only very general properties of the expansions of the 

type (3.4), (3.5) or (3.6) are used, we adopt a unified convention. In general we 

shall write an expansion of a single particle spin density matrix p K as 

PK = c P,OLy 
CY 

(3.7) 

where p, denotes any of the components of the tensor polarizations and Oa any 

corresponding spin matrix. We shall refer to Oa as the observables and assume 

that the matrices Oa! are hermitian, linear independent and orthogonal 

TrOO =S 
Y Y’ 77’ l 

(3 l 8) 

The task of constructing (2S-t 1)2 such operators to describe a particle of 

(arbitrary) spin S has been discussed by several aui.hors. 16’ I7 Following their 

work we form polynomials TLM in S1, 2, 3 S S which transform under rotations 

as the spherical harmonics Y M requiring according to Racah 18 
L 

pi, TIJM] = TLM f 1 [(L-Fnz) (L&M-t 1)11’2 

and 

[s2’ rrLM] = MTLM 

(3.9) 

(3.10) 

for S, =: (S3 zt. iSI), M = -L, -L-l-l,. . . , L and L I 2s. We should liltc to 

point out that our choice of the Z-axis for “quantizing” M, rather than the 3-a& 
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as in the cast of the particle spins, provides considerable simplifications in the 

work below where rotations around the 2-axis play an important role. We deter- 

mine the overall phase of TLM by requiring that T LL be a positive multiple of 

(S3 + iS,)L and determine the scale by requiring Tr(TLL TLL) = 1. Given TLL 

one can a.pply Eq. (3.9) to calculate the other TLMe One also has T LM = (-l)MTL-,’ 

Finally, for each L we obtain 2L hermitian matrices 

1 

J( 
’ T t 

TLM=; LM+TLM 

and 

2' 1 
TLM =i 

J( 
t 

TLM - TLM 

(3.11) 

(3.12) 

for L 2 M > 0. Together with the 2s t-1 matrices T$ = TLO which are already 

hermitian we then have a suitable set of (ZS+l)’ orthogonal matrices for describing 

a massive particle of spin S. We will not write explicit forms for the TLM here, 

but note that for M 2 0 they can always be cast in the general form 

TLM = [ 
M M 

PL(S2) 9 (S3 + is,, 1 (3.13) + 

where P M (S L 2 ) is a unique real polynomial of degree (L-M) in S and is either even 2 
or odd. For S = l/2, 1 these Ti LM just give the familiar set of observables in (3.4) 

and (3.5). A derivation of Eq. (3.13) is included at the end of Section 5E. 

The decomposition of the two-particle spin matrix (3.3) can be written in the 

manner of (3 + 7) as 

f-J= c P$J;ot? 0; 
a,P u( 

pf we perform again a decomposition For the spi.n density matrix of the final state 

in t.crms of the direct products 0; @O(f 

(3.14) 

pf Lz c 
pC,DoC@c)D 

y,y) 0 Y 6 
(3.15) 
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But this time the cocfficicnts P C,D 
Y, 6 

no longer factorize in general since the spins 

of the particles will be usually correlated. 

From the orthonormality relation (3.8) one obtains 

PCD 
r8 

=TrOC$@Of pf 
C 1 . (3.1G) 

In practice WC are not so much interested in the quantities P CD 
9 

which contain the 

dynamics of the reaction together with the information on the initial beam. To 

separate the dy,!amical information from the input data we write 

pCD = c 
y* orp 

hllCQ AB pA pB 
y&d Q! P 

where we have now 

MCD,AB 
Y&d 

F OA@OB Ft cl! P 1 
hPCD 

= $3 

aP; ap; 

We shall refer to M in the following as the tensor polarization matrix. 

We remark that the following terms of (3.15) 

(3.17) 

(3.18) 

(3. 19) 

define the density mat.ris of particle D alone in its helicity rest frame. If D is 

unstable ,and decays into two particles then the angular distribution of the decay 

particles in the rest frame of D as well as the angular dcpendcncc of their possible 

polarizations can be used to detcrminc the cocfficicnts 1~: in (3.19). The task of 

extracting such coefficients has been discussed in detail by Jackson. 17 WC only 

note hcrc the simple cast of an integer spin particle D decaying into two spinlcss 

particles, which is ncccletl for the p--2r dcxay. If wc use the mutriccs TLA4 of 
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(3.11) and (3.12) for the observables 0: iD then the coefficients PLM for L even are 

simply related to the coefficients of Re YLM ( gd, $3 and Im YLM(Ods $4 occurring 

in the (normalized) angular distribution W D of the decay products: 

WD(Ud, $4 = (-SSD (2j+l) 

fi7wL+l) 
<LOls~s~oo> 

(3.20) 

where <IN SDSDOO > are standard Clebsch-Gordon ;coefficients. 
I 

I 

313. Restrictions Follow-ing From Parity Conservation. 

To discuss the restrictions of parity conservation on the tensor polarization 

matrix M (3.18) we consider reflections Y in the (nl,n3)-plane, which are perpen- 

dicular to the reaction plane: Y = e -is20 J 
oP 

P, where P is the parity operator. 

Under this symmetry operation the reaction matrix F is even: F = YFYt or more 

explicitly 

F 
‘CAD’ ‘AAB 

=Yc YD 
W;: AD’ A;, F h;=h’Dh& 

YAT 
QA 

YBt 
QB 

(3.21) 

In the basis of the helicity states the operator Y become the matrices op 

Y = -iqNo2, + iqNo2 for a nucleon which is particle “l”, “2”, and Y = -al for a 

photon as shown in Section 5A. Therefore under the reflection Y the observables 

Oi of the nucleon transform as (Y N = -iu2) 

YN (OpPq YNt = (of, -of;T,o;, -0;) (3.22) 

This rcflcction property of the pseudovector polarization is evident from a geomet- 

rical point of view. The transformation law of the observables of the photon are 

(Y = - (‘$ 

Yy(oo,ijr) Yyt - (o;, o;, - o;, - 0;) (3.23) 
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To understand the result (3.23) geometrically one has to remember that 0; repre- 

sents the i>ircular polarization, which therefore changes the sign under the reflec- 

tion operation Y, and that 0; and 0; are the two observables of the linear polarization. 

Now since under a reflection the azimuthal angle !$ has to be replaced by (7r - 45)) 

it means that Oy, the expectation value of which is proportional to cos 2 @ , does 

not change sign whereas 05, the expectation value of which is proportional to 

sin 2 c6 (see (3.6))) does change sign. 

The observables TiM introduced above for the general massive spin case have 
-inS 

a simple symmetry under Y = qe 2: 

. 
Y TLMY t * = rM TkM 

with A M = (-l)M, which follows from (3.10). This fact is a consequence of the 

particular choice for the quantization axis7 of the tensors T, nK. 

Also, since Y commutes with S2, the product TLMY, or YtTLM, is again a 

superposition of TL,M, with M’ = M: 

2s 

TLMY = c 
LM 

PL’ TL’M (3.25a) 

In general we shall write 

(3.25b) 

LM In Section 5 we show that the constants pL, are individually either pure real 

LM or pure imaginary and, further, that pL, must vanish if M = 0 and L - L’ -t 2s is 

odd or if L’ = L and M -I- 2s is odd. Thus multiplication by Y maps the set TkM 

essentially into itself with little or no mixing. In particular, we have for the 

nucleon (as particle “1”) (Y = -i?jNoi) 

( o~,...,$)YN = ,,~~iO~,+O~, +iOfdT, -0:) , (3.26) 
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for the photon (Y = - “1) 

( 
+Ol, +0x, -iOi, +iOz 

and for a spin 1 particlc Y = -9-F (O. + 
l/i 

&04) 

+ (00 , . . . ,08) Y = - + (Oo-i Ji04) 

- 02,i05, -iO8, 3 Q-iio, -04) 

(3.27) 

(3.28) 

- i0 3’ iQlt - O7’ - ‘8 l 

We assigned the numbering of the observables according to the order given in (3.4) - 

(3.6) so that e.g., for spin 1: 0 7 =$(si - sf). These mapping relations are 

crucial for showing the equivalence of certain polarization measurements. 

Applying now the parity conservation condition (3.27) in the expression (3.18) 

for the tensornolarization matrix M to replace F and F t one obtains 

CDA B 
= “Y=s=a 9 

MCD, AB 
Y8, CfP (3.29) 

by using the parity transformation properties (3.24). 

From the last line in (3.29) the important result follows that only those tensor 

polarizations M CD, AB 
~~,~13 

are nonvanishing, where the product of the parities r of r 

the observables in the initial and final state is even 

7rATB7rC7rD 
coy& 

=+l (3.30) 

That is the generalization of the familiar statement for the (n - N) final state that 

the polarization of the nucleon has t.o be perpendicular to the reaction plane if 

parity is conserved and if there is no polarization in the initial :,I.ite. In this case 
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one has 

(3.31) 

independent on the nature of the initial particles. nN = + 1 only for O. and O2 

according to (3.22). Many other similar statements can be derived from the 

above general rules (3.30). 

3C. Mapping Relations 

Applying once more the parity conservation condition (3.21) in (3.18) to replace 

this time only F, one obtains 

MCD,AB yG,ap =Tr ~c+O+FG(O~ .O;)Ft]. (3.32) 

One can use now the mapping relations (3.26). . . (3.28) or in general (3.25) to 

obtain the following relationships between different types of experiments 

MCD,AB = 
YiwyP c 

MCD, AB’ 
yt+!‘p’ (3.33) 

where the kdices Q!‘, /3’,~‘, 6’ and the factors PVt real or imaginary) have to be v( 

determined by inspecting the relations (3.26). . . (3-28) or (3.25). As long as the 

particles A, B, C, D represent only pions, nucleons or photons as in pion photopro- 

duction the sum in (3.33) extends always only over one term with our choice of 
K 

observables OK . That for o~;r set of observables, this statement remains true in most 

situations if particles with spin 1 or 3/2 or even high spins are involved follows from the 

discussion after Eq. (3.25). Since the matrices 0, arc hermitian, the tensor-polarization 

matr.ix M (3.18) has also to be hcrmitian. Thcrcfore, the product of the pt s in 

CD,AB (3.33) can only be imaginary, if MatP y6 actually vanishes. Lf this product is 
, 

real = i 1, the resuY (3.33) shows which non-vnnishing elements of i\I are liiiearly 

, 
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depcndcnt . For example, in photoproduction: Since under the mapping (3.27) one 

has 

(3.34) 

a complete set of measurements can be done using either circularly polarized or 

plane polarized 7’s. But if one has done a measurement with an unpolarized nucleon 

target using circularly polarized rt s, one has to use a polarized nuclear target if 

one now uses plane polarized y’s. 

We also note that the relation (3.33) always contain the product of all four 

intrinsic parities in the reaction as a common factor contained in the p’s. Hence 

from measurements of the left and right side in (3.33) the parity of one particle can 

be deduced, if the parity of the other three is known. 

It is also interesting to note what happens to the mapping relations (3.33) if 

parity is not conserved but the definition of the reflection operator Y is still pos- 

sible. Let us assume F contains a parity conserving F+ and non-conserving part 

F so that 

YFYt = Y(F+ + F-) Yt = F, - F- (3.35) 

Then, in contrast to the preceeding discussion, measurements where the product of 

l-i the parities rK of all observables is (-1) also yield non-vanishing results. Let us 

USC for the moment a compact notation where 0 i,f and 7rf’ i denote the product of the 

observables or parities, respectively, in the initial or final state. Then one obtains 

if 7rf . r1 z + 1 

= T1* ’ (Ofyf)F 
1 3 (yitOi) $ + - (OfYf) F-(YitO’) FT 1 (3.36) 
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and if rf . $5-1 

Tr {OfF OiFt\ = 2 Re Tr { OfF+ OiFf 1 

= 2 Re Tr { (OfYf) l?+(Yi’Oi) FT ) (3.37) 

Thus from (3 .37) follow analogous mapping relations to (3.33). From (3.36) it 

follows that a measurement with the set of observables (Of, Oi) and (Of’=OfYf , 
. . 

Oi’= YLtOi) serve to separate the contribution Tr 
{ 
OftFk Oi’FL . > 

To these terms 

the relations (3.33) can again be applied apart from a change of sign for the F term. 

3D. Consequences to Time Reversal”lnvariance 

It is natural to ask whether a polarization measurement can be performed more 

simply in the time reversed reaction. Specifically if we assume time reversal 

invariance, how do we obtain M ($‘if (W, 8, Cp = 0) for the reaction (1.1) 

’ A+B- C + D from measurements N AB CD o,$ 
, 
?, 6t (W, Br, er = 0) in the reversed re- 

action C + D -A + B? All momenta in both reactions have opposite sign. We 

assume that the axes in the time reversed reaction are obtained from Fig. 1 by 

switching the labels (A, B)- (C, D) and 0 -or. We note that the original rest 

frame axes go over into the new ones by a rotation through JT about the l-axis. 

The required correspondence between elements of M and N can be deduced 

-K heuristicly by noting that time reversal changes the vector polarization S taken 
--K relative to fixed space axes in the rest frame of particle K, to -S e If one then 

adjusts for the difference between these fixed axes and the new axes by rotating 

$” through T about the l-axis, one obtains the result, which we derive formally 

below. 

‘We observe that time rcversnl invariance. implies the following relationship 

between the hclicity amplitudes of the original and time rcvcrsed reaction 

f 
hpB-hC+AD 

‘CAD’ ‘AA13 
(W, 0, cp-0) = (-1) (3.38) 
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whcrc v 
“h*Q ACAD 

arc our standard h&city amplitudes for the time reversed 

reaction, with the ascs chosen as just mcntioncd. We may write Eq. (3.38) as 

well in m3tri.x form 

I? = rz(t7f) @ rf(-T) C tr A r3 (-n)@ rf(+T) 

using tllc matrices 

which rcprcscnt rotations through :k YT about the S-axis in the rest frame of each 

particle. Finally, using (3.18) and (3.39), we find 

wher c 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

K we assumed the following sym.motry properties of the observables OK under trans- 

position 

= TK# TK =*l 
K K ’ K 

(3,43) 

and under rotations around Ihc 3-xxis about the angle 4 TT 

(3 .44.) 

(3.43) and (3.44) arc 3 consccluencc of Eqs. (so 11) - (3. 13). Sjncc the matri.s S2 is 

imqiinary while tllc mntriccs 101: S 
3 

nntl s1 arc real. (T; wf;;) just changes the 

pol:rrix:ltions S by 5- -G followccl by a rotation through T about the I.-asis. 

l‘hc: rc:;ult (:I. 11.) shows that. the tensor pol:l.riza.tion matrices for chan.ncls related 

by time rcvcrsal arc lin(!:L.rly tlcl,cntlcnt :uld arc easily rclatcd with ollr set of obscrv- 

al~lCS. ‘~‘h(: result (3. 41.) includes the falnilinr statement that a mcnsurcrncnt of the 
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nucleon polarization of the n-N system is equivalent to measuring the cross section 

with a polarized target, a fact widely used at present in pion nucleon scattering. 

3E. A Note on Time Reversal Invariance and Vector Dominance 

To utilize some of the above results in a practical situation we derive a rela- 

tionship which can be used to apply the hypothesis of vector meson dominance 

(VMD)l’ to photoproduction with plane-polarized 7’s. To begin with let us consider 

a photoproduction process in which the nucleon target is unpolarized and only the 

total differential cross section is measured. 

n+-Y ep+ 7r- (reaction I) (3.45) 

Then, using the photon polarization matrices of (3.6) we find for this experiment 

where phi is a kinefnatic factor (see (5.28)) and 

MP*+y = ; 
00, OP 

Tr{(IP@I’) F(In@Og) Ft> 

(3.46) 

(3.47) 

The photon polarizations P = 2,3 do not enter into (3.46) because of parity conservation. 

Now we would like to use time reversal invariance to relate these measurements 

in I to measurements in the reaction 

p-t-r -n+y (reaction IIn) , (3.48) 

and then, by VDM, to measurements of t.he reaction 

p + ?r- -n+ V (reaction IIb) (3.49) 

where V is a vector meson (p ,w or +) . Applying Ey. (3.41) for time reversal we 

find that MGi’:i and M::’ iy can be found by measuring the usual dilYcrenlin1 
, , 
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cross section and the linear polarization fsd~‘~~ of the photon in IIa, again with 
, 

the unpolarized target. 

ny, PT = MP~, ny 
= NOO, 00 00,oo (3.5Oa) 

and 

I$?;; =M 
, 00,Ol 

We have 

= Tr ((0: @O~)GDa (0: x 0:) &Iat} 

= Tr (0; py) 5 

0 

In the last step of Eq. (3.51) we introduced the density matrix py of the photons 

using the definition (3.19). Now according to the VDM assumption the helicity 

amplitudes entering into (3.51) (with h 
Y 

= & 1) are directly related to the same 

helicity amplitudes for reaction IIb, so that 

pIIa c~7r pIIa =- 
2 

1 i 
tr+ . . . 

% 

(3.50b) 

(3.51) 

(3.52) 

In (3.52) the contributions of the w and C#J mesons is neglected (p-dominance). 

PIIb is Ihc density matrix in the c. m . system of the final state IIb. The subscript 

“tr” denotes the transversal part of p IIb , i.e., all elements with Ap , hb = 0 are 

deleted. Using (3. 19) to define the density matrix pp of the p-mesons and the 

P -dominance assumpt.ion (3. 52) one obtains 

= 2 Tr (O${pp}tr)TrO~ s g + . . , (3.53) 



. 

For p = 0, 1 we have 

Tr (OT{pPJtr)- -i Trcl{pP}tr =$ (Prll + prml) = - fi pyll (3.54b) 

(3.54a) 

The identities PII = p-I 1 and p-I1 = PI 1 used in (3.54) are a consequence of 

parity conservation. 

Using now the result (3.50), (3.5-3) and (3.54) in (3.46) we can relate the photo- 

production reaction I with polarized photons to the p-production data of IIb 

(3.55a) 

Using (3.46) and (5.28) for the definition of “ph” and the relation TrOO ?’ = & (3.6) 

one obtains ph’/ph’ 2 TrOE = qf/4: . Thus for pure linearly polarized y’s (Q=l) 

the result (3.55a) goes over into 

2 
dcrI qn Q!‘T dcrIfb 
XT=22 

qP % 
%1- cos 2 Q, P-l1 dc (3.55b) 

According to Section 5D @ = 0, n/2 corresponds to 1ine‘a.r polarization in the reac- 

tion plane or polarization perpendicular to it, respectively. It might be worthwhile 

to stress that the minus sign in front of p-I1 in (3.54) and (3.55) is a consequence 

of the phase convention (5.9) for the helicity states of J. W. This phase convention 

is usually adopted, when quoting results for the density matrix p”, In our derivation 

we have neglected effects of the cxtrnpolation in the p-mass. For an attempt to 

trcnt these effects kinematically in a suitably chosen phase space factor see the 

20 derivation of (3.55) by Iirammcr and Schilling, who write (3.55) also with the 

inclusion of the w and Cc, meson. 
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4. RESIJLTS FROM CROSSING RELATIONS 

4A. Crossing Applied to the Elements of M (3.18) 

We now wish to express the elements of the tensor polarization matrix M (3.18) 

in the s-channel by the analytically continued t- or u-channel helicity amplitudes. 

This we shall perform by substituting in relation (3.18) for M the s-channel ampli- 

tudes by the crossed t- or u-channel. <amplitudes using the crossing relations of 

Trueman and Wick,’ (hereafter referred to as T. W.). Let us first define a matrix 

notation in all three channels, which makes the following discussion as compact 

as possible, since only very general properties of the crossing relations will be 

used. 

The s-, t- and u-channels will be denoted by 

A + B-C + D, s-channel (4.1) 

5 + B 4-C + A, t-channel (4.2) 

c -t B-x -t- D, u-channel (4.3) 

The corresponding helicity amplitudes are fS 
‘CAD’ ‘A% 

(WS,P, #Is’= O), 

ft 
‘CAAyADhB 

(Wt,et,#Jt=O), fU 
‘AAD’ ‘CAB 

(W’, B”, e” = 0). From now on the quanti- 

ties in the three channels (4.1) - (4.3) are denoted by the superscripts s, t, u. To 

fix the phases of the helicity amplitudes we take as always the convention (see 

Introduction) that the first particles in (4.1) - (4.3) are the particles with label 1, 

i.e., in (4,l) they are the pair (A,C), in (4.2) the pair (5, C) and in (4.3) the pair 
-- 

(C, A). In photoproduction A and C represent then according to (2. I) the nucleons. 

Note that in this case the u-chnnncl amplitudes are derived from t,he s-channel 

ainplitudcs by substituting nntinuclcon indices for nucleon indices. As in (3.2) we 
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denote by Fs, Ft, FU the three reaction matrices with elements 

i t FS 
t 

‘$A’ ‘DAB = fA& $,AB; 

fU 
AAh~’ Achg = X*AD, ACAB 

. 

: (4.4) 

In writing down the crossing relations it will be convenient to have introduced in the s-channel 

partially reflected reaction matrices FS 
(4 and F;AC) with elements 

and 

S 

‘A’D’ ‘CAB 
= fA&,, h&j l 

(4.5) 

(4.6) 

Finally we need also the tensor polarization matrices of the t- and u-channel, which 

are defined in analogy to (3.18) again in terms of the single particle observables 

OK * K introduced in Section 3A. 

(4.7) 

and 

In the s-channel we USC again thc’definition (3.18)) but use in the following the 

notation 
#D,AB ,s 

gj Cup (r , 

for better clarity. 
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WC cxprcss M(J?) also in terms of the partially rcflcctcd reaction matrices 

17FADJ, FyAc), (4.5) and (4.6) 

or analogously 

A D $ZA,DI3 
= L! T6 V&W (4.9) 

(4.10) 

In (4.9) and (4.10) we used the fact that according to our choice the matrices 0,” 

arc either symmetrical or antisymmetrical (see (3.43)). Ry means of the notation 

(4.9) and (4.10) it will be very convenient to express the tensor-iolnrization in terms 

of the crossed t- and u-channel amplitudes. 

After these somewhat lengthy preparations we now wish to express the elements 

of the tensor polarization matrix M(F’) in terms of the analytically continued ele- 

ments Ft or FU by invoking the crossing relations of T. W. These authors arrived 

at a result which is easy to visualize: After the helicity amplitudes, say of the 

t-channel, are ,analytic:Llly continued from the physical t-channel region to the 

s-channel region, the rest frame states arc q~antizcd in a direction different 

from that given by the hclicity convention (see Section 5). By a rotation of 

the statca in t.ho rest frame of each particle, these have to be adjusted to the new 

hclicily axes. The rotation is around the 2 -axis through n.n ,anglc X K . In some 

cmc:; an :~c.fdjtionn.l rot :Ltion around Ihc 3 -axis in l,hc h&city frame through the ;ulglc 

7~ renclju sts Lhc hclicity rlcpcntlcnt. t)hascs of the holicity states resulting from the 

distinction I,ct\vccu l):lrticlc “1” and “2”. Wil.li our del’inition in (4, 1) - (4. 3) of the 

pnrticlcs with the label 2, this last rolntion will only apl)car if the u--channel :-Ln~pli- 

tuclcs al-c crossctl, 
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Using the partially reflected reaction matrices (4.5) and (4.6) the crossing 

relations of T. W. can be written in the compact matrix notation 

FFAD) = DC(X;)’ 63 DA($)? FT DD(X;)@ D”(X;) (4.11) 

for crossing the t-channel amplitudes and 

FyAcl = DDt (-Xf)@ [rt(+?r) DA’ (-Xt)]F” b’(Xz) r$-q] @ D”(Xu”> (4.12) 

for crossing the u-channel amplitudes. 

The matrices 

i t DK 
AKAk = (4.13) 

are the standard real rotation matrices in the (1,3)-plane. The rotation matrices 

rf(fr) in (4.12) were defined in (3.40). For completeness we cite here also the 

K 
results of T. W. for the crossing angles X u t 

, 

cos X~(2ptJtSl)=-(s+m~-m~)(t+m~-m~)-2m~~ L 

cos X~(2c+JESl)=+(s+m~-m~)(t+m~-m~)-2m~~ L 

cog XtC(ZgtJtS2)=+(s+m~-n$J(t+m~-m~)-2m~* L 

cos xtD(Zc+ &S,) = - (s + rni - m:) (t + rni - rni) - 2mi l L 

where 

and 

pf = (t2 - 2t (rni + m:) 3 (rni - mEr)/(4t) 

q; = (12 - 2t (m2, + m;) + (m; - m;)2)/(4t) 

(4.14) 

(4.15) 

(4.16) 

(4,17) 

(4.18) 

(4.19) 

(4.20) 
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2 Sl = 4s p: = 
( 
s - (mA - mB)2 

)( 
s - (mA + mB)2 

Si = 4s qz = s - (m 
C - mD)2 

I( 
s - (mC + mD)2 

K To fix the sign of Xp we cite also the result for sin X, 

sin Xp’ B = * sin f!It = m+ sin 0 
s P t S 

S Pt . 

mC,Dps sin tJt = ~~JIZ sin Bs 

Pt e 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

The labels “1” and “2” enter into the definition of the scattering angles Bs, Quo Thus 

to obtain the crossing angles for the u-channel one has to replace the variable and 

index t in (4.14) - (4.24) by u. One also has to interchange the masses mC and 

mD and to replace Bt in (4.23) and (4.24) by Ou + 7r or 0 by 0 + ?r. One should note 

that the crossing angle for a photon is equal to zero. 

Some comments to explain the differences in the crossing formulas (4.11) and 

(4.12) may be useful: To derive Eq. (4.12) for crossing the u-channel amplitudes 

from the o:,iginal result (4.11) of T. W. one first introduces in the s- and u-channel 

helicity amplitudes with the labels 1, 2 of the particles in the final state interchanged 

with respect to ‘the definition (4.1) and (4.3) D 

fS 
‘CAD’ ‘AAB 

(WS, es, $7 = 0) = 
‘&+hC-+) sv 

(-1) f 
‘DAC ’ ‘A ‘B 

(WS, 0 ‘%I s+7f, qJsv = 0) 

(4.25) 

f UV 

‘DAAhCAB 
(WU, 0”’ =o”+7T, c$ uv ‘A- %I+~D-~A u = 0) = (-1) fhAhD, hChB(WU’ 0”s P = 0) 

(4.26) 
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UV The formula (4.11) are directly applicable to cross the f -amplitudes to the 

fsv-amplitudes, since now the particle with label 1 in the initial state is inter- 

changed with 1.1~ particle with label 2 in the final state as in crossing from the 

s-channel (8:. 1) to the t-channel (4.2). One introduces then the rotation matrices 

rK (3.40) to take care of the helicity dependent phase factors in (4.25) and (4.26). 

Finally one has to realize that the relations (4.23) and (4.24) apply for crossing the 

fsv and f”’ amplitudes with the polar angles 0 vs =BS+nandO UV 
= e" + T. 

We now apply the relations (4.11) and (4.12) to (4.9) and (4. lo), respectively, 

to’obtain the s-channel tensor polarization matrix in terms of the t- or u-channel 
K amplitudes: Due to this step the observables OK in (4.9) are substituted by 

Of’ = DK(X;) 0; DK’(Xf) (4.27) 

and F~AD) by Ft; analogous substitutions appear in (4.10). As has been noted already 

by Gottfried and Jackson8 this result can be interpreted easily if one makes use of 

the well known transformation properties under three-dimensional rotations of the 

matrices 0 K 
K ’ which represent components of tensors made up by the spin matrices 

in the rest frame of each particle. K The components 0, of these tensors referred 

to the axes of the helicity frame in the rest system as explained in Section 3A. The 

quantities 0$‘(4.27) are then the components of the same tensor with respect to 

new axes, which are obtained from the old ones by a rotation around the 2-axis of 
K the rest frame through the crossing angle X, o Thus we have for the elements of 

the vc-&or polarization OK , K = 1,2,3 

0;’ = R;‘(X;) Ofv , 0;’ = R2 (-X;) Orv (4.28a) 
K,K’ K,Kv 

R2(X) is the transformation matrix of Cartesian coordinates for a rotation of the 

coordinate system around the 2-axis by the angle X. For the u-channel due to the 
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additional rotation around the 3-axis through the angle x m’cntioned earlier , Ey. 

(4.28a) has to be replaced by 

OA ” CY = DA(-X,“) r*( -n) 0: r*(r) D*(-XA,)t 

= 2 R;‘(X;) u.$ O;, 
CL!‘=1 cYfl!v 

0;” = D"(Xz) 0; D’(Xf)’ = 2 R;l(XUR)pp’ 0; 

P’=l 

(4.28b) 

(4.28~) 

0:” = D”(X,“) rC(-n) 0: rC(n) DC(,Xzjt 

(4.28d) 

(4.28e) 

= u; 2 R,“(Xf) Ocv 

yV=l YYv y 

0;” = D”(-X;) OS” DD (-x,9)’ = us” 2 R,‘(Xt),,, +, 0; 

6=1 

The rotation symmetry factor wK K was introduced in (3.44). 

Due to the rotation (4.28) of the observables it is convenient for crossing from 

the t- or u-chknel to introduce new sets of observables sf;;, 3:, respectively, in 

the crossing or Gottfried-Jackson frame as defined in the Introd.uction. The rota- 
-K =K tions (4.28) carry then OK, OK over into the old 0: defined with respect to the 

helicity frame. Thus a measurement of the polarization in the respective crossing 

frame is cxprcsscd by the simple relations 

(4.29) 
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for the crossing from the t-channel and 

(4.30) 

for the crossing from the u-channel. 

The amplitudes Ft and F” in (4.29) and (4.30) are, of course, the analytically 

continued quantities. The relations (4.29) and (4.30) will be the basis of all further 

discussion of practical results. 

4B. Consequences of the Decomposition (2.8) 

In Eq. (2.8) or (2.8’) we defined asymptotic parity conserving amplitudes for 

an arbitrary channel (1.1). One can as well write this definition in matrix form 

for the reaction matrix F (3.2). 

F”= F +o-(-1)-’ F+@ YB 

= F -I- a(-l)-’ Yc @ YD F 

by means of the reflection operator (5.11). In (4.31) v = l/2, if (SA f SB) is an 

half integer; otherWse it is zero. Since (Yr2 = (-1) *K and YKt = (-1) 2% J(, 

the matrices F” have the simple property that 

FV@? @ YBt = I-’ F”, or Yc @YDFV= q(-l)+’ Fa 

(4.31) 

These relationships turn out to be extremely useful for the following discussion. 

Th!. matrices Fc suggest a natural decomposition of the elements of the tensor 

polarization matrix into four parts 

(4.32) 

1 =- 
4 c 

o-,u’ 
M;;,‘;;(Fq l?‘) (4.33) 
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Because of the symmetry relation (4.32) the elements M g$( F”, I++) are non- 

vanishing only if: 

c& z&B = 
92 P 

see (3.30) , 1 (4.34) 

K where flK are the parities of the observables introduced in (3.24). Furthermore, 

K the hermiticity of the observables 0, insures the symmetry relation 

(4.35) 

Thus as a consequence of (4.34) and (4.35) the sum in (4.33) reduces to one or two . 

terms depending on the value of rt l $ 

iReM ;;‘j~(#=+l, f=-l) if r; . + -1 

(4.36) 

A B ifs l n 
a p 

=-I-I 

Analogous to the result in (3.32) one can also show that certain of the non- 

vanishing elements of M(FC, l@) are linearly dependent as a result of the mapping 

relations (3.26). . . (3.28) or in general (3.25) applied to the observables of particles 

AandB 

M;?$(F”, I?-‘) =(-$‘a- c $ M$$(F”, flv) 

Y v8v 
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. 

The 7’s are coefficients, which are analogous to the p’s in (3.32) and are deter- 

mined by the relations (3.25). In many -of the interesting cases the sum in (4.37) 

extends only over one term, so that (4.37) becomes a simple relationship. Note 

that in (4.37) the right hand side flips sign under the substitution (~--a If the 

product of the parities Q! npi ;- 9 A - -t-l, then one can exploit this fact to separate in 

(4.36) the u = cv = *l terms by taking the linear combination 

MCD,AE 
yh 4 

f (-l)-v 
c 

pY6 
rt3, 

MCD,AB 
y y’K& 

Y ,av 

(4.38) 

if A A B C D 
cl! 

l 7rp = 7ry l ng = + 1 

A B The results (4.36) or (4.38) if nol l ?r 
P 

= -1 or +l, respectively, are the basis 

oi ‘very simple experimental predictions at high energies, if the amplitudes in the 

dicL:ct channel a’:e well represented by the exchange of particles &ith definite parity 

type (2.5) in the crossed channels. This situation occurs in the peripheral or Regge- 

po& model. Thus, assume we apply the results (4.36) and (4.38) to the t- or u- 

channel expressions (4.7) or (4.8). They are related to the observables in the 

s-channel by the crossing relations (4.29) and (4.30). Hence one obtains from 

(4.29), (4.30) and (4.36), if the parities of the observables in the initial state of 

the t- or u-channel are negative,’ 

TA 7D fi?CD,AB s 
o! y6 ap (F ) 

, 
= i Re N~~‘8~ (I?+‘, Ftu’-j , 

, 
(4.39a) 
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D B if 7r l 7r = -1 or 
‘3 P 

TA 7C ECD,AB s 
cY Y 

yG,crp (F ) = i Re L~~~~~(Fuu= ‘l, Fur= -l) (4.39b) 

C B ifn ‘7r 
Y P 

= -1. The s-channel observables refer to the Gottfried-Jackson frame 

as indicated by the tilde on the M’s a (See the discussion in Section 4A.) Also if 

we try to apply the mapping relation (4.37) in the t-channel for 7r -1, we 
-vt 

;. “p”’ 

find (-1) py 
YOV 

is necessarily imaginary so that relations result between real 

and imaginary parts of N(F t+, Ft-). Specifically, dne finds 

‘“t -?a, -i( - 1) pyvav Re NyvavSP (I?+, Ft-) = Im NV ,sp (Ft+s Ft-) (4.39c) 

and correspondingly for the u-channel 

-i(-1) -vt pas 
(yv6v Re L avGv,yp(Fu+, I?-) = Im LaG,yptFu+, F”-) (4.33d) 

Thus one can use Eqs. (4.39a,b,c, d) to express the imaginary parts of N(Ft3, Ft-) 

and L(FU+, F”-) (as well as their real parts) in terms of the s-channel observables 

M(F’). 

Similarly one obtains from (4.29) and (4.38) 

-V 
T* ;;jcD' *'(FS) Jo (-1) t 

Q! y&d 
pyp" 

YQ! 
Fs) 

Ly' 

= $ TD NC$, D&Ft,cr=&l, Ft,““=&l) 
, (4.4Oa) 

if 7r 

whcrc Yc and Y A 

The p’s arc defined by c pyv Oc,-= OFYc and c pz, 02v =OiY*, 
yI Y Y CY’ 

are now t:he rcflcction opcrntors of the s-chnnncl. Note that 

according to (5. 11.) Y A(V) = ~(“2”), where A(“1”) is the particle “1” in the 
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s-channel and A(“2”) the antiparticle r’2rr in the t-channel. From (4.30) and (4.38) 

follows 

(4.401)) 

C B ifn *IT 2sA A 

y p 
= 1-1. Here (-1) 

2s 
c $ Oa, = 
a’ 

The factor (-1) A arises this time from the relation Y 

l Now for lztl or lzuI -co in the s-channel, the exchange of particles with any 

parity type is kinematically enhanced in F tp up or F as discussed in Section 2. 

If the leading natural and unnatural trajectories (Y+,(Y- are not separated by more 

than one unit 

I Re CY+ - Re cr-1 < 1 (4.41) 

then each Ftp or FuPcr * IS in general dominated by one parity type for lzt ( or 

lzLll--’ 
Thus one can summarize in the following theorem concerning the separ- 

ation of natural and unnatural parity c.ontributions the main result so far obtained 

in this subsection. 

Theorem 1: Assume that the analytically continued t- or u-channel amplitudes are 

dominated in the s-channel by a leading natural and unnatural parity trajectory 

obeying the restriction (4.41). Then the observables E, % in the Gottfried- 

Jackson frame measure, according to (4.39), the interference term between the 

leading t- or u-channel trajectories if 7rF * $= -1 = $A D -8 (see (3.30)) or 
CY Y 

’ ‘= -1 -= 7rA l 7rD 
ay * 3 o! 6’ 

respcctivcly . On the other hand, the linear combinati.ons 

(4.40) of obscrvablcs scparatc the leading natural and unnatural trajcctorics of the 

D B t- or u-channel if 7rg . x 
P 

= 1-l or IT; * “p”= +l, respectively. 
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Howcvcr, one has always to keep in mind that all these order of magnitude 

estimates may fail if the trajectory couplings to the various parity conserving 

amplitudes are such that some coefficients of the leading power of s vanish as the 

consequence of a selection rule. For the baryon number N = 0 channel such rules 

follow from G parity conservation as discussed at the end of Section 2. Further- 

more one has to be cauti.ous in applying Theorem 1 to measurements, which are 

represented only by terms of the form Im f f* 
A A lion l 

Let us assume that only 
fi fi 

one Regge pole contributes to f 
‘f’i 

as for example the p-Re.ggc pole in pion nucleon 

charge exchange scattering. Since the phase of a single Regge-pole term is inde- 

pendent of the helicities any bilinear form f f* , , becomes real in leading order. 
‘f4 ‘fAi 

Thus, in general, interference terms between the same Reggc poles do not con- 

tribute to Im f f* , , . AfRi A,A, The vanishing of the l.eading order term in Im f f* , , 
AfAi AfAi 

is even true in more general models. It is a consequence of analyticity as has been 

discussed for example by van Hove. 21 

4C. Constraints Due to G-Parity Conservation for the N% Systems 

In the following we assume that in a t-channel with baryon number zero the final 

state is made up by a nucleon-anti.nucleon pair Nz like in the photoproduction channel 

(2.2). Then, as discussed at the end of Section 2, G-parity conservation introduces 

a selection rule, if the reaction proceeds via the exch.ange of particles with natural 

or unnatural parity I? = % (-lp. For unnatural parity exchange it was shown that 

the helicities hc and AA of the nucleon-antinucleon pair N c, EA must fulfill the 

restriction h C 
“iA A if the qunnlum numbers P, G and I are related by PG(-l)I=T 1. 

-1 For natural parity cschangc only particles with 1X(-l) = -tl are possible with no 

i%striction on the hclicilics h c, aA. Tha rule suggests thcreforc a further dc- 

composj lion of F tcr ’ for cT == -1 in order to distinguish in the limit Izt/ -0 the parts 
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with w = PG(-l)I = kl 

g- = +$ + -& 

or explicitly 

(4.42) 

(4.43) - 

In the limit Iztl---w the parts * (t- I’ are dominated by the contributions with w = rtl. 

Now there is a matrix W such that 

&Pt- = -f *g- (4.44) 

to distinguish the w = fl part of I? by an algebraic equation. The specific form of 

W = WN @ W R is not unique, but expressed in Pauli matrices we may take wK 3 = iu 

so that 
E w=-u; ci3u 3 (4.45) 

K c 
or W’ = icrl so that 

W’= 1 -UN&T T (4.46) 

This second choice with W’ = - WY follows from (4.32). 

Analogous to the parity discussion in Section 313 we introduce a W-parity ‘iif;” 

of the nucleon obscrvablcs 

or explicitly 

wol,Wt =? 0 v v (4.47a) 

W(O($) wt = (Oo, -ol, -02,+03) 0 (4.471)) 

Again we have also mapping relations 

ovw - ~;,ov, (4.45:~) 
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or explicitly 

(09,G)W = (-i03,02,-01, -iOO) (4.48b) 

As in (4.33) we may now decompose the elements N(Ft-, Ft-) in terms 

of N(*Ft-, 
w’ t- F ) and also N(Ft-, Ft+) = N( Ft+, Ft-)* in terms of N(“Ft-, Ft+). 

Using the analogous steps as in Section 4B one derivcr the following results, which 

we briefly state below 

NN v:g(Ft-, Ft-) = c NF:T(WFt‘, “)$-) (4.49) 

w,w’ e 

From (4.44) and (4.47) follows a restriction for the nonvaninhing elements in the 

sum (4.49) 

The hermiticity of the observables guarantees the symmetry 

Thus 

- 

N;;,‘s”p”(wFt-, “)Ft-) = NV v,sP 
NE, DB(wsFt-, wFt-) 

- c N;;,‘&B(wFt-, wFt-) for ii .?YP=+l 
V 

w-+1 

NNE, DB t- 
vi7,6p (F 9 Ft-) = 

2 Re NNE,DB 1-1 t- v F,sp ( F , -lFt-) for Fv l 7; = -1 

The mapping relations (4.48) yield again 

- - 
NN, DB 

N;;,‘$B(wFt-, w’Ft-) = w a;, ii$ NV ,v ‘,$ 
wFt-, w’Ft-) 

(4.50) 

(4.51) 

(4.52) 

(4 P 53) 
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where this time we have only one term on the right-hand side. From (4.53) it 

follows again that the linear combinations 

N;;$(Ft-, Ft-) + w F;, $, N;$‘,;$(Ft-, Ft-) 

= 2 NtWFt-, wFt-) for? .;i,=+l 
V 

(4.54) 

NV 
separate the w = ;tl contributions, (Note that the product p , l 7;) is real for 

V 

ir l ir, =+l.) 
V 

Finally for the interference terms of natural and unnatural parity terms 

( A N.&*D.p= 
v F 6 p -4 one can derive the following identities using (4.36), (4.44) 

and (4.32) 

- 
E t- 2Nfl~S~PB(Ft) = Re Tr (OFQO-, F 

, 
O~QO~Ft+‘) 

Re Tr c w(O~@O~W~~’ wFt-OF@OF F~‘?) .;;fF.$=_l 

w*l 
(4.55) 

where W’ = - WY. Thus in the linear combinations 

- - - 

NFf;;J;B(Ft) + w ai, ?;s Nr::$$(F$ = Re N~~fpB(“Ftv, Ft+) (4.56) 
, 

the w = kl contributions interfering with the (r= +1 amplitude are separated. 

According to (4.55) the factors 7 are just the factor>. p of Eq. (4.48) if rv l 7rC - -N wN-+~, 

for TN.?’ = 
V ii -1 one has to use the analogous relations (4.48) with W replaced by ‘- 
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W’ = WY. One can show anal.ogously to (4.39c, d) that for any value of 7r * 7rS V 

- 

Im NfF ‘8~(wI~t-, ‘v 
, 

I’%‘-) =i P:, pv, NV,.-, 6 NN, yBp (“$-, $+) (4.57) 

whcrc the factor i pz, P:, is necessarily real. 
- 

The quantities N 
NINpDB t- 
v 1v2,6p tF ’ Ft+) 

in the Gottfricd-Jackson 

are related to the s-channel observablcs 

frame by me‘ans of the relations (4.39a) 

and (4.40a). The main resuhs of this subsection may again be summarized in a 

theorem in the following way: 

Theorem 2: Assume that the final state of the t-channel (4.2) is made up by a 

nucleon antinucleon pair. (Analogous results apply for the m pair in the initial 

state.) Assume further that the analytically continued t-channel amplitudes are 

dominated in the s-channel by a leading natural o+ (with w = t-1) and two leading 

unnatural parity trajectories (Y- (with w = *1)0 The trajectories 01+, woy- shall 

fulfill again the restriction (4.41). 
N1 N2 1. Case: +7ri= TV, TV n = +l. Then the linear combinations (4.40a) measure 

the leading o= -1 interfekncz terms according to Theorem 1. If furthermore the 

N1 N2 
product of the W-parity of the observables ‘ii 

v1 v2 
= -1 then (4.40a) measures 

only the interference between the two leading unnatural parity trajectories 
w - Q! 

with w - rtl (according to Eq. (4.52)). If 71 
N1 N2 7~ = -1-l then one has to form out 
v1 v2 

of the expressions (4.4Oa) linear combinations according to (4.54). These then 

separate the two w = kl contributions. 

2. Case: +; = -1. According to (4.39a) one measures the interference 

between cr = :tl contributions. The linear combinations 

- 
rNl.rD pN2D’N1B s x”p2 ,kpy3 N2N1, DB 

1, 1 6 
l, 26, v 1/)’ (F ) -f- -:,yl ~fi” I-‘~, ‘1 TV; filv,28, 1,,1(3 (ITS) :-= Re NV 2v l,sp (WFt-, F”‘-) 

(4,58) 
scparatc the w y= ~1 contributions. 

M 1) 
For t,hc factors p,, , see the discussion after 

Ey. (4.56). 
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5. APPENDIX: DEFINITION AND DECOMPOSITION OF 

DENSITY MATRICES IN THE HELICITY BASIS 

5A. Helicity States 

We present here a few steps in the construe tion of helicity states ac- 

cording to J. W. to obtain some results to which WC refer in the following 

discussion on the density matrices. Let?ri be three unit vectors in the direction of 

the axes of some frame, which is not necessarily the c. m. system 

ii i ’ 5ij = 6.. 
11 (5.1) 

Consider then one-particle states [ qh > in the Heisenberg picture defined by 

I@> =R(~,0,-~)U(L@3q))10h> (5.2) 

These states are produced from a particle in its rest frame IOh) first by an accel- 

leration in the direction z3 to momentum q. This Lorentz transformation is repre- 

sented by the boost L&q) and 

U(L(C3q)) = e 
-it<? l Z 

, [ = sinh-‘2 

where E = (K1, K2, K3) are the usual three generators of a pure Lorcrrtz transfor- 

mation. The subsequent rotation R($, 0, -$) in (5.2) brings the momentum Z3q 

into the final direction aby a rotation through the angle 0 

(5.3) 

(5.4) 

about the axis 

1Ei = - sin f$ ii1 -I- cos $ ?i 2 (5.5) 
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with iii. Ti 3 ~1 0. If A, the spin component in the rest frame, is quantized in the 

ii3-direction, into which the particle is boosted, then (5.2) is a state in the “helicity 

basis” chosen in accordance with the conventions of J. W. particularly with respect 

to the rotation R($,@, -$I). WC remember that the relative phases of the states IOh) 

are fixed by the requirement 

(ii 1 
- cztiji2. g) IOh) - c(s r h) (s f A i- l)p210A f l>. (5.6) 

where Si arc the usual spin matrices in the rest frame and s is the spin of the particle. 

For a massless boson like the photon t,he construction prescription (5.2) for 

the states has to be replaced, since there is no rest frame available. In this case 

one starts with particles moving in the ?i3-direction 
% = (9, 5,s) 

Ic A> = W,O, -$) IiT’ =$q,h> (5.7) 

Under reflections in the (nl,n3)-plane 

.-- 
y = ,-lTfll l rp, i 

I 

where P is the parity operator, one requires (see J. W. Eq.(9)) 

Y IqXj,h = Tiqii3, -A > . 

(5.8) 

(5. 9) 

SO, since there cxiz Is only two states h =c f S, the relative phases of (5. 7) are fix&, 

once. the parity rl is detcrmincd. 
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The reflections Y turn out to be particularly useful in our work. If applied to 

states with momenta in the (nl ,n3)-plane the reflections Y change only the helicity 

h of the states (5.2) or (5.9) apart from a phase factor. 

-im 
YIG($ =0), h>=e 

2 - jT 
Pk 

-i@Z2 * J’ -<S3 * K 
e I > OA 

-i@ii 
=e 

2 l r -itc3 . E -iK2 l J’ 

e e 
qoo 

-if+7 2 ’ 3’ -i4pT3 l z 

=e e (-1y-h rllo-A> 

kor line 3 see Eq. (9’) in J. W.) . Therefore 

<a+ = op lYl~(c$ = O)$> = (-l)?Sh s- A, 

which matrix is (-$,ioi) for a spin l/2 particle. For a massless boson the factors 

(-$- - m (5.10) and (5. lla) have to be omitted according to (5.9). Relation 

(5. lla) applies Only to a particle rcltV; for a particle “2” see the following Eq. 

(5. llb). Therefore Y corresponds always to the matrix vcri in the helicity basis. 

For a two particle state 

I qh qh 1 1’ 2 2; Et> = Is&; tit> cqq& Zit> 

(5.10) 

(5. lla) 

(5.12) 

the construction. prescription (5.2) is applied only for the particle lllVt, whereas 

for the particle “2” the rule (5.2) is modified by an extra phase factor (-1) S-A. 

I@ > = (-l)s-A13($,@, -$) U (L(Z3q)) 1 Oh> . (5.13) 

This is done in order to conform with the relative phase convention of J. W. for the 

two particle states and is motivated il: their paper. Consequently the reflection 
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“2” 
matrix Y for a particle 172” differs from that of a particle rrlf’ by the factors 

(-1)2s 

yt’l” = ($S I:‘2” (5. llb) 

The helicity states (5.2) fulfill in the spin space of a given particle orthogonality 

relations which are independent of the frame 

This fact is, of course, a consequence of the unitary nature of the transformations 

U(L(q8)) and R($,@,-$) in (5.2). Similarly, the two particle states (5.12) fulfill 

in the spin space of the two given particles the orthogonality relations 

<in ‘q A’ q h’ 19 A q A in > = <afl,,;oA;BI h~o;zt>~ <zt;OAAi AA”;;t>s out’ B B’ A A A A’ B B’out s 

==tiA h, 6 
A A ‘B% 

The relation (5.14) and (5.15) are the basis for constructing the spin density 

matrices in Section 5B. 

Finally, we remark also that the usual Lorentz invariant inner product is 

defined for any single particle states in the Hilbert space by 

with an abvious extension to t\vo particle states. In particular, we have the nor- 

mal, iza tion condition 

(5.15) 

(5.16) 

(5.17) 
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and an analogous relation for the two particle states (5.12) - Note that we distin- 

guish the inner product in spin space (5.14) and (5.15) from the inner product in 

Hilbert space (5.16) by the subscript s. 

5B. Von Neumann’s Formula 

Consider now an arbitrary state composed of the basic incoming two particle 

states (5.12) 

with . 

c I a( =l 
‘i 

The state (5.18) is expanded in terms of outgoing states 1qlhl,q2A2, * out> . . . , 

d3q 
IqA,qB; *> = 

/ 
C. d3qD 4 

c D 8 (qC+qD-qA--qB) lqC’qD;oUt>+‘*’ 
No %l() 

(5.18) 

(5.19) 

(5.20) 

where 

lqC,qD;oUt> = C a(ni) F*f A, (p,qA+iB,qC-qD) lq&‘qDhD;oUt> (5.21) 
hi’ Af , - 

and P = (qA + qD) = (qc + qD). In (5.21) the reaction matrix F 
Rfni 

is defined by 

<out+-& t qDhD 1 qAhA ) qBhB; in > = <in; qchc ? qDhD 1 qAhA ) qg’g; in> 

4 
- 6 (qC+qD-qA-qB) FAfAi(P’qA-qB’qC-qD) 

(5.22) 

Note that with the definition (5.22) for F the unscattered part is left out in the first 

term of (5.20). 
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In the subspace of two particle states (5.18) and (5.21) we introduce now spin 

density operators in the usual way 

p;p(qA7qB) = IqA’qB; in> <h; qB’qA) 

and 

(5.23) * 

~~p$+$,) = lqC’qD;oUt> <Out; qJ,‘qcl 
(5.24) 

1 qChC, q&i Out > <Out; q&’ qChC 1 

The coefficients i,f p 
A, A” 

are the elements of the spin density matrix defined by 

i 
PA A’(qA’qB) = <in;qBAB?qAhAI $,p(qA’qB) l(qAhA’%,& in> s 

i i 
(5.25) 

and 
f 

PAf$q&$,) = <Out; q,-jhD’qCAC l~~p(qCqD) Iq&‘q& out> s 

(5.2G) 

= C a($) FAfRla*(n;) Fill\, 
Ai, hf f i 

The relation (5.26) is Von Neumann’s formula, which can also be written in the 

compact form 

(If _. J7p1ft (5.27) 
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With our normalization the cross section in the c. m. system CA + cB = cc + CD = 0 

is given by 

where F is the reaction matrix Eq. (3.2) in the c. m. system, the elements of 

which are the helicity amplitudes. According to (3.18) and (3.14) one has 

Tr pi = $ pt((asA+ 1) (2sB+ 1)) -1’2 

(5.28) 

(5.29) 

As mentioned in Section 3 we- assume that the helicities of the particles in the 
. 

initial state are uncorrelated, so that p1 is the direct product of the density matrix 

for each particle. 

5C. Decomposition of the Single Particle Spin Density Matrix (Case M # 0) 

In the rest system (T = 0) a single particle spin density matrix p is usually 

expanded by writing p as a polynomial of degree 2j in the components of the spin 

matrices Si. Thus for a single particle state (5.6) in its rest frame 

Is‘=o> = ? Chp=O, A>, (5. 30) 

the density matrix p is written 

P=I+ 2 p,s, + 5 
3 

PrsSrSs+.**+ c Prs~*~usrss"'su (5.31) 
r=l r,s =1 r,s...u=l 

Here the quantities prs u denote the components of the polarization tensors of the . . . 

particle in the rest frame with respect to certain axes, e. g. the helicities axes. The 

corresponding density operator pop@ = 0) = 1 y’ = 0 > <c = 0 1 has an analgous expan- 

sion (5.31) with the S;S replaced by the angula 1‘ momentum operators Ji in the rest 

frame. In a general fr;; .e, where the particle is moving with momentum Tthe 



transformation law (5.2) yields 

pop(c) =R($,8,-$) U(L(‘ij3q))gp(h’ =0) u+(L~ir,q))R+WL-$9 

3 3 
IX I+ CPrflr+ c 2 P 

r =l r,s =l 
PrsOr@s+“’ + 

,.,., u=l vb...n 
(g @...fyu 

r s r,s 

with ( see (5.3) and (5.4) 
1 

fir(q) = emi’ m -. re-iK3 l EJ 

r 

eiXK3 l Eeism’. J’ 

replacing Jr in the analogous relation (5.30) for pop(c = 0). ‘Assuming a 
. 

C’ :omposition of J’in the helicity frame with (5. 8) = 0 

r= (Jl J2, J3) = (i=ii X 4) . J’; g l J’; 4 l $j 
, 

a straightforward calculation yields for Qi(q) 

&Y;(q) = - sin ~9 4 . J‘+ cos 8 ( 
90 M @ix& . J + $rC!i. z 

) 

q. - e2(q) = Mm l J’- 3 (iLiiX$ * Z 

f13(q) = cos 8 4 9 J’+ sin 6 
( 
90 M (i?ix$ * r+ 3 Ei* E 

1 

The matrix elements of the operators tC?(~), defined for particles with arbitrary 

momentum c, reduce by construction to the usual spin matrices Si of the rest 

frame, if flifi) is calculated in the basis of the helicity states (5.2). Therefore 

one can assume that the expansion (5.31) is actually valid for any moving particle 

and that the parameters p,, n arc always the same rest frame polarization . . . 

(5.31’) 

(5.32) 

(5.33) 

(5.34a) 

(5. 34b) 

(5.34c) 

quantities. The matrices Si have only to be interpreted as the representation of 

the operators oi(4) defined by (5.32) if calculated in the basis of th:, helicity states 
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(5.2). We have seen in Section 4, how from a practical point of view it is sometimes 

very advantageous to describe particles always in terms of properties in the rest 

frame. 

In order to account for the different transformation law (5.13) of particles 

with label 2, we replace for these particles in (5.32) Jr by (-1)2s e 
-i7rii 3’ J i7rii 

Jre 
3’ J’ 

. ’ 

As a result of this replacement the axis iTi in (5.34) goes over into (-ET) apart from 

the overall factor (-1) 2s . With this convention the expansion (5.31) is true for 

particles with label 1 or 2. 

. There exists a convenient representation of the operators 0‘. in terms of the 
1 

relativistic spin vector W 
/-J 

as one might expect. In fact the Oils are projections of WP with respect to certain 

axes (Iii)’ 

with 

Explicitly one has for (m l 4) = 0 

q. A 0 , cos 0 @xi) - M q sin 8 

u3 ( 
q. A $f cos 8, sin 0 (Zxi) + M q cos 0 

1 

(5.35) 

(5.36) 

(5.37) 

(5.38a) 

(5.361~) 

(5.38c) 
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By means of (5.36) - (5.38) it is possible to introduce a covariant notation. 
22 

One defines a covariant spin vector 

Sp = 2 P.(n.) 
i=l ’ ‘P 

and, can then write 

3 
c Oi(Cl) pi =. sI*wu 

izl 

and anAogous generalizations for the higher tensors in (5.31’). 

Finally we note that from the representation (5.32) or (5.34) it follows easily 

that under the reflections Y (5.8) the operators Gi have the transformation property 

Yd71,3(iT) Y+ = - Ql,3(43’ Yf12(q) y+ =+ @2(q) 

The relations (5.41) are the basis of the restrictions on the tensor polarizations, 

which follow from parity conservation (see Section 3. 73). 

5D. Density Matrix for the Photon 

In the case of the photon the proceding discussion of the density matrix is not 

valid, since it is e. g, not possible to define the spin matrices gin a rest frame. 

In this case we derive the form (3.6) directly from the definition pzp = 1~ > <r ( for 

a general photon state in an arbitrary frame 

I-y> =3+. Ic,h ==+ l> + a- Ic,,h = -l>, (a+12 + a-l2 = 1 

where IT,,> are the states (5. 7). Then 

I+ l> <- 1 I -I-a>+- 1> <+ 1 I}, 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

(5.43) 



where for notational reasons I q, A = f 1 > = I& 1). The expansion (5.43) of the 

operator pzp(q) taken in the helicity basis (5. ‘7) yields the decomposition (3.6). 

In (3.6) we put 

which gives the degree of circular polarization, 

I! = 2 la+a* I, 

which gives the degree of linear polarization, and 

which determines within fr the azimuth angle @ of the polarization vector in the 

plane perpendicular to the momentum of the photon. To see this consider a photon 

moving in the Z3-direction. The relation between the helicity states 1 qn’3, A > 

and plane-polarized states I Fi>, i = 1,2, with the polarization vector gi pointing 

in the Cl or C2 direction is as usual 

Isn,J>= - $ (Vy>+ ile,)). ’ 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

Then a plane polarized state with an arbitrary Z($) in the (nl ,n2)-plane is given by 

IsT3 2 Z(‘<s)> =cos #Iel>+ sin f$le,> = L 
fi 

-eioiqZ3, + l>+ efi+lsfi3, -I> (5.48) 

We see under these circumskmces one can put @ =- $. 

In practice WC always assume that the photon is a particle with the label 2 moving 

in the direction - ii 3’ Now in the case of the photon the relat.ion 

I - q2i=L3s A) --. lg21i3, -0 (5.49) 
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substitutes (5.13). We take the same decomposition (3. 6) for the density matrix. 

If we measure the azimuthal angle c$’ of the plane polarized state in the coordinates 

for particle 1121’ shown in Fig. 1 we can again put @ = $‘, but we can as well take 

our photon coordinates ;V be rotated by 7r around the Z3 direction. This ambiguity in 

coordinates restates the ambiguity in C#J. 

We also note that under the reflection transformation Y the parts of (5.43) 

connectc~.l with the coefficient l/2 and - Q/2 cos 2 @ are even, whereas the other 

two parts c/2 and - L/2 sin 2 @I, are odd. This one can easily establish from the 

relation (5.9) introduced into (5.43) or from the matrix representation qol for Y 
e 

and (3.6) for p’. 

Finally we remark that the decomposition (5.42) or (5.43) is dependent on the 

frame and therefore not unique. 

5E. Mapping of the Spherical Harmonics by Y: Further Restrictions; Eq. (3.13) 

In Section (3. B) we established the mapping 

2S 

TLMY = L;M,pky TL’M I 

We now note that via Eq. (3.13) TLM can be linearly related to TLM 

TLM = (-l)L-M e 
-i7rS3 

TLMe 

+inS3 

(5.32a) 

(5.50) 

(see the representation (3.13) for TLM). Hence one can find (TLMYJt either 

directly from (3.24) 

or by applying (5.50) to both sides of (3.25a). Equality of the resulting expressions 

then implies 

(5.52) 
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LM Thus PL, is real (imaginary) if L’-L-M is even (odd). This means that in the 

decomposition of TiMY, TE ,M Eq. (3.11) and appears for i’ - i or 

for i’ + i but not for both i’ = i and i’ # i. 

(TLM’ TLM 
’ )y =I f p;y lrL,Mf (-l)L’-Li- “‘T;,d 

L’=IM( 

l?or M = 0 we have TLo = TLO and therefore 

PLOY) t t = Y, TLO =TLOY t = (-1) 2s TLOY 

Consistency with (5.52) now requires 

pZrp =Oif L’ - L + 2s is odd 

Furthermore 

(pifilj =kr(TLMY Tf L,Md* = (-1)2s p;lM 

(5.53) . 

(5.54) 

(5.55) 

(5.56) 

LM and, in particular, pL must be real (imaginary) if 2s is even (odd). Thus consistency 

with (5. 52) also requires 

LM 
PL =Oif2S-Misodd (5.57) 

For low values of S the restrictions (5.52), (5.55) and (5.57) are often sufficient 

to limit the decomposition of TkMY in terms of TE,M to only one term, as can be 

seen in Eq. (3.26) and (3.27). 

We would also like to derive here Eq. (3.13) for TLM,-M 1 0. For this purpose 

it is convcnicnt to use ISq. (3.9) to generate TLM, 2S 2 L > M 2 0, from T 
LL’ a 

positive multiple of (S3 -I- iSI,” . Let us assume that for a given M > 0 we can write 
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. 

TLM in the form 

TLM =“z(S2) (S3 + is,,” (5.58) 

where :Vr (S2) is a real polynomial in S2 of degree L-M. Then Eq. (3.9) gives 

T LM-1 = [(IA-M)(L-M+l)l -m E(Spil) [s(s+l) - s; - s2] 

-&fp2) - M(M-1) - Si + (2M -1)S2 II (S3+iSl)M-1 (5.59) 

M-l Since the polynomial multiplying (S3 + iSl) in Eq. (5.59) is real and has degree 

L-M+l, Eq. (5.58), valid for M = L, can be obtained for all M 2 0 by iteration. 

Now let us assume inductively that for a given positive integer v a product of 

the form c#’ (S2)(S3+ iSI)” can be put into the form 

E Pv;S2), (S3 + is11 7 + 
if ,# ‘(52) is any real polynomial of degree v ’ < v and where Pv’(S2) is also a real 

polynomial of degree v ‘. (Clearly this can be done for v = 1.) But then for v’ = v 

we have 

9” (S2)(S3+ iS,)M = 
[ 
+H(S2),(S3+iS1)M 

1 E/’ + 
+ $ c (S2),(s3+is1) “I 

(5.60) 

(5.61) 

M (S3 + is,) 1 [ + + i 9’ (s2) -9 (S2-M) (S3 + iSl,“” 1 (5.62) 

where l/2 E Fv(S2) -H(S2 - M) 1 is a real polynomial of degree v -1. Hence, by 

induction on v , Eq. (5.60) can be obtained for any v’ 1 0. Given Eq. (5.58) we can 

‘therefore write Eq. (3.13) 

TLM = 
M (S3+iS1) 1 (3.13) + 
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where P M L is a real polynomial of degree L-M, M 10. Since TLM = (-l)M TLeM 

we also have 

TLWM = P;(S2) v (S3 -iSI,” 1 -I- 
The uniqueness of the 

2S+ 1 - l!I matrix elements 

that L ,< 2s. That PF(S2) 

(5.63) 

on the sign of (-l)L-M, follows 

procedure for generating TLM 

L-M + 1 coefficients in Pr follows from considering the 

between eigenstates of S2, <m2 + MITLMlm2>, noting 

must involve only even or only odd powers of S,, depending 
L 

from the observation that, as a consequence of our 

via commutation ((S3 A iS1) are symmetrical matrices), 

(T ,eLMf = (-l)L-M TLM (5.64) 

This behavior must be consistent with Eq. (3.13) in which the antisymmetrical 

M matrix S2 appears, thus restricting PL to be even or odd. 

It is interesting to note that the polynomial PF(S2) is not, in general, a simple 

multiple of the corresponding associated Legrendre polynomial T L-vi 

although the two are in many ways similar. 
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FIG, 1--Helicity coordinates for incident particles A, B and final particles 
C, D. The 3, l-axes always lie in the reaction plane while the 
2-axis either points into the plane (dotted line) or out of the plane 
(arrow). 


