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ABSTRACT

The problem of translating symmetry properties of the helicity
amplitudes for two-body scattering into concise predictions for polari-
zation experiments is discussed extensively. Particular attention is
given to the asymptotic symmetries at high energies, which are char-
acteristic for a Regge pole exchange model and which are associated
with J-parity and G-parity exchange in a crossed channel. The idea is
developed that the symmetry operator, as a matrix in the helicity space,
"maps' one polarization measurement onto a superposition of other
polarization measurements. Using this fact a systematic procedure is
presented for separating different parts of the amplitudes which are
even or odd under a symmetry. The procedure applies for any spins
of the particles. To make the paper more complete and self-consistent
a discussion of the density matrix formalism with particular emphasis

on the choice of coordinate systems and phase conventions is included.
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1. INTRODUCTION

Recently the experimental techniques for performing polarization measure-
ments have becen greatly improved. In many laboratories equipment for polarizing
targets or photon beams and for measuring the recoil polarization of nucleons is
now or will soon become available. Thus it can be expected that in the very near
future a deeper look into the details of strong dynamics at high energies should
become possible.

Given this progress in experimental technique, questions naturally arise as
to what in‘ormation can be obtained irom a particular type of polarization meas-
urement or what is the relevance of a possible experiment to current high energy
dynamical models. Often theoreticians, when asked questions by their experi-
mentalist friends, find it hard to give a concise answer.

In fact there have been relatively few efforts made to answer these questions,
and most attempts made so far onrly consider special situations. Thus F. Cooper
emphasizes in a recent series of papersl the uscfulness of linearly polarized

oe of

o

photons in photoproduction experiments as a "parity filter" for the exchan
particles in the t-channel. These results are a generalization of a statement by

P. Stichel, 2 who first observed that in single photoproduction linearly polarized
v's can be used at high energies to separate natural from unnatural parity exchange
in the t-channel. Similarly, R. L. Thews3 analyzed the information obtainable
from measurements with polarized photons at high energies. I'or more general
cascs J. P. Ader et 51_1_.4 also considered how contributions to the diffcrential
cross section from the natural and unnatural parity parts-of the t-channcl
amplitudes can be sepurated. Three years carlier E. Leader and R, C. :S‘l:msky5
discussed how measurcments of spin dependent pafumctors in N-N scatiering
provide critical tests for the Regge pole theory.
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The main difficulty in a general discussion of high energy polarization mecas-
uremenfs stems from the fact that at high encrgies no simple systematic pro-
cedure is known for stating phenomenological properties of dynamics in a model-
independent way. At low energies such a tool is given by the partial wave expan-
sion in the direct channel, but at high encrgics this technique is no longer useful. 6
Thus at present a discussion of high energy experiments has to be based on our
experience with some of the more successful high energy models like the Regge-
pole assumption. In this way model-dependent assumptions unfortunately enter
into the discussion from the very beginning. The discussion presented here, like
those cited above, assumes that the dynamics at high energies are easily repre-
sented by amplitudes associated with sets of quantum numbers in the crossed t-
or u-channel. Peripheral models with absorption correction or the Regge-pole
assumption are the best known realization: of this idea.

In these models the leading order terms of certain ampiitudes are characterized
by the quantum numbers of the crossed channels, such as the J-parity. Thus under
dynamical assumptions of this sort one can expect, at least in leading order, strict
selection rules for polarization measurements of any kind. It is our feeling that
this fact and its practical consequences deserve a more general treatment. We,
therefore, coﬁsider the two theorems presented in Section 4 to be the principal
result of this work. These theorems allow a general classification of experiments
at high energies with respect to J-parity and G-parity exchange in the crossed
channel without any restrictions on the spins of the particles. We also want to
emphasize that the general properties of polavization experiments can be derived
easily by using simple algebfaic propertics of the S-matrix (in leading order) and
do not need the detailed calculations presented in some previous works. Because

of its generality, it sh. ald be possible t extend our method to include any new
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criteria which may be proposed to dynamically distinguish different parts of the
amplitudes at high energies.

A large part of this paper is concerned with the general theoretical treatment
of polarization measurements, since the appropriate methods are widely scatf('red
in the literature. Thus we present in Section 3, the density matrix formalism
including a discussion of parity restrictions and the consequences of time rever-
sal invariance. In Section 3.C we particularly draw attention to the fact that
there is a simple redundancy whereby different experimental set-ups obtain the
same information. Thus one can obtain the differential cross section in a very
complicated way by measuring the polarization in the final state for a polarized
target and beam. But this redundancy also provides in other cases a practical
advantage. Section 4, the main part of this paper, contains the two theorems
which allow one to classify all polarization measurements according to the dynam-
ical principles introduced in Section 2, Finally, Section 5, which is an Appendix,
presents details of the helicity formalism with particular emphasis on phase con-
ventions, the observation of which becomes vital when one is deailing with polar-
ization effects. Of course, for direct experimental applications, it is necessary
to have more explicit results. Thus, since this work was largely motivated by the
need for interprcting polarization measurements which can be made at electron
machines, a paper is being prepared in which the polarization features of photo-
production will be discussed in detail.

Notations and Conventions

We end this introduction with an explanation of our basic notations. In any
channel

A+B—C+D (1.1)



of particles K with spin SK,helicity AK’ parity Ny Mass m and momentum 'OIK,

K
we denote the helicity amplitudes of Jacob and Wick7 (hereafter referred to as

J.W.), in the c.m. system of (1.1) by
f . (W, 0, $=0)=f (1.2)
where we use the abbreviation

Ap=(AqsAp)s A=A Ap) (1.3)

In (1.2) W is the total energy, 0 and ¢ the scattering angles of the particle C. In
this paper ¢ is in general ﬁxed: ¢ = 0, so that the reaction (1. 1) takes place
always in the (1,3; plane. In the definition of the J.W. two-body helicity states,
the particle with label 2 has an additional helicity dependent phase factor (see
(5. 13)). To fix this phase factor we always assume that particles A and C have
the lable 1 whereas B and D have the label 2. It is occasionaily convenient to
note that the added phase for particle 2" may be reproduced by a rotation of the

single particle state through = about the particle momentum. We also introduce
and the half-angle factor

En (8) = </§cos 0/2)””’?" (\/E sin 0/2)"'7““' (1.5)
i

We shall denote
m = Max ([Al, |#l) . (1.6)

' Finally we make the convention that the leticr v in expressions like (~1)J—V be-
comes 1/2 if J is an half integer; otherwisc v is zero, so that (—1)‘1_V is always

a real number.



Throughout this paper we shall use the following conventions to define an
orthogonal coordinate system in the center-of-mass (c.m.) system or the rest
system of a particle K: .

1. c.m. system: The three-axis (polar axis) is parallel to '(IA, the two-
axis is parallel to (EIA X E;’C), the one-axis completes a right-handed coordinate
system.

2. rest rystem of particle K: As an intermediate step we first assign to
each particle in the c.m. system three orthogonal"'helicity axes' (Fig. 1). The
choice of these axes is naturally determined by the J.W. prescription for con-
structing two-body helicity states (with ¢ = 0) from states at rest. The three~
helicity axes will be pointing in the direction in which the particle moves in the
c.m, system, i.e., is parallel to (Q.K)c.m. . The two-helicity axis for particle
"1" shall be identical to the two-axis of the c.m. system, while for particle "2"
it shall be the reflection of the c.m. two-axis. This inversion of the two-axis for
particle '"2" expresses our comment above concerning the added phases for particle
"2", The one-helicity axis is then chosen such that it completes a right-handed
frame. Finally, we obtain corresponding axes in the rest frame of the particle
K by applying a boost in the direction ch.m_ » Which brings this particle at rest.
We shall refer to these axes as the "helicity frame" following common usage.

Finally, we define in the rest system of particle K a moving frame, the cross-
ing frame, usually also called Gottfried-Jackson frame, 8 which we shall need later
on in crossing from the t- or u-channel to the s-channel. Let R?(XK) represent
a rotation of the rest frame axes {AK} in the rest frame of particle K through the
angle XK about the i~axis. We denote the helicity {rame axes by {HK}.. Then for

crossing from the t-channel the crossing frame axes are

{JK} o (-XK) {4 (1.7)

t 2 t
K =A B,C,D.
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while for crossing from the u-channel we define

{Jff} ‘QD m r (—xff) €DK o {e} (1.8)
where
R(m ifK=K.,, K
KIKZ,K 3 r Xy
R, (1) = (1.9)
1 if K # K K,

Wifh our choice of the particle labels in Section 4, extra helicity dependent phase
factors appear only in the crossing relations from ;che u~channel. This has as
consequ¢.- ze the extra rotations R3 around the 3~-axis in the definition (1.8) of the
axes {JI; } The crossing angles X i{ are given by Trueman and Wick9 and the
angles XIu< are the corresponding angles after interchanging particles C and D.

These angles are discussed in detail in Section 4A below.



2, BASIC PHENOMENOLOGICAL CONSIDERATIONS

Most phenomenological models in high energy physics describe a given reac-
tion very simply in terms of exchanged particles or resonances like in the isobar
or peripheral model. In some cases like the Regge-pole model the exchanged
system is of a more complicated structure. The basis for these concepts is an
identification of the dominant parts of the amplitudes with sets of quantﬁm numbers
belonging either to the reaction considered or a cross reaction. Therefore a
perfection of our ability to separate parts of the amplitudes, which are charac-
terized by sets of quantum numbers, would be the basis for an improvement of
present day models.

To isolate those parts of the amplitudes, to which only certain internal quantum
numbers like isospin can be ascribed, one usually has to combine the amyplitudes of
reactions with particles in different charge states. To isolate those parts, to which
only certain total angular momenta, parities or signatures can contribute, the
experiment itself has to be refined by exploiting the polarization effects.

The possibility to relate different reactions is a consequence of the substitu-

tion law, which states e.g., in photoproduction that the amplitudes for the reaction

N1 + 'y-"Nz + m,  s~-channel (2.1)

are suitably chosen analytic continuations of the amplitudes for the crossed reac-

tions

T+ y—N, + '1\71, t-channel (2.2)

or

N +'y-*-ﬁ

9 + 1, u-channcl (2.3)

1



It is therefore tempting to use as in the Regge-pole model the knbwledge of the
dynamics in the crossed t- or u-channel for a phenomenological description of
the dynamics in the s-channel.

We arc thus confronted with the question of finding a set of amplitudes, with

which our phenomenoclogical assumptions can be conveniently expressed. Let us

first consider the usual parity conserving amplitudeslo’ 11 for the reaction (1.1)
+s _-v
- r m
£y L (W2 = £ A (0)E, o (W,0)+a(-D7 T mm (-1 "¢p
fi fi i
X éA A'(‘R'-B) fA _;\. (W, 9)
fi f i
- Z (3+1/2) |e [ CRATNLE ey, (@) FJ",‘(i) (W)]

zZ =¢cos © (2.4)

The quantities F‘X; N
i

between o and the parity P is given by

are the parity conserving partial amplitudes. The relation

p=o(-1°7" (2. 5)
The functions 'eiiu(z) are polynomials in z with the following symmetry property
]
J-m J+ J- J-m J-
-z) = (-1 ~z) = - (-1 2.6
e =TT @), e (2 == (DT e (@) (2.6)

Since we do not need the precise definition of the F's and e's, we refer to Refs.
(10) or (11) for further details on these quantities. From (2.4) and (2. 6) it

follows that one can easily separate the parity P = +1 contributions from the



P = -1 contributions by forming the linear combinations

f{ZAi(W’Z) +o(- 1)m--V 'foAi(W,—z) = Z (J+1/2) [eiju(z) Fgfrz'i(m (1i0'(~1)J—V)
J

+ ei,—“(z) Fif Xi’(W) (110(-1)J"V)] (2.7

From the point of view of the Regge-pole model one would even like to go further

and to separate the amplitudes with different signature in the combination (2. 7).

But in general there exist no kinematic symmetry operation, which could help to
separate different signature amplitudes. Only asymptotically is such a kinematical
separation possible. Also the combination (2.7) of amplitudes has the disadvantage
that it relates amplitudes at different angles and is therefore not very useful. For
this reason one usually works with the parity conserving amplitudes (2.4), which
contain both parities P = +1 and which have relatively good analyticity properties. 12
For eur rather kinematical discussion good analyticity properties are not so relevant
so that the half-angle factors £(6) introduce unnecessary complications. We re-

place therefore (2.4) by the definition

o ; m-g SA+SB—V
f (W,z) =f (W, 0) +0o (-1 n, M. (-1) f (W,0) (2.8
AGA, A, X i A B A-A, )
where
£ (m-0) Atp A-p
1’ & = lim Agdy - (1+z)l 2 |<1-Z>‘ 2 l
B gt gAfAi(O) gz L2 1+z
2 2 Atp-m

(2.9)
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We shall refer to the amplitudes fX- A as "asymptotic parity conserving amplitudes."
f'i
In the limit z — %o, which occupics most of our interest, they are easily related

to -f—X-f’ A because of the factor §>\’u in the definition (2. 8)

fAfA”—”———”fA A(O) fA A (2.10)
1 Z 3D

Using the explicit form (2.9) of EA , One can write (2. 8) also:
?

S .+ +S >\
o -v A TA
(W, 0) =f (W, 0y +o(=1) " m M (-1 w,0) (2.8
A0V 0) =Ty g (W, 0) a1 my 7y (D) - pWe ) (28

This form will be useful later on in Section 4.

The amplitudes 17 A jL are useful if the reaction proceeds via the exchange of
f
an entity with definite qua.ntum numbers SR and nR . Under this assumption the

helicity amplitudes fA A obey the relationship

£

S,V S,+tS -v
o~ 1 R A B IRt
fp A (Ws 0 8 ()T 7y 7 (-1 Y Ty, (W0 @1
1 .
. I 11,13 e g s
in the limit |z]—« as has been discussed several times. This limit will be

needed if one continues the amplitudes into the region of a crossed channel. The

limit (2. 11) holds also for the exchange of a Regge pole, provided the factor
S,,-V

(-1 is interpreted as its signature. Now, if Eq. (2.11) is true, then it follows
from (2.8) or (2.8") that the leading order term in fA A is kinematically suppressed
S —v i

for o= - ”fIR (—1) . We note that the relationship (2. 11) is a consequence of the
relation

b S v S,+S_-v S

SR R . A "B R

A1 A(W) 77 -1) f)ATIB(—l) I‘AfAi(W) (2.12)
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for the partial amplitudces, FIJ\ A which is truc if in the partial amplitudes with
1

angular momentum J =S_ only one parity 'r)R dominates. Finally one necds also the

R
asymptotic relation

2l oo s ~ _H ] — - 3
2] pdy (O R & G T, (0) =T, ) (2.13)

to derive (2.11).

There are situations where a selection rule enforces the vanishing of some
couplings of an exchanged particle. Then (2.11) is fulfilled either trivially, if
f Af Aiz 0, or no longer true, if chel* effects become important, which are not
dynamically suppressed. The vanishing of certain couplings as a consequence
of G-parity conservation appears e.g., for the nucleon antinucleon system NN,

which we want to study in Section 4. If lp,I; J M)\lxz) denotes a NN helicity

state in the c.m. system with definite angular momentum J and isospin I then

+
Glp,I;J M, Y = (-1 |p,1;J MA, D (2.14)
172 2”1
Therefore, the state with definite parity
S 1+ SZ

p,I; IM, 7\17\2>i = Ip,I; JM,)\17\2> = M 7‘)2(-1) ip’I; IM, _)\1_7\2>

=[P T IM, AR, D # [0, T T2 A, > (2.15)

575 — J 1;1) <A1">‘2>
("’11 772(—1) = +1 for NN statc) is an eigenstate of G with G = (1) ™ (-1)

Since the parity P of (2.15) is P = & (—1)J one obtains the relationship

1LY gy - N
- PG =2 (-1)< 2 > <7\1 A2>= [P(—].)J]Oﬂl AZ) (2. 16)



There follow some powerful selection rules from (2.16) {for the coupling of the
NN system to thc mesons 14
1. PG(--l)I =-1: only states with P(—l)J = -1 and Ay = Ag are possible.
(Examples: 7r‘, B, 1.)
2. P(}(—l)I =+1: (a) P(—l)J = -1 only Ay # Ao is possible, (Examples: Al)
(b) P(—l)J = +1 no restriction on A's. (Examples: p, o, ¢,

A,, f, f', Pomeranchuk.)

2,
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3. DENSITY MATRICES AND OBSERVABLES

3A. General Results

In order to account for th_e‘many degrecs of freedom introduced by the spins
of the particles of any channel (1. 1) an adequate formalism is necessary. Let us
therefore introduce in any frame spin density matrices pi and pf for the initial
and final states with fixed momenta EIK of the particles. The matrices ‘pf and pi
are related by the reaction matrix F: pf = FpiFT, which relation is known as

von Neumann's formula. More explicitly one has in the c.m. system

-

do *dp = qy * 4 =0
on L@ = Fa W0 Oy g @) Tl (W, 0 (3.1)
Ic £ it i

The matrix elements of F are then the helicity amplitudes of J.W.

Pagh, W0 = Hp g (Wo0,6=0 )y (W.0) =17 ) (W.0,9=0 (3.2

For more details we refer to the derivation of (3.1) in Section 5B.
In the initial state we assume both particles are uncorrelated. Then pl is the
direct product of the density matrices for each particle A and B

pt=ph @ 0P (3.3)

. s A,B. .
As usual we shall assume in any frame a decomposition of p"* ™ into a polynomial

of the spin matrices Si of the rest frame. So we write {for a nucleon

(-(I) \‘/‘l— [14171 IRRNCCAREN .5}

o

_oN, N
Op *

N N ‘
Py O1 * Py 02 + Py ()3 (3.4)
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15
where o, = ZSi arc the Pauli matrices. The form of this decomposition is inde-
pendent of whether the nucleon is particle Y'1" or 2", For a spin 1 particle we

write similarly
Ke o, L dg 5 D 1
p () —po\/gI+ pl\/z.Sl-* Py \/—é S2+p3\/‘:283

1 /.2 -1 -1
T (35 -21>+p (--)(s S.+S.5.) + p <——)(s,s +8.5.)
20 72 %52 23\ 75 ) F2%* 535 * Par ) 2517 1%

* Py \Tlg (qg - Si) T Py \‘/‘% (S35, + 8453) - (3.9)
The convention for the signs and normalizations in (3.4) and (3.5) are in agreement
with the rules for the general spin case given below.

It is possible to assume the decomposition (3.4) and (3.5) in any frame always
with the same real, independent parameters Pp> Prgr which are the components of
the tensor polarizations in the rest frame with respect to the axes introduced in
the Introduction. The spin matrices Si have in this case to be understood as the
representations of certain operators Oi’ the representations of which in the helicity
basis reduce always to the standard rest frame spin matrices Si’ with S3, S1 real
and 82 imagina%‘y, S3 being diagonal,,7 In Section 5C we shall justify this remark
in detail and also write down the operators Oi explicitly. With this interpretation
of the decomposition (3.4) and (3.5) it is also possible to study certain symmetry
properties of their individual terms. We shall do this in our discussion of the
restrictions following {rom parity conscrvation.

For a mzl;slcss particle like the photons we cannot boost to a restframe. But,
since only two polarizations are possible, one can assume an expansion of the spin

. . . 15
matrix in terms of the Pauli matrices

—lf(l—ﬁcoszfﬁ(r

2

il

Y, - 0w ,
p'(4) |~ Lsin 2¢(r2+00'3)

= O + Loos 2 0Y + Lsin 2 OF + ¢ OF (3. 6)
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The expression (3. 6) refers to a Standard frame, for which one chooses cither the
c¢.m. system or the laboratory system with the 1-axis in the reaction plane. The
constants ¢ and £ denote the linear and circular polarization and @ is equal to the
azimuthal angle of the polarization vector mcasured in a right-handed system with
the photon momentum as polar axis. For a more detailed discussion we refer to
Section 5D.
Since in the following only very general properties of the expansions of the

type (3.4), (3.5) or (3.6) are used, we adopt a unified convention. In general we

shall write an expansion of a single particle spin density matrix pK as

K
=200, (3.7
04

where P, denotes any of the components of the tensor polarizations and Oa any
corresponding spin matrix. We shall refer to Ooz as the observables and assume

that the matrices Oa are hermitian, linear independent and orthogonal

Tr 0 O

= ; 3.8
yoyt T Oy (3.8)

The task of constructing (2S+ 1)2 such operators to describe a particle of

16,17

(arbitrary) spin S has been discussed by several authors. Following their

work we form 'polynomials TLM in Sl’ Sz, 83 which transform under rotations

as the spherical harmonics YI;J/[ requiring according to Racah18

. 12
[si, ILM]*TLM:& . [(L+M)(L:LM+1)] (3.9)
and
[sz, TLM] =MT, (3. 10)
for S_i = (S3 + iSl), M=-1, -I+41,..., Land L. € 2S. We should like to

oint out that our choice of the 2-axis for "quantizing" M, rathcr than the 3-axis
p A
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as in the case of the particle spins, provides considerable simplifications in the
work below where rotations around the 2-axis play an important role. We deter-
mine the overall phase of T

by requiring that T be a positive multiple of

LM LL
N : . ‘ - T . .
(S3 + 181) and determine the scale by requiring T]:‘(TLL T L) = 1. Given TLL
a B T = — M
one can apply Eq. (3.9) to calculate the other TLM" One also has TLM (-1) TL-—M'
Finally, for each L we obtain 2L hermitian matrices
11 t
TIM "7 (TLM + TLM) (3.11)
and .
2 1 t )
TS =—— (T - T (3.12)
LM ; ‘/5 LM LM

1
> ith t i =
for L 2 M > 0. Together with the 2S +1 matrices TLO TLO

hermitian we then have a suitable set of (2S+1)2 orthogonal matrices for describing

which are already

a massive particle of spin S. We will not write explicit forms for the TLM here,
but note that for M 2 0 they can always be cast in the general form
M .o M
TLM = [PL(SZ)’ (S3 + 1Sl) ]+ (3.13)

where Pll\:[(sz) is a unique real polynomial of degree (L-M) in S, and is either even

2
or odd. Tor S =1/2, 1 these TiLM just give the familiar set of observables in (3.4)
and (3.5). A dérivation of Eq. (3.13) is included at the end of Section 5E.

The decomposition of the two-particle spin matrix (3.3) can be written in the
manner of (3.7) as

i A BLA o OB 3.14
p Z;ﬁpapﬁOa@Oﬁ ( )

TFor the spin density matrix of the {inal statc p~ we perform again a decomposition

in terms of the dircet products O(; ®O§)

ol = Z PC’ Do%z»o5 (3. 15)
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But this time the cocfficients P’():, é) no longer factorize in general since the spins
of the particles will be usually correlated.
From the orthonormality relation (3.8) one obtains

CD_ Co D f]
s Tr[Oy@Oa P . (3.16)

In practice we are not so much interested in the quantities Psg which contain the
dynamics of the reaction together with the information on the initial beam. To

separate the dy.:amical information from the input data we write

CD_Z CD,AB A B

Pys ~ Ct Vs 0 Po Pg (3.17)
where we have now
CD,AB _ C D A B .t
M-y8,ae/3 =Tr [07®08 F O, ®OB F :]
3pCD
= ———Aﬁ—g (3.18)
dp._. dp
a B
We shall refer to M in the following as the tensor polarization matrix.
We remark that the following terms of (3.15)
e (09)
0 Cc,D D _ D D_ D
—— 2. Py’ Op = > P Oy =P (3. 19)
Tr(p) 3

define the density matrix of particle D alone in its helicity rest frame. If D is
unstable and decays into two particles then the angular distribution of the decay
particles in the rest frame of D as well as the angular dependence of their possible

- : _ D . , :
polarizations can be uscd to determince the cocfficicnts P in (3.19). The task of

)
. - . . . 17

extracting such cocfficients has been discussed in detail by Jackson. We only
notc herc the simple casc of an integer spin particle D decaying into two spinless

particles, which is nceeded for the p—27 decay. If we usc the mulrices T LM of
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(3.11) and (3.12) for the observables O? then the coefficients PfM for L even are

simply related to the coefficients of Re YLM(Gd, qbd) and Im YLM(Gd, ¢d) occurring

in the (normalized) angular distribution WD of the decay products:

et 5 o4 Q 5 2441 o
d D (2j+]) 1
an W07, ¢) =(-1) S (Lo|S.S.00) P
f oy Viam(2L+1) [%p% V248 (1-V2) LM

LM
(3.20)

i

where (mlSDSDOO> are standard Clebsch—Gordén\coefficients.

3B. Restrictions Follov-ng From Parity Conservation.

To discuss the restrictions of parity conservation on the tensor polarization

matrix M (3. 18) we consider reflections Y in the (nl, n3)—p1ane, which are perpen-
- e—lﬂ‘nz' d

. P

Under this symmetry operation the reaction matrix F is even: F = YFYT or mor.

dicular to the reaction plane: Y0 P, where P is the parity operator.

explicitly

C D At

B
F 7\=Y )\IY 'F'?\'A')\'Y YT

AcrpAals  Achc AprAb AcAp*ats Aata BB (@20
In the basis of the helicity states the operator Yop become the matrices

Y = —inN(rz, + i'r)No-2 for a nucleon which is particle "1", "2", and Y = -0y for a
photon as showﬁ in Section 5A. Therefore under the reflection Y the observables

0, of the nucleon transform as (YN = —102)

N{(N=Ny_Nf (N N _ N N
Y (OO,() )Y —(OO, 01,02, 03) (3.22)

This reflection property of the pseudovector polarization is evident from a geomet-

" rical point of view. The transformation law of the observables of the photon are

(Y = _(Tl)

Yl &Y 'YT:<’Y Y oY -V
Y (oo,o_)Y oY, o}, -0}, -0}) (3.23)
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To understand the result (3.23) geometrically one has to remember that Og repre-

sents the circular polarization, which therefore changes the sign under the reflec-

tion operation Y, and that O'])_' and O%’ are the two observables of the linear polarization.

Now since under a reflection the azimuthal angle @ has to be replaced by (7 - @),
it means that O'{, the expectation value of which is proportional to cos 2¢ , does
not change sign whereas OZ, the expectation value of which is proportional to

sin 2@ (see (3. 6)), does change sign.

The observables TII_.M introduced above for the generdl massive spin case have
-imS

a simple symmetry under Y = ne 2:

o

i ot i
Y Ty Y =7, Ty (3.24)

with ™ (—1)M, which follows from (3.10). This fact is a consequence of the

particular choice for the quantization axis7 of the tensors TLM'

Also, since Y commutes with S, the product T, ., Y, or YTTLM, is again a

2’ LM

superposition of T M with M' =

Ll
E pL, Ty (3. 25a)
L'=|M|

In general we shall write
K K K "
0, ™= P10t (3. 25b)

In Section 5 we show that the constants pll'}:/[ are individually either pure real

or purc imaginary and, further, that pi"}w

odd or if L' = L, and M + 28 is odd. Thus multiplication by Y maps the set TlLM

essentially into itself with little or no mixing. In particular, we have for the

must vanish if M=0and L - L' + 28 is

nucleon (as particle "1") (Y = -inNcrz)
N N\ N _ N, N . N _N
(00,...,03)Y -nN(Jr-loz,+03,+100, 01), (3.26)
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for the photon (Y = -~ crl)

Y YNy =(+07. +0Y. -i0Y. +i0Y
(00,...,0 )Y (+01'+°o' 103,+102) (3.27)

and for a spin 1 particle <Y = —77-—1-— (O0 + \/504))

V3

1 .1

7(0gre-,0g) Y == 3 (04 V/80,)
- 0,10, -i0, 3(\/—o (3.28)
-i0g, i0}, - Oy, - Og .

We assigned the numbering of the observables according to the order given in (3.4) -

2
1

crucial for showing the equivalence of certain polarization measurements.

(3. 6) so that e.g., for spin 1: O \/—< 2 -5 ) These mapping relations are
Applying now the parity conservation condition (3.27) in the expression (3.18)
for the tensorpolarization matrix M to replace F and FT one obtains
MEDAB oy |yt (oc @02 yry! <0A® 0B> YF!
v&,apB v 3 o B

_ CDA B . CDAB
—wyﬂ'sw g M)’B,G’B (3.29)

by using the parity transformation properties (3. 24).
From the last line in (3.29) the important result follows that only those tensor
CD,AB

polarizations M V8, ap are nonvanishing, where the product of the parities . of

the observables in the initial and final state is even

A C D

75 _
25T =1 (3.30)

That is the gencralization of the familiar statement for the (7 ~ N) final state that
the polarization of the nucleon has to be perpendicular to the rcaction plane if
parity is conserved and if there is no polarization in the initial »..ite. In this case
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one has

ABCD ., 6 ,.. N T
ﬂawﬁ 7r77r8 =1-1 ﬂ'y T
N
= 7 3.31
y (3.31)
independent on the nature of the initial particles. 7rN =+ 1 only for O 0 and O 9

according to (3.22). Many other similar statements can be derived from the
above general rules (3.30).

3C. Mapping Relations

_ Applying once more the parity conservation condition (3.21) in (3.18) to replace

this time only F, one obtains

CD,AB T/, A B\ .}
M'ys,ﬂlﬁ =Tr [(O ®08)YFY <0a®OB)F ] (3.32)

One can use now the mapping relations (3.26)...(3.28) or in general (3.25) to

obtain the following relationships between different types of experiments

CD>AB x p* _CD,AB
Zprp8 ot B (3.33)

'YS aB IP 1 Pﬁr 'Y'S'O"B'
where the i:dices a',8',y', §' and the factors pg, (real or imaginary) have to be
determined by inspecting the relations (3.26)...(3.28) or (3.25). As long as the
particles A, B, C, D represent only pions, nucleons or photons as in pion photopro-
duction the sum in (3.33) extends always only over one term with our choice of
observables OIK{. That for our set qf observables, this statement remains true in most
situations if particles with spin 1 or 3/2 or even high spins are involved follows from the
discussion after Eq. (3.25). Sincethe matrices Oa are herr-nitian, the tensor-polarization
matrix M (3. 18) has also to be hermitian. Therefore, the product of the p's in
(3.33) can only be imaginary, if Mgg,’yASB actually vanishes. If this product is

real = +1, the resu' (3.33) shows which non-vanishing elements of M are linicarly
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dependent. For example, in photoproduction: Since under the mapping (3.27) one

has
Y Y ={aY oY
(OO’ 03)Y ( 1’ 102> , (3.34)

a complete set of measurements can be done using either circularly polarized or
plane polarized 4's. But if one has done a measurement with an unpolarized nucleon
target using circularly polarized 4's, one has to use a polarized nuclear target if
one now uses plane polarized 4's.

We also note that the relation (3.33) always contain the product of all four
intrinsic parities in the reaétion as a common factor contained in the p's. Hence
from measurements of the left and right side in (3.33) the parity of one particle can
be deduced, if the parity of the other three is known.

It is also interesting to note what happens to the mapping relations (3.33) if
parity is not conserved but the definition of the reflection operator Y is still pos-
sible. Let us assume I contains a parity conserving F + and non-conserving part

F_so that

YFYT=Y(F++F_) YT=F+-F_ (3.35)

Then, in contrast to the preceeding discussion, measurements where the product of

the paritics 7TIK{ of all observables is (~1) also yield non-vanishing results. Let us

f

use for the moment a compact notation where 0'* and 7rf’ ! denote the product of the

observables or parities, respectively, in the initial or final state. Then one obtains

it . =41

}

(Ofl? o'pt! Teof

_medntn olpt o ofr olef
j =T¥|OF, OF, +0T OF

= Tr f(of’Yf) F+(YiTOi) FI - o'y

Tr

~————

hr ('lol) ¢l % (3.36)
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andifvrf-vrl=—1

f

Tr{o'F O'F't =2 Re Tr {0'F, O'F }

=2 Re Tr {(OYY F+(YiTOi) 7} (3.37)

Thus from (3.37) follow analogous mapping reclations to (3.33). From (3.36) it
: 1
follows that a measurement with the set of observables (Of,Ol) and (Of =Ofo )
st

. - ' -'
ol= Y1T01) serve to separate the contribution Tr {Of E, o Fl} . To these terms
the relations (3.33) can again be applied apart from a change of sign for the I'_ term.

3D. Consequences to Time Reversal’Invariance

It is natural to ask whether a polarization measurement can be performed more

simply in the time reversed reaction. Specifically if we assume time reversal

CD,AB _ _
v8, B (W, 6,¢ =0) for the reaction (1.1)

AB,CD
a'f'y' s

action C + D—A + B? All momenta in both reactions have opposite sign. We

invariance, how do we obtain M
A+ B—C + D from measurements N (W, 61" ¢r = 0) in the reversed re-
assume that the axes in the time reversed reaction are obtained from Fig. 1 by
switching the labels (A, B)—(C, D) and 0*—*01‘. We note that the original rest
frame axes go over into the new ones by a rotation through 7 about the 1-axis.

The required correspondence betwecen elements of M and N can be deduced
heuristicly by noting that time reversal changes the vector polarization §K taken
relative to fixed space axes in the rest frame of particle K, to —§K. If one then
adjusts for the difference between these fixed axes and the new axes by rotating
§K through 7 about the 1-axis, one obtains the result, which we derive formally
below,

‘We obscrve that time reversal invariance implies the following relationship
between the helicity amplitudes of the original and time reversed reaction

Ap—A~ALTA
(W ATB7C "D
TATB A"B’7CD

o (W, 0_, ¢.=0) (3.38)
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where N A arc our standard helicity amplitudes for the time reversed
Aty
reaction, with thc axcs chosen as just mentioned. We may write Eq. (3.38) as
well in matrix form
A
5 (-

F=r, (+7r)®r (-m G r M@, Blin (3.39)

using the matrices
{I‘};(:k 7:‘)} = (-1)+>‘8 ' (3.40)
A}\' A}\

which represent rotations through 7 about the 3-axis in the rest frame of each

particle. Finally, using (3.18) and (3.39), we find

CD, A A

MygaﬁB—(Tw) (re)y (7 C (ro)y agyCaD (3.41)
where

Nﬁ? fj? = {(o ®oﬁ) G(OS@O?) GT} ; (3.42)

we assumed the following symmetry properties of the observables OIK{ under trans-

position
tr
(OI;) = TIK{OL{ s TIK{ =+ 1 (3.43)

and under rotations around the 3-axis about the angle = 7

( ) oKrK(wfr foff wll,‘: =+1 . (3.44)

(3.43) and (3.44) arc a conscquence of Egs. (3.11) - (3.13). Sincc the matrix 82 is

. . . . . K K.
imaginary while the matrices for S, and S ) are real (TK w, ) ju st changes the

3
. polarizations S by 8 — -5 followed by a rotation through m about the 1-axis.

The resull (3.41) shows that the tensor polarization matrices for channels related
by time reversal are lincarly dependent and are casily related with our set of observ-

ables, The result (3.41) includes the famniliar statement that a measurement of the
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nucleon polarization of the 7-N system is equivalent to measuring the cross section
with a polarized target, a fact widely used at present in pion nucleon scattering.

3E. A Note on Time Reversal Invariance and Vector Dominance

To utilize some of the above results in a practical situation we derive a rela-
tionship which can be used to apply the hypothesis of vector meson dominance
(VMD)19 to photoproduction with plane-polarized y's. To begin with let us consider
a photoproduction process in which the nucleon target is unpolarized and only the

total differential cross section is measured.

n+vy—p+ T (reaction I) (3.45)
Then, using the photon polarization matrices of (3. 6) we find for this experiment

I
1 do _ . pT,ny pT, Ny
———phI a0 MOO, oo t Lcos 29 MOO, 01 (3.46)

where phI is a kinematic factor (see (5.28)) and

Mgg:gz = % Tr {(1p 1) F(In ® 023’) FT} ' (3.47)

The photon polarizations 8 = 2,3 do not enter into (3.46) because of parity conservation.
Now we would like to use time reversal invariance to relate these measurements

in I to measurements in the reaction

p+ 7T —n+y (reaction IIa) _(3.48)

and then, by VDM, to measuremecnts of the reaction

p+7T —n+V (reaction IIb) (3.49)

where V is a vector meson (p,w or ¢). Applying Eg. (3.41) for time reversal we

find that Mgg’g'g and Mgg’ 3'{ can be found by measuring the usual dil{erential
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cross scction and the linear polarization NI(H” Bg of the photon in ITa, again with
’

the unpolarized target.

(tha)-l dO'Ha - NV PT _ P70y

a0 00, 00 00, 00 (3.50a)
and
’Y’pﬂ‘ =
NI(;l,oo Moo, 01 (3.50D)
We have
ny, prw _ n vy Ila
NOB’00 'rr«{ooézw)lB p
_ n g Y IIa(p 7r> IIaT}
Tr{<OO®OB>G 0, %0y ) G (3.51)
a
TrOO

In the last step of Eq. (3.51) we introduced the density matrix p'Y of the photons
using the definition (3.19). Now according to the VDM assumption the helicity

amplitudes entering into (3.51) (with >"y =+ 1) are directly related to the same

helicity amplitudes for reaction IIb, so that

IIa _ am j Ila
p = ) {p }tr+"' (3.52)
Yo

In (3.52) the contributions of the w and ¢ mesons is neglected (p ~dominance).

PHb is the density matrix in the c.m. system of the final state IIb. The subscript

"tr'" denotes the transversal part of pr, i.e., all elements with A = 0 are

!
p* o
deleted. Using (3.19) to define the density matrix pP of the p-mesons and the

p -dominance assumption (3. 52) one obtains

Itb

Ngggg = 9‘—ng~ (og{pp} ) lif—n—+
’ 7 ir TrOO
1Ib
_ o, vyip P 1 do 3.53
- 2 Tr(Oﬁ{p} )noo — g (3.53)
Y tr ph

- 927 ~



For =0, 1 we have

(07{ }tr>=.l {P} =\/_1_ (fl - 1) V2o, (3. 54a)

Tr (O'{{pp}t) = - \7—% Tr 0'1{0 p}

t

_-1(p P \__ p i
-7 (p_.11+ p1-1> V2 p 1 (3.54b)
r 2

and P11~ P used in (3. 54) are a consequence of

The identities p,, = p 1-1

11

parity conservation.

-1-1

Using now the result (3.50), (3.53) and (3.54) in (3.46) we can relate the photo-

production reaction I with polarized photons to the p-production data of IIb

I Iib
do Qh P am _ do”
a0 = oD V2 TrO, ——'yz (pu 2 cos 2¢p_11> P TON (3.552)
P

Using (3.46) and (5. 28) for the definition of "ph" and the relation TrOY = V2 (3. 6
g ( Y )

p

one obtains phI/ph].I 2 ’I‘rO0 = qrzl/qg' . Thus for pure linearly polarized 4's ({=1)

the result (3.55a) goes over into

2
I b
do _ G o.1 do-
a0 - 3 T o (pll -cos 2@ p—ll) a0 (3.55Db)
B Y

According to Séction 5D @ =0, 7/2 corresponds to linear polarization in the reac-
tion plane or polarization perpendicular to it, respectively. It might be worthwhile
to stress that the minus sign in front of P_q1 in (3.54) and (3.55) is a consequence
of the phase convention (5.9) for the helicity states of J.W. This phase convention
is usually adopted, when quoting results for the density m-atrix pp. In our derivation
we have neglected effects of the extrapolation in the p-mass. TFor an attempt to
treat these effects kinematically in a suitably chosen phase space factor sce the
derivation of (3.55) by Krammer and Schilling,zo who write (3.55) also with the

inclusion of the w and ¢ meson.
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4. RESULTS FROM CROSSING‘RELATIONS

4A. Crossing Applicd to the Elements of M (3. 18)

We now wish to express the elements of the tensor polarization matrix M (3. 18)
in the s-channel by the analytically continued t- or u-channel helicity amplitudes.
This we shall perform by substituting in relation (3. 18) for M the s-channel ampli-
tudes by the crossed t- or u-channel amplitudes using the crossing relations of
Trueman and Wick,9 (hereafter referred to as T.W.). Let us first define a matrix
notation in all three channels, which makes the following discussion as compact
as possible, since only very general properties of the crossing relations will be
used.

The s-, t- and u~channels will be denoted by

A+ B—C + D, s-channel (4.1)
D+ B—C + A, t-channel (4.2)
C + B—A + D, u-channel (4.3)

The corresponding helicity amplitudes are £

t t ,t ¢t u

f (W,0°,0 =0y, £
AcrarApip AMApr AcAp
ties in the three channels (4.1) -~ (4.3) are denoted by the superscripts s, t, u. To

s s ,8 .8’

(W,87,¢" =0),
}1\1C7\D,?\A?\B

(W7, 64,6% = 0). From now on the quanti-

fix the phases of the helicity amplitudes we take as always the convention (see
Introduction) that the first particles in (4.1) - (4.3) are the particles with label 1,
i.e., in (4.1) they are the pair (A,C), in (4. 2) the pair (D, C) and in (4.3) the pair
(C,A). In photoproduction A and C represent then according to (2. 1) the nucleons.
Note that in this case the u-channel amplitudes are derived {from the s-channel

amplitudes by substituting antinucleon indices for nucleon indices. As in (3. 2) we
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denote by FS, Ft, Fu the three reaction matrices with elements

s S t t
{rS} =t . AFY = f

’

{r"} =1 Apys AR :

In writing down the crossing relations it will be convenient to have introduced in the s-channel

al i s s s . §
pa.rt1a ly reflected reaction matrices F( AD) and F( AC) with elements

s S
F =f (4.5)
{ (AD)} AmAs A A
AcrarAprp c'D’*A”B
and
S S
F =f . (4. 6)
{ (AC)} ArArs Ax A
AaAprAchy c’‘D’ *A™B

Finally we need also the tensor polarization matrices of the t~ and u-channel, which

are defined in analogy to (3. 18) again in terms of the single particle observables

OIK{ introduced in Section 3A.

CA,DB, t _ C AN _t{. D B\ _tt
N Y (FH)=Tr [(O'y®0a)E (08 ®OB>F ] (4.7
and
AD,CB, u _ A D) .u C B ut
'L0l5,'y/3 (F)="Tr [(Oa®06)10 (O'y®oﬁ) F ] (4.8)

In the s-channel we usc again the definition (3. 18), but use in the following the

notation _
CD,AB
v, a8

CD,AB

S —_
(F%) = M55

M

for better clarity.
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s
We express M(F ) also in terms of the partially reflected reaction matrices

F(SAD)’ FFAC), (4.5) and (4. 6)

tr tr

\CD,AB B C o (A ) DY" B pst
M S (r)—-TrROY@(Oa) Fany 05) 0 F(AD)J

_ A D _CA,DB

T Ta Ty Noolsp (F(Am) - &9

or analogously
D,AB A _C [ AD,CB
M‘; o T =Ty T s <F(AC)) *-19

In (4.9) and (4. 10) we used the fact that according to our choice the matrices Olf{
are either symmetrical or antisymmetrical (see (3.43)). By means of the notation
(4.9) and (4. 10) it will be very convenient to express the tensor”ﬁolarization in terms
of the crossed t- and u-channel amplitudes.

After these somewhat lengthy preparations we now wish to express the elements
of the tensor polarization matrix M(FS) in terms of the analytic:all.y continued ele-
ments FIc or F° by invoking the crossing relations of T.W. These authors arrived
at a result which is easy to visualize: After the helicity amplitudes, say of the
t-channel, are analytically continued from the physical t-channel region to the
s-channel region, the rest frame states are quantized in a direction different
from that given by the helicity convention (see Section 5). By a rotation of
the states in the rest frame of each particle, these have to be adjusted Lo the ncw
helicity axes. The rotation is ar‘ound the 2-axis through an angle XK. In some
cascs an additional rotation around the 3-axis in the helicity frame through the angle
7 readjusts the helicity dependent phases of the helicity states resulting from the
distinction hetween particle "1 and "2". With our deflinition in (4.1) - (4.3) of the
particles with the label 2, this last rotation will only appear if the u~channel ampli-

tudes are crossed.
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Using the partially reflected reaction matrices (4.5) and (4. 6) the crossing

relations of T.W. can be written in the compact matrix notation

F(SA D) = Dc<xf)T ® DA(Xf)T Fl DD(X?)® DB(X?) (4.11)
for crossing the t-channel amplitudes and
F(SA . pPf (—xf)@ [r‘;(ﬂr) pAf (—xﬁ)]l«‘“ [DC<XS) rg(—ﬂ’)] ® DP’(xf) (4.12)
for crossing the u-channel amplitudes.
The matrices <
{DK})\K?\k = d;}i"k<xi<’ u) (4.13)

are the standard real rotation matrices in the (1, 3)-plane. The rotation matrices
rls{(:mr) in (4.12) were defined in (3.40). For completeness we cite here also the

results of T.W. for the crossing angles XIE ¢
]

A _ 2 2 2 2>_ 2
cos Xt<2ptﬁsl>— <s+mA mB><t+mA mg) - 2m, * L (4. 14)
B _ 2 2 < 2 z)_ 2
cos X; <2qt\/’gsl>~+<s+mB-mA>t+mB mp) - 2m?, - L (4.15)
C _ 2 2 2 2) 2
cos Xt (2pt\/£82>~+<s+mc-mD><t+ mo - my - 2mg ¢+ L (4.16)
Dl [Fe). 2 2 2 2)_ 2
cos Xy (th tSz>——(s+mD—mc><t+ mp - mp 2mD L - (4.17)
where
_ .2 2 2 2
L—mc—mA+mB—mD (4.18)
and
2
2 (2 . /.2 2) 2 2 )
py =\l -2t (mA+mC +<mA m_c> /(4t) (4.19)
_ 2 2 2 2 2) A
qp =\t" -2t <mB+mD>+<mB~mD> /(4t) (4.20)



Si =485 pi = (s - (mA - mB)2> (s - (mA + mB)2> (4.21)
Sg =4s qz = (s - (mC - mD)2> (s - (mC + mD)z) (4.22)

To fix the sign of Xi{ we cite also the result for sin Xi{

. JAB_PaAB% . ™A%
sin Xt = —s'vz—-;— sin Gt ——t—ﬁ-z-?— sin 0 (4.23)
5 t’ :
c,p_"c,0% . , ™c,pPs .
sin X —S—m—;l— sin 9t = —;:17-2;- sin GS (4. 24)
s t

The labels "1" and "2" enter into the definition of the scattering angles Bs, Ou. Thus
to obtain the crossing angles for the u-channel one has to replace the variable and
index t in (4.14) - (4.24) by u. One also has to interchange the masses m c and

m . and to replace Gt in (4.23) and (4.24) by Ou + mor 6 by ¢ + 7. One should note

D
that the crossing angle for a photon is equal to zero.

Some comments to explain the differences in the crossing formulas (4.11) and
(4.12) may be useful: To derive Eq. (4.12) for crossing the u-channel amplitudes
from the oiginal result (4.11) of T.W. one first introduces in the s- and u-channel
helicity amplitudes with the labels 1, 2 of the particles in the final state interchanged
with respect to the definition (4. 1) and (4.3).

SS+)\7\

s s .S .8 cC’™D s' S .,S .S st
f (W7,07,¢ =0)=(1) f (W,9'=9 0 =0)
(4.25)
u! u! A SDﬂw\D >‘A u
w0t = g%y g, = 0) = (-1
f)\ >‘A>‘ }\ ( T, ¢ ) =(-1) f?‘A}‘D’?‘ ?\ (W 0" <P 0)

(4.26)

-33 -



The formula (4. 11) are directly applicable to cross the fu'-a.mplitudes to the
fs'-amplitudes, since now the particle with label 1 in the initial state is inter-
changed with the particle with label 2 in the final state as in crossing from the
s-channel (4. 1) to the t-channel (4.2). One introduces then the rotation matrices

rK (3.40) to take care of the helicity dependent phase factors in (4.25) and (4.26).

Finally one has to realize that the relations (4.23) and (4. 24) apply for crossing the

s ?

1 '
% and £ amplitudes with the polar angles 6'5 = 6% + 7 and 8% = 6% + .
We now apply the relations (4.11) and (4. 12) to (4.9) and (4. 10), respectively,
to obtain the s-channel tensor polarization matrix in terms of the t- or u-channel

amplitudes: Due to this step the observables OIK{ in (4.9) are substituted by

o¥' < pX(x) o DKT(xf) (4.27)
and FfAD) by Ft; analogous substitutions appear in (4.10). As has been noted already
by Gottfried and Jackson8 this result can be interpreted easily if one makes use of
the well known transformation properties under three-dimensional rotations of the
matrices Of{{ » which represent components of tensors made up b3.z the spin matrices
in the rest frame of each particle. The components OIK{ of these tensors referred
to the axes of the helicity frame in the rest system as explained in Section 3A. The
quantities OI:P(4. 27) are then the components of the same tensor with respect to
new axes, which are obtained from the old ones by a rotation around the 2-axis of
the rest frame through the crossing angle X ii Thus we have for the elements of
the vcutor polarization O, K= 1,2,3

oX = R“I(XK) ' oy o' =R, (—XK) ' o5, (4.28a)

Ky K KyK

Ry(X) is the transformation matrix of cartesian coordinates for a rotation of the

coordinate system around the 2-axis by the angle X. For the u-channel duc to the
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additional rotation around the 3-axis through the angle 7 mentioned earlier , Eq.

(4.28a) has to be replaced by

OA" = DA(xA) 1A ry oA xm pA(XAN

4 u
3
. -1f A A A
= Z R H(x2) Wl 0%, (4. 28b)
a'=1 o
B" B/ B B ,
0 =D (Xu)OB p® Z R, oﬂ, (4. 28¢)
c" _ C(C C\t
O'Y =D (X )r (-m O r (M) D ( u)
3
e ~1(,C c
=o 3 R, (Xu) 0. (4.284d)
¥Y'=1 v
3
D" _ D/ .D\.D D D D
o5 = (x2)od b ( = oy Z R 55' wpOn (4. 28¢)
=1

The rotation symmetry factor wff was introduced in (3.44).

Due to the rotation (4.28) of the observables it is convenient for crossing from

the t- or u-channel to introduce new sets of observables GIK{, af{{, respectively, in

the crossing or Gottfried-Jackson frame as defined in the Introduction. The rota-

tions (4.28) carry then GIK{, (%)IK{ over into the old OIK{ defined with respect to the

helicity frame. Thus a measurement of the polarization in the respective crossing

frame is expresscd by the simple relations

CD AB A DNCA DB

M5 g (r% = ¢ o Ts Nou s (FY (4. 29)



for the crossing from the t-channel and

CD,AB ] A C AD CB(FU)

M 5 wp (F) =7, T a'o‘,'yﬂ (4.30)

for the crossing from the u-channel.

The amplitudes Ft and F" in (4.29) and (4.30) are, of course, the analytically
continued quantities. The relations (4.29) and (4.30) will be the basis of all further
discussion of practical results,

4B. Consequences of the Decomposition (2. 8)

In Eq. (2.8) or (2.8") we defined asymptotic parity conserving amplitudes for
an arbitrary channel (1.1). One can as well write this definition in matrix form

for the reaction matrix F (3.2).
F7=F +o(-1)"" rY* @ vP
=F+o(-" v’y F (4.31)

by means of the reflection operator (5.11). In (4. 31) v=1/2, if (SA + Sp) is an
2
half integer; otherwise it is zero. Since (YK)2 = (- 1) K and YKT SK YK,

the matrices FY have the simple property that
oyt e vBl - -1V F%, or YC®Y FT=o(-n'" F (4.32)

These relationships turn out to be extremely useful for the following discussion.
Th.. matrices FC suggest a natural decomposition of the elements of the tensor

polarization matrix into four parts

CD,AB 1 C D) o (LA B) . 0'f
M5 6 (F)— Z Tr[<oy®08)r (oa®oﬁ)r. ]
0,0 =+
Y
-1 Z‘Msg”ﬁg(Fo',FU) (4.33)
o0



Because of the symmetry relation (4.32) the elements Msé)’(;zB(Fo-, FOJ) are non-
’

vanishing only if:

A B c D
oo! = LN '”/3 = (1ry -+ T, see (3.30)) ) (4.34)

where 1rIK{ are the parities of the observables introduced in (3.24). Furthermore,

the hermiticity of the observables OE insures the symmetry relation

CD,AB, o o', . CD,AB o _o* | .
M5 g (F ) =M_5 6 & %) . (4.35)

Thus as a consequence of (4.34) and (4.35) the sum in (4.33) reduces to one or two

terms depending on the value of ng . B

B

1 CD,AB . 0=t1 o=-1 .. A B__
gReM_s'p (F L F ) ifm, - mp=-1
CD,AB
’ B 4.36
My rap ) (4.36)
1,.CD,AB O=+t1 _O'=+ 1..CD,AB, 0=-1 _0'=-1
FMosap L F T e g BB Y

Analogous“to the result in (3.32) one can also show that certain of the non-
1 ]
vanishing elements of M(FU, Fa-) are linearly dependent as a result of the mapping

relations (3.26)...(3.28) or in general (3.25) applied to the observables of particles

Aand B
CD,AB po oo -v —y8 . CD,AB,_o o'
M')’S,aﬁ (F ) I?o-) —_-(—1) o 2 P_)'Y,,a, M'y'a',aﬁ(F y Fo-) (4.37)

,)/!87
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The p's are coefficients, which are analogous to the p's in (3.32) and are deter-
mined by the relations (3.25). In many of thé interesting cases the sum in (4. 37)
extends only over one term, so that (4.37) becomes a simple relationship. Note
that in (4.37) the right hand side flips sign under the substitution o+—-0. If the
product of the parities 7\'2 . 17‘[1’,3= +1, then one can exploit this fact to separate in

(4.36) the oo=0'" = %1 terms by taking the linear combination

MCD’ABﬂ:(-l)-v 2 : p—y‘o‘ MCD,AB

!8! 10t
'Yssaﬁ 7’8' ')/8 ,O!B
lto CDAB o o _1_CDAB il :kl
E 75 wp (F-F)=5M 75, 0f (F ) (4.38)
o=z%1
. A B__C D _
if 1ra wp—'rry-vrs—+1

The results (4.36) or (4.38) if wﬁ . 1r5= -lor +1, respectively, are the basis
ol very simple experimental predictions at high energies, if the amplitudes in the
divect channel ave well represented by the exchange of particles with definite parity
type (2.5) in the crossed channels. This situation occurs in the peripheral or Regge-
pole modcl. Thus, assume we apply the results (4.36) and (4.38) to the t- or u-
channel expressions (4.7) or (4.8). They are related to the observables in tbe
s-channel by the crossing relations (4.29) and (4.30). Hence one obtains from

(4.29), (4.30) and (4.36), if the parities of the observables in the initial state of

the t- or u-channel are negative,

A D 5CD,AB CA DB pto=+l to=-1

L y6 af (F ) Re N Y. ¥ (4.392)
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if ”18). 1rB= -1lor

B

A C "‘CD AB 1 AD CB, uor=+1 _uo=-1
oz T'Y v8,ap (I‘ ) = -?: :3 (F , I ) (4.39b)

if ws . wgz -1. The s-channel observables refer to the Gottfried-Jackson frame

as indicated by the tilde on the M's. (See the discussion in Section 4A.) Also if
we try to apply the mapping relation (4.37) in the t~channel for wg . ﬂg; -1, we
find (—1)—Vt Ey’}?a' is necessarily imaginary so that’ relations result between real
and imaginary parts of N(FH, Ft_) . Specifically, one finds

-V

ot =y Pty = t+ o _t-
i(-1) p'y  Re N ) 'Sﬁ(r ) =Im N'YO!,SB(F y F) (4.39c¢)
and correspondingly for the u-channel
. Yt —ad - u+ -
~i(- 1) p°’,8, Re Ly, g1 B(F )=Im Lys fF ') (4.394d)

Thus one can use Egs. (4.39a,b,c,d) to express the imaginary parts of N(Ft+, Ft_)

and L(Fu+, Fu-) (as well as their real parts) in terms of the s-channel observables
M(F®).

Similarly one obtains from (4.29) and (4. 38)
A §CD,AB Vi Z sy A ~CD,A1§)( s
Ol 'yS af (r * (- 1) p'y'oz 0!' M')/'S,O[' F7)

_1 _D CA,DB to=+1 _t,o=%1
=57 Ny ps(F , F ) (4.40a)

.. D B_ o = ) . - C__.C.,C —a A A_A
if s T =+1, The p's are defined hy Z‘ pt;/, O'y' —O_yY and % pa'oa':OaY )
where YC and Y A are now the reflection operators of the s-channel. Note that

‘ A("lﬂ)

A tton
according to (5.11) Y = YA( - ), where A("1") is the particle ""1" in the
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s-channel and A("2") the antiparticle "2" in the t-channel. From (4.30) and (4. 38)

follows
A %CD,AB, s ™y Sy A §CD,AB
T M'y8,aﬁ (F) = (-1) Z < Pyrat To! M')/S' ﬁ)w )
al’.y?
-1 _C.AD,CB u,0=£t1 _u,o=t
=g 7o Loy T 4 (4.40h)
c. B 254 A DD
if m,, « w,=+1. Here (-1) B —O YAand EP, ,—OBY
y B 28 a' P! o2

A("l") YA(HI)( ]_)ZSA.

Now for |2¢] or lzul——oo in the s-channel, the exchange of particles with any

The factor (-1) arises this time from the relation Y

parity type is kinematically enhanced in Ft’o- or F'7 as discussed in Section 2.
If the leading natural and unnatural trajectories a+,a— are not separated by more
than one unit

Re o™ -Rea | <1 (4.41)
then each Ft’o. or F*7 isin general dominated by one parity type for |z ti or
|Zu| ~—c. Thus one can summarize in the following theorem concerning the separ-
ation of natural and unnatural parity contributions the main result so far obtained
in this subsection.
Theorem 1: Assume that the analytically continued t- or u-channel amplitudes are
dominated in the s-channel by a leading natural and unnatural parity trajectory
obeying the restriction (4.41). Then the observables IT/I, ﬁ in the Gottiried-
Jackson frame measure, according to (4.39), the interference term between the

leading t- or u-channel trajectories if D . pBe 1=t o aC (see (3.30)) or
& B a oy

’ITS . 7%': -1 = '/Tf; . wé), respectively.  On the other hand, the linear combinations

(4.40) of observables separate the leading natural and unnatural trajectorics of the
t- or u-channel if wg C P41 or < - D= +1, respectively.

B Y B
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However, one has always to keep in mind that all these order of magnitude
estimates may fail if the trajectory couplings to the various parity conserving
amplitudes are such that some cocfficients of the leading power of s vanish as the
consequence of a selection rule. For the baryon number N = 0 channel such rules
follow from G parity conservation as discussed at the end of Section 2. Further-

morc one has to be cautious in applying Theorem 1 {o measurements, which are

represented only by terms of the form Im f f*; .1 . Let us assume that only
AfAi AfAi
one Regge pole contributes to £ AA 2S for example the p-Regge pole in pion nucleon
1

charge exchange scattering. Since the phase of a single Regge-pole term is inde-

pendent of the helicities any bilinear form f Ag Alf A% A;

Thus, in general, interference terms between the same Regge poles do not con-

becomes real in leading order.

. % C oy _ . .
tribute to Im £ Af Aif A% A; . The vanishing of the leading order term in Im { Ag A, % A{
is even true in more general models. It is a consequence of analyticity as has been

*
fA

discussed for example by van Hove. 21

4C. Constraints Due to G-Parity Conservation for the NN Systems

In the following we assume that in a t-channel with baryon number zero the final
state is made up by a nucleon-antinucleon pair NN like in the photoproduction channel
(2.2). Then, as discussed at the end of Section 2, G-parity conservation introduces
a sclection rulé, if the reaction proceceds via the exchange of particles with natural
or unnatural parity P = =+ (-l)J. For unnatural parily exchange it was shown that

the helicities ., and A A of the nucleon-antinucleon pair N_, N, must {ulfill the

C C’ A

restiriction A, =+ N if the qumxmm numbers P, G and I are related by PG[(~1)I=?L 1.

C

. . . PN . .
For natural parity exchange only particles with PG(-1) =+1 are possible with no

restriction on the helicities 2 This rule suggests therefore a further de-

C’?\A'

. t,o . R s _
composition of ¥ for o = -1 in order to distinguish in the limit |z, | —« the parts
I & t
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with w = PG(-1} = %1

Fi=trt s T (4.42)

or explicitly

£ t- t-
F. . =F. . & . (4.43)

In the limit lz t'——oo the parts iFt_ are dominated by the contributions with w = £1,

Now there is a matrix W such that

CwEEt = s (4.44)

to distinguish the w = =1 part of Ft_ by an algebraic equation. The specific form of

W = WN ® WN is not unique, but expressed in Pauli matrices we may take VVK = io,

3
so that
W=-0) ®co) (4.45)
or W'K = i0"1 so that )
W= ol ®o) ' (4.46)

This second choice with W' = - WY follows from (4.32).
Analogous to the parity discussion in Section 3B we introduce a W-parity ?rlj

of the nucleon observables

wo wi=%o0 (4.472)
14 v v
or explicitly
- T _ _ _
W(OO’O) W = (OO, Ol’ 02,+03) . (4.47b)
Again we have also mapping rclations
- ~1 P,
OVW ' pu 'Ol)' (4:.4:8(1)
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or explicitly

(0g:OW = (~10,4,0,,-0,,~i0 (4.48b)

o

As in (4.33) we may now decompose the elements N(Ft_, Ft-) in terme
of N(VFY, W'Y and also N(FET, ) = N@E, FO)* in terms of N(YEU, FU).
Using the analogous steps as in Section 4B one deriver the following results, which

we briefly state below

N,DB, t- _t- _ NN, DB w_t- w'_t-
vi,6p (F 2 F )= 508 CE o F) (4.49)

From (4.44) and (4.47) follows a restriction for the nonvaniching elements in the
sum (4.49)

R = wew (4.50)
14 v .

The hermiticity of the observables guarantees the symmetry

NN,DB w_t- w' _t- ___NN,DBw' _t- w_t-*
N,;6g CF » F ) =N 50 F . F ) (4.51)
Thus N
E NLDBWEt™ WSy for ® L% =1
vv,08 v v
w=%1
NN, DB, .t- t- _ ~
N, ;s (F +F )= (4.52)

2 Re N DB*Ipt =Igbsy  gor ¥ L% =1
vv,oB v v

The mapping relations (4.48) yield again

NN,DBw_t- w'_t-

Npeg U F T

y=w7p ¢ N 53( P, F) (4.53)
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where this time we have only one term on the right-hand side. From (4.53) it

follows again that the linear combinations

NN DB t t" ~U ~V NN DB t"'
N 8[3 (F F )+w PP |Nv GB(F )

=2 N, Vrh) for ¥+ % =+1 (4.54)

y is real for

separate the w = 1 contributions. (Note that the product 'b‘z, . ﬁ'f_j

T W =+1.)
v v
Finally for the interference terms of natural and unnatural parity terms
<7TI: . 111;= 18) [133 = -1) one can derive the following identities using (4.36), (4.44)
and (4. 32)

NN, DB, .t

N _t-
2N _8B(F)—ReTr <O ®O F

oy ®op ¥*f)

Re Tr Z (o ®0NWNN Wt 08®OB Ft+T) ﬁ?lj-%1;=+1
w=t1 ‘ ‘

Re Tr E w(oI:@oI;w'NN Wpt= 06 ®0
w=t1

B gtf) o
14 vV

B

(4.55)

where W' = - WY. Thus in the linear combinations

NN, DB ~U . NN,DB,_t NK, DBw_t- _t+
e (1‘)+wp, ;,N,,SB(I‘) Re N, ;'g ( F ,F ) (456

the w = %1 contributions interfering with the o = +1 amplitude are separated.

According to (4.55) the factors p are just the factor:: § of Eq. (4.48) if ?r'gl-?‘rgl=+l,

for ?f?r'g = -1 one has to use the analogous relations (4.48) with W replaced by
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W' = WY. One can show analogously to (4.39¢c,d) that fer any value of 7r ?r'lg

NN, DB w R N 7 NN,DB ,w._t- _i+
ImN laﬁ( I ,.!.‘ ):1 DV, p-ﬁ'N '_' 83( F ,F ) (4.57)
where the factor i p ' ;, is necessarily real.
L Nlﬁz t-  _t+
The quantitics N Y (F" , F ) are related to the s-channel observables
Y1V 2r

N,D,N.B
Mu 28 VB (FS) in the Gottfried-Jackson frame by means of the relations (4.39a)
2771 :

and (4.40a). The main results of this subsection may again be summarized in a
theorem in the following way:

Theorem 2: Assume that the final state of the t-channel (4.2) is made up by a
nucleon antinucleon pair. (Analogous results apply for the NN pair in the initial
state.) Assume further that the analytically continued t-channel amplitudes are
dominated in the s-channel by a leading natural a+ (with w = +1) and two leading
unnatural parity trajectories a (with w =+1). The trajectories oz+, Wa shall

fulfill again the restriction (4.41).

pB_ N1 No . .

1. Case: mg 7rB =T, . 7rV2 =+1, Then the linear combinations (4.40a) measure
the leading o = -1 interference terms according to Theorem 1. If furthermore the
product of the W-parity of the observables ?r’l:]i ?r}:z = -1 then (4.40a) measures
only the interference between the two leading unnatural parity trajectories Yo~
with w = %1 (according to Eq. (4.52)). If wlji wljz = +1 then one has to form out

of the expressions (4.40a) linear combinations according to (4.54). These then
separate the two w = %1 contributions,
2. Casc: 8D ‘[133 -1. According to (4.39a) one measures the interference

between o = 1 contributions. The lincar combinations

N; p NgDNB Ny pl1alo JNeDNiB o NoN.,DB . o
Tv TB MV 5.0 8 (") + \\’TV| TS ()V9 ()V, MV' 5, " [3(} } = Re NV y 8[)’( I8
1 20V 1 1 Yy Vb 2”12

(4.58)
I o : RV ‘ . .
separatlce the w = 41 contributions. For the factors P 1y SCC the discussion after

£q. (4.56).
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5. APPENDIX:' DEFINITION AND DECOMPOSITION OF

DENSITY MATRICES IN THE HELICITY BASIS

5A. Helicity States

We present here a few steps in the construction of helicity states ac-

cording to J. W. to obtain some results to which we refer in the following
discussion on the density matrices. Let_ﬁi be three unit vectors in the direction of

the axes of some frame, which is not necessarily the c. m. system

n, nJ. = 6ij ' (5. 1)

Consider then one-particle states |gA ) in the Heisenberg picture defined by

lax> =R(¢,0,-¢) U(LE;) [01> (5.2)

These states are produced from a particle in its rest frame [0AD first by an accel-
leration in the direction 33 to momentum gq. This Lorentz transformation is repre-
sented by the boost L(f;q) and
| -itw, - K
— _ 3 _ . "‘1 q
U(L(E,a)) = e , {=sinh” L (5. 3)
where K = (Kl’KZ’K3) are the usual three generators of a pure Lorentiz transfor-

mation. The subsequent rotation R(¢,®,~¢) in (5.2) brings the momentum 1,q

3
into the final direction q by a rotation through the angle ®
R(9,0,-¢) = 70T T (5.4)
about the axis
m = - sin qb?fl + cos qbﬁz (5. 5)
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with it - ?1’3 = (),

If A, the spin component in the rest frame, is quantized in the
TfB—direction, into which the particle is boosted, then (5.2) is a state in the "helicity
basis' chosen in accordance with the conventions of J. W. particularly with respect

to the rotation R(¢,®, -¢). We remember that the relative phascs of the states IOK)

are fixed by the requirement

(ﬁ’l- S"ﬂ:iﬁ’z. S)JOA> =[s FA) (s = A+ 1)]1/2|0>\i1>. (5. 6)

where S; are the usual spin matrices in the rest frame and s is the spin of the particle.

For a massless boson like the photon the construction prescription (5.2) for

the states has to be replaced, since there is no rest frame available. In this case

one starts with particles moving in the ﬁs—direction q" =(q, T1’3q)
[@ A> = R(¢,0,-¢) [T =130, (5.7)

Under reflections in the (nl,n3)~plane'

v = o 1T d . (5.8)
where P is the parity operator, one requires (see J. W. Eq.(9))
e = o, - 5.9
Y |qi, A = m|qi,, -2 > . (5. 9)

So, since there cxists only two states A = + S, the relative phases of (5. 7) are fixed,

"~ once the parity % is determined.
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The reflections Y turn out to be particularly useful in our work. If applied to
states with momenta in the (nl,n3)—plane the reflections Y change only the helicity
A of the states (5.2) or (5.9) apart from a phase factor.

- J e, - T i, - K
Y[d(¢ =0), AD=e 2 "pe 2 T 78 loay

-1@n2 *J —1Cn3 « K -im ¢+ J

=e e PloAD
- (5. 10)
-i0, g -iti, - K
=e e 3 ( "7,0 A
= (-1° mjas = 0),-1;
@or line 3 see Eq. (9') in J. W.). Therefore
(¢ =0 |Y]d(¢ = 0), 7u> S SA Y (5.11a)

which matrix is (-nioy) for a spin 1/2 particle. Fora massless boson the factors
(-1)S -2 in (5.10) and (5. 11a) have to be omitted according to (5.9). Relation
(5.11a) applies only to a particle "1"; for a particle '"2" see the following Eq.

(5.11b). Therefore Y corresponds always to the matrix noy in the helicity basis.

For a two particle state

— .h .
|92 19525 out> CRSE out>®|q2 2 out” (5.12)

the construction. prescription (5.2) is applied only for the particle "1'", whereas

for the particle "2'" the rule (5.2) is modified by an extra phase factor (—l)S—A'

2> = (-1°*R(6,8,-¢) U (L) |0 (5.13)

This is done in order to conform with the relative phase convention of J.W. for the

two particle states and is motivated i1 their paper. Consequently the reflection
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DAL
matrix Y for a particle "2" differs from that of a particle '"1'" by the factors

(-1)

AR R 1O 1t
vy = (q)?S v (5. 11b)

The helicity states (5.2) fulfill in the spin space of a given particle orthogonality

relations which are independent of the frame

Car'lary o =< U (Lafy) R7(9,0,-9)R(6,0,-9) U(Laily)) [0A> = 011 [0A) =5,

(5. 14)
This fact is, of course, a consequence of the unitary nature of the transformations
U(L(qﬁ)) and R(¢,0,-¢) iﬁ (5.2). Similarly, the two particle states (5. 12) fulfill

in the spin space of the two given particles the orthogonality relations
in | ' . in Jin
<ou.t’quB’qA |qA A’qB B’ out> <out’0>\ |>\ out>s <ou’c’ AP\AO’out>s

S8, ., b ., | (5. 15)
‘M BB

The relation (5.14) and (5. 15) are the basis for constructing the spin density
matrices in Section 5B.
Finally, we remark also that the usual Lorentz invariant inner product is
defined for any single particle states in the Hilbert space by
3
1> = f<uior 2 e (5. 16)
with an abvious extension to two particle states. In particular, we have the nor-

malization condition

<q'>‘"q>‘> =98 (_(T - ZD 2q0 6)\0\ (5‘ 17)
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and an analogous relation for the two particle states (5.12) — Note that we distin~
guish the inner product in spin space (5.14) and (5. 15) from the inner product in
Hilbert space (5. 16) by the subscript s.

5B. Von Neumann's Formula

Consider now an arbitrary state composed of the basic incoming two particle

states (5.12)

Qyqpiind = )A:a(Ai)lthA,qBAB; in
i

with ;

> lagapl® =1

Ay

The state (5.18) is expanded in terms of outgoing states lqlhl,qzkz, .o outy

3 3
. d'qq dqpy 4 .
lay agin> = f —% —5 (g *ap -9y - dp) [dg9pioutD + .o
2q0 ZqO

where

lag-apiout> = 2~ (A F) 4 Pr9a g9 79p) |9 aphps outd

Ay A

and P = (qA + qD) =(qC + qD). In (5.21) the reaction matrix FAfAi is defined by

outid Ao aptp [Iqha  Iphpi 112 = <im dere Aptp (G40 - dphps 10D

(5. 18)

(5. 19)

(5.20)

(5.21)

4

Note that with the definition (5.22) for F the unscattered part is left out in the first

term of (5.20).
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In the subspace of two particle states (5.18) and (5.21) we introduce now spin

density operators in the usual way
i _ . .
pop(qA!qB) - linqB’1n> (m,qBqul

Z (5.23)
A
& q, A,q 7\ ;in)  (in; qB TGN

and

f el . .
pOp(qC,qD) - ch’quout> <Out: qD!qC'

. (5.24)
Y Py vt | GcrerOptps outd CoutiapA . A,
AcAp 1f
ff
The coefficients pt\’ f AV are the elements of the spin density matrix defined by
b = (in; L in) _
PpAL qy09p) LN TN qA,qB)|qA A0 gt
(5. 25)
— * 1
- a(Ai)a (Al)
and
f = (out; g A A f A A out
Papapidc dp) = <O apry: dchg [ cap) [ach e dppi ot
(5.26)
= a(p,)) F a*(A ) F* |
it
The relation (5.206) is Von Neumann's formula, which can also be written in the
compact form
pf = pplpT (5.27)



With our normalization the cross section in the c. m. system Q’A + Q’B = E{C + ‘D =0

is given by
do ____(_l_g 7r2 Tr FplFT (5. 28)
W@ "ay 4w ey

where F is the reaction matrix Eq. (3.2) in the c. m. system, the elements of

which are the helicity amplitudes. According to (3.18) and (3. 14) one has

Trp' = p) pOB((2sA+ 1) @55+ 1)) -1/2 (5. 29)

As mentioned in Section 3 we assume that the helicities of the particles in the
initial state are uncorrelated, so that p1 is the direct product of the density matrix

for each particle.

5C. Decomposition of the Single Particle Spin Density Matrix (Case M # 0)

In the rest system (g = 0) a single particle spin density matrix p is usually
expanded by writing p as a polynomial of degree 2j in the components of the spin
matrices S;. Thus for a single particle state (5.6) in its rest frame

|§=0> =X c,|@=0,2), (5. 30)
A :

the density matrix p is written

3 3 3
p=1+ 2, p.S, *+ 3 P, SS.Fee- ) Pro S5+ Sy (5. 31)
r=1 r,s=1 r,s...u=1

Here the quantities Prs. . . u denote the components of the polarization tensors of the
particle in the rest frame with respect to certain axes, e.g. the helicities axes. The
corresponding density operator pop(Q': 0)=]d=0> <G = 0| has an analgous expan-

sion (5.31) with the S{s replaced by the angular momentum operators Ji in the rest

frame. Ina general fri .e, where the particle is moving with momentum q the



transformation law (5. 2) yiclds

Popt@ =R(#,6,-0) U (L)), T = 0) v (L) R 6, 0,-¢)

3 3 (5. 31')
=L+ Epr(}rJr E PrglpCst oe ¥ 2 pr,s,...nﬁrﬁs"'@ﬁ
r=1 r,s=1 r,S,...,u=1
with (see (5.3) and (5.4))
Al K N - K- =
o.@ =e -ef- T, goe O (5. 32)
replacing Jr in the analogous relation (5. 30) for pop(a =0). 'Assuming a
¢ -omposition of J in the helicity frame with (A - §) = 0
— A - e - A -
-(J1 X 3)= mxq)-Jd,m+*Jd, q- J) (5. 33)
a straightforward calculation yields for 0i(q)
ﬁl(q)=—s1n6q-J+cos€—ﬁ(m><q)-J+Mm.K (5. 34a)
9 _. q A -
0,(q) = -—-—m J-  @xq) - K (5. 34b)
ﬁ(q)=cosea'f+sin6(g—q @x§) T+ L K (5. 34c)
3 M M )

¢

The matrix elements of the operators 01 (Q), defined for particles with arbitrary
momentum ¢, reduce by construction to the usual spin matrices Si of the rest
frame, if ﬁi@’) is calculated in the basis of the helinity states (5.2). Therefore
one can assume that the expansion (5.31) is actually valid for any moving particle
" and that the parameters Pys. . .n 2T always the same rest frame polarization

quantities. The matrices Si have only to be interpreted as the representation of

the operators 01(6) defined by (5.32) if calculated in the basis of th: helicity states
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(5.2). We have seen in Section 4, how from a practical point of view it is sometimes

very advantageods to describe particles always in terms of properties in the rest

frame.

In order to account for the different transformation law (5. 13) of partic*les‘

25 -i1rr'f3 +J i1rrT3~ J
with label 2, we replace for thesc particles in (5. 32) J. by (-1)" e J.e
As a result of this replacement the axis fif in (5. 34) goes over into (-ffi) apart from
the overall factor (—1)28. With this convention the expansion (5. 31) is true for
particles with label 1 or 2.
There exists a convenient representation of the operators ¢ ; in terms of the
relativistic spin vector WN
W == @7, q.T+Keq) (5. 35)
g M * 70 '
as one might expect. In fact the @i‘s are projections of WM with respect to certain
axes (Ei)“
= R
;@) W, @) . (5. 36)
with
T . @) =-5., @) - a* =0 5. 37
(@) - @), =-8; @), - a (5.37)
Explicitly one has for (m - a) =0
_ L N
ul Ry sin 6, cos @ (qu)-—-M— q sin 6 (5.38a)
u, = (0, -m) (5. 36h)
_g_ N — A qO A
ug - |3f cos 0, sin 0 (qu)+—M qcos 0 (5. 38¢)



By mecans of (5.36) - (5. 38) it is possible to introduce a covariant notation. 22

One defines a covariant spin vector

3
S = P.(n, 5.39
' 12231 i), (5. 39)
and, can then write
3 B
1§ o py =8,V | (5. 40)

and analogous generalizations for the higher tensors in (5.31").
Finally we note that from the representation (5. 32) or (5. 34) it follows easily

that under the reflections Y (5. 8) the operators 01 have the transformation property

Y0, J@ Y =- 6 4@, YO,@) Y =+ 0,() (5.41)

The relations (5.41) are the basis of the restrictions on the tensor polarizations,
which follow from parity conservation (see Section 3. B).

5D. Density Matrix for the Photon

In the case of the photon the proceding discussion of the density matrix is not
valid, since it is e.g. not possible to define the spin matrices Sin a rest frame.
In this case we derive the form (3. 6) directly from the definition pr =|y >{y| for

a general photon state in an arbitrary frame
=a |q,A=+1>+a |, A=-1) |a|2+ 2—1 5. 42
|v> =a, |d,A =+ A » ja, a_|” = (5. 42)
where |((,A) are the states (5.7). Then
Y e 1
pop(q_) =y (y|:;2- {|-|~~ 1> Cr1|+)-1> (—1\}

1%l _|? |
# et {1 1 -] -1 <A1l (5. 43)

+faar |+1> (-1] +ara_|-1> (+ 11},



wherc for notational reasons |g,A = 1) = |+ 1). The expansion (5.43) of the
operator pr(q) taken in the helicity basis (5. 7) yields the decomposition (3. 6).

In (3.6) we put
2 2
c=la|"~|a_|% (5.44)

which gives the degree of circular polarization,

£ =2la,a*|, (5.45)

which gives the degree of linear polarization, and

. a a*
e P o (5. 46)
24221
which determines within £ 7 the azimuth angle ¢ of the polarization vector in the
plane perpendicular to the momentum of the photon. To see this consider a photon
moving in the ﬁ%—direction. The relation between the helicity states IQh’3, AD
and plane-polarized states Ié}), i =1,2, with the polarization vector é’i pointing
in the rTl or ffz direction is as usual
= = + . .47
ang A>= = g ey >+ ilep)) (5.47)
Then a plane polarized state with an arbitrary €(¢) in the (nl,nz)—plane is given by
- - _ . _ 1) ig| . +Hey -
oy, €(¢)) =cos ¢>|el>+ sin (b[ez) ~ﬁ -e ¢|qn3, +1>+e ¢|qn3, -1 (5.48)

We sec under these circumstances one can put @ = ¢,

In practice we always assume that the photon is a particle with the label 2 moving

in the dircetion - I1°3° Now in the case of the photon the relation

- qZYfS,)Q = ‘q21T3, -2 (5.49)



substitutes (5.13). We take. the same decomposition (3. 6) for the density matrix.

If we measure the azimuthal angle ¢' of the plane polarized state in the coordinates
for particle '"2" shown in Fig. 1 we can again put ¢ = ¢', but we can as well take
our photon coordinates io be rotated by 7 around the HS direction, This ambiguity in
coordinates restates the ambiguity in ¢.

We also note that under the reflection transformation Y the parts of (5.43)
connected with the coefficient 1/2 and - £/2 cos 2 @ are even, whereas fhe other
two parts ¢/2 and - £/2 sin 2 ¢, are odd. This one can edsﬂy establish from the
relation (5. 9) introduced into (5.43) ?r from the matrix representation noy for Y
and (3. 6) for py. |

Finally we remark that the decomposition (5.42) or (5.43) is dependent on the
frame and therefore not unique.

5E. Mapping of the Spherical Harmonics by Y: Further Restrictions; Eq. (3.13)

In Section (3. B) we established the mapping

z, oMo (5. 32a)
L' "L'M
= M|

We now note that via Eq. (3.13) T}:M can be linearly related to T

LM
-im§ +H7S
t _, LM 3 3
TLM =(-1) e TLMe (5.50)
7 . . T .
(see the representation (3. 13) for TLM). Hence one can find (TLMY) either
directly from (3.24)
(TrmY Z ("L' )’ TL'M (5.51)
L'= M|

or by applying (5.50) to both sides of (3.25a). Equality of the resulting expressions

then implies

oy = ()t LM LM (5. 52)
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Thus pEVI is real (imaginary) if L'-L-M is even (odd). This means that in the

fps i i oy
decomposition of LMY 1 oy (see Eg. (3.11)and (3. 12)) appears fori'=1i or

for i' # i but not for bothi'=1iandi'# i.

28
ot - LM [ L'-L+ 28 _t
(T Y= 3, A ey * D) g
L'=|Mm]
4 - oo :
For M = 0 we have TLO = FLO and therefore
T _of _ T _ 28,
(Ty oY) = YTy = T oY =(-1)7"T Y

Consistency with (5. 52) now requires

pi’?=0ifL'—L+% is odd
Furthermore
LM* T * 28 L'M
(le ) - [TI'(TLMY TL'M)] - ("'1) pL

(5.

(5.

. 55)

56)

and, in particular, pr‘M must be real (imaginary) if 25 is even (odd). Thus consistency

with (5. 52) also requires

LM

PL =0if 25 - M is odd

For low values of S the restrictions (5.52), (5.55)and (5.57) are often sufficient

- . i . it
to limit the decomposition of T _ Y in terms of T! to only one term, as can be

LM L'M
seen in Eq. (3.26)and (3.27).

We would also like to derive here Eq. (3.13) for TLM’

it is convenient to use Eq. (3.9) to generate T 282L>M 20, from T

LM’

positive multiple of (S3 + iSl)L

- K8 -
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Let us assume that for a given M > 0 we can write

(5.

"M 2 0. For this purpose



TLM in the form

_ oM o M
Ty =71, (S) (85 + i8)) (5. 58)

where 'VII\./[(SZ) is a real polynomial in 82 of degree L-M. Then Eq. (3.9) gives

Tym-17 ((“‘ND(L‘MH)]_I/Z [’f"i&(szﬂ) [S(s+1) - Sg - SzJ

M-1

) (5.59)

-27%(s,) [S(S+1) - M(M-1) - 82+ (2M -1)82]} (84+iS

Since the polynomial multiplying (S3+ iSl)M_1 in Eq. (5.59) is real and has degree
L-M+1, Eq. (5.58), valid for M = L, can be obtained for all M 2 0 by iteration.

Now let us assume inductively that for a given positive integer v a product of
M
)

v ]
the fo_rm P (S 1

2)(SS+ iS can be put into the form

[P”'(sz), (Sy+ iSl)MJ (5. 60)

-

|} 1
if 7 (Sz) is any real polynomial of degree v' < v and where P’ (Sz) is also a real
polynomial of degree v'. (Clearly this can be done for v =1.) But then for v' =vp

we have
2" (8)(85+i8 )" = L%WU(SZ),(S3+i81)M} +2 P/'V(Sz)’(Ss* iSl)M] | (5. 61)
+

)M (5.62)

*__];JV cq M 1{ v Ve .
= ZJ’ (Sg)s (S5+18,) ]++ 2[7’ (Sy) P (s, M)] (S5+iS;
where 1/2 E?V(Sz) —(i’v(SZ —M)] is a real polynomial of degree v-1. Hence, by

induction on v, Eq. (5.60) can be obtained for any v' 2 0. Given Eq. (5.58) we can

therefore write Eq. (3.13)
_ M o s M
Tim~ [PL(bz), (S4+18,) L (3.13)
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L LM
we also have

where PM is a real polynomial of degree L-M, M 2 0. Since TT = (—1)M T M

| .M. M o M
TL_M—[(~1) P (S,):(S5-iS)) ]+ (5.68)

M
L

25+1-1 matrix elements bctween eigenstates of S,, (m,, + M'TLMIm2 Y, noting

The uniqueness of the L-M + 1 coefficients in P, follows from considering the
that L £ 2S. That PII\:I(SZ) must involve only even or only odd powers of SZ’ depending
on the sign of (-l)L—M, follows from the observation that, as a consequence of our
pracedure for generating TLM via commutation ((S3 * iSl) are symmetrical matrices),

M

t 3 L~
(TLM) =(-1) (5. 64)

LM

This behavior must be consistent with Eq. (3. 13) in which the antisymmetrical

matrix 82 appears, thus restricting Pl\llf

It is interesting to note that the polynomial Plf(sz) is not, in general, a simple

to be even or odd.

S
multiple of the corresponding associated Legrendre polynomial'l'll\j[_M< 2 >

VS(5+1)

although the two are in many ways similar.
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FIG. 1--Helicity coordinates for incident particles A, B and final particles
C,D. The 3, 1-axes always lie in the reaction plane while the
2-axis either points into the plane (dotted line) or out of the plane
(arrow). ;



