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ABSTRACT 

The electrostatics problem of a point charge between two 

infinite parallel. conducting planes - i. e., the Green function 

for a parallel plate capacitor - is solved by the method of 

images. A Sommerfeld-Watson transformation is then used 

to obtain an integral representation for the potential. An 

asymptotic expression is derived for the region far from the 

charge, and the field is found to fall off exponentially. 
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In this note, the electrostatics problem of a point charge located between 

two infinite conducting plates is solved by the method of images. 1 The resulting 

infinite series solution is then converted to an integral, using the Sommerfeld- 

Watson transformation - a technique whose application to the partial wave series 

for scattering amplitudes has been in vogue in particle physics since the work of 

Regge. 2 The integral expression is used to derive an approximate solution valid 

in the region far from the point charge, and the potential is found to fall off ex- 

ponentially. Numerical calculations are made which show the asymptotic 

formula to be quite accurate even at distances comparable to the separation of 

the plates. 

The geometry of the problem is shown in Fig. 1. p and z are cylindrical 

coordinates. Assume for simplicity that z’ = 0, i. e., that the charge is located 

midway between the plates, The generalization to an arbitrary position will be 

given later. Also assume the plates to be grounded, i. e., to satisfy C#I = 0 

where $I is the electrostatic potential. Then C#I = 0 and ?? = 0 in the regions 

z < - D /2, z > D/2. Problems in which the plates have fixed net charges differ 

only by the addition of constant electric fields in the z direction to each of the 

three regions. 

Our problem is to solve Laplace’s equation v2 @ ( p, z) = 0 subject to the 

boundary conditions that C#I (p, + D/2) = 0 and that C#I have no singularities in 

1~1 < D/“ k except for the point charge, Q//P2 + z2, at the origin. Use of the 

method of images involves the following logic: the electrostatic potential due to 

a point charge at z = p = 0, an arbitrary charge distribution in the regions 

I I Z > D/2, and no conducting plates , automatically satisfies V2 I$ = 0 and 
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cp-Q/Jp at the origin; if one can specify the charge distribution so 

that in addition r#~(p, f. D/2) = 0 for all p 2 0, then $ must be the solution 

we seek, by the uniqueness theorem for electrostatics problems with boundary 

conditions of specified potential or charge distribution. 
1 

The required image charge distribution is shown in Fig. 2: point charges 

Q at z = 0, 2 2D, & 4D, . . . and -Q at + D, + 3D, 2 5D, . . . . The condition 

$(p, 3~ D/2) = 0 is clearly met, since the contribution to Cp at an arbitrary 

point on one of the plates due to each charge Q is cancelled by that due to a 

charge -Q h h w ic is the same distance away on the opposite side of the plate. 

The solution to our problem is thus 

This series converges, since its terms decrease monotonically in magnitude 

while alternating in sign. It is useful for practical calculation, however, only 

in the region p” s D - e.g., using results to be given later, one can show that 

to compute r#~ to 1% at z = 0 , 

lo8 terms. 

p = 10 D, it would be necessary to include 

The Sommerfeld-Watson transformation consists in writing an infinite series 

such as (1) as a contour integral: 

(2) 

The singularities of the integrand, consisting of poles from l/sin T(Y and 

branch cuts from the square root, are shown in Fig. 3, together with the integra- 

tion path. 
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Equivalence of (1) and (2) is obvious, for in evaluating the integral by Cauchy’s 

theorem, one obtains contributions only from the poles of sit?ra , whose 

residues at a! = n are (-l)n/a . Now bend the integration path to Ci + CL . 

This is allowed because the integrand falls exponentially for Im a! --+ + co . 

Making the substitutions (1! = (z + ipt) /D along ci and o! = (z - ipt)/D along 

ct2 yields 

Trigonometric identities then yield the integral representation 

l 

sinh Tpt/D 
cash 2npt/D - cos 2zz/D (3) 

An asymptotic approximation to (3) for large P can be obtained by using 

sinh x x cash x M exp (x) 2, and neglecting cos 27r z/D in the integrand. Since 

the cosine is bounded by 1, these approximations require only that exp(2np/D) >> 2; 

they should therefore be valid whenever p 2.D. The result is 

Only small values of t are important in this integral because of the exponential, 

so when p 2 D we can replace a by J2(t-1), perform the remaining 

integral, and obtain 

@(p,z)Y Qcos: exp( 3)/-$ if p>D (4) 
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Figure 4 shows the rapid approach of the esact solution, calculated from (1) with 

the aid of a computer, to the approximate one. The potential due to the bare 

point charge is also shown. The equipotential surfaces and the electric field 

lines are shown in Fig. 5. 

Generalization to the case of an arbitrary location of the point charge is not 

difficult? If the charge Q is at z’, the image charges are +Q at z’ rtr 2D, \ 

z’ zfi 4D, . . . and -Q at -zl k D, -z’ + 3D, . . . . The image solution is 

Up,z)=Q f 
1 

k---- -J 

1 
n= -00 

p2+(z-z'+2rQ2 ~‘+[z+z~+(2n+l)D]~ 

(5) 

A Sommerfeld-Watson type of transformation can be made using 

l/sin { 71 [CY -I- (zl-z)/2D]} l l/sin (7r [01-t (z-l-z’-!- D)/2D] 1 

to generate the ,boles. The resulting integral representation is 

00 

$@bz)=$ D COSE cos z’ s - 1 J$-- 
sinh npt/D 

D [cash rpt/D+ cos n(z’+z) /D] [cash Tpt/D - cos K(z’-z)/D-J 

An asymptotic formula can be obtained from (6) in the previous way: 

if P 2D (7) 
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(An alternate approach to this whole problem is to separate variables in 

cylindrical coordinates. This leads, after considerably more effort than re- 

quired by the image method, to the solution in yet another form:4 

$(p,z) = % 2 cos F cos T K. (q) 
n=l (8) 

Equality of this form with (6) can be established via the integral representation5 

K()(4 = S : 2 exp t-t4 (9) 

by interchanging the order of summation and integration. Also, (7) can be 

derived directly from (8) using the asymptotic expression for Kg. ) 
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FIGURE CAPTIONS 

1. Definition of coordinates. 

2. Image solution for the case z1 = 0 (point charge midway between the plates). 

3. Original and deformed contours for (2). 

4. Exact and approximate solutions for z = zt = 0. 

5. Equipotentials and electric field lines. 
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