EXPERIMENTAL INFORMATION ON THE π^{\pm} PHOTOPRODUCTION AMPLITUDES*

R. Diebold

Stanford Linear Accelerator Center Stanford University, Stanford, California

ABSTRACT

Recent data on π^{\pm} photoproduction at 3.4 GeV are used to investigate the nature of the amplitudes contributing to these processes. It is found that a large amplitude corresponding to natural-parity G = +1 exchange is necessary to explain the data, even in the region t \approx -0.6 GeV² where Reggeized ρ exchange must vanish. This implies a large contribution from some ρ' trajectory or from cuts, absorption, etc. The large G = +1 exchange amplitude needed to explain the π^{-}/π^{+} ratio is only marginally consistent with the vector dominance model.

(Submitted to Phys. Rev. Letters)

*Work supported by the U. S. Atomic Energy Commission.

Considerable experimental data have recently been obtained for the processes

$$\gamma p \rightarrow \pi^+ n,$$
 (1)

$$\gamma n \rightarrow \pi p$$
. (2)

Differential cross sections have been measured from 2 or 3 GeV up to 16 GeV,¹ and polarized beam experiments² have measured the asymmetries (principally at 3.4 GeV)

$$\Sigma^{+} = \left(\frac{\sigma_{1} - \sigma_{\parallel}}{\sigma_{1} + \sigma_{\parallel}}\right)_{\gamma p \longrightarrow \pi^{+} n}$$
(3)

$$\Sigma^{-} = \left(\frac{\sigma_{1} - \sigma_{\parallel}}{\sigma_{1} + \sigma_{\parallel}} \right)_{\gamma n \longrightarrow \pi^{-} p}$$
(4)

where σ_{\perp} (σ_{\parallel}) is the differential cross section measured with the γ ray linearly polarized perpendicular to (in) the plane of production. Although this is still far from being a complete set of experiments, the general character of the amplitudes can be determined and any theory hoping to describe these processes must show this character.

At high energies the parity-conserving amplitudes $\overline{f}_{\lambda_3\lambda_4,\lambda_1\lambda_2}^{\pm}$ of Gell-Mann et al.³ correspond to definite quantum numbers when viewed from the t channel; these quantum numbers are found from the NN coupling⁴ and the results are shown in Table I together with the corresponding A_i amplitudes of Ball.⁵ Particles having these quantum numbers are also shown in Table I; since one unit of charge must be exchanged in the t channel for processes 1 and 2, only the I = 1 particles are shown. Elementary-particle-exchange or Regge-pole-exchange diagrams contribute to the amplitudes as indicated by Table I; absorption effects, Regge cuts, etc. will contribute terms to other amplitudes as well.

At high energies the differential cross section for $|t| \ll s$ is given by

$$\frac{d\sigma}{dt} = \frac{1}{32\pi} \left\{ \left[\left| A_1 \right|^2 + \left| t \right| \left| A_4 \right|^2 \right] + \left[\left| A_1 + tA_2 \right|^2 + \left| t \right| \left| A_3 \right|^2 \right] \right\}.$$
 (5)

The terms in the first and second square brackets correspond to $P(-1)^{J} = +1$ and -1 (natural and unnatural parity) exchanges, respectively. At t = 0 only the A_{1} amplitude contributes and it contributes equally to the natural and unnatural parity exchanges; this is just the famous conspiracy condition.

To better keep track of the amplitudes we introduce a set of mnemonics; for example, we denote by the symbol π that part of the $\overline{f_{10}}_{\frac{11}{22}}$ amplitude corresponding to G = -1 exchange in the t channel. This amplitude includes not only the one-pion-exchange term, but also other exchange terms for particles or trajectories with the appropriate quantum numbers as well as contributions from cuts, etc. We then rewrite the π^+ cross section as

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}(\gamma p \rightarrow \pi^{+}n) = \left|\pi_{c} + \rho\right|^{2} + \left|\pi + B\right|^{2} + \left|A_{1}\right|^{2}.$$
 (6)

Note that the natural parity amplitudes, π_c and ρ , are combinations of $\overline{f}_{10\frac{11}{22}}^+$ and $\overline{f}_{10\frac{1}{2}-\frac{1}{2}}^+$; because of this there may be less $\pi_c \rho$ interference than implied by Eq. 6. Also, A_1 henceforth refers to A_1 meson exchange and not to Ball's amplitude. Equations 5 and 6 emphasize the fact that in general one does not expect the maximum interference between the G = +1 and -1 amplitudes which has been assumed⁶ to explain the ratio

$$R = \frac{\frac{d\sigma}{dt} (\gamma n - \pi^{-} p)}{\frac{d\sigma}{dt} (\gamma p - \pi^{+} n)}$$
(7)

in terms of the vector dominance model. Indeed, to get this maximum interference not only must the G = +1 and -1 amplitudes have zero relative phase, but the relative amount of these amplitudes must be the same in all four terms of Eq. 5.

- 3 -

For π^- photoproduction the relative signs of the G = -1 and G = +1 amplitudes change. Furthermore, at high energies only the natural-parity exchange terms contribute to σ_{\parallel} and unnatural-parity terms contribute only to σ_{\parallel} .⁷ Normalizing the π^+ cross section to unity then yields the four equations

$$|\pi_{c} + \rho|^{2} = \frac{1 + \sum^{+}}{2}$$

$$-|\pi_{c} - \rho|^{2} = R \frac{1 + \sum^{-}}{2}$$

$$|\pi + B|^{2} + |A_{1}|^{2} = \frac{1 - \sum^{+}}{2}$$

$$|\pi - B|^{2} + |A_{1}|^{2} = R \frac{1 - \sum^{-}}{2} \cdot$$
(8)

The experimental results^{1,2} for R, \sum^+ and \sum^- are given in Table II for k = 3.4 GeV.

We first examine the unnatural-parity amplitudes. The width of the sharp forward peak in the π^+ cross section is about $\Delta t = m_{\pi}^2$ and it is natural to assume that one pion exchange is important in this region. It has been suggested⁸ that B conspiracy as well as π conspiracy might be important at t = 0. The experimental value R = 1.05 ± 0.09 obtained by the DESY group at k = 3.4 GeV, t = -0.003 GeV shows that, to within experimental uncertainty, no G = +1 and -1 interference is necessary; if the π and B amplitudes were relatively real, the above number would give a ratio for the amplitudes B/ π = 0.01 ± 0.02. Table II shows that $|\pi + B|^2 - |\pi - B|^2 = 0$ to within the uncertainties at |t| = 0.2, 0.4 and 0.6 GeV²; i.e., just as at t = 0, the data do not require interference between G = +1 and -1 unnatural-parity amplitudes in this t region. Although appreciable B exchange could be present 90° out of phase with the π amplitude, the vector dominance model suggests that this is not the case and certainly the simplest assumption is that the unnatural-parity,

- 4 -

G = +1 amplitude does not contribute, B = 0. This leaves $|\pi|^2 + |A_1|^2$ as the unnatural-parity contribution and at the moment we have no way of distinguishing the relative amount of the two amplitudes. Again, simplicity would argue $A_1 = 0$ and the π amplitude calculated under this assumption is listed in Table III.

Turning now to the natural-parity exchange amplitudes, $|\pi_c + \rho|^2 \neq |\pi_c - \rho|^2$ at all three momentum transfers (see Table II), a large $\pi_c \rho$ interference term being required to explain the data. A limit can be placed upon the relative phase ϕ between the π_c and ρ amplitudes:

$$\cos \phi_{\max} = \frac{1 + \sum^{+} - R(1 + \sum^{-})}{1 + \sum^{+} + R(1 + \sum^{-})} .$$
(9)

This maximum phase angle is shown in Table III; for $\phi = \phi_{\max}$, $|\pi_c| = |\rho|$ and this value is also shown in Table III.

There are two reasons for believing the natural-parity $G = \pm 1$ exchange amplitude to be small. In Regge-pole theory ρ -trajectory exchange would be expected to give the dominant contribution to this amplitude. Since the upper pion photoproduction vertex always involves a unit change of helicity, the ρ -exchange amplitude must go to zero at the point where $\alpha_{\rho} = 0$, which from the analysis⁹ of other processes is between |t| = 0.5 and 0.6 GeV^2 . The only other candidate listed in Table I for this amplitude is $\rho_N(1600)$; unfortunately this resonance may well be on the same trajectory as the ρ . Thus, a large natural-parity $G = \pm 1$ exchange amplitude near t = -0.6 would force one to conclude that either some unknown ρ' trajectory is dominant¹⁰ or that absorption or cuts, etc. are important.¹¹ The second reason for wanting a small ρ exchange amplitude comes from the vector dominance model in which the coupling of the photon to the ω (leading to $G = \pm 1$ exchange) is much weaker¹² than the $\gamma \rho$ coupling (G = -1 exchange).

- 5 -

The smallest value for the natural-parity G = +1 exchange amplitude is obtained under the assumption of maximum interference with the G = -1 amplitude; the results of this maximum $\pi_c \rho$ interference assumption are shown in Table III.¹³ At all three t values a substantial natural-parity G = +1 amplitude is required; using the errors quoted by the experimentalists, $\rho \neq 0$ by 6 to 10 standard deviations. Near t = -0.6 the ratio of natural-parity amplitudes, G = +1/G = -1, is about 0.4 and does not show any rapid variation with t as would be expected from ρ -trajectory exchange.¹⁴

The vector-dominance-model comparison is made difficult by the lack of experimental data on the process $\pi^+ n \longrightarrow \omega p$; in particular, there are no values for the density matrix as a function of momentum transfer. To test whether the present data are consistent in this model we have calculated¹⁵

$$\begin{pmatrix} \rho \text{ hel} \\ 11 \end{pmatrix}_{\pi^{+}n \to \omega p} = \frac{\left| \rho \right|^{2} \frac{d\sigma}{dt} \left(\gamma p \to \pi^{+}n \right)}{g_{\gamma \omega}^{2} \frac{d\sigma}{dt} \left(\pi^{+}n \to \omega p \right)}$$
(10)

where $|\rho|^2$ is the maximum-interference value. As shown in Table III, the values so obtained for ρ_{11}^{hel} are larger than the maximum value of 1/2 at |t| = 0.4 and 0.6 GeV^2 , but the errors are too large to allow a definite conclusion.¹⁶ Additional data on π^+ n— ω p are needed to determine whether a discrepancy exists.¹⁷

The principal conclusions which can be drawn from the present pion photoproduction data (k = 3.4 GeV) are the following:

Ť.

1. Amplitudes corresponding to both natural and unnatural parity exchange in the t channel are required for $|t| \leq 0.6 \text{ GeV}^2$.

2. No significant interference is observed between the amplitudes corresponding to G = +1 and -1 unnatural-parity exchange in the range $|t| \le 0.6 \text{ GeV}^2$. Since π exchange appears important near t = 0, the most economical assumption would be that there is no significant G = +1 unnatural-parity exchange.

- 6 -

3. Interference between amplitudes corresponding to $G = \pm 1$ and ± 1 naturalparity exchanges is required by the data in the region $m_{\pi}^2 \le |t| \le 0.6 \text{ GeV}^2$. The most prominent candidate for the $G = \pm 1$ amplitude is ρ exchange, but in the Regge Model α_{ρ} goes through zero in this region and the ρ exchange amplitude goes to zero; this implies that some other contribution must be important: a ρ' trajectory or cuts, absorption, etc.

4. At |t| = 0.4 and 0.6 GeV² the data require more G = +1 exchange than is predicted by the vector dominance model, but the uncertainties are large and more data on π^+ n— ω p are required before a definite conclusion can be drawn.

The author is grateful for useful discussions with Drs. Frank Henyey, Haim Harari and Fred Gilman.

REFERENCES

1.	Z. Bar-Yam et al., Phys. Rev. Letters 19, 40 (1967);
	G. Buschhorn et al., Phys. Rev. Letters 17, 1027 (1966); Phys. Rev Letters
	18, 571 (1967); and Phys. Letters 25B, 622 (1967);
	P. Heide et al., Phys. Rev. Letters 21, 248 (1968);
	A. M. Boyarski et al., Phys. Rev. Letters 20, 300 (1968) and submitted
	to Phys. Rev. Letters.
2.	Chr. Geweniger et al., Phys. Letters 28B, 155 (1968) and contribution to
	Vienna Conference (1968);
	Z. Bar-Yam et al., contribution to Vienna Conference (1968).
3.	M. Gell-Mann et al., Phys. Rev. <u>133</u> , B145 (1964).
4.	S. Frautschi and L. Jones, Phys. Rev. <u>163</u> , 1820 (1967);
	Frank S. Henyey, Phys. Rev. <u>170</u> , 1619 (1968).
5.	J. S. Ball, Phys. Rev. <u>124</u> , 2014 (1961).
6.	A. Dar and V. F. Weisskopf, CERN preprint TH 930 (1968).
7.	P. Stichel, Zeit. für Physik 180, 170 (1964).
8.	A. Borgese and M. Colocci, Nuovo Cimento 56A, 245 (1968).
9.	See, for example, M. Barmawi, Phys. Rev. <u>166</u> , 1857 (1968).
10.	A ρ' trajectory has been used to explain other reactions;
	see, for example, H. Högaasen and W. Fischer, Phys. Letters 22, 516 (1966).
11.	Similar conclusions have been reached by Haim Harari [Phys. Rev. Letters
	21, 835 (1968)] for the amplitude corresponding to ω exchange in the reaction
	$\gamma p \rightarrow \pi^{0} p$ where cuts or an ω 'exchange are needed to avoid a gross violation
	of the vector dominance model; this conclusion has been reinforced by the
	polarized-beam results of Bellenger et al., contribution to Vienna Conference
	(1968).

12. S.C.C. Ting in his rapporteur talk at the Vienna Conference gave $g_{\gamma\omega}^2/g_{\gamma\rho}^2 = (1.0 \pm 0.2)/9.$

- 13. Maximum interference not only requires the G = +1 and -1 exchange amplitudes to be relatively real, but also that they contribute in the same proportion to Ball's A_1 and A_4 amplitudes. The results are not sensitive to small phase differences between the amplitudes, however, and experiments involving the polarization of the initial and/or final nucleon are needed to pin down the relative phases.
- 14. At 5 GeV \sum has not been measured, but the small value R \approx 0.3 at $|\mathbf{t}| = 0.4$ together with $\sum^{+} = 0.45 \pm 0.17$ requires strong $\pi_{c} \rho$ interference independent of \sum^{-} .
- 15. The values

$$g_{\gamma\omega}^2 = (0.39 \pm 0.08) \times 10^{-3}$$
 (ref. 12);
 $\sigma(\pi^+ n \to \omega p) = 0.28 \pm 0.11$ mb

(estimated by comparing the results of several experiments under the assumption $\sigma \alpha p_{lab}^{-2}$) were used to evaluate Eq. (10). The ω angular distributions were obtained from H. O. Cohn <u>et al.</u> [Phys. Letters <u>15</u>, 344 (1965)] and the Orsay-Bari-Bologne-Florence Collaboration [CERN Hadron Conference, vol. II, p. 134 (1968)].

- 16. If one used $|\rho|^2$ as calculated for $\phi = \phi_{\max}$, Eq. (10) would give ρ_{11}^{hel} about 6 times the maximum value of 0.5; even with the present uncertainty in the $\pi^+ n \rightarrow \omega p$ data this would be a strong violation of the vector dominance model. Harari (Ref. 11) found that large phase differences between $G = \pm 1$ and ± 1 exchange amplitudes for the process $\gamma p \rightarrow \pi^0 p$ also lead to discrepancies in the vector dominance model.
- 17. A gross discrepancy presently exists between the polarized-beam data and the predictions of the vector dominance model; for details see
 M. Krammer and D. Schildknecht, DESY 68/33;
 Chr. Geweniger et al., Phys. Letters <u>28B</u>, 155 (1968),

R. Diebold and J. A. Poirier, to be published.

TABLE I

PHOTOPRODUCTION AMPLITUDES AND PARTICLES CORRESPONDING TO THE t-CHANNEL QUANTUM NUMBERS OF THE AMPLITUDES

Parity Conserving	Ball	t-Channel Quantum Numbers		Corresponding Particles	
Amplitudes	Amplitudes	P(-1) ^J	(-1) ^I GP	G = -1	G = +1
$\bar{f}^+_{10\frac{1}{22}}$	$A_1 - 2MA_4$	+	+	$\pi_{e}, \pi_{N}^{(1016), A_{2}}$	ρ,ρ _N (1660)
$\bar{f}_{10\frac{11}{22}}^{-}$	$-A_1 + tA_2$	_		$-\pi, \pi_{A}^{(1640)}$	В
$\overline{f}^+_{10\frac{1}{2}-\frac{1}{2}}$	$2MA_1 - tA_4$	+	+	$\pi_{e}, \pi_{N}^{(1016), A_{2}}$	$\rho, \rho_{N}^{}(1660)$
$\bar{f}_{10\frac{1}{2}-\frac{1}{2}}^{-1}$	A ₃	-	+	A ₁	
Ν	lote: (a) π _c may be (b) The value it could be	identical to of (-1) ^I GP fo associated	the K \overline{K} sta or π_A (1640) with the A_1	te $\pi_{N}(1016)$) is not known and instead of the π .	

TABLE II

EXPERIMENTAL RESULTS FOR k = 3.4 GeV AND THE CORRESPONDING VALUES FOR THE AMPLITUDES $\begin{bmatrix} d\sigma \\ dt \end{pmatrix}$ ($\gamma p \rightarrow \pi^+ n$) NORMALIZED TO UNITY AT EACH t

-t GeV ²	R	Σ ⁺	Σ-	$\left \pi_{c}+\rho\right ^{2}$	$\left \pi_{\mathbf{c}}-\rho\right ^{2}$	$ \begin{vmatrix} \pi + B \end{vmatrix}^2 \\ + \begin{vmatrix} A_1 \end{vmatrix}^2 $	$\frac{\left \pi-\mathbf{B}\right ^{2}}{\left \mathbf{A}_{1}\right ^{2}}$	$\left \pi+\mathrm{B}\right ^{2}$ - $\left \pi-\mathrm{B}\right ^{2}$
0.2	0.55±0.05	0.85±0.11	0.34±0.15	0.92±0.06	0.37±0.06	0.08±0.06	0.18±0.05	-0.10±0.08
0.4	0.32±0.03	0.63±0.11	-0.20±0.20	0.82±0.06	0.13±0.04	0.18±0.06	0.19±0.04	-0.01±0.07
0.6	0.37±0.03	0.77±0.13	-0.08±0.20	0.88±0.07	0.17±0.04	0.12±0.07	0.20±0.04	-0.08±0.08

TABLE III

\mathbf{RE}	LATIVE PHOTO	OPRODUCTIO	ON AMPLITU	DES UNDER	VARIOUS AS	SUMPTIONS
	$\frac{\mathrm{d}\sigma}{\mathrm{d}t}$	$\gamma p \rightarrow \pi^+ n$) NO	RMALIZED 7	FO UNITY AT	EACH t	
-t GeV ²	π (B=A ₁ =0)	$(\phi_{\pi_c \rho})_{\max}$	$ \pi_{\mathbf{c}} = \rho $ ($\phi = \phi_{\max}$)	^π c (φ=0)	ρ (φ=0)	$\begin{pmatrix} hel \\ p_{11} \end{pmatrix}_{\pi}^{+} n \rightarrow \omega p$ (from eq. 10)
0.2	0.36±0.05	64 ⁰ ±4 ⁰	0,57±0.04	0.78±0.03	0.18±0.03	0.36±0.21
0.4	0.43±0.04	44 ⁰ ±6 ⁰	0.49±0.04	0.63±0.03	0.27±0.03	0.75±0.40
0.6	0.40 <u>+</u> 0.05	47 ⁰ ±6 ⁰	0.51±0.04	0.67±0.03	0.26±0.03	0.83 <u>+</u> 0.44