Composite Particles in S.-Matrix
Theory and in Field Theory*

John K. Cornvall ${ }^{+}$and Donald U. Levy ${ }^{\ddagger}$
Department of Enysics
University of California at Los Angeles,
Los Angeles, California 20024

Abstract

We give a model-independent exact solution in S-matrix terms to the problem of relating proper vertex functions and physical scattering amplitudes, a probien studied extensively by Ida. The solution is of Omnes type, supplemented by the solution of some algebraic equations. We use conventional definitions of the renormalization constants Z_{1}, Z_{2} tc study the composite limit ($Z_{I}=Z_{2}=0$) in S-matrix theory. A modelindependent discussion of the same problem is given in temm of the Dyson equatiors, where essentially the same results are recovered, in a different languasa. Possible applications to the electromagnetic mass shifts of composite particies are briefly discusséc, including probiens of gauge invariance.

[^0](Submitted to Phys. Rev.)

I. Introdiuction

Over the last few years, a great many articles have been written concerning the connestion between compositeness and vanishing renormalization constants, used in large part upon ideas putforth by Salan ${ }^{1}$. The funcianental ideas in this field are well-known, and we have nothing new to acd to them; our concern in the present paper is to state these iaeas in a model-independent way, Dotin in S-matrix theory and in field theory, with a view toward possible future applications to such things as the electromagnetic mass shifts of composite particles. We present some new results which connect the S-matrix approach with field theory, and clarify some known results connected $\begin{aligned} & \text { kith }\end{aligned}$ the passage to the composite linit.

There are two overlapping fields in which the compositeness problem can be studied: S-matrix theory, and field thecry (as exemplified by the Dyson equations). In S-matrix theory, we have solved a problem first pirased completely by Ida ${ }^{2,3}$, which we state as: given the physical S-matrix, say for $\pi i j$ scattering, what is the proper mNN vertex function as a function of one nucleonicmass variable? This is to be contrasted to the essentially trivial problen of constructing the form factor from the physical phase shifts. With this solution in nand, we are in a position to study the composite limit, in mucn the same way as Kaus and Zachariaser (among others)have done ${ }^{4,5}$. The proper vertex function appears in the decomposition of the partial-wave S-matrix into two parts
one of which contains the nucleon pole, and the other which is one-rucleon irreducible but unitary ${ }^{2}, 3$. This same ciecomposition was used in refs. 4 and 5 , and our Section II can be considered as an extension of the relevant part of ref. 4 . We need not repeat in detail the arguments in ref. 4 concerning the Dootstrap philosophy, or the way in which the vanishing of renormalization constants insures that the "elementary" nucleon drops out of the scattering anplitude, to be replaced by a composite nucleon. Inat happens, in accorciance with ref. 4, is that the unnenormalized proper vertex function and propagator are finite and welldefined in the composite limit, wile their renornalized counter parts are not.

Tnis last circumstance is an interesting one to study with the Dyson equations. We have carried out such a study, valid for any finite field theory, in section III and find that the results (so far as field theory and S-matrix theory are comparable) are in agreement with those of section II. We can, in addition, construct formulas for such tnings as electromagnetin mass shifts of composite particles. The mass-shift formula comes in several guises: one, related to S-matrix theory, in the Dashen-Erautschi ${ }^{6}$ formula; two, a Betie-Salpeter type of formula ${ }^{7}$, three, a dispersion formula based on the Nälen-Lenmann representation ${ }^{8}$. They are all the same when evaluated exactly; it is when approzimations are made that trouble comes in. The Dashen-Frautschi formula is
plagued by infra-red problems ${ }^{9}$, wion are related to gauge invariance problems. Any dispension integral whicn saves only certain intermediate states is not gave-invariant. In an appendix, we show hon to select intermediate states in the dispersion integral so that gauge invariance is automatic. This is the analog of Feyman's old proof that we must add photons to the charged legs of a diagram in all possible ways, in order to save gauge invariance.
We have been influenced by a number of authors otner than those explicity cited here; a full list of references would de inordinately lengthy. Hayashi et al ${ }^{10}$ have recently published a well-referenced revien paper which should be consulted for other publications.
II. S-Matrix Calculation of the Proparator and Vertex Function.

In this section, we restucy the problem of Ida ${ }^{2}, 3$, which is to calculate the proper vertex function and propagator with S-matrix techniques. Of course, the composite limit is of particular interest; we show how to recover the results of Kaus and Zachariasen ${ }^{4,5}$ and others.

1. Kinematics and Definitions

The renormalized propagator we write as $S(\nsubseteq)$, where $p=p_{\mu} \gamma^{\mu}$. Take $W=\left(p^{2}\right)^{\frac{1}{2}}$; then it is convenient to define a function $Z(N)$ by

$$
\begin{equation*}
S^{-1}(W)=(W-M) Z(W) \tag{1}
\end{equation*}
$$

By definition $Z(M)=1$; according to the usual fieldtheoretic argunents, the nucleon wave-function renormalization constant Z (conventionally written Z_{2}) is recovered from the asymptotic behaviour of the propagator:

$$
\begin{equation*}
\lim _{W \rightarrow \infty} Z(W)=Z \tag{2}
\end{equation*}
$$

A dispersion relation for $Z(N)$ can be obtained from the Kallen-Lehman representation:
$Z(W)=1+\frac{W-M}{\pi} \int_{-\infty}^{\infty} \frac{\tau\left(W^{\prime}\right) d W^{\prime}}{W^{\prime}-W} \quad+$ pole terms, if any (3)
It turns out that $Z(W)$ has at least one pole, for sufficiently
small \mathbb{Z}. The spectral function $\boldsymbol{\tau}$ vanishes in the interval. $-(1+\mu) \leq W \leq M+\mu(w h e r e ~ M$ is the nucleon mass and u pion mass), otherwise, $\boldsymbol{\tau}>0$. If we save only πn intermediate states

$$
\begin{equation*}
\tau(w)=3 \epsilon^{2} \rho(w) \frac{|\Gamma(M)|^{2}}{(W-M)^{2}} \quad w>M+\mu, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(w)=\left|\frac{k(w)(E-M)}{8 \pi!v}\right| \tag{5}
\end{equation*}
$$

and k, E are the center of -mass momentum and nucleon energy, respectively, in π in scattering:

$$
\begin{equation*}
k(W)=(2 W)^{-1}\left[W^{2}-(M+i)^{2}\right]^{\frac{1}{2}}\left[W^{2}-(M-\mu)^{2}\right]^{1 / 2} \tag{0}
\end{equation*}
$$

$$
\begin{equation*}
E-M=(2 W)^{-1}\left[(W-G)^{2}-\mu^{2}\right] \tag{7}
\end{equation*}
$$

The renomalized proper vertex function $r(W)$ is normalized so that $r(I)=I$ (hence $G^{2} / 4 \pi=14.5$, the π coupling constant).
$\Gamma(W)$ has cuts for $W>M+\mu, W<-(N+\mu)$; the phase of I on these cuts is related to the $l=1, J=1 / 2$ miN scattering
amplitude (for $W>M+\mu$), or $2=0, J=1 / 2$ amplitude
(for $W<-(1+\mu)$). To simplify the notations and calculations, we set the 0^{+}scattering amplitude to zero (experimentally it is snall in the low-energy region), and concentrate on the 1^{-}amplitude; further, we save only the elastic channel, although the generalization to many channels is straight forward.
2. S-Matrix Approach

Let us define the jnvariant amplitude for π id scattering with $\ell=1, I=J=1 / 2$ by

$$
\begin{equation*}
T(w)=\rho(w)^{-1} a_{1_{-}}(w) \tag{8}
\end{equation*}
$$

such that in the elastic region

$$
\begin{equation*}
a_{1-}(w)=e^{i \delta} \sin \delta \tag{9}
\end{equation*}
$$

This amplitude T is free of kinematic singularities. If we take the 0^{+}amplitucie to be zero, then $T(V)$ has a unitary cut only on the right-hand W axis; what would correspond to the normal left-hand cuts in the W^{2} plane lie along the inaginary axis.

First, assume that the nucleon is elementary, so that Z_{1} anci Z are finite. Inen $\Gamma(W), Z(W)$ are also finite.

We may write $\mathrm{j}(\mathrm{H})$ in terms of its one-particle reducible parts and a remainder $T(W)$:

$$
\begin{equation*}
T(w)=\frac{-3 G^{2} \Gamma(w)^{2}}{z(w)(w-i)}+\tilde{T}(W) \tag{10}
\end{equation*}
$$

The first term on the right cones from the elementary nucleon pole. As Ida ${ }^{2}, 3$ discusses, the unitarity relation for I(V) is:

$$
\begin{equation*}
I_{m} \Gamma(w)=\Gamma(w) \tilde{T}(w)^{*} \quad W>M+\mu \tag{11}
\end{equation*}
$$

Ida then proves that $T(W)$ is a unitary amplitude:

$$
\begin{equation*}
I_{m} \tilde{T}(w)=\rho(w)|\tilde{T}(w)|^{2} \quad W>M+\mu \tag{12}
\end{equation*}
$$

It follows that we can write

$$
\begin{equation*}
T(w)=N(w) D(w)^{-1}, ~ \tilde{T}(w)=\tilde{N}(w) \tilde{D}(w)^{-1} \tag{13}
\end{equation*}
$$

where N, \tilde{i} nave only "left-hand" cuts, and D, \tilde{D} only right hand cuts. By virtue of the unitarity relation (II) for r, we can write

$$
\begin{equation*}
\Gamma(W)=\tilde{D}(M) \tilde{D}(W)^{-1} \tag{14}
\end{equation*}
$$

If the scattering amplitude decrease sufficiently fast at infinity, we can set $D(\infty)=\tilde{D}(\infty)=1$. (Strictiy speaking, this is in conflict with the LSZ theorem, which requires
$\Gamma(W)$ to $v a n i s i n$ at $W=\infty$, so that Z as calculated from (3)
is finite. The required rate of decrease of r need only be logarith mic. We cannot treat the large- - region accurately in any event, so we sinall ignore the $L S Z$ theorem, and calculate Z from different considerations. These problems do not arise for scalar nucleons). With this normalization, and with some old field theoretic arguments ${ }^{12}$, we find:

$$
\begin{equation*}
\lim _{w \rightarrow \infty} \Gamma(w)=Z_{1}=\tilde{D}(m) \tag{15}
\end{equation*}
$$

where Z_{2} is the usual vertex function renomalization constant. The form factor $F(W)$ is defined by $F(W)=\Gamma(W) Z^{-1}(i)$. Since we can write $F(W)=D(i) D^{-1}(W)$, it follows that

$$
\begin{equation*}
Z(w)=\frac{\tilde{D}(w) D(w)}{\tilde{D}(w) D(w)} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
Z=\frac{\tilde{D}(M)}{D(A)} ; D(A)=Z_{1} / E \tag{27}
\end{equation*}
$$

Thus we find

$$
Z(w)=Z \frac{D(p)}{\overline{\tilde{C}}(w)}
$$

Equation (10) becomes

$$
\begin{equation*}
T(w)=\frac{N(w)}{D(w)}=-3 G^{2} \frac{D(t) \tilde{D}(a)}{(w-n) D(w) D(w)}+\frac{\tilde{N}(w)}{\tilde{D}(v)} \tag{.29}
\end{equation*}
$$

Observe what happens in the limit $Z_{1}=0, Z=0$: The renormaiizea quantities $\Gamma(W), Z(W)$ vanish, but the unrenormalized vertex function $\Gamma_{u}(W)=r(W) Z_{I}^{-1}$ and unrenormalized propagator $S_{u}(\%)=Z S(\%)$ exist. Further the first term on tie right of (19) vanishes (gee Kans and Zachariasen ${ }^{4}$ for details). None the less, tinere is still a particle pole at $W=M$, coming from the vanishing of $\hat{D}(\hat{H})$ in the second term on the right in (19). That $\tilde{D}(M)$ vanish is assured by taking $Z_{1}=0$; if also we take $Z=0$, we shall later prove that the residue of the pole in T is just $-3 G^{2}$. The elementary particle pole is completely replaced by a composite particle with the same mass and coupling constant.

For sufficiently small Z, Z_{1}, onserve that $\widetilde{D}(W)$ has a zero at some position $W=W_{R}$. This pole in $I(W)$ and $Z(W)$ was first discussed by J in and lac Dowell ${ }^{13}$, who proved that the pole at $W=W_{R}$ does not occur in $T(W)$, since the two terms on the right of (19) cancel each other. $T(W)$, of course, has a pole, whose residue we define as

$$
\begin{equation*}
\frac{\tilde{N}\left(W_{R}\right)}{\tilde{D}^{\prime}\left(W_{R}^{\prime}\right)}=-3 g^{2} \tag{20}
\end{equation*}
$$

(the prime indicates a differentiation). Obviously, when $W_{R} \simeq M, Z_{I}=\tilde{D}(M) \simeq \tilde{D}^{\prime}\left(W_{R}\right)\left(M-W_{R}\right)$, so Z_{I} vanishes as $M \rightarrow W_{R}$. Later, we sinall see that for sufficiently smali $Z_{1}, Z+1-G^{2} / g^{2}$, so as $G \rightarrow g, Z \rightarrow 0$. Conversely, as $Z, Z_{1} \rightarrow 0$ the elementary nucleon pole, along with one of the Jin-lac Dowell poles, disappears; the remaining fin-MacDowell pole in $T(W)$ represents a composite nucleon. A full discussion is given in ref. 4.

3. Solution of Ida's Problem

Our object is to try to solve the equation (19) for specified input forces in either if, or in \tilde{i}. One question that might be asked is: given $T(W)$, or alternatively, specified force terms in $N(N)$, calculate $\tilde{T}(W)$ (hence $r(W)$), and the renormalization constants Z and Z_{1}. (We, of course, believe that the nucleon is composite, and hence $Z=Z_{1}=0$, but it is interesting to study nypothetical worlds where Z and Z_{1} are finite, as Ica
calculated, especially for the purpose of discussing the passage to the composite limit).

It is heuristically more convenient to solve the converse problem: given $\widetilde{T}(W)$, calculate the physical amplitude $T(W)$. It will become clear from the ensuing arguments that the problem of the paragraph above is readily soluble by similar techniques.

We begin with the converse problem, that is, $\tilde{N}(\hat{i})$ is given. Please observe that, throughout this paper, all integrals are cut off at a large but finite value of W to avoid convergence problems. Therefore vie can write

$$
\begin{equation*}
\tilde{D}(w)=1-\frac{1}{\pi} \int \frac{\rho\left(w^{\prime}\right) \tilde{N}\left(w^{\prime}\right)}{w^{\prime}-w} d w^{\prime} \tag{21}
\end{equation*}
$$

Let us suppose that the forces are sufficiently strong that there is a Jin-iac Bowel pole (zero of $\tilde{D}(W)$ at $W=W_{R} \neq$ M. This pole does not appear in $T(1)$, which gives us a single condition. It is convenient to incorporate this condition by writing subtracted dispersion relation for $D(W)$ (the subtraction is actually unnecessary):

$$
\begin{align*}
& D(w)=D\left(W_{R}\right)-\frac{1}{\pi}\left(W-W_{R}\right) \int \frac{\rho\left(w^{\prime}\right) N\left(w^{\prime}\right) d w^{\prime}}{\left(W^{\prime}-w\right)\left(w^{\prime}-W_{R}\right)} \tag{22}\\
& D\left(W_{R}\right)=\frac{3 G^{2} D(A) \tilde{D}(A)}{\tilde{N}\left(v_{R}^{\prime}\right)\left(W_{R}-M\right)} \tag{23}
\end{align*}
$$

In the limit $Z_{I}=O\left(K=W_{K}\right)$, (23) gives using (20) and (15):

$$
D(M)=\frac{G^{2}}{G^{2}} \times D(M)
$$

Now for $Z_{I}=0, Z=1-G^{2} / g^{2}$. If $Z \neq 0, D(M)=0$, consistent with (17); if $Z=0$ and $G^{2}=g^{2}, D(M)$ is as yet undetermined. We solve (19) for $11:$

$$
\begin{align*}
& N(W)=\tilde{T}\left(W^{\prime}\right)\left[\frac{3 G^{2} D(\tilde{D}(A)}{\tilde{N}\left(W_{R}\right)\left(w_{K}-A\right)}-\frac{3 G^{2} D(A) \tilde{D}(m)}{\tilde{N}(W)(W-A)}-\right. \\
& \left.-\frac{W-W_{R}}{\pi} \int \frac{\rho\left(W^{\prime}\right) N\left(W^{\prime}\right) d w^{\prime}}{\left(W^{\prime}-W^{\prime}\right)\left(w^{\prime}-W_{R}\right)}\right] \tag{24}
\end{align*}
$$

Let us try the ansatz

$$
\begin{equation*}
N(w)=\frac{-3 G^{2} \tilde{N}(w) D(m)}{\tilde{N}(m)(W-M)}+\left(w-W_{R}\right) H(w) \tilde{T}(w) \tag{25}
\end{equation*}
$$

We find

$$
\begin{equation*}
H(w)=J(w)-\frac{1}{\pi} \int \frac{\rho\left(w^{\prime}\right) H\left(w^{\prime}\right) \tilde{T}\left(w^{\prime}\right) \Omega w^{\prime}}{w^{\prime}-w} \tag{26}
\end{equation*}
$$

where the integral is over the unitary cut, and

$$
\begin{align*}
J(W) & =\frac{-3 G^{2} D(\hat{M}) \tilde{O}(A)}{W-W / R}\left\{\frac{1}{W-M}\left[\tilde{N}(w)^{-1}-\tilde{N}(A)^{-1}\right]-\right. \\
& \left.-\frac{1}{W_{R}-M}\left[\tilde{N}\left(w_{R}\right)^{-1}-\tilde{N}(a)^{-1}\right]\right\} \tag{27}
\end{align*}
$$

It is easy to see that $J(W)$ has no poles; if $N(W)$ goes like W^{-1} at infinity, so does $J(W)$.

The solution to (26) is:

$$
\begin{equation*}
H(w)=J(w)-\frac{\tilde{D}(w)}{\pi} \int \frac{\rho\left(w^{\prime}\right) J\left(w^{\prime}\right) \tilde{T}\left(w^{\prime}\right) d w^{\prime}}{\tilde{D}\left(w^{\prime}\right)^{*}\left(w^{\prime}-w\right)}+\lambda \frac{\tilde{D}(w)}{w-w_{R}} \tag{28}
\end{equation*}
$$

where λ is a number as yet undertermined. Note that $H(W) T(G)$ has no right-hand cut, and that as $Z_{1}(=D(M))$ approaches zero, both $J(W)$ and the λ-independent part of $H(W)$ vanisn. Later on, we give an exactly soluble (but non-trivial) model in which $J(W)$ vanishes icentically; clearly, in the composite limit, certain features of this model must be generally true, since $J(W)$ vanishes in this limit for any S-matrix.

Our solution will be complete, once we have exinibited λ and $D(i f)$ in terms of known quantities. This can be done, in general, by writing an unsubtracted dispersion relation for $D(W):$

$$
\begin{equation*}
D(w)=1-\frac{1}{\pi} \int \frac{\rho\left(w^{\prime}\right) N\left(w^{\prime}\right) d w^{\prime}}{w^{\prime}-w} \tag{29}
\end{equation*}
$$

and evaluating (29) at $W=11$. This condition, coupled with the condition (23) that the Jin-Mac Dowell poles cancel in T, furnishes two equations for λ and $D(i)$.

So far, we have only used one-half of the N/D formalism, which expresses unitarity on the right-hand cut via dispersion relation of the type (29). There is, of course, a condition on tine"left-inand" cut; from (19), we find

$\tilde{D}(w) \operatorname{Im} N(w)=D(w) \operatorname{Im} \tilde{N}(w)$

We leave it to the reader to show, with the aid of (19),(25), (27) and (28), that (30) is identically satisfied. Finally, the renormalization constants Z_{I} and Z can be calculated from (15) and (17).

A number of generally true observations can be
made from a remarkably simple model, which posessesses an algebraic solution. Suppose that $N(W)$ has the form:

$$
\begin{equation*}
\tilde{N}(U)=\frac{\mathrm{B}^{2}}{W+W_{2}} \tag{3.2}
\end{equation*}
$$

It is immediately apparent firon (2.7) that $\pi\left(\begin{array}{l}1 \\ \hline\end{array} \equiv 0\right.$, and we thon it (!) directiy fron (28), The whole nodel is solved algobraicaliy, and we finc:

$$
\begin{equation*}
N(v)=\tilde{N}(w)\left[\lambda-\frac{3 G^{2} \theta(M)}{\tilde{N}(M)(v-\theta)}\right] \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
D(W)=1-\lambda+\lambda \tilde{D}(W)-\frac{3 G^{2} D(G)}{\tilde{N}(A)(W-A)}[\tilde{D}(W)-\tilde{D}(W)] \tag{33}
\end{equation*}
$$

(A special case of this solutionin potential theory has been given by kaus and Zachariasen ${ }^{4}$.)
From (33), we find:

$$
\begin{equation*}
D(M)=[1-\lambda+\lambda \tilde{B}(\mu)]\left[1+\frac{3 G^{2} \tilde{D}(A)}{\tilde{N}(\mu)}\right]^{-1} \tag{34}
\end{equation*}
$$

Use (33) and (22) to come to

It is clear that as $W_{R} \rightarrow \lambda, \lambda \rightarrow 1$; indeed, it is easy to show that $\lambda=I+0 \quad\left(W_{R}-1\right)^{2}$ by solving (34) and (35) together. Thus for sufficiently small Z_{1} and $R_{R}-i,(34)$ becomes

$$
\frac{\tilde{D}(m)}{D(m)}=Z=1+3 G^{2} \frac{\tilde{D}^{\prime}(a)}{\tilde{N}(i m)}+O\left[\left(W_{R}-M\right)^{2}\right]
$$

(The first equality follows from (17). In the limit $Z_{I}=0, W_{R}=M$, we conclude, with the aid of (20), that

$$
\begin{equation*}
z=1-G^{2} / g^{2} \tag{37}
\end{equation*}
$$

In the composite $\operatorname{limit} Z_{1}=Z=0, \lambda=\lambda$, we get:

$$
\begin{equation*}
N(w)=\left(\frac{w-w_{0}}{w-M}\right) ?(m) \quad, \quad O(w)=\left(\frac{w-w}{w-m}\right) \tilde{D}(w) \tag{38}
\end{equation*}
$$

Winery

$$
\begin{equation*}
W_{0}=M+3 G^{2} \frac{D(D)}{\tilde{N}(m)} \tag{39}
\end{equation*}
$$

Equations (37),(38) and (39) are indepencent of our special model; see the remarks below (28). Observe the following: the condition that the composite particle and the elementary particle have the same mass is that $Z_{1}=0$; that they have the same couplings requires $z=0$. This is perhaps the opposite of ene's naive expectations. Furthermore, it is clear that, for sufficiently small Z_{1}, $N(\%)$ always has a zero which approaches $\%_{0}$ in the composite limit. $:$ e shall argue in the next section that Wo can be identified with the bare mass of the nucleon, H_{0}. Since $D(K)=Z_{1} / Z \geq 0$: $N(M)>0$ (for attractive forces, in general), we see from (39) that $H_{0} \geq H$ as would be expected in conventional mid field theory. As far as pure S -matrix
theory is concerned, Z_{1} and Z are logically incependent, and $D(i f)=Z_{1} / z$ can have a wide range of values; therefore, so can W_{0}. But we always have a finite number (zero in the composite limit) for $Z \delta \mathrm{H}$, ciefined as

$Z \delta M=Z\left(M_{0}-A\right)=\frac{3 G^{2} B_{1}}{\tilde{N}(M)}$

The reader must not suppose that Z_{1} / Z can be chosen confictely arijtrarily, at leasi without the experse of un physical complications. If $Z_{1} / Z=D(M)$ is suffiaiently small, then it follows by continuity arguments that $D(3)$ has a zero at some point $W=W_{1} \simeq M$. By hypotinesis, the physical amplitude $T(H)$ has no other poles except the nucleon pole, hence iv(H_{1}) must also be zero, and W_{1} is the same zero of $N(W)$ as ciscussed in the preceding paragraph. A glance at (19) shows that the right-hand side of this equation will have a pole, unless $D(W)$ has a $C D D$ pole at $W=W_{1}$. Now $D(W)$ vanishes at $W_{R} \simeq H$ (for small enogh Z_{1}), and by crawing graphs it will be easy to see that the adrition of the $C D D$ pole at $M_{I} \simeq M$ produces another zero in $D(W)$, at $\omega_{2} \simeq M$. This can produce a pole in the right-hand side of (19) at $W=N_{2}$, unless the residue of the pole vanishes (wich it must, since $T^{\prime}(\mathbb{N}$) has no such pole). The condition that there be no such pole in (19), along with otner previously mentioned conditions, allows
one to determine the residue of the CDD poic as well as W_{1} and W_{2}. Everything is well-behaved at the conposite limit, when $W_{0}=U_{1}=U_{2}$ and the $C D D$ pole and extra zero in $D(H)$ disappear(because tre residue of the CDD pole vanishes). It is difficult to make any physical sense out of all these zeroes and poles before the composite limit is reached. In the next section, we indicate that field theory probably avoics these complications, by not letting Z_{1} / Z become too small in the composite limit.

III The Dyson Equations

We now turn to the problem of compositeness as expressed in the Dyson equations. All of the features of the S-matrix theory of sec.II emerge, as well as some new ones, whicn involve the nucieonic bare mass, as briefly mentioned in Section II.

To simplify the presentation of this scetion, we suppose that the only composite particle in the world is the nucleon, all others $\dot{\text { being }}$ elenentary; furthermore, we treat all particies as isotopic scalars. . The practical distinction we make between elementary and composite particles is that the renomenized propagators and vector functions of elementary particles are supposed to be well-defined, and to have no extra poles or
zeroes. Unrenormaiizeci guantities are distinguisned by a subscript u; renormaizzed guantities have no sunscript of this sort.

Treatments similar to ours have appeared in the literature before, wut eenenally basec on specific mosels (c.g., Praminan and Passi 14 jave studied the Lee rocel with mecoil). 'he only assumptions we make are that tne fielo theory is menomaidaabie, anc that the field-tneonetic exprossions Ëon \ddot{Z}_{1}, Z, etc., are finite in principle, and can be varied by varying renormalized coupling constants and masses. For simplicity, we consider only Yukawa vertices coupling two baryons and a mason.

1. Compositeness via tine Dyson L'quations

Consider a world in which there are a certain number of pseudoscalarmesons (π, K, \ldots) and baryons (H, Σ, \ldots); the nucleon can appear as a bound state in a number of two-bocy channels ($\pi i \downarrow, k i, \ldots . .$.$) . There is quite a difference in$ spirit between a rucleon winch is a bound state of itself (and aneson), as in the mir channel, and a rucleon composed of two elenentary particlos (e.g., K). The lattor case is more straifiteorward but there are no insuperable difficulties for the former case.

Let us bogin by defining a renormalized off-shell
scattering amplitude for baryons and mesons by

$$
\delta\left(p-p^{\prime}-q\right) T\left(p, k, \xi^{\prime} ; i f\right)=\frac{-i}{(\pi \pi)^{4}} \int \cdots \int e^{\left.-i\left[(p-k) x+k \cdot y-p^{\prime} \cdot x^{\prime}-q \cdot q^{\prime}\right]^{\prime}\right]_{x}}
$$

which describes the scattering of a baryon (of momentum $p-k$) and meson (k) in the initial camel i, into a baryon ($p^{\prime}=p-q$) and meson (q) in the first channel f. The renomalized meson field is ϕ, the renommalized baryon field is ψ, and the i's are free Dirac or Klein-Gordon operators. As before, we set $p^{2}=a^{2}$; when all external momenta are on the mass shell, and we put $\neq \|$, the appropriate partial-wave projection of (41) is just the amplitude $T\left(\begin{array}{l}\text { (1) } \\ \text { introduced }\end{array}\right.$ in (8). We define a one-nucleonimencible amplitude $T^{l}(p, k, q ; i f)$ by subtracting $\%$ from $I(p, k, q ; i f)$ all Feynman graphs which can be separated into two disjoint pieces by cutting a single nucleon line of momentum p. This amplitude yields $T(W)$ on the mass snell. We define the unrenomalized version of I^{2} by:

$$
\begin{equation*}
T_{u}^{\prime}(p, k, k ; q ; \hat{f})=\Pi\left(Z_{j}\right)^{1 / 2} T^{\prime}(p, k, q ; q ;) \tag{42}
\end{equation*}
$$

where z_{j} are wave-function renormalization constants for the extemal legs. The fundamental hypothesis we make is that $Y^{1}(p, k, C ; i f)$ is finite and well-behaved in the limit when the nucleon becomes composite. This is easy to swallow if the channels if co not contain the nucleon itself. If they do, a non-perturdative point of view is required, since as a result of our hypothesis we shall prove that all renornalized Yukawa vertices containing a nucleon vanish. Nevertheless, we proceed on this assumption.

We use the notation $\tilde{I}_{u}(p, g ; f)$ to denote a certain pseucio-proper unrenomalized vertex function, describing a nucleon (of monentum p) going to a channel f consisting of a baryon ($p-q$) and a meson (q). The vertex function is proper with respect to the nucleon of momentum p, but contains full propagator corrections to the legs of channel f. The Dyson equation for this object is

$$
\begin{equation*}
\tilde{\Gamma}_{u}(p, q ; i f)=i \gamma_{5}\left\{H(p, q ; f)-\frac{i}{(2 \pi)^{4}} \int d^{4} k \sum_{i} \frac{G_{i} Z_{1 i}}{G_{f} \bar{Z}_{1}} \times\right. \tag{43}
\end{equation*}
$$

$$
\begin{aligned}
& \left.\times Z_{2 q} Z_{3} S_{0}(p-\theta) \Delta_{0}(k) T^{1}(p, j, q ; j ;)\right\} \\
& H\left(p, q ; \frac{q}{j}\right)=S_{u}(p-g) S_{0}^{-1}(p-q) \Delta_{u}(q) \Delta_{0}^{-1}(q)
\end{aligned}
$$

$$
S_{0}(p-q)=(p-q-\mu)^{-1} ; \Delta_{0}(q)=\left(q^{2}-\mu^{2}\right)^{-1} .
$$

In (43) the G_{i} are ronomainzod coupling constants coupling a nucleon to channel $i, Z_{\text {I }}$ ane vertex renormalization constants, and $Z_{2 i} Z_{3 f}$ is the product of wave-function renormalization constants for the baryon and meson in chanel E. Let us put the particles in channel f on the mass snell, and set $\ddot{\sim}=\boldsymbol{W}$ in $\tilde{\Gamma}_{u}$. Under these circumstances, we have:

$$
\begin{equation*}
\tilde{\Gamma}_{u}(p, q ; q)=i \psi_{j} z_{2,} \Xi_{3} \Gamma_{u}(W ; \xi) \tag{44}
\end{equation*}
$$

where $I_{U}(W ; f)$ is the unrenormalized form of the proper vertex described in section II. From (143), we find (with channel f on shell)

$$
\Gamma_{u}(w ; f)=1-\frac{i}{(2 \pi)^{4}} \int a^{4} k \sum_{i} \frac{G_{i} z_{i i} S_{0}(p-k) \Delta_{0}(k) T^{\prime}(p, k, q ; i f)(1,5)}{G_{p} z_{i f}}
$$

To simplify the notation in what follows, we write explicit formulas as if the nucleon were only coupled to one channel, so that channel labels may be dropped. The reader may convince himself, using (43) and (45), that no real generality is lost in the ensuing discussion.

The iced behind compositeness, as expressed in Section II, is that the amplitude T^{l} piciso up a pole in the momentum p, as the various forces in the problem are adjusted. Therefore, in the neighborhood of this pole, T^{l} has the form (irrelevant Dirac matrices omitted):

$$
\begin{equation*}
T^{\prime}(p, h, q)_{p=w}=-\frac{R(p, i) R(p, q)}{W-W_{R}}+\cdots \tag{146}
\end{equation*}
$$

The residue functions in (46) make sense only at $p^{2}=W_{R}^{2}$. We snail ie interested in evaluating functions at $W=11$ a a the composite pole moves close to K , we need only save the pole terms. Insert (46) into the one-channel version of (45) to find:

$$
\begin{align*}
& \Gamma_{u}(W)=1+\frac{\hat{R}_{m}}{W-W W_{R}}+\cdots \tag{47}\\
& \hat{R}=\left.\frac{i}{(2 \pi)^{4}} \int d^{4} k i \gamma_{5} S_{0}(P-k) \Delta_{0}(k) R(R, B)\right|_{p=w} \tag{48}
\end{align*}
$$

$g=R(p, q)$ at this point $D^{2}=R_{R}^{2}, q$ and $p-q$ on the mass shell. (49)

- Of course, we assume that R exists and is not zero; by our previous assumptions about T^{l}, both $\mathrm{R}(\mathrm{p}, q)$ and P are wellbehaved in the composite limit.

By definition, $z_{1}^{-1}=r_{u}(\%)$.For sufficiontly amain
values of $: 1-n_{i}$, we find

$$
\begin{equation*}
Z_{1}=\frac{n-w_{n}}{\hat{R} g}+O\left[\left(H-w_{a}\right)^{2}\right] \tag{50}
\end{equation*}
$$

This is in arrement with the general results of section II, Ghat $Z_{1} \sim H-H_{R}$. Observe also that $\Gamma_{u}(\%)$ is well-cofined for
 We may also calculate the unrenormaized propagator, as usual setting ${ }^{0}=\mathrm{F}$. In the usual language, wo have:

$$
\begin{equation*}
S_{u}(W)^{-1}=W-M_{0}-\Sigma_{u}(W) \tag{51}
\end{equation*}
$$

In (52), G is a renomalized coupling constant, Z is the nucleon wave-function renormalization constant, and Z_{I}, Z_{2}, Z_{3} refer to the intermediate state to which the nucleon is counted. lie (43), (46), and (48) to find the pole contribution to $\Sigma_{u}(1)$:

$$
\begin{equation*}
L_{i}\left(W^{\prime}\right)=G^{2} Z_{i}^{2} \frac{\hat{B}^{2}}{W^{2}-W_{0}}+\cdots \tag{53}
\end{equation*}
$$

By definition,

$$
\begin{equation*}
E^{-1}=1-\frac{\partial \sum_{1} \ln }{3 W} \tag{54}
\end{equation*}
$$

This yields

$$
\begin{equation*}
\bar{z}=1-G^{2} \frac{\hat{i n} \cdot \hat{R} \cdot)^{2}}{n-6 \cdot} \tag{55}
\end{equation*}
$$

We note in passing that the masa-jiell version of T^{l} has a Dole at $N=V_{R}$ of residue $-g^{2}($ see (40) and (49)). It is easy to chock that the pole $\bar{t}=h_{\mathrm{K}}$ of the ono-nucleon reducible terms has precisely tho opposite residue, so that pole coos not appear in I; this is the Jinn Mac bowel result ${ }^{13}$. Of course, in the composite limit, the one nurieon reducible toms vanish so that $T=T^{I}$.

Eon sufficiontiy small un, we an use (50) to got

$$
\begin{equation*}
z_{2}=1-G^{2} / g+\cdots \tag{56}
\end{equation*}
$$

This is the same result at proviouidy derived in s-matrix theory (ser (37)).

It is easy to see that ${ }_{u}$ vaniabnes like ${ }_{2}{ }^{2} / \mathrm{Z}$ in the composite limit, so that the unrenorralized propagator becomes the dare propagator: $S_{u}(G) \quad\left(i H_{0}\right)^{-i}$. We have $S_{u}(W)=Z S(W) ;$ using (I), the function $Z(N) / Z$ exists in the limit $Z \rightarrow 0$ and is given by

$$
\begin{equation*}
\lim _{z \rightarrow 0} \frac{z(w)}{z}=\frac{W-m_{0}}{W-n} \tag{57}
\end{equation*}
$$

This agrees with the S-matrix theory of section IT, provided we identify H_{0} in (38) with μ_{o}, since $Z(W) / Z=D(N) / \tilde{D}(1)$ from (13). Observe also that, since the propasaton is a simple rational function, the rinse of the unenormalized proper vertex function and of the for factor are the same, botha being equal to the physical pase shift. In connection with the comparison with S-matrix theory, we remind the reader that equations (37), (30), and (39) are model-inciependent, altnoursh most easily derived from a special model.

```
We can ciran some conclusions about the rate at mion
``` \(Z\) approaches zero, when \(Z_{1}\) is already small. The unrenormalizec inverse propagator must have a zero at \(W=\mathrm{A}\); saving only the pole terms gives, with the aid of (51) and (53):
\[
\begin{equation*}
O=M-M_{0}-G^{2} \frac{Z_{1}^{2}}{E} \frac{\hat{R}^{2}}{i-W_{R}}+\cdots \tag{58}
\end{equation*}
\]

With the aid of (50) and (51), we find
\[
\begin{equation*}
Z=-\frac{M-W_{0}}{M-M_{0}} \tag{59}
\end{equation*}
\]

By comparing the expressions derived in section II with those of the present section, we derive the following relation which holds in the composite limit:
\[
\begin{equation*}
\tilde{D}^{\prime}(M)=(\hat{R} g)^{-1} \tag{50}
\end{equation*}
\]

Use (17) and (38) to find
\[
\begin{equation*}
Z_{1} / Z=D(M)=\left(M-W_{0}\right) \tilde{D}^{\prime}(M) \tag{61}
\end{equation*}
\]
which, with the aid of (50), (60), and the previousiy mentioned identification \(H_{0}=l_{0}\), yields (53).

Just as in the \(S\)-matrix case, all renormalizeci vertex functions which involve one (or more) nucleons vanish in the Iimit. The amplitude \(I\) then becomes equal to tre amplitude \(\mathrm{I}_{\mathrm{I}}\) and it is perfectl: straight forward to believe thet \(T_{1}\) is well-behaved when it cescribes something like ǩ elastic scattering, since there is some part of this amolitude winch nas no mucleon vertices in it at all. But when \(\mathrm{I}_{1}\) describos, e.g., miv scattering, the situation is a little difforent. Any finite number of feynman graphs contributing to \(T_{1}\) must vanish if all vertices involving nucleons vanisn. Our hypotinesis has Deen that \(I_{I}\) does not vanish in the composite linit; this can only de true when an infinite number of graphs contribute. be camot prove that \(T_{1}\) does or does not vanisin from simple grarnical consideraitions; one must study a set of non-linear integral equations for all \(\mathrm{T}_{\mathrm{I}}\) 's wnich involve external mucleors to see if they have non-trivial solutions.
2. Electromarnetic liuss Shifts of Composite Particles We shall be brief in this suosection, because it would take another long article to describe (mucil less avoic!) all the pitfalls involved in doing a reliable calculation of the neutron-proton mass difference. There are many teciniques
for evaluating this mass difference: 1) Feynman diagrams, with ion factors (the onisinal nora is Dy Feynman and Speisman \({ }^{15}\)); 2) the Dasnen-frautochs method \({ }^{6}\); 3) dispersion methods applied to the mopagator \({ }^{6}\), \({ }^{16}\); 4) Bethe-selpeter method as well as several other methods. All of these would give the same answer if evaluated exactly, but certain methods give trouble especially when approximations are macc. A particularly interesting trouble, from the point of view of compositeness, wines in the work of Fried and Truond \({ }^{10}\) : if one sets \(Z=0\) in their formula, the mass difference vanishes identically. This happens independent of any approximation. The reason for it is that Fried-Truong formula does not take into account the Jin-hac powell pole in the inverse propagator, which must occur for sufficiently small \(Z\).

In section III.I, the nucleon was coupled to a strong interaction channel which made it composite. Let us non add in the photon-hucleon chance, and discuss the situation for small (but finite) \(Z\). Anon the \(T_{1}\) 's there is a set of photo production amplitude, which for sufficiently small \(Z\), have composite particle poles, as in (46):
\[
\begin{equation*}
T_{\mu}^{\prime}(p, k, \xi)=-R\left(p, 1, \frac{1}{w-w_{k}} R_{\mu}(\beta, p)\right. \tag{02}
\end{equation*}
\]

Here \(\mu\) is a 4 -vertex index mich couples to the photon field. \(\mathrm{F}^{\mu}(\mathrm{p}, \mathrm{q})\) is a residue function which gives the total change of the composite nucleon; thus for the proton, ignoring magnetic moments terms:
\[
R_{\mu}(p q) \rightarrow \gamma_{\mu} \in\left(p^{2}=W_{R}^{2}, p-q a_{\cos \alpha} g_{j} \text { on } A \min ^{2}\right)(03)
\]

Just as for the strong interactions, we introduce a quantity
\[
\begin{equation*}
\hat{\hat{R}}_{y \hat{i}}=\frac{\dot{i}}{(2 \pi)^{4}} \int d^{4} k \gamma_{\beta}^{\gamma} S_{o}(p-n) \Delta_{o}^{\beta \nu}(k) R_{p,}(\beta, k) \tag{64}
\end{equation*}
\]

The corresponding quantity for the neutron vanishes, because it has zero charge. In (64) \(\Delta_{0}^{\mu V}\) is the free photon propagator. Electromagnetic vertices and corrections to the proton propagator, in the neighborhood of the pole at \(W=W_{R}\), can be expressed with the aid of (64).

To make the point we have in mind, it is simplest to fore et the neutron completely, and discuss the electromagnetic mass shift of the proton, as a sort of analogue of the Lamb sift in hydrogen. Adding the neutron merely complicates the writing of formulas. The unrenormalized proton propagator, with electromagnetic corrections included, takes the form
\[
S_{u}^{-1}(w)=W-M_{0}-G^{2} \tilde{S}^{2} \frac{\hat{B}^{2}}{W-B_{k,}}-\frac{e G \bar{B}_{0} \hat{B} \hat{R}_{y p}+\ldots(65)}{W-W_{R p}}
\]
where \(\mathrm{w}_{\mathrm{p}}\) is the position of the fin-hacomell pole including electromagnetic corrections. In writing (65), we nave used the fact that \(Z_{1 y p}=2\).

It is nell-known that urienommalizer propagators are not gauge-inveriant, because \(Z\) is not gauge-invariant, in general. However, an interesting thing happens when \(Z\) domes very small and nucleon approaches compositeness. Gauge- dependent terms can only come from that part of the proton propagator \(\Delta_{\mu \mathrm{V}}(k)\) winch go like \(k_{\mu} k_{v}\). It is a consequarice of the vara identity that these gaupe-dependent terms must vanish (at least) linearly in \(w-i f\), as \(w\) approaches \(11 ;\) this must be so, or the electromagnetic mass shift (winch comes from evaluating (65) at \(\because=M\) mound be fauge-dependent. Ir tie composite imit, this factor of \(0-1\) will cancel the pole at \(n=\), with the result that the gauge-dependent corrections to \(Z\) vanjsin with a nigher power of H - \(\mathrm{H}_{\mathrm{R}}\) than the Feynman gauge electronametic correction b. Intuitively, this accords with our belief that tie notion of compositeness, as expressed via \(Z=0\), is pauge-irvariant.

We distinguish between \(M\) and \(M_{P}\), the proton mass before and after (respectively) electromagnetism is turned on. There is: a similar distinction between \(W_{R}\) and \(W_{R_{D}}\). Since l \(D y\) our notion
of compositeness) the electromagnetio corrections to \(\#_{R}\) are the same as they are to il, ve have
\[
\begin{equation*}
M_{p}-W_{R p}=M-W_{R} \tag{50}
\end{equation*}
\]

As the composite limit is approached, the wave-function renonmalization constant benaves like (see (59)):
\[
\begin{equation*}
Z \rightarrow \frac{M_{p}-W_{p p}}{M_{p}-M_{0}} \tag{67}
\end{equation*}
\]
where the higher-order terms contain gauge-dependent terms. If we forget about electromagnetic corrections to tile strong vertices and propagators, so that \(G, Z_{1}\), and \(R\) are unchanged, we can use (50), (66) and (67) to evaluate (65), wich must vanish at \(W=H_{p}\); the result is the electromagnetio mass shift of the proton without feedback:
\[
\begin{equation*}
M_{p}-M=e \hat{R}_{E_{p}} \tag{68}
\end{equation*}
\]

It is easy to check that including feedoack would still lead to a finite result at \(Z=0\), in contrast to the Fried-Truons \({ }^{10}\) formulas. Clearly, fornula (68) is a Bethe-Salpeter type of
mass-shift equation; such Eommuations have alreacy beer discussed in the Iiterature \({ }^{7}\). It has an advantars over the Dasnen-Frautscini formula that infra-redproblems are relatively easily aisposed of.

Lispersion relations for \(S_{u}^{-1}(N)^{8,16}\) are yet anotiner tecnique for finging mass shifts. The necessary ingredients
 These are constructed in terms of \(D(V)\) (see Section II), wich reveals, tios conposite particle pole. This pole is exnibited in \(S_{u}^{-2}(W)\), as discussed by several authors 13,18 , Dy the Ceformation of an integration contour as the pole moves from the second sheet (for weak forces) to the first sheet (as the strengti of the forees is increased). Thereby all the results in Section II and III can be exnibited in an approximation in which only a small numer of intermediate states is saved. Unfortunately, not all sucn approximations are gauge-invarjant. In the appencix, we show how to maintain pauge invariance in approximate calculations; for example, if one begins by saving only the mij channel as an intemediate state in the propaeator Without electromagnetions included, then one must add boti the \(\gamma\) and the \(\gamma \pi\) an channels to compute the gauge-invariant propagaton. The eloctromagnetic amplitude must satisfy the relevant Ward icentities. That these tro chameis should be inclucded is intuitively obvious, if one tinks of computine a gauge-invariant set of Feynman graphs by the Cutkosky mules, but the authors are unaware of a detailed discussion in the Iiterature.

\section*{References}
I. A.Salam, Wuovo Cimento 25,224 (1902).
2. Masakuni Ida, Paya. Rev. 135,8499(2964).
3. Masakuni Ida, Zhys. Rev. 136, 17707 (1964 .
4. P. Kaus and F. Wachariasen, Fays. Nev. 171,1597(1968).
5. P. Kaus and F. Zacnariasen, Phys. Rev. 138. 21304 (2965)
5. Z. Dasmen and B.E. Erautsoni, Fnyo. Rev. 235, \(2.190(1965)\)
7. John Harte, Pnys. Rev. I58, 1521(1907).
8. Jom \(\because\). Cornmall and S.m. Fatil, Pivs.Rev, Inters 19, 757(1907)
9. Sce, e. ., G. Birton, Fhys. Pev. 143, 1149(1906).
10. K. Hayashi, M. iineyama, T. iuta, N. Saito, and T. Snirafuji, Fortscin. d.Pnysik 15, 625 (1967).
11. H. Lehmen, K. Synanzin, and W. Zimememann, wuovo Cimento 2,425 (1955).
12. G. Kallen, fielv. Days. Acta 25,417 (1952); if.Gell-iann a E. Zachariasen, Fiys.Rev. 223,1065 (.2961).
13. Y.S. Jin and S.i. lac Dowell, Phys. Rev.137:2688(1965).
14. T. Prediann \& J. J. Passi, Phys.Rev. 160,1336(1967).
15. R.F.reynman and G.S. Speisman, Pnys. Scv. 94: vo (190t)
16. H. Eried and I. Truorg, Thys.Rev. Letters 16,559(1960).
1.7. ii. Pagels, Phys. Iev. 144,1201 (19003).
10. T. Saito, Phys. Rev. 145,1302 anc 152,1333(1966)

\section*{Appendix: On Gape Invariance}

We want to show what combination of intermediate states must be saved in the Lehmann representation of the propagator, in order than the propagator be gauge-invariant. For simplicity, suppose that the charsod particles are scalars, called \(\phi\) particles, and that there is a \(\phi^{3}\) vertex. We define the renomalizec propagator and its Fourier transom by
\[
\begin{align*}
i \Delta A_{F}(x) & =\langle 0|\left(\operatorname{s}(x) \phi^{i}(0)\right)_{p}|0\rangle \\
\Delta_{F}(p) & =\int i^{i} \times e^{i p x} A_{F}(x) \tag{AI}
\end{align*}
\]

In wat follows, we set \(D^{2}=s\).
Any change in \(\Delta_{F}(\rho)\) coming from a gauge transformation has two parts : one part from, changing the photon propagator, and one part from the phase transformation of the fields \(\phi,{ }_{\phi}{ }^{+}\):
\[
\begin{align*}
& \phi(x) \rightarrow e^{-i \xi \Lambda(x)} \phi(x) \\
& \phi^{\dagger}(x) \rightarrow \phi^{+}(x) e^{i g \Lambda(x)} \tag{A2}
\end{align*}
\]
where \(q\) is the charge of the scalar field.
Let us consider an operator gauge function \(A(x)\) mich commutes with \(\phi, \phi^{+}\)and is causal (fields commute at spacelike separations). To \(O\left(q^{2}\right)\), the change is \(\Delta_{F}\) coming from (A2)
can be written
\[
\begin{equation*}
\delta^{(1)} \Delta_{F}(p)=\frac{i q^{2}}{\left(2 a^{4}\right.} \int 0^{4} i v A_{p}(p-k) \operatorname{D}(1) \tag{AB}
\end{equation*}
\]
where \(D(k)\) is the Fourier transform of
\[
\begin{equation*}
D(x)=-i\left\langle 0 \mid(n(x) A D)_{+} 10\right\rangle \tag{14}
\end{equation*}
\]

To the change (\(A 3\)) must ie added the change coming from the modified photon propagator \(\left(\Delta_{\mu v}(k)\right)\), which occurs in the internal lines of \(\Delta_{F}(\underline{P})\) :
\[
\begin{equation*}
\Delta_{\mu \nu}(k) \rightarrow \Delta_{\mu \gamma}(k)+k_{\mu} k_{\nu} D(k) \tag{AS}
\end{equation*}
\]

This induces a change \(\delta^{(2)} \Delta_{F}(p)\). For gauge invariance, the sum of these tho changes must add to zero. Although \(E(k)\) is rather general, we study the kinomatically simple case
\[
\begin{equation*}
D(k)=\frac{C}{k^{2}+i 4} \tag{n0}
\end{equation*}
\]
\[
(c=\operatorname{constan} t)
\]

Corresponding to the addition of massless scalar ghosts to the electronametic Eiold. This D (i) generates divergent expressions in the propagator, but the change in the propagator
discontinuity function is finite; studying this discontinuity function is sufficient for our purposes.
Consider the following approximation to the Lemon
representation: only the \(\phi \dot{f}\) and \(\gamma\) \& chameis are saved. We write:
\[
\begin{align*}
& \Delta_{F}(s)=-\frac{1}{\pi} \int_{A^{2}}^{\infty} \frac{I m \Delta_{F}\left(s^{\prime}\right) a s^{\prime}}{s^{\prime}-s} \tag{AT}\\
& \operatorname{Im} \Delta_{F}(s)=\pi \delta\left(s-m^{2}\right)+\sigma^{2} \sigma^{-}(s)+\sigma^{2} \sigma(s)
\end{align*}
\]

Here
\[
\begin{equation*}
\sigma(s)=\frac{1}{16 \pi}\left(\frac{s-4 M^{2}}{s}\right)^{1 / 2} \frac{|F(s)|^{2}}{\left(s-M^{2}\right)^{2}} \tag{AB}
\end{equation*}
\]
and (in the Feynman gauge)
\[
\begin{equation*}
\tilde{\sigma}(s)=-\frac{1}{16 \pi}\left(\frac{s-M^{2}}{s}\right) g_{\mu v} \Gamma^{\mu} \Gamma^{v *}\left|\Delta_{F}(s)\right|^{2} \tag{AP}
\end{equation*}
\]
\(F(s)\) is the strong \(\phi^{3}\) form factor, while \(r^{\mu}\) is the electromagnetic proper vertex function.

Under a gauge transformation of the photon propagator,
\(-g_{\mu \nu}\) in (A9) is changed to \(-g_{\mu \nu}+\mathbb{C} k_{\mu} k_{\mu}\), where \(k_{\mu}\) is the photon momentum. The Ward identify for \(\Gamma_{\mu}\) reacts \(k_{\mu} r^{\mu}(s)=\) \(\Delta_{F}(s)^{-1}\). The change (A3) can be analyzed with the aid of (A7) and the usual Cutkosky rules; wo have
\[
\delta^{(1)} \operatorname{Im} \Delta_{p^{2}}(s)=\frac{g^{2} C}{16 n^{3}} \int x^{\prime \prime}\left(\frac{s^{\prime}-s}{5}\right)\left[\pi \delta\left(x^{\prime}-m^{2}\right)+\sigma\left(\alpha^{0}\right](A 10)\right.
\]

The change \(\delta^{(2)}\) in \(S_{F}(3)\) is computed from (A9) and the Wand identity
which just cancels off the first ter of (AIO). It remains to cancel of the second term. This can be done by acing the \(\gamma \phi \phi\) intermediate state. We do not require full knowledge of the amplitude \(V_{\mu}\) for \(\psi \rightarrow \gamma \psi \phi\), but only the Ward identity:
\[
\begin{equation*}
k_{\mu}{V^{\mu}}^{\mu}\left(p, k, c_{i}\right)=\frac{F\left[(p-k)^{2}\right]}{(p-m)-k)^{2}} \tag{A12}
\end{equation*}
\]
where \(F\) is the same form factor as in (\(A 8\)).
We compute tie change in \(\Delta_{\mathrm{F}}\) coming from the photo. production graphs:
\[
\begin{align*}
& x \delta_{+}\left(k^{2}\right) \delta_{q}\left(q^{2}-M^{2}\right) \delta_{p}\left[(p-k-q)^{2}-M^{2}\right]
\end{align*}
\]
```

Witn thw aid of tho ward iGenuity (naz) we can integrare
(A13) iato the Som:

```
more wo nave set \((p-大)^{2}=s^{\prime}\). We recognice tho appearance of the spectral function \(F(B)(\) Bee (AB)) in (h lt). The total change in \(\Delta_{F}(S)\) is given by acing (ADo), (AII), ama (Ait), midi gives zero, no matter mat \(F(s)\) is chosen row we. \(\because(s) \dot{Z}\) (Gulf \(\dot{Z}\) g Gube-invariant even when electromagnetic corrections ane included, because it is (in principle) a measureable quantity.

The general principle is clean: if a particular channel \(|n\rangle\) is included in the propagator without electromagnetism, then the channel \(|n \gamma\rangle\) must be included in the Lehmann representation with electromagnetic effects included. The ward identity then insures gauge invariance.

We conclude by observing that it is quite simple to make up approximations to the amplitude \(\phi \rightarrow\) of g which satisfy the Hard identity (All); For examples the Born graphs with form factors at the vertices, and fully corrected propagators. \(\hat{A}\) somehwat more elaborate analysis is needed when composite particle poles are present, bu: it is not difficult in principle.```

[^0]: * Work supported in part by the National. Science Founcation, by the Niels Bohr Institute, and by the U.S. Atomic Energy Commission.
 + Alfred P. Sioan Foundation Feilow; now at the Niels Bonr Instituz
 ++ Now at the Stanford innear Acceleraton Center, Stanford, Caijf.

