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I. Introduction 

Over the last few years, a great many articles 

have been written concerning the connection between 

compositeness and vanishin!: renormalization constants, 

used in large part upon ideas putforthby Salan 1 . The 

fund&i~~iltdl ideas in t;:is field are well-known, and we have 

nothing new to acd to them; our concern in the present 

paper is to state these ideas * in a model-independent 'way, 

u0t.h in S-matrix theory and in field theory, with a view 

t0bjdrc.i possible future applications to such things as the 

electromagnetic mass shifts of composite particles, we 

present some new results bihich connect the S-matrix annroach ^ A 

with field theory, and clarify some known results connected klith 

the passage to the con:>osite limit. 

There are tile overlapping fields in which the 

compositeness problem can be studied: S-matrix theory - 3 and 

field thecry (as exemplified by the Dyson equations). In 

S-matrix theory, we have solved a problem first phrased 

completely by Ida 293 , which we state as: given t‘ne physical 

S-matrix, say for nl; scattering, what is the proner n~~v vertex 

function as a fu;lction of one nucleonicnass variable? This is 

to be contrasted to the essentially trivial problem of 

constructing the form factor from the physical phase shifts. 

Nith this solution in hand, we are in a position to st-udy the 

composite limit, in much the same way as Kaus and Zachariasen 

(among 0thers)have done 4,s . The proner vertex function a??ears in 

the decomposition of the partial -;iave S-matrix into two Darts 
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one of which contains tile nucleon pole, and the other which 

is one-nucleon irreducible but unitary 2$3 . This same 

dccomposi-ticn was used in refs. 4 and 5, and our Section II 

can be considered as an e&tension of the relevant part of 

ref.4. Ye need no; reseat in detail tile arguments in ref.4 

concerning the ‘uootstra~ philosouhy, or the way in which the 

vanishing of renormalization constants insures that the 

"elementary" nucleon drops out of the scatteriq amplitude, 

to be replaced by a composite nucleon. Yhat ha~;r;ens, in 

accordance With ref. 4, is that the unrenormalized ljroper 

vertex function and propagator are finite and well- 

defined in the composite limit, while their renoraaiized 

counter parts are not. 

This last circumstance is an interesting one to study 

with the Dyson equations. We have carried out such a study, 

valid for any finite field theory, in section III and find 

that the results (so far as field theory and S-matrix theory 

are comparable) are in agreement ;Jith those of section II. 

5.: e can, in addition, construct formulas for such things 

as electromgnetic mass shifts of composite particles. The 

mass-shift formula comes in several guises: one, related to 

S-matrix theory, in the Dashen-Frautschi 6 formula; two, a 

&the-Salpeter type of formula7, -three, a dispersion formula 

based on the Kailen-Lcnmann representation* *They are all 

the same wilen evaluated exactly; it is when appro:.:imations are 

made that trouble comes in, The Dashen-Trautschi formula is 
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9 plagued tiy infra-red problcns , :7ilicii rare related to 

gauge invariance problem. Any dispersion intei;ral wnich 

saves only certain intermediate states is no-t i;auge-invariant. 

In an appendix, 37e show ho27 to select intermediate states 

in the dispersion integral so that gauge invariance is 

automatic. This is the analog of Fc~7nman's old proof ti1a-t 

xe must add photons to the charged legs of a tlia,;ram in all 

possible ways, in order to save gauge invariance. 

We have betn influenced by a number of aut;lors other 

than those explicitly cited here; a full. list of references 

would be inordinately lengthy. iiayashi et al 10 have recently 

published a well-referenced revie~w paper ighicn should be 

consulted for other publications. 
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II, S-Matrix Calculation of the Propagator and Vertex 

Function. 

In this section, -we restudy the problem of Ida 2,s , 
which is to calculate tile proper vertex function and 

propagator with S-matrix techniques. Of course, the 

composite limit is of particular interest; we show how to 

recover the results of Kaus and Zachariascn '+ ) 5 and others. 

1. Kinematics and Cefinitions 

The renormalized propagator we write as S(g), ~~~herc 

16 = P,YFI* Take !4 = (p*)-; : then it is convenient to define 

a function Z('d> by 

(1) 

By definition. Z(M) = 1; according to the usual field- 

theoretic arguments, the nucleon wave-function renormalization 

constant Z (conventionally written 2. > is recovered from the 2 

asymptotic beilaviour of the propagator: 

lim Z(Y) = Z (2) 

l-J+- 

A dispersion relation for Z(N) can be obtained from the 

Kallen-Lehman representation: 

Z(w)= 1 f w;+wl~w’ 

--oD w/-M/ 
+ pole terms, if any (3) 

It turns out that Z(Y) has at least one pole, for sufficiently 
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sZ311 2. The spectral function t vanishes in the 

interval -- (I.It p > c 'i < i! +u(where i? is ti-:e nucleon mass - - 

dilci p peon i2aSS 1, otherwise) t > 0. If we save only 

nil intermediate stafes 

where 

(5) 

and k, L are the center of-nass nonSntun and nucleon energy, 

respectively, in ni: scattering: 

(6) 

(7) 

The renornalized proper vertex function r(W) is normalized 

so that I-(I;)= 1 (iler:cc G2/4n = 14.5, the 81\J coupling constant). 

rw has cuts for ii > M + u, :q < - ( 1%: t )1 ) ; the phase of r 

on these cuts is related to t'ne 1 = 1, J= l/2 nil scatterin,? 
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amplitude (for W > K +p), or 1 = 0,J = l/2 amplitude 

(for K < -(I.! +p:>. To simplify the notations and 

calculations, we set tile O t scattering amplitude to zero 

(experimentally it is sKa11 in tile low-energy region), 

and concentrate on the l- amplitude; furtller, we save only 

the elastic cllannel, altliough the generalization to many 

channels is straight fors:ard. 

2. S-14atrix Approach 

Let us define trie invariant amplitude for TI:! scattering 

with e = 1, I = J q l/2 by 

such that in the elastic region 

(8) 

(9) 

This amplitude T i; free of kinematic singularities. If we 

take the Of amplitutie to be zero, ' tnen T(T,.I) has a unitary 

cut Only on the right-hand W axis; what would correspond to 

the normal left-hand cuts in the W* Diane lie along the 

imaginary axis, 

First, assume that the nucleon is elementary, so that 

Zl and Z are finite. Then Hi;'), Z(b!) are also finite. 
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TIE firsT: tern on the rizilt CO~YIES from the eienentar:T nuclear: 

p0l.e. As Ida 2,3 discusses, the unitarit;~ reiatio;l for 

T(Z) is: 

Ida ti-ielk proves that 'I'(X) is a unitary arn?litude: 

(13) 
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where lJ,i+ have only 
4 

"left-hand" cuts, and D, D only right 

hand cuts. By virtue of ti:c unitarity relation (II) for 

we can write 

r , 

(14) 

If the scattering amplitude decrease sufficiently fast at 

infinity, we can set iX(oo) = z(W) = 1. (Strictly speaking, 
11 

this is in conflict with the LSZ tllecrer;r,which requires 

I'(W) to vanish at W = m ,so that Z as calculated from (3) 

is finite. The required rate of decrease of r need only be 

logarithmic , We cannot treat the large-N region accurately 

in any event, so we shall ignore the LSZ theorem, and calculate 

Z from different considerations, These problems do not arise 

for scalar nucleons). With this ncrmalization, and with some 

old field theoretic arguments 12 , we find: 

where Zl is the usual vertex function renormalization constant. 

The form factor F(kJ) is defined by FF(Vi') = T(\!)Z-'(Y). 

Since we can write F(W) = DC;;> it follows that 

(16) 
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and 

Thus we find 

(ii’> 

(18) 

= 0, z = 0: Tne ~.,cnormaiize,i 

quantities r(X), Z(W) vanish, but the unrenormalized wrtex furlctLcrl 

rUw = rtw)zl-l and unrenormalized propagator Su(::') = ZS(:;I) es:i~;-C. 

Further the first tellm on the right of (13) vanishes (:;ee i<aus 

and Zachariasen 4 for details). None the less, there i:, still 2. 

particle pole at V = !I, coming from tile vanishink? ofs(AE) iI 

the second term on the right in (19). That i;(M) vanisll is 

assured by taking Zl = 0; if also CIE: take Z = 0, we siiall Later 

prove tllat the residue of the pole in T is just -3G'. The 

elementary particle pole is completely repl.ac:cd by a composite 

particle with the same mass and coupl:lng con,sta.nt, 
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For sufficiently small Z,Zl, observe that ??;(W> has a 

zero at some position W = iJ ii' Ti1i.s pole in I’(V) and Z(;?I! 

was first discussed by Jin and i';ac Dowel1 13 t Who proved 

that the pole at IJ = WR-does not occur in T(W), since the 

two terms on the right of (19) cancel each other. T(W), of 

course, has a pole, whose residue we define as 

(20) 

(the prime indicates a differentiation). Obviously, when 

x. c.2 ;.: A I ‘1 ) so z 1 vanishes as 14 + !+IR. 

Later, we shall see that for sufficiently smali Zl, z-+ l-G2/cr2 la 9 

so as G + Pi, z + 0. Conversely, as Z, Zl -t 0 the elementary 

nucleon pole, along with one of the Jin-Ilac Dowel1 poles, 

disappears; the remaining Jin-HacDowell pole in T(Y)) represents 

a composite nucleon. A full discussion is given in ref. 4. 

3. Solution of Ida's Problem 

Our object is to try to solve the equation (19) for 

specified input forces in either ;i, or in $. One question 

that might be asked is: given T(X), or alternatively, specified 

force terms in Ij(;,!), calculate ?(\!)(hence 1‘(X)), and the renor- 

malization constants Z and Zl. (!;'e,of course, believe that the 

nucleon is composite, and hence Z = Z 1 =3, but it is interesting 

to study hypothetical worlds where Z and Zl are finite, as Ida 
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calculated, especially for the purpose of discussing the 

passage to the composite limit). 

It is heuristically more convenient to solve the 

converse problem: given ??CVJ), calculate tne physical amplitude 

T(:!> , It will become clear fron the ensuing aqunents that tile 

problen; of the para:;raph above is readily soluble by similar 

techniques. 

Xe begin with the converse problem, that is, N(Y) is 

given. Please observe that, throughout this paper, all integrals 

are cut off at a large but finite value of kJ to avoid convergence 

problems. Therefore we can write 

(21) 

Let us Suppose that the forces are sufficiently strong that there 

is a Jin-ilac Dowel1 pole (zero of gC\J> at W = bJR* ?'i. This >ole 

does not appear in T(I,I), which gives us a single condition. 

It is convenient to incorporate this condition by ;qritir,g 

subtracted disoersion relation for D(W) (the subtraction iS 

actually unnecessary): 

(22) 

(23) 



In the limit Zl = O(i1 = K,), (23) gives using (20) and (15): 

Now for Z 1 
= 0, 2 = 1 -G2/g2. If Z $ O,D(Il) = 0, consistent 

with (17);ifZ q 0 and:22 = z2, 3(M) is as yet undetermined. 

Ye solve (i9) for Ii: 

(24) 

Let us try the ansatz 

where the intep,ral is over the unitary cut, and 
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It is easy to see that J(W) has no poles; if N(W) goes like 

w-1 at infinity, so does J(W). 

The solution to (26) is: 

where A is a number as yet undertermined, I\Iote that H(W)T(W) 

has no right-hand cut, and that as Zl(= D(M)) approaches zero, 

both J(W) and the A-independent part of H(W) vanish, Later on, 

we give an exactly soluble (but non-trivial) model in which 

J(W) vanishes identically; clearly, in the composite limit, 

certain features of this model must be generally true, since 

J(W) vanishes in this limit for any S-matrix. 

Our solution will be complete, once we have exhibited 

A and D(i4) in terms of known quantities. This can be done, in 

general, by writing an unsubtracted dispersion relation for 

D(W) : 
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(29) 

and evaluating (29) at iii = 14 . This condition, coupled with 

the condition (23) that the Jin-Mac Dowel1 poles cancel in T, 

furnishes t;go equations for A and D(:I). 

So far, we have only used one-half of the FI/D formalism, 

which expresses unitarity on the right-hand cut via dispersion 

relation of the type (29). There is, of course, a condition 

on the"left-hand" cut; from (191, we find 

(30) 

tie leave it to the reader to show, with the aid of (19),(25), 

(27) and (281, that (30) is identically satisfied. Finally, 

the renormalization constants Zl and Z can be calculated from 

(15) and (17). 

A number of generally true observations can be 

made from a remarkably simple model, which posessesses 

an algebraic solution. Suppose that lr(W> has the form: 
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(3i) 

(32) 

(A special case of this solutionin potential theory has been 

given by kiaus and Zachariasen 5 

From (33), we find: 



;Is~ (33) dnd (22) to cc~Lt: to 

it 

(35) 

?t is clear that as !X r? 
* ;n, A -* 1; indeed 2 

show that A= 1 f 3 ( iL' R -;!j2 by solving (34) and (35) 

together. 'Ynus for sufficiently SJMil~ Z1 and !SR-;1,(3+) 

becomes 

(The first equality folloxs frcn (17). In tne iini-t 

'i = 0, I,'R = M, we conclude, :.IiC the aid of (20)) that 

(37) 
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Equations (37),(38) and (39) are inSepcnc&nt of our speciai 

model; set? me remarks belo:r: (28). 

Observe the follorlin~: the 'condition that the 

composite particle and the eldcentary particle ,iave the same 

mass is tkat Z 
1 

= 0; that they have the same couplines 

requires z q 0. This is per;l;rps tile 0r)posite of snc's naive 

exuectation;. Furthermore , it is clear that, Eor SilffiCiei1tl.y 

SllMll Z]., Ii (!;I> always iias a zero whici: acproacncs ?I0 in t!lc 

composite limit. I;'c shall arzuc in the next section that 

;4 
0 

can be identified y;IitA the bare mass of the nucleon,K 
0’ 

Since DC;,;> = z,/z' 0% ;\I(EG) ) O( for attrsctive forces, in 

general), we see from (39) that !I02 1;, as would be expect-zd 

in conventional niJ fieid theory. As far as pure S-matrix 
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theory is concerned, Zl and z are io~ically i I:cepcnclcnt , 

and D(iA) = Z / . , - . 1 Z can have a wlcie raIl"c of ‘> - v a : L; c $2 ; t-],k:]-.e fop2 , 

so can b! 0' Gut 5:e always have a finite number (zero i:: -t%C 

composite limit) for Z6P.1, tiefined as 

'The reader must not suppose that Z,l/Z can be c:iosen co::i~7:iceeiy 

arbitrarily, at leas;. without the exper,se of unrjilysical 

complications, If Z P = D(H) is sufficiently sI7.a 11, ti:e n it 

follows by continuity arguments tilat DC::'> has a zero at some 

point VJ = I/l 2 Pi. 3y hypothesis, the physical amplitude T(Y!) 

has no otner poles except the nucleon pole, hence iJ(‘;!l> must 

also be zero, and W 1 is the same zero of !J(\j) as discussed in 

the preceding paragraph. A glance at (19) shows that tile 

right-hand side of this equation will nave a pole, unless 

D(W) has a CDD pole at W = iGl, i\low r>(N) vanishes at i;!::ti :-I 

(for small enogh Zl), and by drawing graphs it will se easy 

to see that the addition of the CDD ?ole at YJiz I? 

produces another zero in D(W), at !'12z M, This can Froduce a 

pole in the right-iland side of (19) at !? = ';J2, unless the 

residue of the pole vanishes (which it must, since T('.;') Las 

no such pole). The condition that there be no such pole in 

(191, along with o-tiler previously mentioned conditions, alloX 
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one to determine the residue of tne CD3 poic as well as 

Yl and W2 . Everything is well-behaved at the con:?osite limit, 

w1-l en 1J = )I = \,/ 
1 2 and the CDD 

0 
pole and extra zero in D(Y!) 

disappearcbecause tne residue of the CDD Fole vanishes). It 

is difficult to make any physical sense out of all these 

zeroes and poles before the connosite limit is reached. 

In the next section, WC indicate that field theory probably 

avoids these conplica-Lions, by not letting Zl/Z become too 

small in the composite limit. 

III Tlie Dyson Ccuations 

Ne now turn to the problem of con?ositeness as 

expressed in the Dyson equations. All of the features of the 

,S-matrix theory of Sec.11 emerge, as well as some ners7 ones, 

b7iliCil involve the nucieonic bare mass, as briefly mentioned in 

Section II. 

To simplify the presentation of this section, we suppose 

that the only composite r,article in the worid is t;?e nucleon, 

all otilers .being elerxntary; furthermore, b7e treat all particles 

as isotopic scalars. . The practical distinction v:e make 

between elementary and coil:?osite ?articlcs is that the renorm:?lizn< 

propagators and vectcr functions of elementary particles are 

su;>:)osed to be well-defined, and to have no extra poles Or 
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zeroes . LnrenornaI3.zcd c-uantities are distinguished by a 

subscript 11; renomdiized c:Liantiti.es hav2 no subscript 

of this sort. 

1. Conpositeness via tile 2yson Lquations 

Consider a c;orld in which t;?ere are a certain r.utier 

Of pseucioscalar msnris (H,X ,,.,I and baryons (i!,:,...); the 
_1 nucleon ca:l appear as a bound state in a number of tl:o-bocy 

ciianriels (nil, XC,,,....), There is quite a difference in 

spirit ;?e-t\:ecn a ;‘,UCli?Oil cI;lic;l is a bound state of itself 

(c3ilCi amscn) , as in the VI; chmnel, and a nucleon cornposed 

of tb70 elemntarv part:clcs (e.2 .,K c>. Tile latter case is 

IT.01-2 str*LLi~;lt,t 3x-drlrd Sut there are 110 insunex>aLlc difficulties 

for tile iormr case. 

Let -us basin by definin.7 a renormalized off-shell 
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(41) 

xriic;l tiescribes tile scattering of a baryon (of xor.zenturn p-k) 

and rAesc;:! (k) in tne initial channei i, into a baryon (:,'=?-q) 

and meson (5) in i5e first cnannel f. The renornalized .-&son 

field is $9 tne rcnoraalized ba?yon field is w , and the 

L ( s are frze 3irac or Klei;l-Zordon operators. As before, we 
7 

3 e t 1, 2 = ;,: L ; when all external mo;fienta are on the mass shell, 

and v;e p:it ~ q !~~, tile appropriate partial-wave projection of 

(41) is just the amplitude 'L'(X) introduced in (8). b!e define 

a One-IluCleOilr,, '--eCiuciSle anplitude T'(p,k,q; i f) by subtracting 

fron T(p,k,q; i f) all Feynnan graphs which can be separated into 

two disjoint pieces by cuttil?~ a single nucleon line of inornentui:; 

P* This asplitucie yields T(':/) on t:le xass s‘ncll. We defcne the 

unrenoraalized version of T 1 
by: 

(42) 
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?lhCIl tlie n1UCl~20R beCO.TcS CORpOSiC:?. TFiiS iS easy to SLJallOiii 

if tilt cnannels i,f tie iTOt conta?;n the nucleon itse:Lf. If 

they CiO , a non-prt.Jrbative ooi;lt of vie:,: ts required, since 

as a result of oi~r h>:pot!lesis we shall ~rcve Slat all 

renormlized Yuka:;a vertices containing a nucleon vanish. 

IieveI~tneie3S, We groceed Oil tAis aSSunpti0n. 

;,!c use tile nota7Iic:l Yu' p ,:!;i) to &:note a certain 

pseudo-prayer unrenormli.zed vertex fuilction, descrtihing a 

nucieon (of monentux pj going to a charmel f consisting of 

a ix.r;7on (p- q) and a mson (q).The vertex function is proper 

with resmct to the nuclecn of noxntum p, but corltains fuli 

propagator corrections to the 'leg3 of channel f. Tile Dyson 

ecAudtion for tiiis object is 

(43) 
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mass shell, and set $ = ;J in ? U’ tinder these circx,istance~ J7 

we have : 

(44) 

where ru(k/;f) is the unrenormalized form of the prover vertex 

described in section II. From (1131, we find (with channel f 

on shell) 

To simplify the notation in what follow, xe write explicit 

formulas as if tile nucleon were oniy coupled to oni: channel, 

so that ciiannel labels may be dropped. The reader may convince 

himself, using (43) and (451, that no real generality is lost 

in the ensuing discussion, 
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The idea behind compositeness, as expressed in Section II, 

is that the ampiitude Tl pic:~o up a Dole in tile ;l:omentui,! _ 

p, as the various forces in -ti:e problem are adjusted. Llerc- 

fore, in the nei;;;lborhood of this pole, Tl has the form 

(irrelevant Dirac matrices omitted): 

The residue functions in (46) make sense only a-t p2 = bi'~ 2 , 
\ 

Xe shall tie intereste d in evaluatinj functions at I<=II; as tile 

composite pole moves close to I;, we need only save the pole 

terms, Insert (!+t;> into ti;e one-channel version of (45) to 

find: 

(47) 

i: = R(p,q) at this point p2=?!R2,tan<i p-q on the mass si-,ell. (49) 

. Of course, xe asslumc that i? C?Xists and is not zero; by our 

previous assumptions about T 1 , both R(p,q) and i? are xcll- 

behaved in the composite limit. 
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In (521, G is a renomalizec coupling ccr,stant, '/; is t;le r;liclt~Ti 

xave-function rcnorI:.alization cc::stany, and ZTi, Z,, Z refer to i 3 
tiie intexxdiate s";ztc to whicii the nucleon is cc;~l~led . use 

(431, (4s)) drld (46) to find the pole contribution to c u (:, ,!!: 



(53) 

(54) 

155) 
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We can C'ciTZ*.,: SOEc? COIlClUSiCAlS ahout the rate at \7!1?:Cil 

Z a~JproaCileS ZCFO, when %l is already ~aail, 'Zle unmncrnalizcL 

inverse propa!:ator rrust kave a zero at 71 = II; savin;l, or2.l.y the 

pole term gives, witn the aid of (51) and (53): 

(58) 

With the aid of (50) and (511, we find 

By comparing the expressions derived in section II with 

those of the present section, we derive the following, relation 

which holds in the conposite limit: 

Use (17) and (38) to find 

(50) 

(51) 
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which, Witil the aid of (50),(E3), and tile ;?rcviou:;1:J 

nentioned identification ;'lo = I.Lo, yields (5'3). 

Just as in -tile S-xatrix case, all renorxzliz~o 
_- vertex runctions __j. \]!I i ,- 11 involve one (or pore) nucleczs vanisI, L;; t;ik 

limit. The amplitude T then becones equal to tile znplitutie T7 .i 

and it is :,crfectl:* straight forward to believe k1a.t Tl is 

well-bel1aved when it describes so:-net;?ing like i(C elastic 

scatterinu c> 3 since t:xre is s ocie part of this ar:r?litlude :7ilic11 

i?dS 110 Ilucl~oI: vertices in it at all. 2ut k!?ten T 1 
(j ‘2 r, c riljes, 

e.g., nii scattering, t;ic situation is a little different . An y 

finite number of Fcyi...,a. -r'~ T:raks contributin,? to Tl r;;ust vanis? _ 

if all vertices involvin;: nuclecns vanish. Our il!rI;othesis ilas 

been that 'i' 1 does net vanish in the com;:osite linit; this can 

only be true when an ififini-te nun?bcr of r:rap:ls contribute. y/e 

camot prove that Tl does or does not vanish from sjnple 

gram'ilical considera.cior:s; one must study a set of non-linear 

integral equations for ali Tits * ’ :.~nlch lnvolvc eXterllal IluCleoJ;; 

to see if they have non-trivial solutions. 

2. . ., ‘;lectror.1aFrrietic ~16s Shifts of Cornnosite Particles 

tile shall be brief in this suYksection, because it wouid 

take another ion: article to describe (i?.uc;~ less avoid!) all 

the pitfalls involved in doing- a reliable calculation of the 

neutron-proton mass difference. Tliere are many tecilr,iques 
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i-ierc 11 is a 4-vertex index :lhic;l cou;)les to t;-le pho,ton 

field. ii u (p,q) is a pe;i dUe fllncTi.oil v:hic.n y>.i,ves t;;:: 

total c;:anze of the composite nucleon; thus for the proton, 

iporing ,magnetic ,F2dli:entr; terns : 

LT c :; -L a s for The strong interacticns, xe introduce a 

quantity 

The corresponding quantity for the neutron vanishes, because 

it has zero charge. In (64) A*o'V is the free photon xopgator. 

Eiectrornagnetic vertices and corrections to the proton propagator, 

in the neighborhood of the pole at 2 = W,, can be e:-:r,rcsscd .\ 
with tile aid of (64). 

To make the point xc have in mind, it is simnlest to foi.;;,kt 

the rleuTroi: completely, and discuss the electromagnetic mass 

snif-t of the poton, as a sort of analozue of the kmb shift in 

nydrogcn. riddin,y the neutron merely complicates the writing cf 

formulas, The unrenoraalized proton prcpazator, wi-th elcctro- 

magnetic corrections included, takes the form 
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dre not F:au~e-iIiV~;riant, because Z is ilot ~cui~e-invari~iit, iI1 i> <.> 

genera;-, ;iowever s an iiltcresring tl!inq happcr~s vhen Z .;)::.comes 

very small and iiuclceon approaches compositeness, GauJp~-.(;c~ende:i4i ..I 

terms can only come from that nart of the uroton propa;:al:or 

A &K) ~i;iic:l go like kUkv . It is a consequcrice of the Ward 

identit:~ that ti-ie-se gauze-dependent terms must vanish (at leas.:) 

linearly in X-Ii, as 'ij ar>proaches II; this rLUSt- be SO, 

or t1lc electrona:;netic mass shift (l~;iliCh comes from evaluating 

(65) at )] = M) Would be ;jau;;c-depe;lciCi‘lt , in :ri~e composite iimit , 

this faCtOF Of l!-X will cancel the pole at ?I=',' " E\ 3 :I!* -51 t;1 e resul-i 

tnat the sauge -denendeI~t ccrrections to Z vani.s;i with a higller -I/ 

poihier of Pi - Vi? than the Teynman zac7,*s clcctrcna~i-ietic correcticn3. \ 

Intsitively, t!lis accords with our belief that tile notion of 

compositeness, ds exoressed via Z = L1, is gau;;e-invariant. 

!je distinguish between I.1 and II 
FS 

the proton mass before 

and after (resgcctiveiy) electron?:<nc-cism is turned on. Xlere I.1 

a similar distinction betr,ieen :J ii 
anrj W. 

RD * 
Since( by our nOtiOi1 
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of compositeness) tne electroma~~n~tic ccrrcctio:ln to 3 x 
are the same as they are to ii, :le have 

AS the COm~josite limit is approached, the Prave-function reri3r- 

malization constant be;7aveslil;e (see (59)): 

(67) 

where the higher-order terms ccntain gauge-dependent terns. 

If we forget about electromagnitic corrections to t!le strong 

vertices and propagators, so tnat G,Zl, and R are unchanged, 

we can use (SO), (66) and (67) to evaluate (65!, b:llich must 

vanish at :?' = I.1 ; tile result is tile electromagnetic mass Sili, * Ft 
P 

of the pro-ton without feedback: 

It is easy to check that includinc feedjack would still lead 
- ,. 

to a finite result at Z = 0, ii1 contrast to the T';~icd.-Truc:ig13 

formulas. Clearly, formula (66) is a &tile-Sal~etcr type of 



mas G- shift equatio:l; :; Ii& 2ornulatior.s !-!iiVL? alr2aZ1: Seen 

discussed iI1 the 1ir:2rature7. It has an advantal:r! over tile. 

gashen-Frautscili formula t;l;it infra-red?roblena arc 

relatively easily ci.sT~osed of. 

Lispersion relations for S are -yet anotner 

tecrlnique for fintiinz mass shifts. The necess2.r' 1 in~rcd.iC2nts 

are things like rP(:I)', the iJi!y vector with the riucleon cff-sAel1. 

These are zonstruct3u in terr:ls of GO/) (see Section II), ~liich 

rev2als 52.2 COIZFO:ji'te Dapticle pole, Tfli:; pole is ~?a:<:li~i~tC~(~ 'i 

in S u-1!.,: 1 , as discussed by several authors 13 ,:La 
> by tfle 

deformation of an inteqratio;; contour as the pole moves from 

Lie second sheet (for weak forces) to the first sheet (as tiie 

strength of tile forms is increased). Thereby a1.l tile results 

in Section II and III can Se es‘ni.oited in an apl)roxLmation in 

which only a small nucber 02 icrtermediate states is saved, 

Unfortunately, not al.1 such approximations are ~auee-invariant. 

In the appendix, ;,Je ShOi< hair to maintain gauge invariance in 

approxlr,.ate calculations; * -7 for example, if one Le;;i:is by SdVin:i 

only tne 7fiA channel. ds an inTermediate state in t;?c propa;-ator .., 

Yithout elcctroma~~ne,tions inciuded, tiicn one must add bat:1 

the y2 and the ynri zlannels to commute the ;!au:;e-invariant 

propagator. The eiectronagetic amplitude must satisfv tile 

relevant Llard identiries. Tliat these %Y;O channels should DC 

included is intuitively obvious, if one tliinks of com?utini; 

a gauge-invarialit set of Feynnan graphs by the Cutkosky LL -cr,, -3111 

but the authors are unaware of a detaiied discussion in tllc 

literature. 
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:le want to i;how wilat conbination of intermediate states 

rtUSK SC? sav”peci Ln the ie:)r.:ann reprcsentatioa of the nro?;?gator, 

in orcler thm t,ie proyjcfj;;tKor be ;7,"-ui:e-invariant. For sinplicity, 

SupF'o"" that ti:e C!iiFii?~QG grticies am scalars, called 

Q pdrti2les,and that there is a b3 vertex. ;ic define tile 

In bji:aT. folicws , we set D2 = s. 

AIIY CAXl~:e in C ( ?) ccninq fPOn! a I- r:au;;e transformation 

ilas t::o par-es : one part from, ch;:nzin-, the photon pro~~azator, _ 1 

where q is the cilar;Tn of the scalar field. .>- 

Let us consider an operator r;auze functionjj(x) which 

co.TLrlutcs xi ti3 $ ) Q t ar,d is ca*Jsai ( fields coxmute at space- 

like Sepdratioi;s). To C(q'), the cf:anz:e is A 
F coming from (A2 ) 
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czn be xrittcn 
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discontinuity fuiict~on is finite; studying this disco;2rlni?ity 

function is sufi.iclent 13~ our pur~7os~s. 

Colisider t;le fol~o;lil~~ approximdti 011 to tile k;iJ:.dnIl 

representation: onlv'thc 94 and yi: channels tire savcc;. , 

We write : 

Here 

and (in the Feynnan gauge) 

F(s) is the strong c3 forn factor, while P is the electro- 

mgnetic proper vertex function. 

Under a ir;au;:e transformation of the nhoton Dronagator, _ -- 

-g 
UV in (A91 is changed to-is 

"IJ v + C kuliY, where k, is tne 

photon xonentun, The Ward identify for r,, yea& jq,, r'(s) = 

AF(s)-‘, The change (A31 can be analyzed with tile aid of (A7) 

and tI:e usual Cutkosky r\;lcs; WC have 






